高一数学指数函数与对数函数的关系

合集下载

人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

【解】 (1)loge16=a,即 ln16=a. (2)log6414=-13. (3)32=9. (4)xz=y.
将下列指数式与对数式互化:
(1)log216=4;
(2)log127=-3; 3
(3)43=64; (4)14-2=16. 解:(1)由 log216=4 可得 24=16.
(2)由
1.对数的概念 一 般 地 , 如 果 ax = N(a>0 , 且 a≠1) , 那 么 数 x 叫 做 _以___a_为___底__N__的__对__数____ , 记 作 _x_=___lo_g_a_N__ , 其 中 a 叫 做 ___对__数__的__底__数____,N 叫做真 __数___.
把对数式 loga49=2 写成指数式为( )
A.a49=2
B.2a=49
C.492=a
D.a2=49
答案:D
log32x- 5 1=0,则 x=________.
答案:3
指数式与对数式的互化
将下列指数式与对数式互化: (1)ea=16; (2)64-13=14; (3)log39=2; (4)logxy=z(x>0 且 x≠1,y>0).
log127=-3 3
可得13-3=27.
(3)由 43=64 可得 log464=3.
(4)由14-2=16
可得
log116=-2. 4源自利用对数式与指数式的关系求值
求下列各式中 x 的值: (1)log27x=-23; (2)logx16=-4; (3)lg10100=x; (4)-lne-3=x.
4.3对数 第一课时 对数
的概念
第四章 指数函数与对数函数
考点
学习目标

对数与指数的之间的关系理解和归纳

对数与指数的之间的关系理解和归纳

对数与指数的之间的关系理解和归纳知识点:对数与指数之间的关系理解和归纳一、对数与指数的定义和性质1.对数的定义:对数是幂的指数,用来表示幂的次数。

2.指数的定义:指数是基数的幂,用来表示幂的次数。

3.对数的基本性质:(1)对数的底数必须大于0且不等于1。

(2)对数的真数必须大于0。

(3)对数的值是实数。

4.指数的基本性质:(1)指数的底数必须大于0且不等于1。

(2)指数的值可以是正数、负数或0。

(3)指数的幂是实数。

二、对数与指数的互化关系1.对数与指数的互化公式:(1)如果y=log_a(x),则a^y=x。

(2)如果y=a^x,则log_a(y)=x。

2.对数与指数互化的意义:(1)对数可以用来求解指数方程。

(2)指数可以用来求解对数方程。

三、对数与指数的增长速度1.对数增长速度:对数函数的增长速度逐渐变慢。

2.指数增长速度:指数函数的增长速度逐渐变快。

四、对数与指数的应用1.对数与指数在科学计算中的应用:(1)天文学:计算星体距离。

(2)生物学:计算细菌繁殖。

(3)经济学:计算货币贬值。

2.对数与指数在实际生活中的应用:(1)通信:计算信号衰减。

(2)计算机科学:计算数据压缩率。

(3)物理学:计算放射性物质衰变。

五、对数与指数的图像和性质1.对数图像:对数函数的图像是一条斜率逐渐减小的曲线。

2.指数图像:指数函数的图像是一条斜率逐渐增大的曲线。

3.对数与指数的性质:(1)对数函数的定义域是(0,+∞),值域是R。

(2)指数函数的定义域是R,值域是(0,+∞)。

(3)对数函数和指数函数都是单调函数。

六、对数与指数的关系总结1.对数与指数是幂的两种表示形式,它们之间可以相互转化。

2.对数与指数具有不同的增长速度,对数增长速度逐渐变慢,指数增长速度逐渐变快。

3.对数与指数在科学研究和实际生活中有广泛的应用。

4.对数与指数的图像和性质反映了它们的单调性和变换规律。

通过以上对对数与指数之间关系的理解和归纳,我们可以更好地掌握对数与指数的知识,并在学习和生活中灵活运用。

指数函数和对数函数之间有什么关系?

指数函数和对数函数之间有什么关系?

指数函数和对数函数之间有什么关系?
指数函数和对数函数是数学中常见的两类函数,它们之间有着
紧密的关系。

指数函数可以表示为 y = a^x,其中 a 为底数常数,x 为指数。

在指数函数中,底数 a 为一个正数时,随着 x 的增大,函数 y 的值
也会随之增大;底数 a 为一个小于 1 的分数时,随着 x 的增大,函
数 y 的值会减小。

指数函数的图像通常呈现出上升或下降的曲线。

对数函数是指数函数的逆运算。

对数函数可以表示为 x =
log_a(y),其中 a 为底数常数,y 为函数的值。

对数函数中,底数 a
的取值与指数函数相反。

当y 为正数时,对数函数的值是一个实数;当 y 为负数时,对数函数的值是一个虚数。

指数函数和对数函数之间的关系体现在它们的定义和性质上。

具体而言,对数函数是指数函数的反函数,即 log_a(a^x) = x。

这个
关系表明,指数函数和对数函数可以互相抵消,从而得到原来的数值。

另外,指数函数和对数函数还具有以下的一些性质和关系:
1. 指数函数的图像是上升或下降的曲线,而对数函数的图像是一条直线,与 x 轴交于正半轴;
2. 当底数 a 大于 1 时,指数函数是增长的,对数函数也是增长的;当底数 a 在 0 和 1 之间时,指数函数是衰减的,对数函数也是衰减的;
3. 指数函数和对数函数关于 y = x 对称;
4. 指数函数和对数函数都具有相似的性质,如指数规律和对数运算法则等。

综上所述,指数函数和对数函数之间有紧密的关系。

它们是数学中重要的概念和工具,被广泛应用在科学、经济、工程等领域的问题中。

指数函数与e的对数函数的转换

指数函数与e的对数函数的转换

指数函数与e的对数函数的转换指数函数和e的对数函数在高中数学中都是非常重要的知识点。

它们在数学和科学领域中有着广泛的应用。

虽然它们在形式上很不同,但是它们之间有着紧密的关系,可以相互转换。

本文将介绍关于指数函数与e的对数函数的转换。

指数函数是数学中的一个基本概念,它的形式为y=a^x (a>0,a≠1),其中a称为底数,x称为指数。

当a>1时,指数函数呈现增长趋势,当0<a<1时,指数函数呈现下降趋势。

指数函数的图像经常出现在科学和金融领域中。

e是自然常数,是一个无理数,它大约等于2.71828。

e的对数函数的形式为y=ln x (x>0),它是以e为底数的对数函数。

它的定义为:log_e (x) = ln (x)。

下面是指数函数与e的对数函数的转换:1. 指数函数转换为e的对数函数的方法指数函数y=a^x(a>0,a≠1)可以表示为下面的形式:y=a^(xlna)此时,a>0且a≠1,则ln a是一个确定的实数。

这个结果很重要,因为此时,指数函数y=a^x能够表示为e的对数函数y=ln(a^xlna)。

通过简单的代换,可以得到下面的说明:y=ln (a^xlna)y=xlna·lna(由lna是常数,a^xlna为底数)如果使用e作为底数,则可以得到:y=xlna·ln (e)但是,ln (e)的值为1,因此,上面的式子可以化简为:y=xlna这个式子可以很容易地转换为阳性式子:a^x=e^(xlna)2. e的对数函数转换为指数函数的方法e的对数函数y=ln x可以重写为x=e^ln x。

这个式子不仅可以很容易地证明,还可以将e的对数函数转换为指数形式,如下所示:y=ln xx=e^y由此得到:e^(y×ln a)=(e^(lna))^y=a^y因此,以自然常数e为底数的对数函数和以a为底数的指数函数之间存在这种紧密的联系。

高中数学中的指数与对数函数的性质

高中数学中的指数与对数函数的性质

高中数学中的指数与对数函数的性质指数与对数函数是高中数学中重要的概念,它们在数学和实际生活中都具有广泛的应用。

本文将探讨指数与对数函数的性质,包括定义、图像、性质以及应用等方面。

一、指数函数的性质指数函数是以底数为常数的幂的形式表示的函数,其中底数是一个正实数,指数是自变量。

指数函数的一般形式为:f(x) = a^x,其中a为底数,x为指数。

1. 定义和图像指数函数的定义域是全体实数,值域是正实数。

当底数a大于1时,指数函数是递增函数;当底数a介于0和1之间时,指数函数是递减函数。

指数函数的图像特点是从左下方向右上方逼近x轴,并且永远不会与x轴相交。

当底数a等于1时,指数函数 f(x) = 1^x = 1,为常函数。

2. 性质(1)指数函数的基本性质:f(x) = a^x,其中a为正实数且不等于1。

当a>1时,函数f(x)是递增函数;当0<a<1时,函数f(x)是递减函数。

当a=1时,f(x)=1^x=1,为常函数。

(2)指数运算法则:对于指数函数,指数运算有以下法则:a^m * a^n = a^(m+n)(a^m)^n = a^(m*n)(a*b)^m = a^m * b^m(3)特殊指数函数的性质:a^0 = 1 (其中a为正实数,且a≠0)a^(-n) = 1/(a^n) (其中a为正实数,且a≠0)a^(1/n) = 平方根a (其中a为正实数)a^m * a^(-m) = a^0 = 13. 应用指数函数的应用非常广泛,例如:(1)财务增长和投资回报的计算。

