射频天线阻抗测量

合集下载

射频功率管的输入输出阻抗测量方法

射频功率管的输入输出阻抗测量方法

射频功率管的输入输出阻抗测量方法中心议题:阻抗测量的一般方法传输函数法间接测量阻抗的方法原理测试网络的设计原则射频功率管的输入输出阻抗测量方法解决方案:射频功率管的输入输出阻抗的测量实例分析输入阻抗ZX的计算实例的测量结果和误差分析1 引言在设计射频放大电路的工作中,一般都要涉及到输入输出阻抗匹配的问题,而匹配网络的设计是解决问题的关键,如果知道网络设计需要的阻抗,那么就可以利用射频电路设计软件(如RFSim99)自动设计出匹配网络,非常方便。

一般在阻抗匹配要求不很严格的情况下,或者只关心其他指标的情况下,可以对器件的输入输出阻抗作近似估计(有时器件参数的分散性也要求这样),只要设计误差不大就可行。

但是在射频功率放大器的设计中,推动级和末级功率输出的设计必须要提高功率增益和高效率,这时知道推动级和功率输出级的输入输出阻抗就显得非常重要。

在功率管的器件手册上一般都给出了在典型频率和功率下的输入输出阻抗,为工程设计人员提供参考,但是由于功率管参数的分散性和工作状态(如工作频率、温度、偏置、电源电压、输入功率、输出功率等)发生变化的情况下,手册上的参数就和实际情况有很大的偏差。

有时候为了降低产品的功耗,必须设计出匹配良好和高效率的射频功率放大器,这时就有必要测量功率管在特定工作条件下的输入输出阻抗。

在测定的过程中,首选的仪器是昂贵的网络分析仪,但是在不具备网络分析仪的情况下,可以寻求用普通的仪器(如示波器、阻抗测试仪等)进行测量。

下面介绍一种用普通测量仪器测量射频功率管在实际工作条件下的输入输出阻抗的方法。

2 阻抗测量的一般方法阻抗测量方法主要有电桥法,谐振法和伏安法3种。

电桥法具有较高的测量精度,是常用的高精度测量方法,但在测量像射频功率管这样的有源非线性大信号工作器件的阻抗,特别是要求功率管在实际工作条件下测量有一定的困难,故电桥法难以应用。

谐振法在要求射频功率管在实际工件条件下也很难应用,主要原因是在非线性大信号下的波形已经不是正弦波。

通信系统中射频与天线阻抗匹配的调试方法

通信系统中射频与天线阻抗匹配的调试方法

通信系统中射频与天线阻抗匹配的调试方法RF工程师在设计芯片和天线间的阻抗匹配时是否也遇到过这样的问题,根据数据手册的参数进行匹配设计,最后测试发现实际结果和手册的性能大相径庭,你是否考虑过为什么会出现这么大的差别?还有,匹配调试过程中不断的尝试不同的电容、电感,来回焊接元器件,这样的调试方法我们还能改善吗?一、理想的匹配通信系统的射频前端一般都需要阻抗匹配来确保系统有效的接收和发射,在工业物联网的无线通信系统中,国家对发射功率的大小有严格要求,如不高于+20dBm;若不能做到良好的匹配,就会影响系统的通信距离。

射频前端最理想的情况就是源端、传输线和负载端都是50Ω,如图1。

但是这样的情况一般不存在。

即使电路在设计过程中仿真通过,板厂制作过程中,线宽、传输线与地平面间隙和板厚都会存在误差,一般会预留焊盘调试使用。

图1理想的阻抗匹配二、造成与芯片手册推荐电路偏差大的原因?从事RF电路设计的工程师都有过这样的经验,做匹配电路时,根据数据手册给的S参数、电路拓扑结构、元器件的取值进行设计,最后得到的结果和手册上的差别很大。

这是为什么呢?其主要原因是对射频电路来说,“导线”不再是导线,而是具有特征阻抗。

如图2所示,射频传输线看成由电阻、电容和电感构成的网络,此时需要用分布参数理论进行分析。

图2传输线模型特征阻抗与信号线的线宽(w)、线厚(t)、介质层厚度(h)和介质常数()有关。

其计算公式如下:由公式可以知道,特征阻抗和介质层厚度成正比,可以理解为绝缘厚度越厚,信号穿过其和接地层形成回路所遇到的阻力越大,所以阻抗值越大;和介质常数、线宽和线厚成反比。

