人教版八年级数学复习(精选11篇)
人教版初二数学总复习资料有哪些
人教版初二数学总复习资料有哪些对于数学的学习我们平常上课一定要认真听讲,不然就很难蓄热号数学,在考试前要准备好一份复习资料。
据地复习资料难整理的话不妨看看下文,下面是店铺分享给大家的人教版初二数学总复习资料的资料,希望大家喜欢!人教版初二数学总复习资料一第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.人教版初二数学总复习资料二第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.人教版初二数学总复习资料三第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.。
八年级数学期中总结实用11篇
八年级数学期中总结实用11篇八年级数学期中总结1一、定义1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。
因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。
同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。
由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。
新图形上的每一点,都是原图形上的某一点关于直线的对称点。
连接任意一对对应点的线段被对称轴垂直平分。
7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。
人教版八年级下册数学复习课件5篇
人教版八年级下册数学复习课件5篇人教版八年级下册数学复习课件5篇八年级数学的课件很重要的。
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,进行的具体设计和安排的一种实用性教学文书。
下面小编给大家带来关于人教版八年级下册数学复习课件,希望会对大家的工作与学习有所帮助。
人教版八年级下册数学复习课件(篇1)教学目的1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2、使学生能了解实数绝对值的意义。
3、使学生能了解数轴上的点具有一一对应关系。
4、由实数的分类,渗透数学分类的思想。
5、由实数与数轴的一一对应,渗透数形结合的思想。
教学分析重点:无理数及实数的概念。
难点:有理数与无理数的区别,点与数的一一对应。
教学过程一、复习1、什么叫有理数?2、有理数可以如何分类?(按定义分与按大小分。
)二、新授1、无理数定义:无限不循环小数叫做无理数。
判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。
2、实数的定义:有理数与无理数统称为实数。
3、按课本中列表,将各数间的联系介绍一下。
除了按定义还能按大小写出列表。
4、实数的相反数:5、实数的绝对值:6、实数的运算讲解例1,加上(3)若|x|=π(4)若|x-1|=,那么x的值是多少?例2,判断题:(1)任何实数的偶次幂是正实数。
()(2)在实数范围内,若|x|=|y|则x=y。
()(3)0是最小的实数。
()(4)0是绝对值最小的实数。
()解:略三、练习P148练习:3、4、5、6。
四、小结1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。
2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。
五、作业1、P150习题A:3。
2、基础训练:同步练习1。
人教版八年级下册数学复习课件(篇2)一、教材分析本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
新人教版八年级数学下册知识点总复习及练习
二次根式【知识回忆】1.二次根式:式子a〔a≥0〕叫做二次根式。
2.最简二次根式:必须同时满足以下条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:〔1〕〔a〕2=a〔a≥0〕;〔2〕==aa25.二次根式的运算:〔1〕因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a≥0,b≥0〕;=b≥0,a>0〕.〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1以下各式1其中是二次根式的是_________〔填序号〕.例2、求以下二次根式中字母的取值范围〔1〕xx--+315;〔2〕22)-(xa〔a>0〕a-〔a<0〕0 〔a=0〕;例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 〔2009龙岩〕已知数a ,b ,假设2()a b -=b -a ,则 ( )A. a>bB. a<bC. a ≥bD. a ≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中51+,51- 例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -3、比较数值 〔1〕、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。
人教版八年级上册数学各章知识点及测试题、总复习题
第十一章 全等三角形 1. 全等三角形的性质:2. 全等三角形的判定:3. 角平分线的性质: 4. 角平分线推论:例 1已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE2 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23 如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA 4.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):OEDCBA第十二章 轴对称1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60°,12.等边三角形的判定: 三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形 有两个角是60°的三角形是等边三角形。
13.直角三角形中,30°角所对的直角边等于斜边的一半。
八年级数学知识点总结归纳人教版
八年级数学知识点总结归纳人教版第十一章三角形。
1. 三角形的概念。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形有三条边、三个内角和三个顶点。
2. 三角形的分类。
- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角为直角的三角形,直角三角形可用“Rt△”表示。
- 钝角三角形:有一个角为钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形。
3. 三角形的三边关系。
- 三角形两边的和大于第三边,三角形两边的差小于第三边。
- 应用:判断三条线段能否组成三角形,只需判断较短两条线段之和是否大于最长线段。
4. 三角形的高、中线与角平分线。
- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高为直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。
- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线都在三角形内部,且相交于一点,这个点叫做三角形的重心。
- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线都在三角形内部,且相交于一点。
5. 三角形的内角和与外角和。
- 内角和:三角形的内角和为180°。
- 外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。
- 外角性质:- 三角形的一个外角等于与它不相邻的两个内角的和。
- 三角形的一个外角大于与它不相邻的任何一个内角。
- 外角和:三角形的外角和为360°。
人教版八年级数学下册知识点总结和复习要点
人教版八年级数学下册知识点总结和复习要点一、分式1分式的概念概念:一般地,如果A、B表示两个整式,且B中含有字母,那么式子A/B就叫做分式。
2分式的基本性质性质:分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变。
3分式的约分与通分约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
通分:把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分。
例子:对于分式(2x^2y)/(4xy^2),我们可以约分为(x/2y)。
二、反比例函数1反比例函数的概念概念:一般地,函数y=k/x (k为常数且k≠0)叫做反比例函数。
2反比例函数的性质性质:反比例函数的图像是双曲线;当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限。
例子:函数y=2/x的图像是一个位于第一、三象限的双曲线。
三、勾股定理1勾股定理的概念概念:直角三角形两直角边的平方和等于斜边的平方。
2勾股定理的逆定理逆定理:如果三角形三边满足两边平方和等于第三边平方,那么这个三角形是直角三角形。
例子:在△ABC中,若AB^2 + BC^2 = AC^2,则△ABC是直角三角形。
四、四边形1平行四边形的性质与判定性质:对边平行且相等;对角相等;邻角互补。
判定:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
2矩形的性质与判定性质:四个角都是直角;对角线相等且互相平分。
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形。
3菱形的性质与判定性质:四条边都相等;对角线互相垂直且平分。
判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
4正方形的性质与判定性质:具有矩形和菱形的所有性质。
判定:有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;邻边相等的矩形是正方形。
例子:一个四边形的对角线互相平分且垂直,那么这个四边形是菱形。
初二数学知识点总结(期末复习最好资料)新人教版
1. 一次函数与一元一次方程:从“数”的角度看 x 为何值时函数 y= ax+b 的值为 0. 2. 求 ax+b=0(a, b 是常数,a≠0)的解,从“形”的角度看,求直线 y= ax+b 与 x 轴交点的横坐标 3. 一次函数与一元一次不等式: 解不等式 ax+b>0(a,b 是常数,a≠0) .从“数”的角度看,x 为何值时函数 y= ax+b 的值大于 0. 4. 解不等式 ax+b>0(a,b 是常数,a≠0) . 从“形”的角度看,求直线 y= ax+b 在 x 轴上方的部分(射 线)所对应的的横坐标的取值范围.
的 位 置关 系,必 须 涉及
( 两 个 )图形; ( 2)只 有(一 条) 对称 轴.
如 果 把轴 对称 图形 沿对 称轴 分 成 两部 分, 那么 这两 个图 形 就 关 于这 条直 线成 轴对 称.
如 果 把两 个成 轴对 称的 图形 拼 在 一起 看成 一个 整体 ,那 么 它 就是 一个 轴对 称图 形 .
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。 (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变 量的取值范围。 (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。 四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵 坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象. 五、用描点法画函数的图象的一般步骤
第十一章 全等三角形复习
一、全等三角形 1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以 得到它的全等形;③三角形全等不因位置发生变化而改变。 2、全等三角形有哪些性质 (1)全等三角形的对应边相等、对应角相等。
人教版八年级数学下册总复习资料(经典)