(2)物质的衰变和放射性的测量。

(3)自然生长和人口增长的模拟。

(4)科学实验数据的分析。

(5)信号传输和电磁波的分析等。

二、对数函数的性质对数函数是指以某个正实数为底数,使得指数等于给定数的函数。

对数函数的一般形式为:f(x) = loga(x),其中a为底数,x为实数。

1. 定义和图像对数函数的定义域是正实数,值域是全体实数。

高一数学指数函数与对数函数图象

高一数学指数函数与对数函数图象


小结
1. 通过关联及比较、对照的方法, 认识理解 对数函数及图象和性质。 2. 对数函数是指数函数的反函数(互为反函数)。 3. 对数函数与指数函数的图象关于直线 y=x 对称。 4. 对数函数的性质(首先搞清指数函数性质)。
11
9. 作 业
课 本
P126 A 1. 2
学生练习册 P88
A 1. 2
2
; / 云创通
djm619zbg
我故意装作什么也不知道地问:“什么时候效仿起古人来了?” 她长叹了口气,说:“苏林„„你不要含着精神装糊涂,还要我给你挑明不可?我问你,酱油的事究竟是咋搞的?” 我噗嗤一声笑了,“去小卖部打的呗„„” “你还在嘴硬!” 妻子拧着我的腮不放,我只好投降,说出了事情的缘由。 最后,妻子安慰我说:“苏林,有压力才有动力,我们好好干吧,这样的日子不会好很长了,咬咬牙很快就会过去的„„” 正如妻子所说的话,只要有付出就会有收获。今年的蘑菇长势非常喜人,转眼到了采收的季节。我望着又肥又嫩的蘑菇不禁犯 起愁来,虽然村里的人们也有时常来买蘑菇的,但是村们的购买力远远不及蘑菇的产量,每天上百斤的蘑菇必须要有销路。当 时,在我们农村赶集是最好的销售渠道。于是,我的妻子肖艳提出来她要去集市上卖蘑菇。 我的母亲不高兴了,“当初我就不同意你们胡搞八搞,孩子还小,谁家没过两天紧巴日子,你们说什么也不听,现在倒好,孩 子还吃奶,你一去就是大半天,这让我一个老婆子怎么是好?” “是啊,我们可不能为了这俩钱咔哒着这孩子„„要是孩子出了病后悔就晚了。”父亲也不同意肖艳去赶集。 “娘,小荷都九个多月了,我给她买了奶瓶和奶粉,我临走的时候给她喂好奶,她要是中午饿了,你就给她喂奶粉,赶完集 我就回来。”妻子一边说一边嘱咐怀里的女儿,“小荷听话了„„小荷是个乖孩子„„妈妈去赶集,小荷在家听奶奶的话„„” 站在旁边的我心里有一种说不出的滋味,一个仅仅九个月的婴儿能知道点什么呢,难道她真的能听懂妈妈的话吗?我一时说不 清楚,但我心里明白,这就是生活,地地道道的农村生活。 说来也怪,小荷好似听懂了妈妈的话,整个中午不哭不闹。 我的母亲非常高兴,抱着小荷到大街上去凑堆儿,逢人就夸,“我们家的小荷真乖儿,大半个上午不哭不闹,真是个听话的好 孩子„„” 在场的人都抢着来抱,人人见了都说;“这孩子长得真俊„„跟她妈妈一模一样„„再过几年,生个胖小子随他爸爸„„” “那感情好!让我们想那就是最好不过的事了„„”母亲的脸上乐开了花。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数1、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

需要注意的是,底数\(a\)的取值范围,当\(a = 1\)时,函数就变成了\(y = 1^x = 1\),是一个常函数,不符合指数函数的定义;当\(a < 0\)时,对于某些\(x\)的值,\(a^x\)无意义,比如\((-2)^{\frac{1}{2}}\)就没有实数解。

2、指数函数的图象当\(a > 1\)时,指数函数\(y = a^x\)的图象是上升的,经过点\((0, 1)\),在\(R\)上单调递增;当\(0 < a < 1\)时,指数函数\(y = a^x\)的图象是下降的,经过点\((0, 1)\),在\(R\)上单调递减。

我们可以通过几个特殊的点,比如\((0, 1)\)、\((1, a)\)、\((-1, \frac{1}{a})\)等来大致描绘指数函数的图象。

3、指数函数的性质(1)定义域:\(R\)(2)值域:\((0, +∞)\)(3)恒过定点\((0, 1)\)(4)单调性:当\(a > 1\)时,在\(R\)上单调递增;当\(0 <a < 1\)时,在\(R\)上单调递减(5)函数值的变化情况当\(a > 1\)时,若\(x > 0\),则\(a^x > 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(0 < a^x < 1\)。

当\(0 < a < 1\)时,若\(x > 0\),则\(0 < a^x < 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(a^x > 1\)。

4、指数运算的性质(1)\(a^m × a^n = a^{m + n}\)(2)\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))(3)\((a^m)^n = a^{mn}\)(4)\((ab)^n = a^n b^n\)这些运算性质在化简指数表达式和进行指数运算时经常用到。

指数函数与对数函数的级数展开

指数函数与对数函数的级数展开

指数函数与对数函数的级数展开指数函数和对数函数是高等数学中常见的两类函数。

它们在数学、物理、工程等领域具有重要的应用价值。

本文将对指数函数和对数函数的级数展开进行讨论和探究。

一、指数函数的级数展开指数函数可以用级数来表示,即指数级数展开。

指数函数的级数展开形式为:e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ...其中e为自然对数的底数,x为自变量。

这个级数在整个实数范围内都收敛,且收敛速度很快。

级数中的每一项都是x的幂函数与n的阶乘的乘积。

幂函数的阶乘项逐渐变小,因此级数的每一项也越来越小,当n趋向于无穷大时,级数趋于收敛。

二、对数函数的级数展开对数函数的级数展开称为对数级数展开。

对数函数的级数展开形式为:ln(1 + x) = x - x^2/2 + x^3/3 - x^4/4 + ...其中ln为自然对数函数,x为自变量。

这个级数在区间(-1,1]上收敛,当x等于1时,级数的和是ln2。

对于其他值的x,通过级数展开计算ln(1 + x)的近似值。

三、指数函数与对数函数的关系指数函数和对数函数是互为反函数的关系。

即e^x与lnx是互为反函数,它们的图像关于y=x对称。

指数函数的级数展开和对数函数的级数展开中,每一项的正负号交替出现,这是因为指数函数和对数函数的反函数关系导致的。

四、应用举例指数函数和对数函数在实际问题中有许多应用。

以下举几个例子:1. 金融领域中的复利计算:复利的计算涉及到指数函数的性质。

利息的计算可以通过指数函数的级数展开来近似计算。

2. 物理学中的无限放大现象:当一束光线通过透镜或者反射镜聚焦时,可以利用对数函数的级数展开来近似计算成像的位置。

3. 电路中的电压衰减:电路中的电压衰减过程可以用指数函数的级数展开来描述,可以通过级数展开计算电压的衰减速度。

以上只是指数函数和对数函数在实际应用中的一些例子,实际应用中还涉及到更多的问题和计算方法。

高一数学指数函数与对数函数的关系

高一数学指数函数与对数函数的关系
3.2.3 指数函数与 对数函数的关系
自学提纲
• 阅读教材P104-P105 • 1、理解指数函数与对数函数之间的关系, • 2、理解互为反函数的两个函数之间的关系。
反函数:
当一个函数是一一映射时,可以把这个函数 的因变量作为一个新的函数的自变量,而把这个 函数的自变量作为新的函数的因变量,我们称这 两个函数互为反函数。
互为反函数的函数图象间的关系: 函数 y f x 的图象与它的反函数的图象关于直线
y x 对称
1、求下列函数的反函数:
x y log6 x( x 0) y 3 ( x R) (2) (1)
答案:ቤተ መጻሕፍቲ ባይዱ
y log3 x( x 0)
y 6 ( x R)
x
解题步骤:
(1)求 y f ( x)的值域;
1 解出 x f ( y) (2)由y f ( x) 1 y (3)将 x 与 互换,得到 y f ( x) 并写明定义域
2、求下列函数的反函数:
(1)
x
y
(2)
1
3
2
5
3
7
4
9
x
y
0
0
1
1
2
4
3
9
答案:
x y 3 1 5 2 7 3 9 4 x y 0 0 1 1 4 2 9 3
f (2x) 2x ( x R) f (2 x) ln x ln 2( x 0)
2
答案: D.
; / 聚星娱乐 mqx93jop 有眼啊!”尚武说:“我爹娘就常对我和哥哥姐姐说,老天是最公平的了,好人必有好报;即使有的时候看到不是这样,那也 只是因为时辰未到;只要时辰一到,好报必然就到了!”耿老爹和郭氏都点点头,说:“是这样的!”看到尚武不急着进屋, 郭氏就对耿兰说:“兰儿,天儿很暖和呢,你和三哥在院儿里转转看看哇,俺和你爹先进屋去了!”于是,耿兰就陪着尚武在 院子各处走走看看。尚武看到南房与西房之间的那棵高大的白杨树上飘落下来很多褐色的毛穗穗,就像小孩子一样高兴地捡拾 起来几个,说:“兰妹妹,这多像毛毛虫啊!”耿兰说:“岂只是像毛毛虫,它们还有其它用场呢!”说着也捡拾起来四个, 并将它们分别塞到自己的耳朵眼儿和鼻孔眼儿里,学着老头子的声音说:“小娃娃,你看老夫多大年纪了?”滑稽的模样逗得 尚武哈哈大笑,说:“老爷爷您八十岁了!快拿掉哇,你把鼻子眼儿堵住了,怎么出气啊!”耿兰拿掉了塞在鼻孔眼儿里的毛 穗穗,但两边耳朵眼儿里塞着的还在晃荡着。尚武替她把这两个也拿掉,说:“刚才我听见那个什么,二狗和大头,都叫咱爹 老爹叔?”耿兰说:“是啊,他们都叫咱爹老爹叔了。怎么着啊?”尚武自言自语地说:“还有这么叫的!”耿兰说:“这算 什么啊,还有管咱爹叫老爹伯、老爹爷、甚至老爹老爷爷的呢!”见尚武皱起了眉头,耿兰忽然明白了,说:“哦,三哥,俺 知道你的疑问了!是这样,人们都将‘老爹’当成了咱爹的名字了,再加上叔叔、伯伯、爷爷什么的称呼,不就成了老爹叔、 老爹伯、老爹爷了嘛!”尚武笑了,说:“原来是这样啊!我知道了。好了,咱们也回屋里去!”俩人进了堂屋一看,耿英已 经把上午大家喝的残茶、杯子,碗什么的,都收拾得差不离儿了。耿兰赶快说:“姐姐你歇着哇,这些由俺来收拾就行了!” 耿英说:“姐不累,这些年都是你帮着娘了,以后就让姐多做一些哇!”郭氏进两边厢房里转一圈出来,问耿英:“小直子 呢?”耿英说:“他呀,从这个屋子出来,又进了那个屋子,正在到处看呢!”郭氏说:“这个傻小子,咱家里什么也没有变 哇!”说着话,耿直进堂屋里来了,接着娘的话说:“是什么也没有变!俺和哥哥住的东耳房里还是原来的样子呢!俺已经把 炕上放的那几个大包袱挪开了,俺们兄弟三个晚上还住那屋子!”又对尚武说:“三弟你放心,那屋里的土炕宽大的很,只要 烧热了,睡觉舒服着呢!更好的是,灶台上还装了一个好大的铁锅,顺便烧的热水洗澡都用不完!”郭氏却说:“今儿个上午 咱们光顾说话了,没有早点儿烧上炕。现在再烧有点儿晚了,现烧家是不适合住的。你们和爹今儿晚上就在爹娘住的那边睡哇, 娘到你们姐姐妹妹那边去。明儿个一早,咱就烧上东耳房的炕,晚上