因为芯片的应用场景不同,虽然电路设计一样,但是设计的PCB受结构尺寸、器件种类、摆放位置等因素的影响,会导致板材、板厚、布线的不同,引起特征阻抗的变化。

当我们还是沿用手册给的参数进行匹配时,并不能做到良好阻抗匹配,自然会出现实际测试的结果与手册给的结果偏差较大的情况。

手机天线的测试标准

手机天线的测试标准

手机天线的测试标准手机天线是手机通信中至关重要的部件,它直接影响到手机的信号接收和发送质量。

为了确保手机天线的质量和性能,需要进行严格的测试和评估。

本文将介绍手机天线的测试标准,以便于手机制造商和相关测试机构进行参考。

首先,手机天线的测试应包括以下几个方面,频率范围测试、增益测试、辐射功率测试、谐波测试、阻抗匹配测试、辐射效率测试等。

频率范围测试是指测试手机天线在规定的频率范围内的频率响应特性。

这项测试可以通过天线分析仪进行,通过测量手机天线在不同频率下的阻抗匹配情况,来评估其频率范围性能。

增益测试是指测试手机天线在不同频率下的增益情况。

增益是指天线在某一方向上辐射或接收电磁波的能力,是评价天线性能的重要指标之一。

增益测试可以通过天线分析仪或者无线通信测试设备进行。

辐射功率测试是指测试手机天线在规定频率下的辐射功率。

这项测试是为了确保手机天线在发送信号时符合相关的国家和地区的规定,不会对人体和环境造成危害。

谐波测试是指测试手机天线在发送信号时产生的谐波干扰情况。

手机天线在发送信号时会产生一定的谐波,如果谐波干扰过大,会影响到其他无线设备的正常工作。

阻抗匹配测试是指测试手机天线在不同频率下的阻抗匹配情况。

阻抗匹配是指天线和无线通信系统之间的阻抗匹配情况,阻抗不匹配会导致信号反射和损耗,影响通信质量。

辐射效率测试是指测试手机天线在接收信号时的辐射效率。

辐射效率是指天线接收到的信号功率与输入到天线的总功率之比,是评价天线接收性能的重要指标之一。

除了以上几个方面的测试外,手机天线的测试还应包括耐久性测试、环境适应性测试等,以确保手机天线在各种使用环境下都能正常工作。

总之,手机天线的测试标准是确保手机通信质量的重要保障,只有通过严格的测试和评估,才能确保手机天线的质量和性能达到要求,从而提高手机通信的稳定性和可靠性。

希望本文介绍的手机天线测试标准能够为手机制造商和相关测试机构提供参考,促进手机天线质量的提升和通信技术的发展。

天线阻抗测量

天线阻抗测量

在本节中,我们将测量天线的阻抗有关。

如前所述,阻抗是天线工作在射频(高频)的基础。

如果天线的阻抗是不是“关闭”的输电线路,那么很少的电力将天线(如果天线是用于在传输模式),或很少的电力传输将接收天线(如果在接收模式中使用)。

因此,没有适当的阻抗(或阻抗匹配网络),出天线将无法正常工作。

在我们开始之前,我想指出的是,天线周围放置的对象将改变其辐射格局。

因此,其输入阻抗将影响它周围是什么- 即环境在天线测试。

因此,最佳精度的测量阻抗应将最接近它的目的是操作的环境。

例如,如果刀片天线(基本上是偶极子的形象一个桨)是在机身顶部的一个aiprlane利用,测试测量一个圆柱型的最大精度的金属物体上。

长期驾驶点阻抗是在特定环境下测得的输入阻抗,并自阻抗在自由空间的天线阻抗,与周围没有对象,以改变其辐射模式。

幸运的是,阻抗测量是相当容易的,如果你有合适的设备。

在这种情况下,合适的设备是一个矢量网络分析仪(VNA)。

这是一个测量工具,可以用来测量作为频率的函数的输入阻抗。

另外,它可以绘制S11(回波损耗)和驻波比。

这些参数天线的阻抗随频率变化的功能。

安捷伦8510 矢量网络分析仪如图1所示。

图1。

流行的安捷伦(惠普)8510 VNA的。

假设我们要执行从400-500兆赫的阻抗测量。

第一步是确保我们VNA的指定工作在这个频率范围内。

网络分析仪工作在指定的频率范围,进入低MHz范围内(30 MHz或左右)的成高千兆赫范围内(110 GHz或左右,这取决于这是多么昂贵)。

一旦我们知道我们的网络分析仪是合适的,我们可以移动。

下一步,我们需要校准VNA的。

这是比它听起来要简单得多。

我们将采取的电缆我们使用探针(VNA的连接到天线),并按照一个简单的程序,使效果电缆(传输线路法)校准。

要做到这一点,通常是您的网络分析仪将提供了一个“CAL套件”,其中包含一个匹配的负载(50欧姆),开路负载和短路负载。

我们期待通过菜单,在我们的网络分析仪和滚动,直到我们找到一个校准按钮,然后做说话是算数的。

天线阻抗匹配方法

天线阻抗匹配方法

天线阻抗匹配方法天线阻抗匹配是无线通信领域中一个重要的技术,它能够提高天线系统的传输效率和性能。

本文将介绍天线阻抗匹配的基本概念、原理和常用方法。

一、天线阻抗匹配的概念天线阻抗匹配是指将发射端和接收端的天线阻抗与传输线或射频电路的阻抗进行匹配,以提高能量传输的效率。

在无线通信系统中,天线的阻抗往往与传输线或射频电路的阻抗不匹配,导致信号的反射和损耗,从而降低了传输效率和性能。

二、天线阻抗匹配的原理天线阻抗匹配的原理是通过调整天线的结构或使用匹配网络来改变天线的输入阻抗,使其与传输线或射频电路的阻抗相匹配。

实现天线阻抗匹配的目的是最大限度地减小信号的反射和损耗,从而提高能量传输效率和信号质量。

1. 长度匹配法:通过调整传输线或射频电路的长度,使其与天线的输入阻抗相匹配。

这种方法适用于频率较低的天线系统,例如LF、MF和HF波段的天线。

2. 变压器匹配法:利用变压器原理来实现天线与传输线或射频电路的阻抗匹配。

通过改变变压器的匝数比,可以实现天线阻抗与传输线或射频电路阻抗的匹配。

这种方法适用于频率较高的天线系统,例如VHF和UHF波段的天线。

3. 管线法:通过在传输线或射频电路上串联或并联电感或电容,改变其阻抗特性,以实现与天线阻抗的匹配。

这种方法适用于频率较高的天线系统,例如VHF和UHF波段的天线。

4. 电桥法:通过使用电桥电路来测量天线的输入阻抗,并根据测量结果进行阻抗匹配。

这种方法适用于各种频率的天线系统。

5. 理论分析法:通过使用电磁场理论和传输线理论,对天线与传输线或射频电路的阻抗进行理论分析,从而设计出阻抗匹配电路。

这种方法适用于各种频率的天线系统,但需要较高的理论水平和计算能力。

四、总结天线阻抗匹配是无线通信系统中提高传输效率和性能的关键技术之一。