第十六章分式1、分式的概念【样例1】当x取什么值时,下列分式有意义?(1);(2).【样例2】分式的值等于0,求x的取值.〖人教版课本,P3.例1, P9练习题13〗2、分式的运算【样例1】化简求值:,其中.〖人教版课本,P11.例2, P17.例7,P23练习题6,8〗3、分式方程【样例1】解下列分式方程.(1);(2)【样例2】(2007广西玉林课改,3分)甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要()A.6天B.4天C.3天D.2天【样例3】(2007河北课改,2分)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.B.C.D.〖人教版课本,P30.例4, P37练习题10〗第十七章反比例函数1、反比例函数概念【样例1】下列函数中,是的反比例函数为()A.B.C.D.【样例2】(2007广东梅州课改)近视眼镜的度数(度)与镜片焦距(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数与镜片焦距之间的函数关系式为.【样例3】已知反比例函数的图象经过点A(-2,3),则这个反比例函数的解析式为.〖人教版课本,P44.例4, P46~P47.练习题3,7,8,9〗2、实际问题与反比例函数【样例5】一司机驾驶汽车从甲地去乙地,以80千米/时的平均速度用6小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时,用了48小时,求返回时的速度.〖人教版课本,P52.例3, P46~P47.练习题1,3,5〗3、反比例函数综合运用【样例5】(2007吉林长春课改)如图,在平面直角坐标系中,为轴正半轴上一点,过作轴的平行线,交函数的图象于,交函数的图象于,过作轴的平行线交的延长线于.(1)如果点的坐标为,求线段与线段的长度之比.(3分)(2)如果点的坐标为,求线段与线段的长度之比.(3分)(3)在(2)的条件下,四边形的面积与.(1分)〖人教版课本,P60~P61.练习题5,9,10,11〗第18章勾股定理【样例1】以下面每组中的三条线段为边的三角形中,是直角三角形的是()A. 5cm,13cm,11cmB. 5cm,8cm,11cmC . 5cm,12cm,13cm D. 8cm,13cm,11cm【样例2】△ABC中,如果三边满足关系=+,则△ABC的直角是()A.∠CB.∠AC.∠BD.不能确定【样例3】(2007四川绵阳课改,4分)若a、b、c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:①以a2,b2,c2 的长为边的三条线段能组成一个三角形②以,,的长为边的三条线段能组成一个三角形③以a + b,c + h,h的长为边的三条线段能组成直角三角形④以,,的长为边的三条线段能组成直角三角形其中所有正确结论的序号为.【样例4】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)两直线平行,同位角相等。
人教版八年级下学期数学全册复习资料
人教版八年级下学期数学复习资料(01)姓名:________ 得分:_____一、知识点梳理: 1、二次根式的定义.一般地,式子 a (a ≥0)叫做二次根式,a 叫做被开方数。
两个非负数:(1)a ≥0 ;(2) a ≥0 2、二次根式的性质:(1).()0≥a a 是一个________ 数 ; (2)()=2a __________(a ≥0)(3)()()()⎪⎩⎪⎨⎧〈=〉==0_______0_______0_______2a a a a a3、二次根式的乘除: 积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ,二次根式乘法法则:__________=⋅b a (a ≥0,b ≥0)商的算术平方根的性质: ba ba =).0,0(>≥b a 二次根式除法法则:)0,0(>≥=b a ba ba1.被开方数不含分母; 4、最简二次根式 2.分母中不含根号;3. 被开方数中不含能开得尽方的因数或因式. 分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的. 二、典型例题:例1:当x 是怎样实数时,下列各式在实数范围内有意义? ⑴ 2-x ⑵xx -+2)1(0⑶13-+-x x ⑷12+x (5)12-+x x小结:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 例2:化简:(1)|21|)22(2-+- (2)|3254|)3253(2-+-例3: (1)已知y=x -3+62-x +5,求xy的值. (2) 已知01442=-+++-y x y y ,求xy 的值.小结:(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0.例4:化简:(1)32; (2)2ba 33; (3)48.0 (4)yx x2(5)2925x y例5:计算: (1) 351223⨯ (2) 21335÷ (3) ()0,02123〉〉⎪⎪⎭⎫ ⎝⎛-÷b a b a b a例6:化去下列各式分母中的二次根式: (1)323+ (2)813 (3)251+ (4)()0,03〉〉y x xy三、强化训练:1x 的取值范围是( )A 、x ≤1;B 、x ≤1且2x ≠-;C 、2x ≠-;D 、x <1且2x ≠-. 2、已知0<x<1时,化简()21--x x 的结果是( )A 2X-1B 1-2XC -1D 1 3、 已知直角三角形的一条直角边为9,斜边长为10,则别一条直角边长为( ) A 、1; BC 、19;D 4n 的最小值是( )A 、4;B 、5;C 、6;D 、7. 5、下列二次根式中,是最简二次根式的是( ) A 、a 16 B 、b 3 C 、ab D 、456、下列计算正确的是( )A ()()69494-=-⨯-=-⨯-B 188142712=⨯=⨯C 624416416=+=+=+D 1212414414=⨯=⨯=7、等式33-=-x x x x成立的条件是( )A x ≠3B x ≥0C x ≥0且x ≠3D x>3 8、已知053232=--+--y x y x 则y x 8-的值为 9、23231+-与的关系是 。
新人教版八年级数学全册复习提纲
新人教版八年级数学全册复习提纲TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-初二数学全册总复习提纲第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
初二数学人教版知识点(集锦12篇)
初二数学人教版知识点(集锦12篇)初二数学人教版知识点第1篇一.知识框架二.知识概念算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。
0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x 就叫做a的平方根。
正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