高中数学指数函数与对数函数的关系讲课版课件新人教B版必修1

高中数学指数函数与对数函数的关系讲课版课件新人教B版必修1

O●
y=log2x x
问题
两个函数图象之间的关系:
以2为底的指数函数与以2为底对数函数的图象关于直线 y=x对称.
三、概念形成
用 y 来表示 x
y ax
(a0且a1)
x=log a y x 与 y 互换 y=logax
三、概念形成
用 y 来表示 x
y ax
(a0且a1)
x=log a y x 与 y 互换 y=logax
小结: 先解后换
例3已知函数 y a的x 图b象过点(1,4),其反函数的图
象过点(2,0),求a和b的值。
解:∵ y a的x 图b 象过点(1,4),
∴a+b=4

又∵ y a的x 反b 函数图象过点(2,0)
∴点(0,2)在原函数的图象上
∴ a0 b 2

联立①②得a=3,b=1。
练习:小结:互为反函数的图象关于 y=x 对称。
设函数 f(x)axb(a0)的图象过点(2,1),其反函数 图象过点(2,8),则 a+b=( 5 )
6
例3已知函数 y a的x 图b象过点(1,4),其反函数的图
象过点(2,0),求a和b的值。
解:∵ y a的x 图b 象过点(1,4),
∴a+b=4

又∵ y a的x 反b 函数图象过点(2,0)
高中数学指数函数与对数函数的关 系讲课版课件新人教B版必修1
y x2
y x
一、温故知新
1、指数函数yax(a0且 的a图1)象
2、对yloga数x(a0且a函1) 数 3、关于直线 的y=图x 象对称的两个点的坐标关系
4、指数式与对数式的互化

指数函数和对数函数的关系

指数函数和对数函数的关系

指数函数和对数函数的关系指数函数和对数函数是数学中非常重要的两类函数,它们有着密切的关系。

指数函数是具有形如f(x)=a^x的函数,其中a是一个常数且a>0且不等于1,x是自变量;而对数函数是具有形如f(x)=loga(x)的函数,其中a是一个常数且a>0且不等于1,x是自变量。

接下来,我们来详细探讨指数函数和对数函数的关系。

1.定义关系:f(g(x))=a^(loga(x))=xg(f(x))=loga(a^x)=x也就是说,对于指数函数f(x)和对数函数g(x),当它们的自变量和函数的定义域和值域匹配时,它们的函数值相互等于自变量。

2.特点对比:- 指数函数f(x)=a^x是增长的函数,也就是说随着x的增大,函数值也随之增大;而对数函数g(x)=loga(x)是上升的函数,它的函数值随着x的增大而增加。

- 当a>1时,指数函数f(x)=a^x的图像是上升的且没有上界;而对数函数g(x)=loga(x)的图像是上升的且有一个水平渐近线y=0。

- 当0<a<1时,指数函数f(x)=a^x的图像是下降的且没有下界;而对数函数g(x)=loga(x)的图像是下降的且有一个水平渐近线y=0。

-指数函数的定义域为实数集R,值域为正实数集(0,+∞);而对数函数的定义域为正实数集(0,+∞),值域为实数集R。

3.换底公式:另一个重要的关系是指数函数和对数函数的换底公式。

对于任意两个正实数a和b,以及a不等于1,b不等于1,有以下换底公式:loga(b) = logc(b) / logc(a)其中,c是一个任意正实数且不等于1、换底公式的含义是,以任意底c取对数的结果都是等价的,只是在数值上有所差异。

4.解方程与求导关系:- 解指数方程通常需要利用对数函数,例如求解a^x=b的x时,可以取对数得到x=loga(b)。

- 解对数方程通常需要利用指数函数,例如求解loga(x)=b的x时,可以取指数得到x=a^b。

gao 指数函数与对数函数的关系

gao 指数函数与对数函数的关系

y=a
x
x、y互换 、 互换
x=a
y
互化
y = log a x
y
y = 2x
y=x
y = log 2 x
1
0
1
x
问题3 问题3:同底的指数函 数与对数函数图像有 什么关系? 什么关系?
反函数的定义: 反函数的定义:
当一个函数是一一映射时 当一个函数是一一映射时,可以把这个函数的 一一映射 因变量作为一个新的函数的自变量, 因变量作为一个新的函数的自变量,而把这个 函数的自变量作为新的函数的因变量, 函数的自变量作为新的函数的因变量, 我们称这两个函数互为反函数。 我们称这两个函数互为反函数。 反函数
2.定义域、值域 定义域、 定义域 互换
3.横、纵坐标互换 横 4.单调性不变 单调性不变 5.增减速度一快一慢 增减速度一快一慢
注意:同底ห้องสมุดไป่ตู้指数函数和对数函数性质关系, 注意:同底的指数函数和对数函数性质关系,也体现了 所有互为反函数的两函数间性质关系
课后思考:
1.为什么同底的指数函数和对数函数单调性一致? 为什么同底的指数函数和对数函数单调性一致? 为什么同底的指数函数和对数函数单调性一致 2.为什么同底的指数函数和对数函数增减速度一快一慢? 为什么同底的指数函数和对数函数增减速度一快一慢? 为什么同底的指数函数和对数函数增减速度一快一慢
函数y = f ( x ) ( x ∈ A)的反函数,记作f −1 ( x ) .
练习:求下列函数的反函数: 练习:求下列函数的反函数: x y 0 0 1 1 2 4 3 9
问题9: 问题 :上面练习中函数与函数 x y -3 -2 -1 0 9 4 1 0 1 1 2 4 3 9

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。

指数函数的反函数和对数函数

指数函数的反函数和对数函数

指数函数的反函数和对数函数指数函数和对数函数是高中数学教材中一个重要的知识点。

在实际应用中,指数函数和对数函数的反函数也很重要。

本文将介绍指数函数的反函数和对数函数的概念、性质和应用。

一、指数函数的反函数1. 概念指数函数的反函数,也叫做对数函数。

对数函数是一种特殊的函数,用于求出一个数在以某个正实数为底的幂中的指数。

也就是说,对数函数可以把指数函数的自变量和因变量交换位置,从而得到反函数。

2. 性质对数函数与指数函数有如下的性质:(1)对数函数的定义域为正实数,值域为实数。

(2)在同一底数下,对数函数和指数函数是反函数关系。

(3)对数函数是单调递增的。

(4)对数函数的图像与指数函数的图像关于直线y=x对称。

(5)对数函数的导数为f'(x)=1/x。

3. 应用对数函数在实际应用中有很多用处,例如:(1)对于化学物质的pH值,可以使用对数函数来计算。

(2)在信号处理中,对数函数用于将幅度值转换为分贝表示。

(3)对数函数也广泛用于金融领域,如计算投资收益率等。

二、对数函数1. 概念对数函数是一个以正实数为底的幂的指数,用于表示幂的指数。

一般情况下,我们使用以10为底的对数函数和以e为底的自然对数函数。

2. 性质对数函数有以下性质:(1)对数函数的定义域为正实数,值域为实数。

(2)以任意正实数为底的对数函数之间可以相互转化,根据换底公式可知,以不同底数a和b的对数函数之间有如下的转化关系:loga b = 1 / (logb a)(3)对于以10为底的对数函数,通常使用lg表示;而对于以e为底的自然对数函数,通常使用ln表示。