通过调整天线的结构或使用匹配网络,可以实现天线阻抗与传输线或射频电路的匹配,从而减小信号的反射和损耗,提高能量传输效率和信号质量。

常用的天线阻抗匹配方法包括长度匹配法、变压器匹配法、管线法、电桥法和理论分析法等。

射频天线设计要点

射频天线设计要点

射频天线设计要点在无线通信系统中,射频天线是起到频率转换和增益放大的作用,是整个系统中非常重要的部分。

正确设计和调试射频天线可以显著提高系统的性能和覆盖范围。

以下是一些设计射频天线的关键要点:1. 频率选择:首先要确定射频天线所工作的频率范围,根据频率来选择合适的天线类型,如全向天线、定向天线或者扁平天线等。

2. 天线形状:天线的形状会影响其辐射特性,不同的形状适用于不同的应用场景。

需要根据具体要求选择合适的形状设计天线。

3. 辐射效率:辐射效率是指射频信号通过天线辐射出去的程度,是一个重要指标。

有效地调整天线的结构和参数可以提高辐射效率,提升信号传输质量。

4. 阻抗匹配:射频天线的阻抗匹配是确保天线与传输线之间能够有效传输信号的重要环节。

通过调整天线的匹配网络可以实现阻抗匹配,提高系统的性能。

5. 天线位置:天线的安装位置和方向会直接影响信号的覆盖范围和强度。

需要在设计中考虑好天线的安装位置以及方向,确保信号覆盖范围的均匀性和完整性。

6. 扩展性能:射频天线的设计需要考虑其扩展性能,即能否适应未来技术的发展和系统的升级。

在设计时需要考虑系统的未来发展方向,保证天线的设计能够满足未来需求。

7. 天线测试:设计完射频天线后,需要进行测试验证其性能是否符合要求。

可以通过天线测试仪器检测天线的辐射性能、阻抗匹配等指标,确保天线设计的准确性。

综上所述,射频天线设计是整个无线通信系统中至关重要的一环。

正确设计和调试射频天线可以有效提高系统的性能和覆盖范围,确保信号传输质量。

设计时需要考虑到频率选择、天线形状、辐射效率、阻抗匹配、天线位置、扩展性能和天线测试等关键要点,以确保天线设计的准确性和有效性。

希望以上信息对您有所帮助,如有疑问或需要进一步了解,请随时和我联系。

通信系统中射频与天线阻抗匹配的调试方法

通信系统中射频与天线阻抗匹配的调试方法

通信系统中射频与天线阻抗匹配的调试方法
RF工程师在设计芯片和天线间的阻抗匹配时是否也遇到过这样的问题,根据数据手册的参数进行匹配设计,最后测试发现实际结果和手册的性能大相径庭,你是否考虑过为什么会出现这么大的差别?还有,匹配调试过程中不断的尝试不同的电容、电感,来回焊接元器件,这样的调试方法我们还能改善吗?
一、理想的匹配
通信系统的射频前端一般都需要阻抗匹配来确保系统有效的接收和发射,在工业物联网的无线通信系统中,国家对发射功率的大小有严格要求,如不高于+20dBm;若不能做到良好的匹配,就会影响系统的通信距离。

射频前端最理想的情况就是源端、传输线和负载端都是50Ω,如图1。

但是这样的情况一般不存在。

即使电路在设计过程中仿真通过,板厂制作过程中,线宽、传输线与地平面间隙和板厚都会存在误差,一般会预留焊盘调试使用。

图1理想的阻抗匹配
二、造成与芯片手册推荐电路偏差大的原因?
从事RF电路设计的工程师都有过这样的经验,做匹配电路时,根据数据手册给的S参数、电路拓扑结构、元器件的取值进行设计,最后得到的结果和手册上的差别很大。

这是为什么呢?
其主要原因是对射频电路来说,“导线”不再是导线,而是具有特征阻抗。

如图2所示,射频传输线看成由电阻、电容和电感构成的网络,此时需要用分布参数理论进行分析。

图2传输线模型
特征阻抗与信号线的线宽(w)、线厚(t)、介质层厚度(h)和介质常数()有关。

其计算公式如下:
由公式可以知道,特征阻抗和介质层厚度成正比,可以理解为绝缘厚度越厚,信号穿过其。

天线阻抗匹配 特性阻抗50欧姆

天线阻抗匹配 特性阻抗50欧姆

常见的射频同轴电缆绝大部分是50Ω特性阻抗的,这是为什么呢?
通常认为导体的截面积越大损耗就越低,但事实并非完全如此。

同轴电缆的每单位长度的损耗是logD/d的函数,也就是说和电缆的特性阻抗有关。

经过计算可以发现,当同轴电缆的特性阻抗为77Ω时,单位长度的损耗最低。

" ]:
L4 G% y, F1 l6 t) E; Q0 W
对于同轴电缆的最大承受功率,通常认为内外导体的间距越大,则同轴电缆可承受电压越高,即承受功率越大,但实际上也不完全准确。

同轴电缆的最大承受功率同样与其特性阻抗有关。

可以计算出当同轴电缆的特性阻抗为30Ω时,其承受的功率最大。

. a3 s4 J& p; d1 P& O& Q# `
为了兼顾最小的损耗和最大的功率容量,应该在77Ω和30Ω之间找一个适当的数值。

二者的算术平均值为53.5Ω,而几何平均值为48.06Ω;选取50Ω的特性阻抗可以做到二者兼顾。

此外,50Ω阻抗的连接器也更加容易设计和加工。

绝大部分应用于通信领域的射频电缆的特性阻抗是50Ω;在广播电视中则用到75Ω的电缆。

大部分的测试仪器都是50Ω的阻抗,如果要测量75Ω阻抗的器件,可以通过一个50~75Ω的阻抗变换器来进行阻抗匹配,但是需要注意这种阻抗变换器有约5.7dB的插入损耗
1/ 1。

射频电路与天线(华工)试卷及答案

射频电路与天线(华工)试卷及答案

一、填空题1、无耗传输线终端短路,当它的长度大于四分之一波长时,输入端的输入阻抗为容抗,将等效为一个电容。

[见P19段路线输入阻抗公式1-45]2、无耗传输线上驻波比等于1时,则反射系数的模等于0。

3、阻抗圆图上,|Γ|=1的圆称为单位圆,在单位圆上,阻抗为纯电抗,驻波比等于无限大。

4、只要无耗传输终端接上一个任意的纯电阻,则入射波全部被吸收,没有反射,传输线工作在匹配状态。

[ZL=ZC才能匹配]5、在传输线上存在入射波和反射波,入射波和反射波合成驻波,驻波的最大点电压值与最小点上的电压值的比即为传输线上的驻波比。

6、导纳圆图由等反射系数圆、等电抗圆和等电阻圆组成,在一个等电抗圆上各点电抗值相同。

7、圆波导的截止波长与波导的截面半径及模式有关,对于TE11模,半径越大,截止波长越短。

[无论是矩形波导,还是圆波导,截止波长都与a(矩形时为宽边,圆时为半径)成正比。

圆波导主模TE11,次模TM10]8、矩形波导的工作模式是TE10模,当矩形波导传输TE10模时,波导波长(相波长)与波导截面尺寸有关,矩形波导截面的窄边尺寸越小,波导波长(相波长)越长。

