参数方程典型例题分析
极坐标和参数方程的典型例题
极坐标和参数方程的典型例题在数学中,极坐标和参数方程是研究平面曲线的重要工具。
极坐标是一种用极径和极角来表示平面上点位置的坐标系统,而参数方程则是用一个或多个参数来表示曲线上的点的坐标。
在本文中,我们将通过一些典型例题来探讨如何使用极坐标和参数方程解决问题。
例题一:极坐标下的圆首先让我们考虑一个非常简单的例子,即极坐标下的圆。
圆的极坐标方程为:$$ \\begin{cases} r = a \\\\ \\theta \\in [0, 2\\pi) \\end{cases} $$其中,r表示极径,a表示圆的半径,$\\theta$表示极角。
这个方程说明了圆上的每个点都满足极径等于半径a,并且极角可以在0到$2\\pi$之间取值。
例题二:参数方程下的抛物线接下来,我们考虑一个使用参数方程描述的曲线:抛物线。
抛物线的参数方程为:$$ \\begin{cases} x = at^2 \\\\ y = 2at \\end{cases} $$其中,a为常数,t为参数。
根据这个参数方程,我们可以看到x和y都是t的二次函数。
这个参数方程给出了抛物线上的每个点的坐标。
例题三:极坐标和参数方程的转换有时候,我们需要在极坐标和参数方程之间进行转换。
下面的例题将展示如何将一个极坐标方程转换为参数方程。
考虑极坐标方程:$$ \\begin{cases} r = 2\\cos\\theta \\\\ \\theta \\in [0, \\pi] \\end{cases} $$我们可以使用三角恒等式来将这个极坐标方程转换为参数方程。
首先,我们注意到r是$\\theta$的函数,而x和y是r的函数。
根据极坐标和直角坐标之间的关系,我们有下面的关系式:$$ \\begin{cases} x = r\\cos\\theta \\\\ y = r\\sin\\theta \\end{cases} $$将极坐标方程中的r代入上述关系式,我们得到参数方程:$$ \\begin{cases} x = 2\\cos(\\theta)\\cos(\\theta) = 2\\cos^2(\\theta) \\\\y = 2\\cos(\\theta)\\sin(\\theta) = \\sin(2\\theta) \\end{cases} $$ 通过这个转换,我们将极坐标方程转换为了参数方程。
高中数学参数方程应用大题(带答案)
高中数学参数方程应用大题(带答案)参数方程极坐标系解答题一、圆上的点到直线的距离最大值1.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l的极坐标方程为。
曲线C的参数方程为:(α为参数)。
I)写出直线l的直角坐标方程;II)求曲线C上的点到直线l的距离的最大值。
考点:参数方程化为普通方程,坐标系和参数方程。
分析:1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;2)化简曲线C的参数方程,然后根据直线与圆的位置关系进行转化求解。
解答:解:(1)∵直线l的极坐标方程为。
ρ(x﹣sinθ﹣cosθ)=。
y+1=0.2)根据曲线C的参数方程为:得:x-2)^2+y^2=4。
它表示一个以(2,0)为圆心,以2为半径的圆。
圆心到直线的距离为:d=|cosθ- sinθ-1|/√2曲线C上的点到直线l的距离的最大值=√2.点评:本题重点考查了直线的极坐标方程、曲线的参数方程以及它们之间的互化等知识,属于中档题。
2.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为,求圆心的极坐标和△PAB面积的最大值。
考点:参数方程化为普通方程,简单曲线的极坐标方程。
专题:坐标系和参数方程。
解答:解:(Ⅰ)由圆C的极坐标方程为,直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点,化为ρ=2,把θ代入即可得出圆心的极坐标。
II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出△PAB面积的最大值。
点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题。
解:(1)将曲线C1的极坐标方程化为直角坐标方程,得到$x^2+y^2-4y=12$。
参数方程例题讲解1