初二数学人教版知识点第2篇分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有四种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n位整数时,其中10的指数是用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)初二数学人教版知识点第3篇第三章图形的平移和旋转1、图形的平移①在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小②一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等③一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的2、图形的旋转①在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小②一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等3、中心对称①如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心②成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分③把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心4、简单的图案设计初二数学人教版知识点第4篇第十一章全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
人教版八年级下册数学知识点(精选5篇)
人教版八年级下册数学知识点〔精选5篇〕篇1: 八年级数学知识点下册人教版初二数学下册知识点归纳第一章一元一次不等式和一元一次不等式组一、一般地, 用符号(或), (或)连接的式子叫做不等式.能使不等式成立的未知数的值, 叫做不等式的解.不等式的解不, 把所有满足不等式的解集合在一起, 构成不等式的解集.求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集: 一元一次不等式组各个不等式的解集的公共局部.等式根本性质1: 在等式的两边都加上(或减去)同一个数或整式, 所得的结果仍是等式.根本性质2: 在等式的两边都乘以或除以同一个数(除数不为0), 所得的结果仍是等式.二、不等式的根本性质1: 不等式的两边都加上(或减去)同一个整式, 不等号的方向不变.(注: 移项要变号, 但不等号不变.)性质2: 不等式的两边都乘以(或除以)同一个正数, 不等号的方向不变.性质3: 不等式的两边都乘以(或除以)同一个负数, 不等号的方向改变.不等式的根本性质1.假设ab, 那么a+cb+c;2.假设ab, c0那么acbc假设c0, 那么ac不等式的其他性质: 反射性: 假设ab, 那么bb, 且bc, 那么ac三、解不等式的步骤: 1.去分母;2、去括号;3、移项合并同类项;4、系数化为1.四、解不等式组的步骤: 1.解出不等式的解集2、在同一数轴表示不等式的解集.五、列一元一次不等式组解实际问题的一般步骤: (1)审题;(2)设未知数, 找(不等量)关系式;(3)设元, (根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.六、常考题型: 1、求4x-67x-12的非负数解.2、3(x-a)=x-a+1r的解合适2(x-5)8a, 求a的范围.3、当m取何值时, 3x+m-2(m+2)=3m+x的解在-5和5之间.第二章分解因式一、公式: 1.ma+mb+mc=m(a+b+c)2.a2-b2=(a+b)(a-b)3.a22ab+b2=(ab)2二、把一个多项式化成几个整式的积的形式, 这种变形叫做把这个多项式分解因式.1.把几个整式的积化成一个多项式的形式, 是乘法运算.2.把一个多项式化成几个整式的积的形式, 是因式分解.3.ma+mb+mcm(a+b+c)4.因式分解与整式乘法是相反方向的变形.三、把多项式的各项都含有的一样因式, 叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤: (1)假设各项系数是整系数, 取系数的公约数;(2)取一样的字母, 字母的指数取较低的;(3)取一样的多项式, 多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)假设有-先提取-, 假设多项式各项有公因式, 那么再提取公因式.(2)假设多项式各项没有公因式, 那么根据多项式特点, 选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法: 1、提公因式法.2、运用公式法.第三章分式注: 1对于任意一个分式, 分母都不能为零.2分式与整式不同的是: 分式的分母中含有字母, 整式的分母中不含字母.3分式的值为零含两层意思: 分母不等于零;分子等于零.(中B0时, 分式有意义;分式中, 当B=0分式无意义;当A=0且B0时, 分式的值为零.)常考知识点:1、分式的意义, 分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.八年级数学知识点1.在同一平面内不相交的两条直线叫做平行线, 也可以说这两条直线互相平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学复习(精选11篇)人教版八年级数学复习第1篇想要把数学学好这记忆与理解的方法是必须要学会的。
理解是一门必要学习的法则,只有理解准确,不跑题再结合方法就一定能够解答。
只要能很好的理解这个题目是怎样的结构,就可以很好的解出答案。
在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式不外乎都是结合了一些三角函数的定义与加法定理为基础方面上,在记忆数学公式的同时,你可以结合一些例题进行推理,从而可以更快加速你对这公式的理解与记忆。
数学解题学数学必须是要脚踏实地的,没有那么多投机取巧的办法,数学练习要讲究高质量的和对症下药的方法。
对于例题,要养成先分析再做题的习惯,遇到不懂可以先做好标记,然后再多跟同学老师沟通交流。
要尝试结合多种解题方式,要多练习。
错题集针对做错的题目,列举出该题目所有的解题方法(可以从答案,或者同学,老师那里请教),总有一种是你能掌握的。
针对几套试卷讲解,即可有明显成效。
一开始,看似每道题花很久才能了解所有解题方案,但是,成效是非常明显的。
作业作业对于很多的学生来说都是不陌生的,一般老师在上完课之后都会布置一些作业,这样使上课所学的内容充分的运用出来,仅仅依靠上课听是不够的,还需要在下课之后进行练习来讲上课所学的知识巩固。
人教版八年级数学复习第2篇对数学无兴趣或兴趣低一部分学生一开始就没有学好初一数学,导致基础不好,这是恶性循环的结果:基础不好必然得不到好的成绩;成绩不好,会导致学习兴趣的丧失。
没有初中数学学习兴趣,势必降低学习效率,使基础更加不牢固。
如此循环往复,必然使不感兴趣的学科越来越差,而成绩越差则兴趣越低。
一部分学生还认为“学了没用”。
提出问题的意识差创造始于问题,有了问题才会思考,有了思考才有解决问题的方法,才有找到独立思路的可能,有问题虽然不一定有创造,但没有问题一定没有创造。
对于目前现在的大多学生来说,他们只能够解决现成的数学问题,而对于已经了解的数学知识提出问题的能力有欠缺。