[见P45-相波长(波导波长)的公式,可知其只与某一频率和截止波长有关,且与截止波长(=2a)成反比,与窄边b无关。

矩形波导主模TE10,次模TE20]9、在矩形谐振腔中,TE101模的谐振频率最小。

[矩形谐振腔主模TE101]10、同轴线是TEM传输线,只能传输TEM波,不能传输TE或TM波。

[都能传,但大多数场合用来传TEM波]11、矩形波导传输的TE10波,磁场垂直于宽边,而且在宽边的中间上磁场强度最大。

[P46倒数第三行,磁场平行于波导壁面。

电场沿x轴正弦变化,在x=a/2处电场最大。

]12、圆波导可能存在“模式简并”和“极化简并”两种简并现象。

13、矩形波导中所有的模式的波阻抗都等于377欧姆。

[矩形波导在TE模式>η,TM模式<η,η为TEM在无限大媒质中的波阻抗,在空气中则为377。

UHF RFID标签天线测试--实际测试

UHF RFID标签天线测试--实际测试

UHF RFID标签的测试读写器发射的射频信号最大幅度的被标签接收,即标签天线与芯片阻抗满足共轭匹配,因此UHF频段的RFID芯片阻抗值直接决定了标签天线的设计;超高频的标签天线直接和芯片相连,标签天线一般为复数阻抗,因此,标签天线无法直接与网分的标准接头直连进行测试。

标签天线的阻抗测量方法探讨与传统的同轴线馈电的天线不同,超高频RFID标签天线直接与标签芯片相连。

因此,标签天线无法直接接上测试仪器的标准接头进行测量。

由于标签天线一般都是复数阻抗,无法采用50Q和70Q的标准网分的端口进行反射系数测量测量。

以外,对于偶极子类型的标签天线,测试接头接近天线时,会对标签天线的阻抗、辐射效率及方向图产生影响。

目前最常用的标签天线阻抗测试方法有:镜像法、巴伦测试法和测量线法。

镜像法测量镜像法主要针对对称型的偶极子标签天线,根据镜像法理论,一个靠近纯导电地平面的单极子的输入阻抗为相应偶极子输入阻抗的一半。

因此,可以在纯导电平面上测量偶极子标签天线的一半来计算整个标签天线的阻抗。

如图4.3所示的对称偶极子标签天线为例,可以将天线的一半放在一块很大的金属平板上,用SMA接头穿过金属平板对标签天线进行馈电。

测量时,网分直接连接到SMA接头即可。

测量图如图4.4所示。

测量所得的单极子天线的阻抗乘以2即偶极子标签天线的输入阻抗。

图4.3偶极子标签天线金属平板SMA接头图4.4镜像法测量示范当然,由于网分只校准到其接口的输出端面,对于采用SMA接头导致增加的相位变化,需要通过计算或仿真进行校正。

实际上,对称结构的标签偶极子标签天线的E面和H面也为对称型分布,在仿真时可以节省CPU计算的时间和内存消耗量,因此设计天线时,尽可能设计为对称结构的标签天线。

一方面方便仿真;另一方面也便于天线的测量[40]。

巴伦法测量弯折偶极子天线如图4.5所示,其属于平衡馈电天线,其测试架测试原理图如图4.6所示。

如果用同轴电缆馈电,还需要在天线和电缆间加入平衡/不平衡转换器—巴伦。

手机射频(天线)测试的主要参数与测试方法

手机射频(天线)测试的主要参数与测试方法
OSI七号信令各层名称和作用如下:应用层(最高层),把应用文件连 到通信协议上;表示层(第六层),执行通信协议中要传输数据的编码和解 码;会话层(第五层),建立与更低层通信过程的连接并控制数据传输方向; 传输层(第四层),完成纠错功能和确定数据流接收和发送方向;网络层 (第三层),完成协议中发送数据的交换和选路工作;数据链路层(第二 层),通过物理层媒介无差错发送和接收数据;物理层(最底层),实际通 信传输媒介的机械,电气传输连接.
在业务信道(TCH)激活PHASE ERROR即可观测到相位误差值。测试时通过综 合测试仪MU200产生比特流进行调制后送给手机,并指令手机处于环回模式。然后 去捕捉手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的 1/2,最后根据抽样的正常突发中的样点计算出相位轨迹和误差。 测试条件
2) 发射功率/时间特性 定义
发射功率时间特性是指发射功率与发射时间之间的关系。由于GSM系统是 一个TDMA的系统,八个用户共用一个频点,手机只在分配给它的时间内打开, 然后必须及时关闭,以免影响相邻时隙的用户。由于这一原因,GSM规范对一 个时隙中的RF突发的幅度包络作了规定,对于的平坦度也作了相应的规定,这 个幅度包络在577us的一个时隙内,其动态范围时隙中间有用信号大于70dB, 而时隙有用部分平坦度应小于±1dB。
TDMA帧,用于在物理信道中体现逻辑信道复用,含26个帧的复帧周期为120ms, 用于业务信道或随路控制信道,含51个帧的复帧周期为235.385ms,用于控制 信道;
超帧:由多个复帧构成超帧,超帧周期为6.12秒,用于控制信道或特种业务; 超高帧:包含2048个超帧,周期为3小时28分53秒760毫秒,用于加密的 话音和数据;以上分类比简单的全帧,子帧分类更明确