参数方程例题讲解1直线的参数方程选配应以巩固参数的几何意义为主,椭圆和圆可选利用参数方程减少变量个数,简化运算的例题.互化应以参数方程化普通方程为主.例1 ⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 212235与⎩⎨⎧+-=+=ty t x 235,是否表示同一条直线. 此例可使学生明确以下几点: ①曲线的参数方程可能不唯一.②两个方程均表示直线03253=---y x .两个方程中的参数的意义不同,取相同的t ,对应的点可能不同,但t 取全体实数时,所对应的点集相同.③判断方程⎩⎨⎧+=+=bt y y atx x 中t 的几何意义是否为定点(x 0,y 0)到动点P (x ,y )的数量,有二个原则,其一为a 2+b 2=1,其二是b ≥0,这是因为α为直线倾角时,必有sin 2α+cos 2α=1及sin α≥0.④⎩⎨⎧+=+=bt y y atx x 00上A ,B 两点间距离为2122t t b a AB -+=.上述方程中通过换元22'ba t t +=(当 b ≥0),可知t ’的几何意义就是定点(x 0,y 0)到动点(x ,y )的数量,其上两点间距离即为21t t -.⑤通过计算:ab at bt x x y y ==--00,使学生知道(x 0,y 0)必为直线上的点,a b等于直线的斜率.例2 在圆x 2+2x +y 2=0上求一点,使它到直线2x +3y -5=0的距离最大.此题常用解法有:①求过圆心(-1,0)与直线2x +3y -5 = 0垂直的直线和圆的交点,并根据图形舍去一个点.②求与2x +3y -5 = 0平行的圆的切线,再求切点,并根据图形舍去一个点.③设切点坐标T (x 0, y 0),利用方程组⎪⎩⎪⎨⎧+=---=++23)1(0020020020x y y x x ,解出切点,再根据图形舍去一个解.④利用圆的参数方程⎩⎨⎧=+-=θθsin cos 1y x ,则圆上点到2x +3y -5 = 0的距离为22325s i n 3)c o s 1(2+-++-=θθd 13)132arcsin sin(13137cos 2sin 3+=-+=θθθ当1)132arcsinsin(-=+θ,即132arcsin23-=πθ时,d 取得最大值,此时1313213cos 1--=+-=θx ,13133sin -==θy .即点P (1313213--,13133-)为所求.例3 在椭圆4x 2+9y 2=36上求一点P ,使它到直线x +2y +18=0的距离最短(或最长). 此题如用求切线的方法解,计算量大.利用椭圆的参数方程⎩⎨⎧==θθsin 2cos 3y x ,则椭圆上点到直线的距离518)53arccos cos(5518sin 4cos 3+-=++=θθθd当53arccos+=πθ时,d 取得最小值5513,此时,59c o s 3-==θx ,58sin 2-==θy .即点P (59-, 58-)为所求.例2 例3是使学生知道利用圆和椭圆的参数方程,可以用单变量θ表示动点坐标 (x ,y ),以简化运算.例4 将下列数方程化成普通方程.①⎩⎨⎧==t y tx 222,②⎪⎪⎩⎪⎪⎨⎧+=+=221212t t y t x ,③⎪⎪⎩⎪⎪⎨⎧+=+-=2221211t t y t t x ,④⎪⎪⎩⎪⎪⎨⎧-=+=)1()1(t t b y t t a x ,⑤⎩⎨⎧+=+-=11mx y my x .用①~④题介绍消参的常用方法,代入消元法、加(减)、乘(除)消元法,平方消元法,并强调它们是方法不是目的,故消参时,一个题目可能几个方法联合使用或重复使用,第③题还可以用设t=tan 2θ将原式化为⎩⎨⎧==θθsin cos y x ,后消参,第⑤题可以用①式乘以x +②式乘以y 直接消去参数m .为了区别于先将x 、y 表达式求出,再消去m 的方法,可将此法称为直接消参法.这个方法更能使学生体会到参数的本质含义.此法对解综合题十分有用.例5 直线3x -2y +6=0,令y = tx +6(t 为参数).求直线的参数方程. 将y = tx +6代入3x -2y +6=0,解得tx 236-=,将它代入y = tx +6得t t y 23618--=,此题是使学生了解,化普通方程为给定参数的参方程的一般方法.例6 将参数方程⎩⎨⎧==θθsin cos 2y x ,化为普通方程.所求普通方程为y 2=-x +1,x ∈[0,1].通过类似的例题,说明消参过程中的等价性问题.。
高三数学参数方程试题答案及解析
高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线的参数方程为(为参数)的普通方程为___________.【答案】【解析】由x=1+t得t=x-1代入y=-1+3t整理得,,即为曲线C的普通方程.考点:参数方程与普通方程互化2.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为(t为参数,),曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程。