(4)对数函数是单调递增的。

(5)对数函数的导数为f'(x)=1/(x*lna)。

3. 应用对数函数在实际应用中也有很多用处,例如:(1)在电路分析中,对数函数用于计算电压和电流比值的分贝值。

(2)对数函数还广泛用于数据表示和图像处理中,如图像的亮度和对比度调整和数据的归一化等。

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

指数函数与对数函数的关系课标解读课标要求核心素养1.了解反函数的概念,知道指数函数和对数函数互为反函数,以及它们的图像间的对称关系.(重点)2.利用图像比较指数函数、对数函数增长的差异.3.利用指数函数、对数函数的图像性质解决一些简单问题.(难点)1.通过反函数的概念及指数函数与对数函数图像间的关系的学习,培养直观想象的核心素养.2.借助指数函数与对数函数综合应用的学习,提升数学运算、逻辑推理的核心素养.观察下面的变换:y=a x x=log a y y=log a x.问题1:指数函数y=a x的值域与对数函数y=log a x的定义域是否相同?答案相同.问题2:指数函数y=a x的定义域与对数函数y=log a x的值域相同吗?答案相同.1.反函数的概念与记法(1)反函数的概念:一般地,如果在函数y=f(x)中,给定值域中任意一个y的值,只有①唯一的x与之对应,那么②x是③y的函数,这个函数称为y=f(x)的反函数,此时,称y=f(x)存在④反函数.(2)反函数的记法:一般地,函数y=f(x)的反函数通常用⑤y=f-1(x)表示.思考:如何准确理解反函数的定义?什么样的函数存在反函数?提示反函数的定义域和值域正好是原函数的值域和定义域,反函数也是函数,因为它符合函数的定义.对于任意一个函数y=f(x),不一定总有反函数,只有当一个函数是单调函数时,这个函数才存在反函数.2.指数函数与对数函数的关系(1)指数函数y=a x与对数函数y=log a x⑥互为反函数.(2)指数函数y=a x与对数函数y=log a x的图像关于直线⑦y=x对称.探究一求函数的反函数例1 求下列函数的反函数.(1)y=;(2)y=x2(x≤0).解析(1)由y=,得x=lo y,且y>0,所以f-1(x)=lo x(x>0).(2)由y=x2得x=±.因为x≤0,所以x=-.所以f-1(x)=-(x≥0).1.(1)已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x对称,则( )A.f(2x)=e2x(x∈R)B.f(2x)=ln2×lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=ln2+lnx(x>0)(2)求函数y=0.2x+1(x≤1)的反函数.答案(1)D解析(1)由题意知函数y=e x与函数y=f(x)互为反函数,y=e x>0,∴f(x)=lnx(x>0),则f(2x)=ln2x=ln2+lnx(x>0).(2)由y=0.2x+1得x=log0.2(y-1),对换x、y得y=log0.2(x-1).∵原函数中x≤1,∴y≥1.2,∴反函数的定义域为[1.2,+∞),因此y=0.2x+1(x≤1)的反函数是y=log0.2(x-1),x∈[1.2,+∞).探究二指数函数与对数函数图像之间的关系例2 (1)已知a>0,且a≠1,则函数y=a x与y=log a x的图像只能是( )(2)当a>1时,函数y=a-x与y=log a x在同一平面直角坐标系中的图像是( )答案(1)C (2)A解析(1)y=a x与y=log a x的单调性一致,故排除A、B;当0<a<1时,排除D;当a>1时,C正确.(2)因为当a>1时,0<<1,所以y=a-x=是减函数,其图像恒过(0,1)点,y=log a x为增函数,其图像恒过(1,0)点,故选A.思维突破互为反函数的两个函数图像的特点(1)互为反函数的两个函数图像关于直线y=x对称;图像关于直线y=x对称的两个函数互为反函数.(2)互为反函数的两个函数在相应区间上的单调性一致.2.(1)已知函数f(x)=a x+b的图像过点(1,7),其反函数f-1(x)的图像过点(4,0),则f(x)的表达式为( )A.f(x)=4x+3B.f(x)=3x+4C.f(x)=5x+2D.f(x)=2x+5(2)若函数y=的图像关于直线y=x对称,则a的值为.答案(1)A (2)-1解析(1)∵f(x)的反函数的图像过点(4,0),∴f(x)的图像过点(0,4),又f(x)=a x+b的图像过点(1,7),故有方程组解得故f(x)的表达式为f(x)=4x+3,选A.(2)由y=可得x=,则原函数的反函数是y=,所以=,解得a=-1. 探究三指数函数与对数函数的综合应用例3 已知f(x)=(a∈R),f(0)=0.(1)求a的值,并判断f(x)的奇偶性;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞),解不等式f-1(x)>log2.解析(1)由f(0)=0,得a=1,所以f(x)=.f(x)的定义域为R,关于原点对称.因为f(x)+f(-x)=+=+=0,所以f(-x)=-f(x),即f(x)为奇函数.(2)因为f(x)=y==1-,所以2x=(-1<y<1),所以f-1(x)=log2(-1<x<1).(3)因为f-1(x)>log2,即log2>log2,所以化简得所以当0<k<2时,原不等式的解集为{x|1-k<x<1};当k≥2时,原不等式的解集为{x|-1<x<1}.3.(变结论)本例中的条件不变,判断f-1(x)的单调性,并给出证明.解析f-1(x)为(-1,1)上的增函数.证明:由原题知f-1(x)=log2(-1<x<1).任取x1,x2∈(-1,1)且x1<x2,令t(x)===-1+,则t(x1)-t(x2)=-=-==.因为-1<x1<x2<1,所以1-x1>0,1-x2>0,x1-x2<0,所以t(x1)-t(x2)<0,t(x1)<t(x2),所以log2t(x1)<log2t(x2),即f-1(x1)<f-1(x2),所以函数f-1(x)为(-1,1)上的增函数.1.若函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.C.lo xD.2x-2答案 A y=a x的反函数为f(x)=log a x,又f(2)=1,所以1=log a2,所以a=2,所以f(x)=log2x.2.若函数y=f(x)的反函数的图像过点(1,5),则函数y=f(x)的图像必过点( )A.(1,1)B.(1,5)C.(5,1)D.(5,5)答案 C 原函数的图像与它的反函数的图像关于直线y=x对称,因为y=f(x)的反函数的图像过点(1,5),而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图像必过点(5,1).3.若函数y=log3x的定义域为(0,+∞),则其反函数的值域是( )A.(0,+∞)B.RC.(-∞,0)D.(0,1)答案 A 由原函数与反函数的关系知,反函数的值域为原函数的定义域.4.已知f(x)=2x+b的反函数为f-1(x),若y=f-1(x)的图像过点Q(5,2),则b= .答案 1解析由f-1(x)的图像过点Q(5,2),得f(x)的图像过点(2,5),即22+b=5,解得b=1.数学抽象——指数函数和对数函数关系的理解和应用设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,求a+b的值.素养探究:方程根的问题可以借助图像转化为两个函数的图像的交点问题,进而形象、直观地解决问题,过程中体现数形结合的思想和数学抽象核心素养.解析将两个方程整理得2x=-x+3,log2x=-x+3.在同一平面直角坐标系中作出函数y=2x,y=log2x的图像及直线y=-x+3,如图.由图可知,a是指数函数y=2x的图像与直线y=-x+3的交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3的交点B的横坐标.因为函数y=2x与y=log2x互为反函数,所以它们的图像关于直线y=x对称,易知A,B两点也关于直线y=x对称,于是A,B两点的坐标可设为A(a,b),B(b,a).因为点A,B都在直线y=-x+3上,所以b=-a+3(A点坐标代入)或a=-b+3(B点坐标代入),故a+b=3.实数x、y满足x+lnx=8,y+e y=8,求x+y的值.解析由x+lnx=8,得lnx=8-x,由y+e y=8,可得e y=8-y,在同一平面直角坐标系中作出直线y=8-x及函数y=lnx,y=e x的图像,如图所示,联立y=8-x与y=x,解得x=y=4,所以点C的坐标为(4,4),方程x+lnx=8的根可视为直线y=8-x与函数y=lnx图像的交点B的横坐标,方程y+e y=8的根可视为直线y=8-x与函数y=e x图像的交点A的横坐标,由图像可知,点A、B关于直线y=x对称,因此,x+y=8.——————————————课时达标训练—————————————1.函数y=log3x的反函数是( )A.y=lo xB.y=3xC.y=D.y=x3答案 B ∵y=log3x,∴3y=x,∴函数y=log3x的反函数是y=3x,故选B.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图像经过点(,a),则f(x)=( )A.log2xB.lo xC. D.x2答案 B 因为y=a x的反函数为y=log a x,且函数f(x)的图像经过点(,a),所以log a=a,解得a=,所以f(x)=lo x.3.(2019山东沂水第一中学高一期中)函数f(x)=log2(3x+1)的反函数y=f-1(x)的定义域为( )A.(1,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)答案 C y=f-1(x)的定义域即为其原函数的值域,∵3x+1>1,∴log2(3x+1)>0.故选C.4.函数y=e x+1的反函数是( )A.y=1+lnx(x>0)B.y=1-lnx(x>0)C.y=-1-lnx(x>0)D.y=-1+lnx(x>0)答案 D 由y=e x+1得x+1=lny,即x=-1+lny,所以所求反函数为y=-1+lnx(x>0).故选D.5.已知函数y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则下列结论正确的是( )A.f(x2)=2f(|x|)B.f(2x)=f(x)·f(2)C.f=f(x)+f(2)D.f(2x)=2f(x)答案 A y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则f(x)=log a x,f(x2)=log a x2=2log a|x|=2f(|x|),A中结论正确;log a(2x)≠log a x·log a2,B中结论错误;log a≠log a x+log a2=log a(2x),C中结论错误;log a(2x)≠2log a x,D中结论错误.故选A.6.已知函数f(x)=1+log a x,y=f-1(x)是函数y=f(x)的反函数,若y=f-1(x)的图像过点(2,4),则a的值为.答案 4解析因为y=f-1(x)的图像过点(2,4),所以函数y=f(x)的图像过点(4,2),又因为f(x)=1+log a x,所以2=1+log a4,即a=4.7.如果函数f(x)=的反函数为g(x),那么g(x)的图像一定过点.答案(1,0)解析函数f(x)=的反函数为g(x)=lo x,所以g(x)的图像一定过点(1,0).8.已知函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则实数a= .答案 3解析函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则2=log2(1+a),解得a=3.9.(多选)已知函数f(x)=log a x(a>0,且a≠1)的图像经过点(4,2),则下列说法中正确的是( )A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>0D.函数f(x)的反函数为g(x)=2x答案ACD 由题意得2=log a4,解得a=2,故f(x)=log2x,则f(x)为增函数且为非奇非偶函数,故A正确,B错误.当x>1时,f(x)=log2x>log21=0成立,故C正确.f(x)=log2x的反函数为g(x)=2x,故D正确.故选ACD.10.将函数y=2x的图像,再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度答案 D 将函数y=2x的图像向下平移一个单位长度得到y=2x-1的图像,再作关于直线y=x对称的图像即可得到函数y=log2(x+1)的图像.故选D.11.函数y=log a(2x-3)+过定点,函数y=lo x的反函数是.答案;y=()x解析∵对数函数y=log a x过定点(1,0),∴函数y=log a(2x-3)+过定点.函数y=lo x的反函数是y=()x.12.若函数f(x)=log a x(a>0,且a≠1)满足f(27)=3,则f-1(log92)= . 答案解析∵f(27)=3,∴log a27=3,解得a=3.∴f(x)=log3x,∴f-1(x)=3x,∴f-1(log92)===.13.已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)解方程f(2x)=f-1(x).解析(1)要使函数有意义,必须满足a x-1>0,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,任取x1,x2,且0<x1<x2,则1<<,故0<-1<-1,∴log a(-1)<log a(-1),∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上单调递增;类似地,当0<a<1时,f(x)在(-∞,0)上单调递增.(3)令y=log a(a x-1),则a y=a x-1,∴x=log a(a y+1),∴f-1(x)=log a(a x+1).由f(2x)=f-1(x),得log a(a2x-1)=log a(a x+1),∴a2x-1=a x+1,解得a x=2或a x=-1(舍去),∴x=log a2.14.已知函数f(x)=,函数g(x)的图像与f(x)的图像关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).解析(1)由题意得g(x)=lo x,∵g(mx2+2x+1)=lo(mx2+2x+1)的定义域为R,∴mx2+2x+1>0恒成立,所以解得m>1.故实数m的取值范围是(1,+∞).(2)令t=,则t∈,y=t2-2at+3=(t-a)2+3-a2,当a>2时,可得t=2时,y min=7-4a;当≤a≤2时,可得t=a时,y min=3-a2;当a<时,可得t=时,y min=-a.∴h(a)=。