手机射频性能测试方法介绍

手机射频性能测试方法介绍

⼿机射频性能测试⽅法介绍⼿机射频性能空中测试⽅法介绍[摘要] 本⽂⾸先简单介绍了⼿机天线的特性和指标,然后对CTIA协会制定的OTA(空中测试)⽅法进⾏了介绍。

⼿机的⼀些关键指标(如辐射总功率TRP、全向接收灵敏度TIS、⼈体感应)的测试⽅法以及相关测试环境,在⽂中作了详细的描述。

本⽂所介绍的OTA测试⽅法,对于改进⼿机研发阶段的测试⽅法具有很好的参考价值,⽽且在某些国家(美国),OTA测试已经成为GSM⼿机的必测项⽬,我们的研发测试需增加相关的测试内容。

⼀、前⾔良好的射频性能对于⼿机在数字蜂窝⽹、PCS⽹络中的表现⾄关重要。

由于⼿机的体积⽇趋⼩巧,天线性能通常不得不做出牺牲。

在很⼩的空间范围以内,要实现天线在各频段的良好性能是⼀件困难的⼯作。

这也对测试提出了⼀个更⾼的要求:全⾯、精确的测试,可以客观评估⼿机在实际⽹络中的表现,并不断改进设计;⽽不正确的测试数据,会有误导研发的可能。

现阶段公司的研发测试⼿段以平板耦合器与塔型天线测试为主。

在这样的近场测试环境中,⼿机与测量天线之间的距离⼩于3倍波长,和实际⽹络环境差异较⼤;且操作中常常需要根据实际情况调整⼿机的摆放位置,测试数据的可再现性、重复性较差,研发、测试、质检易出现分歧。

实际上,在项⽬的不同阶段,测试的重点也应区分:1. 研发测试研发测试时间相对⽐较充裕,需要利⽤各种测试⼿段,提供更多、更全⾯的数据,对⼿机的射频性能做出准确、客观的评估,这对⼿机性能的不断改进⾮常重要,也是项⽬转产的重要依据;2. ⽣产测试⽣产测试的⽬的是关注产品性能的⼀致性。

射频测试⽅⾯,其任务是把性能低于正常⽔平的不良品检测出来,防⽌不良品流⼊市场;另外⽣产测试必须操作性强,简单迅速,不降低产能。

此时可以使⽤屏蔽盒内的平板耦合器进⾏测试:由射频性能已知的样机作为⾦机(Golden Sample),经试验后确定⼿机摆放位置和通过准则,不同型号的⼿机摆放位置和通过准则不⼀定相同。

RF天线阻抗调试

RF天线阻抗调试

RF天线阻抗调试详解第一章RF天线阻抗调试流程RF天线阻抗调试流程主要有5步,如下1.校准网络分析仪2.通过网络分析仪测量阻抗3.借助史密斯圆图进行阻抗匹配4.选择合适的电容和电感焊接到PCB上5.测量无线芯片的输出和输入是否满足要求。

第二章调试流程详解5个流程步骤详细讲解如下:1.校准网络分析仪使用校准套件进行矢网校准1)网络分析仪设备讲解:网络分析仪完整测试框图如下待测板子的信号走向参考port1及port22.通过网络分析仪测量阻抗如果射频模块端还包含射频开关及匹配网络。

则把射频开关输出端作为50Ω参考点,此处接入网络分析仪分别测量传输线到天线的阻抗和传输线到芯片端口的阻抗。

通过匹配之后,希望从该点往天线方向看进去是50Ω和往芯片方向看进去也是50Ω。

选择这里作为50Ω参考点主要有两方面考虑:第一,该处到天线端是接收和发射的共同链路,只需要匹配一次,同时把天线对阻抗的影响也考虑了;到芯片端分别是接收和发射链路,需要分开匹配;第二,虽然匹配电路次数变多,但是每次匹配元器件数目少了,减少相互间影响,提高匹配效率。

下面引用网上的例子,针对最简单的传输线链路(RF模块直接通过π型网络连接到天线),假设测试的传输线在470MHz(比如470MHz是射频模块发送的中心频点)上原始阻抗在(40.3+j13),接下来才是利用Smith chart 匹配阻抗,将传输线在470MHz的阻抗匹配到50欧姆。

也就是通过Z1,Z2,Z3把阻抗由(40.3+j13)欧姆,匹配到50欧姆。

3.借助史密斯圆图进行阻抗匹配接下来在Smith chart上找到40.3+j13这个点。

通过采用在史密斯圆图上并联电容,串联电容,并联电感,串联电感的方式,把原始阻抗点匹配到50欧姆,也就是红色大圆和蓝色大圆的交界点。

下图为串联电感,串电容,并电感,并电容的轨迹图。

最终通过并联一个34.8nh,串联一个10.4pf的电容,使得把40.3+j13的阻抗匹配到50欧姆。

OTA天线测试的能力及测试标准

OTA天线测试的能力及测试标准

OTA测试能力OTA测试能力:1:有源部分辐射功率 (TRP)灵敏度性能 (TIS)2:无源部分天线增益测试(Gain)天线接口阻抗测试(Input Impedance)天线驻波比/回波损耗测试(VSWR/RL)天线方向图测试(Radiation Pattern)方向性(Directivity)波束宽带/前后比(3Db BW/FB Ratio)交叉极化比/隔离度(Cross Polar/Isolation)支持的无线制式:GSM,CDMA,WCDMA,TDSCDMA产品的有源或者无源测试;蓝牙,WIFI,DVB等天线的无源测试;目前支持的测试规范:1:CTIA的OTA测试规范(Test Plan for Mobile Station Over the Air Performance V2.2.2)2:GCF 的OTA测试规范(GCF CC V3.33最新规定)3:3GPP/ETSI OTA antenna performance conformance testing (TS 34.114,TS25.144) 4:中国工信部在2008年强制执行的OTA进网规定(YDT 1484-2006)5:无源天线测试标准(Passive antenna test:IEEE149-1979)TRP全称Total Radiated Power,即总辐射功率。