(Ⅱ)设直线与曲线C相交于A,B两点,当a变化时,求的最小值【答案】(Ⅰ)(Ⅱ)4【解析】(Ⅰ)将两边乘以得,,将代入上式得曲线C的直角坐标方程;(Ⅱ)将将直线的参数方程代入曲线C的普通方程中,整理关于t的二次方程,设M,N两点对应的参数分别为,利用一元二次方程根与系数将,用表示出来,利用直线参数方程中参数t的几何意义得,|AB|=,再转化为关于与的函数,利用前面,关于的表示式,将上述函数化为关于的函数,利用求最值的方法即可求出|AB|的最小值.试题解析:(Ⅰ)由,得所以曲线C的直角坐标方程为(4分)(Ⅱ)将直线l的参数方程代入,得设A、B两点对应的参数分别为t1、t2,则t 1+t2=,t1t2=,∴|AB|=|t1-t2|==,当时,|AB|的最小值为4 (10分)【考点】极坐标方程与直角坐标互化,直线与抛物线的位置关系,直线的参数方程中参数t的几何意义,设而不求思想3.(本小题满分7分)选修4—4:极坐标与参数方程已知直线的参数方程为,(为参数),圆的参数方程为,(为常数).(I)求直线和圆的普通方程;(II)若直线与圆有公共点,求实数的取值范围.【答案】(I),;(II)【解析】(I)由已知直线的参数方程为,(为参数),消去参数即可得直线的普通方程.由圆的参数方程为,(为常数)消去参数,即可得圆的普通方程.(II)由直线与圆有公共点,等价于圆心到直线的距离小于或等于圆的半径4,由点到直线的距离公式即可得到结论.试题解析:(I)直线的普通方程为.圆C的普通方程为.(II)因为直线与圆有公共点,故圆C的圆心到直线的距离,解得.【考点】1.参数方程.2.直线与圆的位置关系.4.直线(为参数)的倾斜角是【答案】.【解析】直线的斜率为,因此该直线的倾斜角为.【考点】1.直线的参数方程;2.直线的斜率5.直角坐标系中,以原点O为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线:(为参数)和曲线:上,则的最小值为.【答案】3【解析】利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程.曲线的方程是,曲线的方程是,两圆外离,所以的最小值为.6.在平面直角坐标系中,直线经过点P(0,1),曲线的方程为,若直线与曲线相交于,两点,求的值.【答案】1【解析】利用直线的参数方程的几何意义,可简便解决有关线段乘积问题. 设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得.所以.【解】设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得. 5分(只要代入即可,没有整理成一般形式也可以)所以. 10分【考点】直线的参数方程7.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【答案】(1)(2)(, ),(2, )【解析】(1)将消去参数t,化为普通方程 , 即C1:.将代入得.所以C1的极坐标方程为.(2)C2的普通方程为 .由解得或所以C1与C2交点的极坐标分别为(, ),(2, )8.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,),直线l的极坐标方程为ρcos()=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系.【答案】(1)x+y-2=0 (2)相交【解析】(1)由点A(,)在直线ρcos(-)=a上,可得a=,所以直线l的方程可化为,从而直线l的直角坐标方程为.(2)由已知得圆C的直角坐标方程为(x-1)2+y2=1,所以圆C的圆心为(1,0),半径r=1,因为圆心C 到直线l的距离d=<1,所以直线l与圆C相交.9.在直角坐标平面内,以坐标原点为极点、轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,曲线的参数方程为(为参数),则点到曲线上的点的距离的最小值为.【答案】【解析】由已知得,点的直角坐标为,曲线的普通方程为,表示以为圆心,为半径的圆,故点到曲线上的点的距离的最小值为.【考点】1、直角坐标和极坐标的互化;2、参数方程和普通方程的互化;3、点和圆的位置关系.10.已知曲线C的参数方程为(t为参数),若点P(m,2)在曲线C上,求m的值.【答案】m=16【解析】点P(m,2)在曲线C上,则,所以m=16.11.在平面直角坐标系中,曲线的参数方程为(为参数),为坐标原点,为上的动点,点满足,点的轨迹为曲线.则的参数方程为 .【答案】(为参数)【解析】设点.由,可得.即的参数方程为(为参数).【考点】1.参数方程的知识.2.向量相等.12.在直角坐标系中,曲线的参数方程为(t为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的极坐标方程为,则与的两个交点之间的距离等于.【答案】【解析】、的普通方程分别为、,与的两个交点之间的距离即为圆截直线得到的弦长,所以,.【考点】参数方程与极坐标,直线与圆的位置关系.13.若直线(为参数)被圆截得的弦长为最大,则此直线的倾斜角为;【答案】【解析】直线的普通方程为,圆的直角坐标方程为;直线被圆截得的弦长最大,即圆心到直线的距离最小,,当时,.【考点】参数方程与普通方程的转化、极坐标与直角坐标的转化、最值问题.14.过点M(2,1)作曲线C:(θ为参数)的弦,使M为弦的中点,求此弦所在直线的方程.【答案】2x+y-5=0【解析】由于曲线表示的是圆心在原点O,半径为r=4的圆,所以过点M的弦与线段OM垂直.∵kOM=,∴弦所在直线的斜率是-2,故所求直线方程为y-1=-2(x-2),即2x+y-5=0.15.已知直线与圆相交于AB,则以AB为直径的圆的面积为 .【答案】【解析】消掉可得直线方程为,利用可得圆的方程为,联立方程组得交点,交点间距离为,则所求圆的面积为.