人教版八年级数学复习第3篇1、基础很重要是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。
,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。
李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。
基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。
2、错题本很重要在所有科目中,数学这个科目最重要错题本学习法。
李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。
3、做题要多反思数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。
人教版八年级数学复习第4篇想做数学学霸,要格外重视综合性强,难度大的题目,也就是试卷上最后的一至三道大题。
这是拉开你和同学分数差距的重点。
避免生硬的套用公式。
归纳很重要,一是归纳科学的思维方法,二是归纳重要题型的解题方法。
不仅要熟悉知识的纵向联系,而且要熟悉知识的横向联系,逆向联系,达到信手拈来,呼之既出的程度。
多做题。
做题是巩固知识的最有效方法。
错题本。
数学的错题本尤为重要。
人教版八年级数学复习第5篇一、主动预习预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。
如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
二、主动思考很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。
主要原因还是听课过程中不思考惹的祸。
除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。
靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法! 人教版八年级数学复习第6篇分式知识点1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
实数知识点1、实数的分类:有理数和无理数2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是(若a与b护卫相反数,则a+b=0)4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是5、倒数:乘积为1的两个数6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)7、平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是)实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。
实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。
但仅仅以列举的方式不能描述实数的整体。
实数和虚数共同构成复数。
实数可以用来测量连续的量。
理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数,包括整数)。
在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数)实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
2)绝对值(在数轴上一个数a与原点0的距离)实数a的绝对值是:|a|①a为正数时,|a|=a(不变),a是它本身;②a为0时,|a|=0,a也是它本身;③a为负数时,|a|=-a(为a的绝对值),-a是a的相反数。
(任何数的绝对值都大于或等于0,因为距离没有负数。
)3)倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a(a≠0)4)数轴定义:规定了原点,正方向和单位长度的直线叫数轴(1)数轴的三要素:原点、正方向和单位长度。
(2)数轴上的点与实数一一对应。
平方根与立方根知识点平方根:概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。
就是说,如果x=a,那么x就叫做a的平方根。
如:23与-23都是529的平方根。
因为(±23)=529,所以±23是529的平方根。
问:(1)16,49,101,1101都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
概括3:求一个数a(a≥0)的平方根的运算,叫做开平方。
开平方运算是已知指数和幂求底数。
平方与开平方互为逆运算。
一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。
但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。
负数没有平方根。
因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。
一、算术平方根的概念正数a有两个平方根(表示为?根,表示为a。
0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0?0。
“”是算术平方根的符号,a就表示a的算术平方根。
a的意义有两点:a),我们把其中正的平方根,叫做a的算术平方(1)被开方数a表示非负数,即a≥0;(2)a也表示非负数,即a≥0。
也就是说,非负数的“算术”平方根是非负数。
负数不存在算术平方根,即a人教版八年级数学复习第7篇重视课本的内容书本知识是初中生学习数学最根本的一部分了,初中生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,初中生一定要熟练掌握。
初中生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。
有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。
通过联系对比进行辨析在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。
如直线、射线、线段这些概念,它们既有联系又有区别。
多做练习题要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。
只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。
课后总结和反思在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。