其含义是手机在空间三维球面上的射频辐射功率的积分值,反应了手机在所有方向上的发射特性。

打个比方,就如同一盏灯泡在所有方向上的辐射的光的总和。

那么越亮就代表其发射的能量越多,越暗就代表其发射的能量越少。

但是辐射功率是有上限的,手机本身对最大的辐射功率进行了限制,任何手机的射频模块输出功率不会超过2W(33dBm)。

越是接近这个值,说明信号发射能力越好,也说明辐射更大。

该指标通常与SAR指标(反映人体吸收的辐射的指标)相互制约,一部合格的手机既要有好的发射能力,又要有较低的SAR 值。

射频天线阻抗测量

射频天线阻抗测量

1 引言在设计射频放大电路的工作中,一般都要涉及到输入输出阻抗匹配的问题,而匹配网络的设计是解决问题的关键,如果知道网络设计需要的阻抗,那么就可以利用射频电路设计软件(如RFSim99)自动设计出匹配网络,非常方便。

一般在阻抗匹配要求不很严格的情况下,或者只关心其他指标的情况下,可以对器件的输入输出阻抗作近似估计(有时器件参数的分散性也要求这样),只要设计误差不大就可行。

但是在射频功率放大器的设计中,推动级和末级功率输出的设计必须要提高功率增益和高效率,这时知道推动级和功率输出级的输入输出阻抗就显得非常重要。

在功率管的器件手册上一般都给出了在典型频率和功率下的输入输出阻抗,为工程设计人员提供参考,但是由于功率管参数的分散性和工作状态(如工作频率、温度、偏置、电源电压、输入功率、输出功率等)发生变化的情况下,手册上的参数就和实际情况有很大的偏差。

有时候为了降低产品的功耗,必须设计出匹配良好和高效率的射频功率放大器,这时就有必要测量功率管在特定工作条件下的输入输出阻抗。

在测定的过程中,首选的仪器是昂贵的网络分析仪,但是在不具备网络分析仪的情况下,可以寻求用普通的仪器(如示波器、阻抗测试仪等)进行测量。

下面介绍一种用普通测量仪器测量射频功率管在实际工作条件下的输入输出阻抗的方法。

2 阻抗测量的一般方法阻抗测量方法主要有电桥法,谐振法和伏安法3种。

电桥法具有较高的测量精度,是常用的高精度测量方法,但在测量像射频功率管这样的有源非线性大信号工作器件的阻抗,特别是要求功率管在实际工作条件下测量有一定的困难,故电桥法难以应用。

谐振法在要求射频功率管在实际工件条件下也很难应用,主要原因是在非线性大信号下的波形已经不是正弦波。

伏安法是最经典的阻抗测量方法,测量原理是基于欧姆定律,即阻抗ZX可以表示为ZX=UXejθ/IX,UX为阻抗ZX两端压降的有效值,IX为流过阻抗ZX的电流有效值,θ为电压与电流的相位差。

但是在射频功率管的基极和集电极的电压和电流均不是正弦波,所以基波的IX和θ都很难准确测出,显然伏安法在这里有很大的局限性。

射频技术应用中的天线设计与优化方法介绍

射频技术应用中的天线设计与优化方法介绍

射频技术应用中的天线设计与优化方法介绍在射频技术应用中,天线的设计与优化是一个关键的环节。

天线是将电磁波转换为电信号或者将电信号转换为电磁波的装置。

它在无线通信、雷达、卫星通信、航空航天等领域中起着至关重要的作用。

本文将介绍射频技术应用中的天线设计与优化方法。

一、天线设计流程天线设计的流程包括需求分析、天线类型选择、参数确定、天线结构设计、仿真与优化、制造和测试等步骤。

1. 需求分析:分析系统的工作频率、带宽要求、天线的方向性要求、天线与周围环境的尺寸限制等,明确天线设计的目标。

2. 天线类型选择:根据需求分析结果,确定适合的天线类型,如定向天线、宽带天线、微带天线等。

3. 参数确定:确定天线的工作频率、增益、方向性等基本参数,以及天线的输入阻抗匹配等增强参数。

4. 天线结构设计:根据天线类型和参数,设计天线的结构和几何形状,如偶极子天线、螺旋天线、贴片天线等。

5. 仿真与优化:使用电磁场仿真软件对天线进行电磁模拟,分析天线的性能,如辐射图案、驻波比、功率传输等,通过优化设计参数,改进天线性能。

6. 制造和测试:将天线设计转化为实际制造的产品,并通过测试验证设计的性能,如远场测试、阻抗测试等。

二、天线设计中的优化方法天线设计中的优化方法包括参数优化、几何优化和材料优化等。

1. 参数优化:通过改变天线的参数,如长度、宽度、高度、间距等,以达到优化性能的目标。

例如,在微带天线设计中,通过调整微带的长度、宽度和衬底介电常数等参数,来改变工作频率和输入阻抗等。

2. 几何优化:通过改变天线的几何形状,如偶极子的长度和位置、螺旋线的半径等来达到优化性能的目标。

例如,在定向天线设计中,通过改变偶极子的长度和位置,来调整天线的方向性。

3. 材料优化:通过选择合适的材料,如金属和介质材料,来改善天线的性能。

例如,在微带天线设计中,通过选择高介电常数的介质材料,来提高天线的辐射效率和带宽。

三、常用的天线设计软件在天线设计过程中,使用电磁场仿真软件是必不可少的工具。

射频电路与天线13_阻抗变换器

射频电路与天线13_阻抗变换器

② b 点沿等 圆向电源方向(顺时针方向)转至与 G 0.25 的可调匹配圆交于 c、 c 点, 其对应的坐标为
c 点: Yl 1 j1.6 ,对应的电长度 l 0.178
c 点: Yl 1 j1.6 ,对应的电长度 l 0.322