另解:因为圆心到直线的距离为,所以,则所求圆的面积为【考点】直线与圆的参数方程16.在平面直角坐标系xOy中,若直线l1: (s为参数)和直线l2: (t为参数)平行,则常数a的值为________.【答案】a=4【解析】由消去参数s,得x=2y+1. 由消去参数t,得2x=ay+a.∵l1∥l2,∴=,∴a=4.17.在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),它与曲线C:(y-2)2-x2=1交于A、B两点.(1)求|AB|的长;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【答案】(1)(2)【解析】(1)把直线的参数方程代入曲线方程并化简得7t2-12t-5=0.设A,B对应的参数分别为t1,t2,则t1+t2=,t1t2=-.所以|AB|=|t1-t2|=5(2)易得点P在平面直角坐标系下的坐标为(-2,2),根据中点坐标的性质可得AB中点M对应的参数为=.由t的几何意义可得点P到M的距离为|PM|=·=.18.已知曲线(为参数),(为参数).(1)化的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线的左顶点且倾斜角为的直线交曲线于两点,求.【答案】(1),曲线为圆心是,半径是1的圆,曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆;(2).【解析】本题考查参数方程与普通方程的互化,考查学生的转化能力和计算能力.第一问,利用参数方程与普通方程的互化方法转化方程,再根据曲线的标准方程判断曲线的形状;第二问,根据已知写出直线的参数方程,与曲线联立,根据韦达定理得到两根之和两根之积,再利用两根之和两根之积进行转化求出.试题解析:⑴曲线为圆心是,半径是1的圆.曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆. 4分⑵曲线的左顶点为,则直线的参数方程为(为参数)将其代入曲线整理可得:,设对应参数分别为,则所以. 10分【考点】1.参数方程与普通方程的互化;2.圆和椭圆的标准方程;3.韦达定理;4.直线的参数方程.19.过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值.【答案】15【解析】将过点M(3,4),倾斜角为的直线写成参数方程.再将圆的参数方程写成一般方程,联立后求得含t的一元二次方程.将的值转化为韦达定理的根的乘积关系.即可得结论.本小题主要就是考查直线的参数方程中t的几何意义.试题解析:直线l的参数方程为.代入C:.方程得到:.设为方程两根,则.【考点】1.直线的参数方程.2.圆的参数方程.20.将参数方程(为参数,)化成普通方程为 ______ .【答案】【解析】由已知得,将两式平方相加有,,所以普通方程为.【考点】参数方程与普通方程的互化.21.过点,倾斜角为的直线与圆C:(为参数)相交于两点,试确定的值.【答案】15.【解析】先将曲线:(圆)的参数方程化成普通方程,再将直线的参数方程代入其中,得到一个关于的一元二次方程,最后结合参数的几何意义,利用一元二次方程的根与系数之间的关系式即可求得距离之积.试题解析:由已知得直线的参数方程为(为参数),即(为参数) 3分曲线的普通方程为. 6分把直线的参数方程代入曲线的普通方程,得∴点到两点的距离之积为15. 10分【考点】1.圆的参数方程;2.直线和圆相交有关计算.22.在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面坐标系,圆的参数方程(为参数),若圆与相切,则实数 .【答案】.【解析】圆的直角坐标方程为,其标准方程为,圆心为,半径长为,圆的圆心坐标为,半径长为,由于圆与圆外切,则.【考点】1.参数方程与直角坐标方程之间的转化;2.两圆的位置关系23.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.24.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的参数方程为(为参数),曲线的极坐标方程为,则与交点在直角坐标系中的坐标为 ____.【答案】(2,5)【解析】曲线的参数方程为(为参数),将代入,因为,所以其一般方程为.再将曲线的极坐标方程为转化为直角坐标系中的方程,因为,,故曲线的一般方程为.联立方程组,解得或,又,所以舍去.所以与交点在直角坐标系中的坐标为(2,5).【考点】坐标系与参数方程25.已知在平面直角坐标系中圆的参数方程为:,(为参数),以为极轴建立极坐标系,直线极坐标方程为:则圆截直线所得弦长为 .【答案】【解析】圆C的参数方程为的圆心为,半径为3, 直线普通方程为,即,圆心C到直线的距离为,所以圆C截直线所得弦长.【考点】1.参数方程;2.点到直线的距离.26.在直角坐标系中,曲线的参数方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.