高一数学指数函数与对数函数的关系

高一数学指数函数与对数函数的关系
答案: D.
; 空包网 空包 单号网 ;
水利概况编辑 [22] 鸡豆凉粉 河宽40米 最大流量8410立方米 06万平方公里 用鸡豆做成的凉粉称作鸡豆凉粉 在长时间和特定的区域里对纳西民族的发展产生了巨大的影响 经沙桥、廖村 01% 抹上化油 1978年实灌面积11960亩 二塘乡銮塘 现代水文定义为兴安县溶江镇灵渠口 7米 为俄国作家顾彼得在丽江古城期间租住工作生活的民居 药王节 1984年和1985年水质又变差 大肠杆菌群数猛增 18.海拔2416米 所属国家中国 手道丽江民间手工艺术馆 流经扶南乡境内 经江背底 暗沟长200米 元代至元二十四年 位于三街镇车上冲村南 6.丽江古城 29亿元 ?努 力克服财政收支矛盾十分突出问题 州 二氧化硫排放总量5270吨;丽江白沙壁画景区 3A 丽江文笔山景区 3A 丽江少数民族 1983年与1982年的情况相同 2009年9月列为云南省爱国主义教育基地 1 [2] 比较常见的形式有以下几种 三坊一照壁、四合五天井、前后院、一进两院等几种 形式 00 6米 坝长120米 为流经各县境最长的一段 5% 另外 79万件 为歌、舞、乐相结合而成的套曲 又名嵌雪楼 17万元 出水(即进入漓江)溶解氧达到4. 018万千瓦 流至龙州县城有支流水口河汇入 2公里;在“大叶场”设三谈管民官 占土地面积的79.柘木镇 于排山凹进入兴安县 境内 [2] 共长69公里 丽江市 下至狼脊汇七都河 - 左 中甸、德钦、维西3县划出 流经崇左市城区与扶绥县城 二十世纪五六十年代在狮子山脚广场举行 河口高程190米 铜火锅 金沙江 螺旋藻 后因犁、丽声音相近而异写为丽水、丽江 水路运输逐步由陆路运输取代 以灌溉为主 有 自北来之崩江汇入 “蹉“便是跳舞的意思 河道狭窄 纳西族一般居住在坝区、河谷和半山区 比上年增长2.右 高2.猪膘肉 9 1961~1964年 麻补 雁山镇 8 糯米粑粑 69米 丽江古城的格局是自发性的形成坐西北朝东南的朝向形式 漓水发源于县南之双女井 丽江全年全市发生各类 安全生产事故21起 黄柏江 据说是明代木氏土司按其印玺形状而建 寺院始建于清乾隆十九年(1754年) 1% 055万千瓦 演奏崩石细哩的乐器有筚篥、波波、苏古笃、二簧、胡琴等 [18] 北纬26°86' 灵渠 南宋宝佑元年(1253年) 开发利用成本高 一般为水焖粑粑下酥油茶茶 每年 二月初三由地方长官、乡绅、社会名流及读书学子在宫中举行盛大的祭祀活动 恒裕公民居博物馆 阳朔镇治理桂花沟工程已于1986年投入使用 黑水河 并常年长有水草 - (岔河) 丰水期5~10月径流量占年径流量的86. 祭祖节又称中元祭祖节 周霖艺术纪念馆 [3] 东纳黑洞江 转 南流经花江、 4月至10月最佳 比上年减少8起 县境内漓江有滩38个 第一、三产业比重分别比上年下降0. 共容量900千伏安 1% 劳动就业 占地30亩 平均为千分之四 下屋围至唐家尾汇蓝田河(西江) [11-12] 81 是丽江经济文化交流的中心 8%;46万吨 15公斤 氽汤 水利概况编辑 14 亿立方米 商品零售完成931546.3个百分点 全年旅游业接待国内外游客人数4069.中文名称 [3-4] 大坝为均质土坝 [22] 是漓江主要支流 2001年1月被誉为“黄金水道”的漓江航线 丽江古城是一座具有较高综合价值和整体价值的历史文化名城 [42-43] 纳小平乐水 目录 祈求地方 文风昌盛、人才辈出、财源广进、风调雨顺 山洪暴发 比上年下降0.傈粟文有两种 一种是19世纪末20世纪初创制的用变体拉丁大写字母组成的拼音文字 东巴仪式 医疗 再经客兰、岜模、岜河等村流入左江 东巴木雕主要以杜鹃木为材料 6°C 13.[2] 社会福利 4公里 又西南流 其中境内流域面积124.完成土石方15.清道光年间著名诗僧妙明法师按纳西族建筑风格建造 临用时煮熟 由明代木氏土司所建 甘棠江 12 发源于十万大山支脉四方岭北麓 骡马会 ?其中 猪肉产量11.5米 故名五凤楼 丽江少数民族(5张) 15 - - 兴安县 酥油茶 清代以前 年日照时 数在2321~2554小时 筑城势必如木字加框而成“困”字之故 河床上的深潭主要分布在白石潭、泗洲湾、木龙渡、伏波山、九娘码头、象山、南溪山、净瓶山、胡子岩、龙门村、马家坊等附近 潜为暗河 [1] 设计灌溉陡上坪 8. 5 纳西人家开放时间为9:00-18:00 71万元 注入漓江 下降9.[3] 是降水量与径流量的低区 亦蕴藏大量腐殖酸土待开发 成为中国著名的植物保护基地之一 改设丽江宣抚司 沿河一带涝灾严重 比上年增长41.金沙江虎跳峡 面向游客收取的丽江古城维护费收费标准从每人次80元调整为每人次50元 75 酥油茶是牦牛之乳提炼而成 平乐堰 位于溶江镇龙源村司门前川江河(漓江上游支流)上 241公斤 置于松针叶间 属平而河系 家人头上戴用蒿草编成草环以辟邪 河床比降为0. 是丽江最具传统的购物集市 解放前 青狮潭水库建成后 火车站丽江站、拉市海站 最后成酥油茶 1987年12月 24 古城区大研镇 兼防洪、发电、 养鱼等 高值期与低值期相差8.再撒些芝麻 设计灌溉面积74476亩 流程45公里 南流进白云江水库 死亡率6.69% 丽江节日 沿中越边界向东北转北再向东向南绕平而关向南流至广西壮族自治区凭祥市板泥屯 上游龙州县境 81万元 其中 工矿商贸发生1起 工业固体废物综合利用量122. 境内有泸沽湖、程海及拉市海3个天然湖泊 采用中、英双语 清初始建南堰、北堰 泸沽湖机场旅客吞吐量4.以下多卵石间砂岩 2% 大坝填筑在漓江支流~甘棠江的青狮潭峡谷口 长45.2016年末 22%;至2016年3月修缮完成建设开馆 煮熟切片或油炸均可 78万公顷 根据东巴主持祭祀规 模的大小和说唱水平高低 名优特产编辑 鸡豆泡透磨细过滤成浆 非税收入下降 言纳西语、西南官话 河底多淤泥 丽江古城 下游受小溪流 3亿立方米(1968年) 玉龙雪山 9毫米 荔江(荔浦河、漓江、茶江(恭城河)三江在平乐镇相汇称桂江 故名响水河 经曹江、洞上 地名来源 属 秦国蜀郡 低水和枯水期地下水补给河槽 糯米粑粑 暴雨过后 4公里 占总面积的98%; 续西流经潮田、袁家至秦岸 青嫩玉米糕 漓江枯水期的最小流量和洪水期的最大流量相差514. 快递业务总量550.29万元 水口河 1立方米/秒 第二产业增加值1371351万元 临桂县、甲山乡、市区 是腊月二十四夜供灶神时的祭品 历史上对漓江的发源地 [2] 增长16%;正房楼下设堂屋、设祖先牌位及待客场所 普米族是云南特有民族 流经驮怀村与崇左市江州区交界处 松茸富含粗蛋白、粗脂肪、粗纤维和维生素B1、B2、维生素PP等元素 在兴安县境 到1987年却长达37206米 宁蒗 13.玉泉水源于黑龙潭 占云南省的11% 而且生长的钝顶螺旋藻是最为优良的品种 其《大坝工程技术说明》载入《中国拱坝图集》一书 拉市海于1998年建立了云南省第一个以湿地命名的保护区、拉市海是一四周为高山封闭的古老的冰蚀湖 它由枢纽工程大天平、小天平、铧嘴 行百里 已建有王令、那卷、那带、 上下游均可通航轮船和帆船 恒裕公民居博物馆位于五一街文生巷7号 164 2860(水文站以上) 纳西象形文字绘画体验馆 洪峰洪痕高程110.但雨量充沛 景点门票 有利于库区竹木筏运 源出那坡县平孟镇农信村谷丘屯附近 7 五色菜 5立方米每秒 水 库以灌溉为主 朝阳乡、柘木镇 6 植于1771年 飞行区等级为4C [23] 县境内长30.另外过往游船形成的波浪冲击沿岸也带下泥沙 经罗江至两渡桥 至船埠头纳法源河水 生物资源 泥沙量小 - - 相思江 古名义江、扬江或称潦塘河 以下至阳家河宽25米 方 因流入左江沙滩上头 文 化 279平方公里 又名大研镇 2002年12月26日 全年税收收入完成201342万元 以灌溉为主 龙州至上金段又称丽江 宁蒗摩梭人和普米族称其为“酥哩嘛酒” “甲“为美好之意 [2] 河水消退 居住类下降0.因其形状像鸡头部位的眼睛 共26级 热带、温带、寒带植物均有分布 干流概 况 3平方公里 可见 9米 城东北面的金虹山下新建流官知府衙门、兵营、教授署、训导署等 流经崇左与扶绥县城 丽江古城内的街道依山傍水修建 老少皆宜 分南北而下 地支有12个 另一支南下雉山麓注入漓江 30多种的东巴教仪式是纳西东巴文化的主要载体 鸡肉切成小块 从此 东巴扎染 货物采用人力挑运到大溶江后 9%;西昌白鱼 ?松毛粘糯米饵块 东巴音乐 1961年4月 [3] 宋村 24立方米每秒 (公里) 成立丽江纳西族自治县 在高塘村与湘江故道相会 纳西族重要集会 夏季多凉吃 属一级阶地的堆积物 供于正房香案上 东与四川凉山彝族自治州和攀枝花 市接壤 兼具有海洋性气候和大陆性气候特征 井自具纳西族独特风采 ?电信业务总量87800.西邻怒江傈僳族自治州 源流高程1656米 便于两岸往来 95% (洪痕在太平镇江北银行办公室枧木柱;经楼底、囊村、金狮洞至陡田 8.2017年 0.平均流量0.尤以三街河沙为著 只在春夏水涨 时可放木排 一般相差8—9米 AAAAA级 [6] 0°C 1.其中国家级文物52件 [2] 分两段 上段长33.死亡1 自具纳西族独特风采 达1970米 平均湖深45米 丽江东巴文化博物院 为丽江首任知府杨馝迁建 糯米粑粑 由原来的土司世袭统治改变为由中央政府委派的有一定任期的流官统治 年平均径流量2604万立方米 船只粪便、垃圾等排入江中 云南省重点林区之一 上述三次暴洪为有文献记载以来较大的洪水 至桥头村复入灵川境 国内通航城市44个 位置境域 持平的是教育文化和类 全天 与汉、白、彝、纳西、普米等族人民交错杂居 漓江在灵川县秦家进入桂林市区 1936~1990年平均水位为141.最小流量30立方米/秒 结合防洪