Y1 1 j1.6
由 b 点至 c、 c 点的距离为 x,即
y1 0.339 0.25 0.089 x2 0.161 0.25 0.411
2 (7-18)用双跨线消灭主线上的驻波。跨线之间距离为 4 ,工作波长 80cm,线的 特性阻抗为 500Ω,负载 ZL=1000+j0Ω,求二短路跨线的长度。 (参考 P167 例 7-2) 解: (1)圆图法 根据题意有 d 2
l1 l1 0.22 17.6cm
d 点对应的归一化导纳为 ④ 将 c 点沿等 圆顺时针旋转到 G 1 的匹配圆上的 d 点处,
YA1 1 j 0.5 ,由 YA YA1 YA 2 算出 YA 2 YA YA1 1 1 j 0.5 j 0.5
Z C RL 50 30 38.7298 ,微带线宽带为 W。
W 2 ,由综合公式得 h
A
Z1 r 1 r 1 0.11 (0.23 ) 1.6819 60 2 r 1 r
W 8e A 此时 1.5987 2 ,所以 h e2 A 2
1(7-15)特性阻抗为 50Ω的传输线,终端负载阻抗为 ZL=100+j100,现要求用单跨线匹配, 试用分析法和图解法求出单跨线接入的位置 x 和单跨线的长度 y。 (参考 P164 例 7-1) 解: (1)分析法 归一化负载导纳 YL GL jBL

天线测试方法介绍

天线测试方法介绍

天线测试方法介绍天线测试方法介绍对天线与某个应用进行匹配需要进行精确的天线测量。

天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。

这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。

虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。

例如,500MHz以下的低频天线通常是使用锥形微波暗室(Anechoic Chamber),这是20世纪60年代就出现的技术。

遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。

因此,他们无法发挥这种技术的最大效用。

随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。

在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。

用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。

其它技术包括近场和反射面测试。

选用哪种天线测试场取决于待测的天线。

为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。

发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。

接收站由AUT 参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。

在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。

AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。

远场测量可以在室内或室外测试场进行。

室内测量通常是在微波暗室中进行。

这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。

在矩形微波暗室中,采用一种墙面吸波材料来减少反射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言在设计射频放大电路的工作中,一般都要涉及到输入输出阻抗匹配的问题,而匹配网络的设计是解决问题的关键,如果知道网络设计需要的阻抗,那么就可以利用射频电路设计软件(如RFSim99)自动设计出匹配网络,非常方便。

一般在阻抗匹配要求不很严格的情况下,或者只关心其他指标的情况下,可以对器件的输入输出阻抗作近似估计(有时器件参数的分散性也要求这样),只要设计误差不大就可行。

但是在射频功率放大器的设计中,推动级和末级功率输出的设计必须要提高功率增益和高效率,这时知道推动级和功率输出级的输入输出阻抗就显得非常重要。

在功率管的器件手册上一般都给出了在典型频率和功率下的输入输出阻抗,为工程设计人员提供参考,但是由于功率管参数的分散性和工作状态(如工作频率、温度、偏置、电源电压、输入功率、输出功率等)发生变化的情况下,手册上的参数就和实际情况有很大的偏差。

有时候为了降低产品的功耗,必须设计出匹配良好和高效率的射频功率放大器,这时就有必要测量功率管在特定工作条件下的输入输出阻抗。

在测定的过程中,首选的仪器是昂贵的网络分析仪,但是在不具备网络分析仪的情况下,可以寻求用普通的仪器(如示波器、阻抗测试仪等)进行测量。

下面介绍一种用普通测量仪器测量射频功率管在实际工作条件下的输入输出阻抗的方法。

2 阻抗测量的一般方法阻抗测量方法主要有电桥法,谐振法和伏安法3种。

电桥法具有较高的测量精度,是常用的高精度测量方法,但在测量像射频功率管这样的有源非线性大信号工作器件的阻抗,特别是要求功率管在实际工作条件下测量有一定的困难,故电桥法难以应用。

谐振法在要求射频功率管在实际工件条件下也很难应用,主要原因是在非线性大信号下的波形已经不是正弦波。

伏安法是最经典的阻抗测量方法,测量原理是基于欧姆定律,即阻抗ZX可以表示为ZX=UXejθ/IX,UX为阻抗ZX两端压降的有效值,IX为流过阻抗ZX的电流有效值,θ为电压与电流的相位差。

但是在射频功率管的基极和集电极的电压和电流均不是正弦波,所以基波的IX和θ都很难准确测出,显然伏安法在这里有很大的局限性。

这3种方法在测量射频功率管在实际工作条件下的输入输出阻抗都难以应用,下面介绍一种间接测量阻抗的方法,他同时解决了滤除谐波和要求功率管在实际工作条件下测试的问题,实践证明这种方法简便易行。

3 传输函数法间接测量阻抗的方法原理图1中网络HA,HB,ZX组成测试网络,图2中HC为其等效网络。

HA,HB为无源线性双口网络,起着匹配、隔离和滤波的作用,使得在bb′处能观测到比较好的正弦波。

HC的传输函数可以表示为:其中,Uaa′,Ubb′为aa′和bb′处的电压的有效值,θ为aa′和拍bb′处电压的相位差。

只要测出Uaa′,Ubb′和θ就可得到传输函数HC,由于HA,HB为已知线性网络,通过计算就可求得待测阻抗ZX。

4 测试网络的设计原则首先,HA,HB网络的设计应根据实际需要尽量简洁。

如果网络比较复杂,不但增加了计算量,而且计算阻抗的误差也会增大。

其次,HA,HB网络元件的选择要尽量选择接近理想元件模型的电阻电容和电感元件,尽量少用电感元件,因为电感元件的Q值不可能做得很大,而且电感元件的实际模型比较复杂,采用实际模型时,使电路模型复杂化,这样既增加了计算量,也增加了误差。

在使用元件之前,必须用精密阻抗仪准确测出元件参数值,在搭接电路时尽量减小分布参数的影响。

再次,在测试时必须使功率管处在正常的工作状态,网络处在谐振状态或者稍偏离谐振状态(因谐振回路Q值不大)。

这样测出的参数在特定的工作频率和工作状态下才有实际意义。

最后,应使接在bb′处的探头电容尽量小,探头的输入电阻尽量高些,在计算时只须考虑探头的电容,在测试前必须测出探头电容的大小。

5 射频功率管的输入输出阻抗的测量实例射频功率管的应用手册上一般都有功率管在特定工作条件下的输入输出阻抗。

在设计射频功率放大器的时候,如果功率管工作在手册上典型的工作状态下,就可以直接使用手册上提供的功率管输入输出阻抗参数,尽管功率管的参数有一定的分散性,但是误差不大。