⑴求曲线的普通方程和曲线的直角坐标方程;⑵当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.【答案】(1)(2)【解析】(1)代入消参数法求解直线方程,利用极坐标公式求解圆的普通方程;(2)借助弦长公式求出直径的长,确定圆心坐标,利用圆的标准方程求解.试题解析:(1)对于曲线消去参数得:当时,;当时,. (3分)对于曲线:,,则. (5分)(2) 当时,曲线的方程为,联立的方程消去得,即,,圆心为,即,从而所求圆方程为. (10分)【考点】1.极坐标系与参数方程的相关知识;2.极坐标方程与平面直角坐标方程的互化;3.平面内直线与曲线的位置关系.27.函数的最大值是.【答案】10【解析】由分析可考虑三角代换,令,则,代入化简可得,即可得.【考点】参数方程,辅助角公式.28.已知直线的参数方程为:(为参数),圆的极坐标方程为,那么,直线与圆的位置关系是 ( )A.直线平分圆B.相离C.相切D.相交【答案】D【解析】先把参数方程化为,再把圆的极坐标方程化成,再利用圆心到直线的距离.【考点】1.参数方程;2.极坐标.29.[选修4 - 4:坐标系与参数方程](本小题满分10分)在直角坐标系中,直线的参数方程为(为参数),若以直角坐标系的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为.直线与曲线交于两点,求.【答案】圆心到直线的距离,。
高中数学函数参数方程解析
高中数学函数参数方程解析一、引言在高中数学学习中,函数参数方程是一个重要的知识点。
本文将从基础概念出发,通过具体题目的举例,分析解题思路和考点,并给出一些解题技巧,帮助读者更好地理解和应用函数参数方程。
二、函数参数方程的基本概念函数参数方程是指用参数表示的函数方程。
一般形式为:y = f(x, a),其中a为参数。
参数可以是任意实数,通过改变参数的取值,可以得到不同的函数图像。
三、函数参数方程的应用举例1. 例题一:求参数方程y = a^2 - x^2的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令y = f(x, a) = a^2 - x^2,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 1时,函数图像为一个单位圆;当a = 2时,函数图像为一个半径为2的圆。
可以通过改变参数a的取值,观察图像的变化规律。
2. 例题二:求参数方程x = a + t,y = a - t的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令x = f(t, a) = a + t,y = g(t, a) = a - t,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 0时,函数图像为直线y = -x;当a = 1时,函数图像为直线y = 1 - x。
可以通过改变参数a的取值,观察图像的变化规律。
四、函数参数方程的考点分析1. 参数的取值范围:在解题过程中,需要注意参数的取值范围,以保证函数有意义。
例如,在例题一中,参数a不能取负值,否则函数图像将不存在。
2. 函数图像的特点:通过观察函数图像的特点,可以发现一些规律。
例如,在例题一中,当参数a取不同的值时,函数图像的形状和大小都会发生变化。
这表明参数a对函数图像具有一定的控制作用。
3. 函数图像的对称性:在解题过程中,可以通过观察函数图像的对称性来简化问题。
例如,在例题一中,函数图像y = a^2 - x^2关于y轴对称,这可以帮助我们更好地理解和绘制函数图像。
参数方程] · [基础] · [知识点+典型例题]
参数方程知识讲解一、参数定义:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数.二、参数方程与普通方程的互化1.参数方程化为普通方程代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围!2.普通方程化为参数方程注:普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.三、常见参数方程1.直线l 的常用参数方程为:cos sin x m t y n t θθ=+⎧⎨=+⎩,t ∈R 为参数,其中θ为直线的倾斜角,(,)m n 为直线上一点.2.圆222()()x a y b r -+-=的常用参数方程为:cos ,[0,2π)sin x a r y b r θθθ=+⎧∈⎨=+⎩为参数; 3.椭圆22221x y a b +=的常用参数方程为:cos ,[0,2π)sin x a y b θθθ=⎧∈⎨=⎩为参数. 【引申】:参数方程和之前我们讲过的还原法有一个相同的“易错点”,就是一定要注意:新引进的参数的范围!【重点】:参数方程最主要的是抓住到底“参数是谁”!典型例题一.选择题(共11小题)1.(2018•朝阳区一模)直线l的参数方程为(t为参数),则l的倾斜角大小为()A.B.C.D.【解答】解:根据题意,直线l的参数方程为(t为参数),则到直线的方程为,所以直线的斜率为,倾斜角为,故选:C.2.