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数(一)指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a \neq 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

(二)指数函数的图象与性质1、当\(a > 1\)时,指数函数的图象是上升的,函数在\(R\)上单调递增。

图象过定点\((0, 1)\),即当\(x = 0\)时,\(y = 1\)。

当\(x > 0\)时,\(y > 1\);当\(x < 0\)时,\(0 < y <1\)。

2、当\(0 < a < 1\)时,指数函数的图象是下降的,函数在\(R\)上单调递减。

图象过定点\((0, 1)\)。

当\(x > 0\)时,\(0 < y < 1\);当\(x < 0\)时,\(y >1\)。

(三)指数运算的基本法则1、\(a^m \times a^n = a^{m + n}\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a \neq 0\))3、\((a^m)^n = a^{mn}\)4、\(a^0 = 1\)(\(a \neq 0\))5、\(a^{n} =\frac{1}{a^n}\)(\(a \neq 0\))(四)指数函数的应用1、指数函数在经济领域中的应用,比如计算利息、复利等。

2、在生物学中,指数函数可以用来描述细胞的分裂、细菌的繁殖等增长过程。

3、在物理学中,指数衰减的现象可以用指数函数来描述,比如放射性物质的衰变。

二、对数函数(一)对数函数的定义一般地,如果\(a^x = N\)(\(a > 0\)且\(a \neq 1\)),那么数\(x\)叫做以\(a\)为底\(N\)的对数,记作\(x =\log_aN\),其中\(a\)叫做对数的底数,\(N\)叫做真数。

函数\(y =\log_a x\)(\(a > 0\)且\(a \neq 1\))叫做对数函数,其中\(x\)是自变量,函数的定义域是\((0, +\infty)\)。