如果射频功率管的工作条件发生了变化(特别是工作频率),手册上的参数就不准确了,只能起到一定的参考作用。

例如日本三菱公司生产的VHF波段的射频功率管2SC2630的输入输出阻抗的数据为:Zin=0.8+j1.2Ω,Zout=1.5-j0.6 Ω,@Po=60 W,VCC=12.5 V,f=175 MHz。

又如工作在VHF波段的射频功率管2SC1971的输入输出阻抗的数据为:Zin=0.8+j3.2 Ω,Zout=6.2-j3Ω,@Po=6 W,VCC=13.5 V,f=175 MHz。

在设计具体的射频功率放大器时,一般准确知道输入阻抗比准确知道输出阻抗更为重要。

一般情况下,为了让射频功率管高效地工作,都会尽量减小管子的功耗。

如果让射频功率管集电极(或漏极)的输出阻抗与负载阻抗相匹配,则管子的效率最高是50%,即功率管的输出功率等于功率管的管耗,这样的工作条件对功率管不利,除非是为了最大限度地提高输出功率。

大多数情况下是集电极负载电阻远大于功率管的输出阻抗,这样就减小了管耗,提高了工作效率。

另外,准确知道射频功率管的输入阻抗,也是为了得到前一级(推动级)匹配网络的负载,从而设计出最佳的推动级负载网络,或者是设计出具有特定输入阻抗(如50Ω,75 Ω)的输入接口网络。

测试时需要的设备:具有足够输入功率的信号源(或者自制的信号源),双踪数字示波器,精密阻抗测试仪,数字电压源等。

下面举一例测量射频功率管输入输出阻抗的实例。

以射频功率管2SC1971为例,他的工作条件是:VCC=7.2 V,Po=2 W,f=50 MHz,RL=50Ω。

为了测量功率管的输入输出阻抗,可以在输入输出端口串联一级或者两级双口网络进行测量,这些网络同时起到匹配和滤波的作用。

利用这些网络就可以测出功率管的输入阻抗。

下面仅说明测量射频功率管2SC1971的输入阻抗的具体过程,输出阻抗的测量方法与此相似。

图3是测量2SC1971的输入阻抗的原理图,图4是他的等效电路图。

R1的值设计为10Ω左右,以减少输入的功率,同时HA由R1组成比较简单,便于计算,HB由L1,C1,R2组成,同时也是功率管的匹配和偏置网络。

HA,HB也可以由多级L型或Ⅱ型双口网络组成,只是计算量增大。

经过实测采用单级L型网络在bb′处测得的波形比较接近正弦波,测量出的结果误差不大。

为了使功率管在电源电压为7.2 V时输出2 W的功率,而且管子工作在临界状态,则从集电极测得的基波电压的峰峰值约为14 V,集电极的负载电阻为12.5 Ω,所以后面的两级Ⅱ型网络的应起到相应的阻抗变换的作用。

测量的具体操作步骤是:(1)以射频功率管手册上的输入阻抗的数据为参考(可根据经验修改),用射频电路设计软件初步设计出HA,HB网络(这个网络的阻抗匹配不是准确的);(2)在搭接电路之前用精密阻抗分析仪测出网络中的元件参数值;(3)调节输入信号的功率和有关元件(如可调电容)的参数,使射频功率管工作在要求的状态下;(4)用双踪数字示波器测出锄aa′,bb′处的电压的有效值Uaa′,Ubb′和两处波形的超前和延迟时间△t;(5)用精密阻抗分析仪重新测量可调元件的值;(6)用编制好的程序计算ZX(下一节将给出算法)。

图5,图6,图7分别是在aa′,bb′以及在功率管的基极测得的波形。

由图7可以看出在基极观察的波形含有很多谐波分量,很难准确得出基波的幅度和相位。

即使使用频谱分析仪,只能分析出基波的幅度,但是准确得到相位很困难。

由图6可以看出这里的波形谐波的分量很小,基本上可以看作是基波了,这一级L型网络的确起到了阻抗匹配和滤除谐波(实际上是隔离)的作用。

6 输入阻抗ZX的计算有了双踪数字示波器测得的Uaa′,Ubb′和波形超前或延迟时间△t,以及用精密阻抗仪测出的网络的有关元件值,就可以计算待测阻抗了。

则由式(8)就可以计算出ZX。

其中C为可调电容和探头电容的总电容。

7 实例的测量结果和误差分析射频功率管2SC1971在工作条件VCC=7.2 V,Po=2 W,f=50 MHz,RL=50Ω下,在一次实验中测得数据为:△t=-0.96 ns(延迟),Uaa′=4.87 V,Ubb′=2.12 V,电压为有效值。

已知元件数据为:R1=10 Ω,R2=51 Ω,C1=145 pF(包括探头电容和可调电容),L1=42 nH。

由上面介绍的算法可以计算出ZX=6.1+j3.9 Ω。

而由网络分析仪测出的结果是:6.4+j3.5 Ω。

由测试结果可以看出,使用问接测量的方法,准确度比较高,完全能达到电路设计需要的精度要求。

这些误差的产生,主要有以下5个方面的原因:仪器的误差;人的读数的误差;电路的分布参数的影响;与姿态有关电路的电抗部分不容易测得很准,例如探头的摆放等;由计算产生的误差。

8 结语本文探讨了测量射频功率管的输入输出阻抗的测量方法,该方法完全能在没有网络分析仪的情况下测量射频功率管的输入输出阻抗,而且测量精度对电路设计来说还是令人满意的。

由该方法的原理可知,该阻抗测量方法具有以下特点:(1)由该方法的原理可知,他具有普遍适用性。

例如该方法还可以用于测量不容易测量的线性器件的阻抗,如天线的阻抗。

(2)该方法的应用是基于集总参数的。

如果频率很高,分布参数不可忽视的情况下,就会产生很大误差。

这时就必须考虑使用分布参数的模型,上述方法仍然适用。

相关文档
最新文档