(2018•大兴区一模)直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.4【解答】解:由,得x﹣,由,得(x﹣1)2+y2=1.∴圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.而圆心(1,0)在直线x﹣上,∴直线与曲线相交的弦长为2.故选:B.3.(2018•奉贤区二模)已知曲线的参数方程为(0≤t≤5),则曲线为()A.线段B.双曲线的一支C.圆弧D.射线【解答】解:由(0≤t≤5),消去参数t,得x﹣3y=5.又0≤t≤5,故﹣1≤y≤24.故该曲线是线段.故选:A.4.(2017秋•天心区校级期末)直线的参数方程为(t为参数),M0(﹣1,2)和M(x,y)是该直线上的定点和动点,则t的几何意义是()A.有向线段M0M的数量B.有向线段MM0的数量C.|M0M|D.以上都不是【解答】解:根据题意,直线的参数方程化为标准形式为,则﹣t表示有向线段M0M的数量,即t表示有向线段MM0的数量;故选:B.5.(2018春•郑州期末)若P(2,﹣1)为圆(θ为参数且0≤θ<2π)的弦的中点,则该弦所在的直线方程为()A.x﹣y﹣3=0 B.x+2y=5 C.x+y﹣1=0 D.2x﹣y﹣5=0【解答】解:把圆(θ为参数且0≤θ<2π)消去参数,化为直角坐标方程为(x﹣1)2+y2=25,表示以C(1,0)为圆心、半径等于5的圆.再根据所求直线和直线CP垂直,可得所求直线的斜率为﹣=﹣=1,可得所求直线的方程为y+1=1•(x﹣2),即x﹣y﹣3=0,故选:A.6.(2017秋•天心区校级期末)已知曲线(θ为参数,0≤θ≤π)上一点P,原点为O,直线PO的倾斜角为,则P的坐标是()A.(3,4) B., C.(﹣3,﹣4)D.,【解答】解:∵原点为O,直线PO的倾斜角为,∴tan=1,∵曲线(θ为参数,0≤θ≤π),∴tanθ=,∴cosθ=,sinθ=,∵曲线(θ为参数,0≤θ≤π)上一点P,∴代入得P的坐标为,.故选:D.7.(2017秋•东湖区校级期末)曲线C1:(t为参数),曲线C2:(θ为参数),若C1,C2交于A、B两点,则弦长|AB|为()A.B. C.D.4【解答】解:曲线C1:(t为参数),化为普通方程为x+y﹣2=0,即y=2﹣x①曲线C2:(θ为参数),化为普通方程得,,②将①代入②,得5x2﹣16x+12=0,x1+x2=,x1x2=,则弦长|AB|==.故选:B.8.(2017秋•天心区校级期末)已知椭圆的参数方程为(θ为参数),则它的离心率为()A.B.C.D.【解答】解:依据题意,椭圆的参数方程为,将椭圆的参数方程化成普通方程为+=1,其中a=4,b=2,故c==2,所以离心率e===;故选:A.9.(2018春•海珠区期末)若曲线C的参数方程为(t为参数),则下列说法正确的是()A.曲线C是直线且过点(﹣1,2) B.曲线C是直线且斜率为C.曲线C是圆且圆心为(﹣1,2) D.曲线C是圆且半径为|t|【解答】解:曲线C的参数方程为(t为参数),消去参数t得曲线C的普通方程为=0.把(﹣1,2)代入,成立,斜率是.∴曲线C是直线且过点(﹣1,2),斜率是.故选:A.10.(2018春•青山区校级期末)参数方程(t为参数)表示什么曲线()A.一个圆B.一个半圆C.一条射线D.一条直线【解答】解:∵参数方程(t为参数),消去参数t,化为普通方程是2(x﹣1)+(y﹣1)=0(x≥1),即2x+y﹣3=0(x≥1);它表示端点为(1,1)的一条射线.故选:C.11.(2018春•桑珠孜区校级期中)点(1,2)在圆的()A.内部B.外部C.圆上D.与θ的值有关【解答】解:根据题意,圆,其普通方程为:(x+1)2+y2=64,又由:(1+1)2+(2﹣0)2=16<64,则点(1,2)在圆的内部;故选:A.二.填空题(共5小题)12.(2017•松江区二模)直线(t为参数)对应的普通方程是x+y ﹣1=0.【解答】解:两个方程相加得x+y﹣1=0,故答案为:x+y﹣1=0.13.(2017•闵行区校级模拟)已知直线l的参数方程是(t为参数),则它的普通方程是3x﹣4y+5=0.【解答】解:直线l的参数方程是(t为参数),可得,可得3x﹣4y+5=0.故答案为:3x﹣4y+5=0.14.(2017•徐汇区二模)参数方程为(t为参数)的曲线的焦点坐标为(1,0).【解答】解:根据题意,曲线的参数方程为(t为参数),则其普通方程为:y2=4x,即该曲线为抛物线,其焦点在x轴上,且p=2;则其焦点坐标为(1,0);故答案为:(1,0)15.(2016春•淮安校级期末)参数方程(t为参数)化为普通方程为x+2y+9=0.【解答】解:由y=﹣2t﹣5,可得2y=﹣4t﹣10,与x=4t+1相加可得:x+2y=﹣9,即x+2y+9=0.故答案为:x+2y+9=0.16.(2016春•无锡期末)直线(t为参数)的倾斜角为50°.【解答】解:根据直线(t为参数),得x+1=(y﹣3)tan40°,∴x﹣ytan40°+1+3tan40°=0,∴该直线的斜率k==tan50°,∴该直线的倾斜角为50°,故答案为:50°.