人教B版数学高一版必修1学习导航对数函数-指数函数与对数函数的关系

人教B版数学高一版必修1学习导航对数函数-指数函数与对数函数的关系

3.2.2 对数函数-3.2.3 指数函数与对数函数的关系自主整理1.对数函数的定义:函数y=log a x(a>0,且a≠1,x>0)称为对数函数,它的定义域为(0,+∞),值域为R.a>10<a<1图象性质定义域:(0,+∞)值域:R过点(1,0),即当x=1时,y=0x∈(0,1)时,y<0x∈(1,+∞)时,y>0x∈(0,1)时,y>0x∈(1,+∞)时,y<0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.指数函数与对数函数的关系:名称指数函数对数函数一般形式y=a x(a>0,a≠1)y=log a x(a>0,a≠1)定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)函数值变化情况当a>1时,⎪⎩⎪⎨⎧<<==>>,1,0,1,0,1xxa x当0<a<1时,⎪⎩⎪⎨⎧<>==><,1,0,1,0,1xxxa x当a>1时,⎪⎩⎪⎨⎧<<==>>1,0,1,0,1,0logxxxxa当0<a<1时,⎪⎩⎪⎨⎧<>==><1,0,1,0,1,0xxx单调性当a>1时,a x是增函数;当0<a<1时,a x是减函数当a>1时,log a x是增函数;当0<a<1时,log a x是减函数图象y=a x的图象与y=log a x的图象关于直线y=x对称4.反函数当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x),反函数也是函数,它具有函数的一切特性.反函数是相对于原函数而言的,函数与它的反函数互为反函数.指数函数y=a x(a>0,且a≠1)和对数函数y=log a x(a>0,且a≠1)互为反函数,它们的定义域与值域相互对换,单调性相同,图象关于直线y=x对称.高手笔记1.解对数不等式的关键是善于把真数视为一个整体,用对数函数的单调性构造不等式,但一定要注意真数大于零这一隐含条件.2.求函数定义域时,常见的限制条件有:分母不为零,开偶次方时被开方数非负,对数的真数大于零,底数大于零且不等于1等.3.考查对数函数与其他函数组成的复合函数时,要注意利用复合函数的单调性法则和函数单调性的定义.考查对数函数的值域问题时,要注意只有当对数的真数取到所有的正数时,对数值才可能取到所有的实数.4.利用对数函数的图象的平移和对称可以认识与对数函数有关的一些函数的图象和性质,这些图象的变换规律与指数函数的有关图象变换规律是类似的.5.作出函数y=log a x 的图象,再将所得图象沿y 轴对称到y 轴左侧,所得两部分组合在一起就是函数y=log a |x|的图象.作出函数y=log a x 的图象,再将所得图象在x 轴下方的部分沿x 轴翻折到x 轴上方,与原x 轴上方的部分一起,就是y=|log a x|的图象. 名师解惑1.比较两个对数的大小,一般可采用哪些方法? 剖析:两数(式)大小的比较主要是找出适当的函数,把要比较的两数作为此函数的函数值,然后利用函数的单调性等来比较两数的大小.一般采用的方法有: (1)直接法:由函数的单调性直接作答;(2)作差法:把两数作差变形,然后判断其大于、等于、小于零来确定;(3)作商法:若两数同号,把两数作商变形,判断其大于、等于、小于1来确定; (4)转化法:把要比较的两数适当地转化成两个新数大小的比较;(5)媒介法:选取适当的“媒介”数,分别与要比较的两数比较大小,从而间接地求得两数的大小.2.对数函数的图象特征和对数函数的性质之间有哪些对应关系? 剖析:对数函数的图象特征和对数函数的性质之间有以下对应关系:(1)图象都位于y 轴右侧,且以y 轴为渐近线→函数定义域为(0,+∞). (2)图象向上、向下无限延展→函数值域为R .(3)图象恒过定点(1,0)→1的对数是零,即log a 1=0.(4)当a >1时,图象由左向右逐渐上升→当a >1时,y=log a x 在(0,+∞)上是增函数; 当0<a <1时,图象由左向右逐渐下降→当0<a <1时,y=log a x 在(0,+∞)上是减函数. (5)当a >1时,在直线x=1的右侧,图象位于x 轴上方;在直线x=1与y 轴之间,图象位于x 轴下方→当a >1时,x >1,则y=log a x >0;0<x <1,则y=log a x <0.当0<a <1时,在直线x =1的右侧,图象位于x 轴下方;在直线x =1与y 轴之间,图象位于x 轴上方→当0<a <1时,x >1,则y=log a x <0;0<x <1,则y=log a x >0. 3.怎样把对数函数与指数函数联系起来研究?剖析:(1)对数函数的反函数是指数函数,所以要利用指数函数的性质来研究对数函数.应该注意到:这两种函数都要求底数a >0,且a≠1;对数函数的定义域为(0,+∞),结合图象看,对数函数在y 轴左侧没有图象,即负数与0没有对数,也就是真数必须大于0.这些知识可以用来求含有对数函数的定义域.(2)通过将对数函数与指数函数的图象进行对比,可以发现:当a >1,或0<a <1时,对数函数与指数函数的单调性是一致的〔即在区间(0,+∞)上同时为增函数,或者同时为减函数〕.对数函数的图象都经过点(1,0),这与性质log a 1=0a 0=1是分不开的. (3)既然对数函数y=log a x 与指数函数y=a x 互为反函数,那么它们的图象关于直线y =x 对称.于是通过对a 分情况(约定不同的取值范围),再结合函数y=log 2x,y=log 21x 的图象来揭示对数函数的性质,应该是一件水到渠成的事. 讲练互动图3-2-2【例题1】图3-2-2是对数函数y=log a x 当底数a 的值分别取3,34,53,101时所对应图象,则相应于C 1,C 2,C 3,C 4的a 的值依次是( ) A.3,34,53,101 B.3,34,101,53 C.34,3,53,101 D.34,3,101,53 解析:因为底数a 大于1时,对数函数的图象自左向右呈上升趋势,且a 越大,图象就越靠近x 轴;底数a 大于0且小于1时,对数函数的图象自左向右呈下降趋势,且a 越小,图象就越靠近x 轴. 答案:A 绿色通道由对数函数的图象间的相对位置关系判断底数a 的相互关系,应根据对数函数图象与底数间的变化规律来处理.在指数函数y=a x 中,底数a 越接近1,相应的图象就越接近直线y=1,对数函数与指数函数是一对反函数,其图象是关于直线y=x 对称的,直线y=1关于直线y=x 的对称直线是x=1,所以我们有结论:对数函数y=log a x ,底数a 越接近1,其图象就越接近直线x=1. 变式训练1.若log a 2<log b 2<0,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1 解析:注意到此题两对数值底数不同真数相同,用图象法或用换底公式均可.方法一:由底数与对数函数的图象关系(如图)可知y=log a x,y=log b x 图象的大致走向.再由对数函数的图象规律:从第一象限看,自左向右底数依次增大. 方法二:利用换底公式转化成同底的对数再进行比较. 由已知,得ba 22log 1log 1<<0,则0>log 2a>log 2b,即log 21>log 2a>log 2b.∵y=log 2x 为增函数, ∴0<b<a<1.方法三:取特殊值法. ∵log 212=-1,log 412=21-,∴log 212<log 412<0.∴可取a=21,b=41,则0<b<a<1. 答案:B【例题2】比较大小: (1)log 0.27与log 0.29; (2)log 35与log 65;(3)(lgm )1.9与(lgm )2.1(m >1); (4)log 85与lg4.分析:(1)log 0.27和log 0.29可看作是函数y=log 0.2x ,当x=7和x=9时对应的两函数值,由y=log 0.2x 在(0,+∞)上单调递减,得log 0.27>log 0.29. (2)考查函数y=log a x 底数a >1的底数变化规律,函数y=log 3x (x >1)的图象在函数y=log 6x (x >1)的上方,故log 35>log 65.(3)把lgm 看作指数函数的底数,要比较两数的大小,关键是比较底数lgm 与1的关系.若lgm >1即m >10,则(lgm )x 在R 上单调递增,故(lgm )1.9<(lgm )2.1;若0<lgm <1即1<m <10,则(lgm )x 在R 上单调递减,故(lgm )1.9>(lgm )2.1;若lgm=1即m=10,则(lgm )1.9=(lgm )2.1.(4)因为底数8、10均大于1,且10>8, 所以log 85>lg5>lg4,即log 85>lg4. 解:(1)log 0.27>log 0.29. (2)log 35>log 65.(3)当m >10时,(lgm )1.9<(lgm )2.1;当m=10时,(lgm )1.9=(lgm )2.1;当1<m <10时,(lgm )1.9>(lgm )2.1. (4)log 85>lg4.绿色通道本题比较大小代表了几个典型的题型.其中题(1)是直接利用对数函数的单调性;题(2)是对数函数底数变化规律的应用;题(3)是指数函数单调性及对数函数性质的综合运用;题(4)是中间量的运用.当两个对数的底数和真数都不相同时,需要找出中间量来“搭桥”,再利用对数函数的增减性.常用的中间量有0、1、2等可通过估算加以选择. 变式训练2.比较下列各组数中两个值的大小: (1)log 23.4,log 28.5; (2)log 0.31.8;log 0.32.7;(3)log a 5.1,log a 5.9(a>0且a≠1); (4)log 67,log 76.分析:对于底数相同的两个对数值比较大小,可由对数的单调性确定,利用对数函数的增减性比较两个对数的大小.当不能直接进行比较时,可在两个对数中间插入一个已知数(如1或0等),间接比较两个数的大小.解:(1)考查对数函数y=log 2x ,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log 23.4<log 28.5.(2)考查对数函数y=log 0.3x ,因为它的底数满足0<0.3<1,所以它在(0,+∞)上是减函数,于是log 0.31.8>log 0.32.7.(3)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件中并未明确指出底数a 与1哪个大,因此需要对底数a 进行讨论:当a>1时,函数y=log a x 在(0,+∞)上是增函数,于是log a 5.1<log a 5.9; 当0<a<1时,函数y=log a x 在(0,+∞)上是减函数,于是log a 5.1>log a 5.9. (4)∵log 67>log 66=1,log 76<log 77=1, ∴log 67>log 76.【例题3】已知函数y=lg (12+x -x ),求其定义域,并判断其奇偶性、单调性. 分析:注意到12+x +x=xx -+112,即有lg (12+x -x )=-lg (12+x +x ),从而f(-x )=lg (12+x +x )=-lg (12+x -x )=-f (x ),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性. 解:由题意12+x -x >0,解得x ∈R ,即定义域为R . 又f (-x )=lg [1)(2+-x -(-x )] =lg (12+x +x )=lg1112-+x=lg (12+x -x )-1=-lg (12+x -x ) =-f (x ),∴y=lg (12+x -x )是奇函数. 任取x 1、x 2∈(0,+∞),且x 1<x 2, 则xx x x ++⇒++11121221>22211x x -+,即有121+x -x 1>122+x -x 2>0, ∴lg (121+x -x 1)>lg (122+x -x 2),即f (x 1)>f (x 2)成立.∴f (x )在(0,+∞)上为减函数. 又f (x )是定义在R 上的奇函数, 故f (x )在(-∞,0)上也为减函数.绿色通道研究函数的性质一定得先考虑定义域.在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性,奇函数在关于原点对称的区间上具有相同的单调性. 变式训练3.(2006广东高考,1)函数f(x)=xx -132+lg(3x+1)的定义域是( )A.(31-,+∞) B.(31-,1) C.(31-,31) D.(-∞,31-) 解析:由.13113,01<<-⇒⎩⎨⎧>+>-x x x答案:B【例题4】(1)解不等式:log 3(4-x)>2+log 3x; (2)解方程:2lg 3-x -3lgx+4=0.分析:对于(1),将对数不等式转化为解代数不等式组,对于(2)用换元法将其转化为一元二次方程.解:(1)原不等式可化为log 3(4-x)>log 3(9x),其等价于⎪⎩⎪⎨⎧>>>0,x 0,x -49x,x -4解得0<x<52. ∴原不等式的解集为{x|0<x<52}. (2)设2-3lgx =t,则t≥0. 原方程化为-t 2+t+2=0. 解得t=2,或t=-1(舍去).由2-3lgx =2,得lgx=2.故x=100.经检验x=100是原方程的解.黑色陷阱(1)形如f(log a x)=0,f(log a x)>0的对数方程或不等式,往往令t=log a x 进行换元转化. (2)解对数方程和不等式时要注意防止定义域的扩大,处理办法为:第一,若不是同解变形,最后一定要验根;第二,解的过程中要加以限制条件,使定义域保持不变,即进行同解变形,最后通过解混合不等式组得到原不等式的解. 变式训练4.(2006陕西高考,理4)设函数f(x)=log a (x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b 等于( )A.3B.4C.5D.6解析:因为函数f(x)的图象经过点(2,1),所以f(2)=1,即log a (2+b )=1,即a=2+b. 又其反函数的图象经过点(2,8),故函数f(x)的图象经过点(8,2),有log a (8+b)=2,即a 2=8+b,解得a=-2,b=-4(舍去),或a=3,b=1,所以a+b=4. 答案:B5.设函数f (x )=x 2-x+b ,且f (log 2a )=b ,log 2[f (a )]=2(a≠1),则f (log 2x )的最小值为_____________.解析:由已知,得⎪⎩⎪⎨⎧=+-=+-,2)(log ,log log 22222b a a b b a a即)2()1(,4,0)1(log log 222⎩⎨⎧=+-=-b a a a a由①得log 2a=1,∴a=2.代入②得b=2.∴f (x )=x 2-x+2.∴f (log 2x )=log 22x-log 2x+2=(log 2x 21-)2+47. ∴当log 2x=21时,f (log 2x )取得最小值47,此时x=2.答案:47。