三.解答题(共4小题)17.(2012•天山区校级模拟)已知在直角坐标系xOy内,直线l的参数方程为(t为参数).以Ox为极轴建立极坐标系,圆C的极坐标方程为.(1)写出直线l的普通方程和圆C的直角坐标方程;(2)判断直线l和圆C的位置关系.【解答】解:(1)消去参数t,得直线l的直角坐标方程为y=2x﹣3;(4分),即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),消去参数θ,得⊙C的直角坐标方程为:(x﹣1)2+(y﹣1)2=2(8分)(2)圆心C到直线l的距离<,所以直线l和⊙C相交.(10分)18.求椭圆(θ为参数)的左焦点坐标.【解答】解:∵椭圆的参数方程为,∴cosθ=(x﹣1),sinθ=y,∵cos2θ+sin2θ=1,∴+=1,∴已知椭圆可看作+=1向右平移1个单位得到,又易得+=1的左焦点为(﹣,0),∴已知椭圆的左焦点坐标为(1﹣,0),19.(1)在直角坐标系中,曲线C1:(其中θ为参数),直线C2:(其中t为参数).点F(﹣4,0),曲线C1与直线C2相交于点A、B,求|FA|•|FB|的值.(2)在极坐标系中,直线l:ρcos(θ﹣)=2,与以点M(4,π)为圆心,以5为半径的圆相交于P、Q两点,求|PQ|的值.【解答】解:(1)由,得,把代入上式,得369t2﹣1440t﹣2025=0.∴|FA|•|FB|=;(2)由ρcos(θ﹣)=2,得,即.以点M(4,π)为圆心,以5为半径的圆的直角坐标方程为(x+4)2+y2=25.圆心(﹣4,0)到直线的距离为d=,∴|PQ|=2.20.已知极坐标的极点在平面直角坐标的原点O处,极轴与x轴的正半轴重合,且长度单位相同,若点P为曲线C:(θ为参数)上的动点,直线l 的极坐标方程为ρcos(θ+)=m(m>2)(1)将曲线C的参数方程化为普通方程,直线l的极坐标方程化为直角坐标方程;(2)若曲线C上有且只有一点P到直线l的距离为2,求实数m的值和点P的坐标.【解答】解:(1)曲线C:(θ为参数),利用平方关系可得普通方程:+y2=1.直线l的极坐标方程为ρcos(θ+)=m(m>2),展开可得:ρ(cosθ﹣sinθ)=m,化为直角坐标方程:x﹣y﹣m=0.(2)设与直线x﹣y﹣m=0平行且与椭圆相切的直线方程为x﹣y+t=0.把y=x+t代入椭圆方程可得:4x2+6tx+3t2﹣3=0,令△=36t2﹣48(t2﹣1)=0,解得:t=±2.当t=2时,方程为(2x+3)2=0,解得x=﹣,代入椭圆方程可得:=1,取y=,可得切点P,,则=2,解得m=﹣2±2.经过验证都满足条件.当t=﹣2时,方程为(2x﹣3)2=0,解得x=,代入椭圆方程可得:=1,取y=﹣,可得切点P,,则=2,解得m=2±2.经过验证都满足条件.综上可得:取点P,,m=﹣2±2.取点P,,m=2±2.。
参数方程典型例题分析报告
参数方程典型例题分析例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0)分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为,,点P分所成的比为,那么点P对应的参数是().(A)(B)(C)(D)分析将,分别代入参数方程,得A点的横坐标致为,B点的横坐标为,由定比分点坐标公式得P的横坐标为,可知点P所对应的参数是故应选(C).例3化下列参数方程为普通方程,并画出方程的曲线.(1)(为参数,)(2)(为参数);(3)(为参数),解:(1)∵∴,∴或故普通方程为(或),方程的曲线如图.(2)将代入得∵普通方程为(),方程的曲线如图.(3)两式相除得代入得整理得∵∴普通方程为(),方程的曲线如图.点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的围,以保证普通方程与参数方程等价.例4已知参数方程①若为常数,为参数,方程所表示的曲线是什么?②若为常数,为参数,方程所表示的曲线是什么?解:①当时,由(1)得,由(2)得,∴,它表示中心在原点,长轴长为,短轴长为焦点在轴上的椭圆.当时,,,它表示在轴上的一段线段.②当()时,由(1)得,由(2)得.平方相减得,即它表示中心在原点,实轴长为,虚轴长为,焦点在轴上的双曲线.当()时,,它表示轴;当()时,,∵(时)或(时)∴,∴方程为(),它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线.点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数.例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().(A)或(B)或(C)或(D)或分析将参数方程化为普通方程,直线为(),当时不合题意.因为,它们相切的充要条件是,解得,又,∴或,故选(A).例6求椭圆上的点到直线的最大、最小距离.解将椭圆普通方程化为参数方程(),则椭圆任意一点的坐标可设为(,),于是点到直线的距离∴,此时;,此时点评利用参数方程,将圆锥曲线上的点的坐标设为参数形式,这样减少曲线上点的坐标所含变量的个数,将二元函数的问题转化为一元函数的问题.