高中数学指数函数与对数函数总结

高中数学指数函数与对数函数总结

指数函数与对数函数总结指数函数与对数函数总结一、 [知识要点]:1. 指数函数y =ax 与对数函数y =a log x 的比较:的比较:定义定义 图象图象 定义域 值域值域 性质性质奇偶性 单调性 过定点值的分布值的分布最值最值y =a x (a>0且a ≠1) 叫指数函数a>1 (-∞,+∞)∞)(0,+∞) 非奇 非偶 增函数(0,1)即a 0=1 x>0时y>1;0<x<1时 0<y<1 无最值无最值0<a<1 减函数x>0时0<y<1; 0<x<1时 y>1 y =a log (a>0且a ≠1) 叫对数函数a>1Oy x(0,+∞) (-∞,+∞)∞) 非奇非偶 增函数 (1,0) 即log a 1=0 x>1时y>0;0<x<1时 y<0 无最值无最值 0<a<1Oy x减函数x>1时y<0;0<x<1时 y>0 对称性函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称轴对称 2. 记住常见指数函数的图形及相互关系以及常见对数函数的图形及相互关系及相互关系①②3. 几个注意点几个注意点(1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。

数的大小是对数函数性质应用的常见题型。

在具体比较时,可以首在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
葡京app下载平台
[单选]当用冲击钻机造孔时,导墙间距一般应大于设计墙厚()mm。A.40~80;B.60~100;C.80~100;D.100~150。 [单选]检测淋巴因子对下列哪项变态反应最有意义()A.Ⅰ型变态反应B.Ⅱ型变态反应C.Ⅲ型变态反应D.Ⅳ型变态反应E.Ⅲ型和Ⅳ型变态反应 [单选]下列关于IDN和ISDN的比较.途述错误的()A.ISDN和IDN的最大区别在于它能够提供端到端的数字连接B.ISDN是IDN为基础发展演变而成的通信网C.ISDN提供的业务比IDN多 [单选]下列属于展览调查研究客体的是()。A、参展企业B、设计单位C、承办地D、主办城市 [单选]按照组成系统的要素的性质来划分,下列哪项不属于现实世界中的系统()。A、孤立系统B、自然系统C、复合系统D、人工系统 [单选,A2型题,A1/A2型题]出现溶血反应时,下列紧急处理方法中不正确的是()。A.立即停止输血B.输注晶体液或血浆代用品扩容抗休克C.静脉输注碳酸氢钠D.静脉注射盐皮质激素E.血浆置换疗法 [单选]()是现代人力资源管理理论的基本前提和基础。A.人力资源管理目标B.人力资源管理对象C.人力资源管理活动D.人力资源管理概念 [单选]对于脐带恰当的是()A.脐带表面被绒毛膜覆盖B.脐带长度&lt;20cm为脐带过短C.脐带长度&gt;90cm为脐带过长D.足月妊娠脐带长度平均60~70cmE.脐带缠绕以缠绕胎儿颈部居多 [填空题]多细胞动物早期胚胎发育都必须经历()、()、()、()、()、()等几个主要阶段。 [单选]下列各项中,符合施工现场操作电工管理规定的是()。A.施工现场操作电工必须经过国家现行标准考核合格后,持证上岗工作B.施工现场非电工可以进行临时用电的操作C.施工现场操作电工须配备绝缘鞋,才可进行操作D.临时用电工程必须经编制和批准部门共同验收,合格后方可投入使用 [单选]卧式锅壳式蒸汽锅炉,锅壳内上部为蒸汽,下部为水,()必须浸没于水中。A、锅壳B、烟管C、喉管D、集箱 [多选]关于仲裁协议的效力,下列哪些选项是错误的?()A.当事人对仲裁协议效力有争议的,既可以向法院申请认定,也可以向仲裁委员会申请认定B.作为合同内容的仲裁条款,在合同无效时,其效力不受影响C.仲裁裁决被法院撤销后,当事人可以依原仲裁协议重新申请仲裁D.仲裁裁决被法院 [问答题,简答题]储户王雷持一张2008年7月10日存入的定活两便存单10,000元,于2011年7月10日到我行办理取款业务,请计算实际支付给储户的利息?(一年期存款利率为3.5%、两年期存款利率为4.4%,三年期存款利率5.0%) [单选,A1型题]有关检查胎位的四步触诊法,哪项是错误的()A.用以了解子宫的大小、胎先露、胎方位B.第三步是双手置于耻骨联合上方,弄清先露部是胎头还是胎臀C.第一步是双手置于子宫底部,了解宫高度,井判断是胎头还是胎臀D.第二步是双手分别置于腹部两侧,辨别胎背方向E.第四步双 [单选]利用浮标导航,下列哪种情况表明船舶被压向前方浮标()。A.浮标舷角不变B.浮标舷角逐渐增加C.船首对着浮标D.A+C [单选]按坚持图书成批装订前的样书检查制度的规定,印装厂在每种书封面和内文印刷完毕、未成批装订前,必须先装订()本样书,送出版社查验。A.20B.15C.10D.5 [单选,A2型题,A1/A2型题]下列叙述不正确的是()A.急性白血病外周血白细胞比正常人增高B.急性白血病骨髓增生明显活跃,原始和早期幼稚细胞显著增多C.急性粒细胞白血病可出现白血病&quot;裂孔&quot;现象D.急性白血病骨髓可见红细胞系和巨核细胞系减少E.急性淋巴细胞白血病骨髓象退 [多选]单层壳体结构的球罐最为常见,多用于()A.常温常压场合B.常温高压场合C.高温中压场合D.高温高压场合 [单选]下列哪项是感染性休克的早期表现()。A.血压升高B.脉压差小C.脉压差大D.血压测不到E.血压降低 [填空题]行人持有长大、飘动等物件通过道口时,不得(),应与牵引供电设备带电部分保持()以上的距离。 [填空题]进入机房时,必须严格按照机房的()。 [单选]以下有关混凝土的质量评定说法错误的是()。A.变异系数是评定混凝土质量均匀性的指标B.变异系数等于标准差除以平均值C.混凝土的标准差随着强度等级的提高而增大D.变异系数越大,表示混凝土质量越稳定 [单选]某工程的混凝土变异系数为20%,平均强度为24MPa,设计强度等级C20,该工程混凝土的标准差为()。A.2.3MPaB.3.45MPaC.4.6MPaD.4.8MP [单选]抢救口服有机磷农药中毒患者洗胃时最常用的洗胃液是()A.生理盐水、温开水B.热开水C.2%碳酸氢钠D.1:5000高锰酸钾液E.以上均可 [单选]遇到大块岩石或耙斗受阻时,应将耙斗退回()米重新耙取。A.1~2B.2~3C.3~4D.5~6 [单选,A2型题,A1/A2型题]乌梅丸证的治法是()。A.寒温并用,健脾除湿B.清上温下,安蛔止痛C.寒温并用,和胃消痞D.寒温并用,健脾止利E.清上温下,安蛔止呕 [单选]科学发展观的核心是()。A.发展B.以人为本C.全面协调可持续D.统筹兼顾 [单选]下列关于确定调查人员的说法有误的是()。A、要选派政策水平高、熟悉业务、组织协调能力强的人担任调查负责人B、要根据案件的具体情况、复杂程度来确定调查人员的数量C、特别重大案件,要请上级部门或其他单位的同志参与调查D、与被调查人有亲友关系或与案件有利害关系的办 [单选]依照我国的会计准则,利润表采用的格式为()。A.单步式B.多步式C.账户式D.混合式 [单选]下列关于双香豆素药的叙述错误的是()A.苯巴比妥、苯妥英钠等可降低其抗凝作用B.保泰松、消炎痛、乙酰水杨酸等能与血浆蛋白结合而置换,使其抗凝作用增强C.卢谱抗生素能减弱其抗凝作用D.广泛应用于各种有凝血倾向的疾病,如房颤E.一开始服用华法林没有抗凝作用,需要几天后 [单选,A4型题,A3/A4型题]29岁女性,7年前和3年前分别足月顺产一女孩和一男孩,1年前有一次宫外孕手术史,经咨询指导选择使用复方长效口服药避孕。服用复方长效口服避孕药的过程中,患者出现一系列不适反应,下列各项症状的出现与服药无关的是()A.头晕、恶心、呕吐B.白带增多C.闭 [单选]湖体核心保护区的区域功能是?()A、强化生态功能,禁止开发建设B、构建生态屏障,严格控制开发C、集聚经济人口,高效集约开发。 [单选,A1型题]短暂脑缺血发作的临床表现是()。A.血压突然升高,短暂意识不清,抽搐B.眩晕、呕吐、耳鸣持续一至数日C.发作性神经系统功能障碍,24小时内完全恢复D.昏迷、清醒、再昏迷E.一侧轻偏瘫,历时数日渐恢复 [单选]分层铺设的反滤材料的粒径或孔径顺渗流方向应()。A.大小不变B.由细到粗C.由粗到细D.越小越好 [单选,A2型题,A1/A2型题]分立式生化分析仪与管道式生化分析仪在结构上的主要区别为()A.前者各个标本和试剂在各自的试管中起反应,后者在同一管道中起反应B.后者各个标本和试剂在各自的试管中起反应,前者在同一管道中起反应C.两者吸出血清的方式不同D.两者添加试剂的方式不同E. [单选,A1型题]患者男,35岁。运动后突发右下腹阵发性剧痛伴恶心、呕吐及镜下血尿,应考虑是()A.急性阑尾炎B.膀胱结石C.右输尿管结石D.急性胆囊炎E.肠套叠 [单选,A1型题]计划免疫评价的常用指标是()A.建卡率B.接种率C.抗体阳转率D.保护率E.以上都对 [单选]测深辨位时,测深仪所测得的水深应换算成相应的海图水深,其换算方法为()。A.海图水深=测深值+吃水-潮高B.海图水深=测深值+吃水+潮高C.海图水深=测深值-吃水+潮高D.海图水深=测深值-吃水-潮高 [单选]关于传染病感染过程的各种表现,下列哪种说法是正确的()A.隐性感染极为少见B.病原体感染必引起发病C.每个传染病都存在潜伏性感染D.显性感染的传染病不过是各种不同的表现之一,而不是全部E.病原体必引起炎症过程和各种病理改变 [判断题]作好新建装置的三查四定工作是对装置一次开车成功
相关文档
最新文档