例7已知点P是圆C:上一动点,点P关于点A(5,0)的对称点为Q,半径CP绕圆心C 按逆时针方向旋转后得到点M,求的最大值和最小值.解如图,设点(,),则点M为(,),即M(,).又点A(5,0)为Q的中点,则点Q为(,),且所以时,取得最大值时,取得最小值点评此题根据圆的参数方程是利用转角作参数,由点坐标求点M坐标,再把与坐标,相关的的最值转化成的最值来求解.例8直线与椭圆交于A,B两点,当变化时,求线段AB中点M的轨迹.解设AB中点M(,),直线的方程为(,为参数)代入椭圆方程有中可得设A,B对应的参数值分别为,,则有,又,∴,又,故,即.所以M点的轨迹是直线在椭圆部的一条线段.例9已知线段,直线垂直平分交于点O,并且在上O点的同侧取两点P,,使,求直线BP 与直线的交点M的轨迹.解如图,以O为原点,为轴,为轴,建立直角坐标系,依题意,可知B(0,2),(0,-2),又可设P(,0),(,0),其中为参数,可取任意非零的实数.直线BP的方程为直线的方程为两直线方程化简为解得直线BP与的交点坐标为:(为参数).消去参数得()∴所求点M的轨迹是长轴为6,短轴为4的椭圆除去B,点.点评用参数法求解轨迹问题时,首先要建立适当的坐标系,然后选择参数,表示出有关点的坐标,求出动点轨迹的参数方程,必要时还要化成普通方程,根据方程确定轨迹的形状,大小等特征.。
极坐标与参数方程例题
极坐标与参数方程例题例题1:求曲线r=2sinθ的极坐标方程对应的参数方程。
解答:我们可以将极坐标方程r=2sinθ转化为参数方程。
首先,我们需要找到x和y与r和θ之间的关系。
根据定义,我们有x=r*cosθ,y=r*sinθ。
将r=2sinθ代入上述公式中,可以得到x=2sinθ*cosθ,y=2sinθ*sinθ。
因此,曲线r=2sinθ对应的参数方程为x=2sinθ*cosθ,y=2sinθ*sinθ。
例题2:求曲线x=2cosθ,y=3sinθ的参数方程对应的极坐标方程。
解答:要将参数方程x=2cosθ,y=3sinθ转化为极坐标方程,我们需要找到r和θ与x和y之间的关系。
通过平方求和公式,我们有cos²θ+sin²θ=1将x=2cosθ,y=3sinθ代入上述公式中,我们可以得到(2cosθ)²+(3sinθ)²=1化简得到4cos²θ+9sin²θ=1因此,曲线x=2cosθ,y=3sinθ对应的极坐标方程为4cos²θ+9sin²θ=1例题3:已知曲线的参数方程为x=t+1,y=2t-2,求其对应的极坐标方程。
解答:我们需要找到r和θ与x和y之间的关系。
根据定义,我们有x=r*cosθ,y=r*sinθ。
将参数方程x=t+1,y=2t-2代入上述公式中,我们可以得到t+1=r*cosθ,2t-2=r*sinθ。
进一步化简可得r²=t²+2t+1+4t²-8t+4化简得5t²-6t+5=r²。
因此,参数方程x=t+1,y=2t-2对应的极坐标方程为5t²-6t+5=r²。
通过以上例题,我们可以看出极坐标与参数方程之间的转换可以通过代入关系来进行。
在已知形式的方程中,我们可以根据已知的方程形式求解出另一种形式的方程。
这种转换在解决特定问题或者在研究特定曲线时非常有用。
参数方程典型例题分析.doc
参数方程典型例题分析例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0)分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为,,点P分所成的比为,那么点P对应的参数是().(A)(B)(C)(D)分析将,分别代入参数方程,得A点的横坐标致为,B点的横坐标为,由定比分点坐标公式得P的横坐标为,可知点P所对应的参数是故应选(C).例3化下列参数方程为普通方程,并画出方程的曲线.(1)(为参数,)(2)(为参数);(3)(为参数),解:(1)∵∴,∴或故普通方程为(或),方程的曲线如图.(2)将代入得∵普通方程为(),方程的曲线如图.(3)两式相除得代入得整理得∵∴普通方程为(),方程的曲线如图.点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价.例4已知参数方程①若为常数,为参数,方程所表示的曲线是什么?②若为常数,为参数,方程所表示的曲线是什么?解:①当时,由(1)得,由(2)得,∴,它表示中心在原点,长轴长为,短轴长为焦点在轴上的椭圆.当时,,,它表示在轴上的一段线段.②当()时,由(1)得,由(2)得.平方相减得,即它表示中心在原点,实轴长为,虚轴长为,焦点在轴上的双曲线.当()时,,它表示轴;当()时,,∵(时)或(时)∴,∴方程为(),它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线.点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数.例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().(A)或(B)或(C)或(D)或分析将参数方程化为普通方程,直线为(),当时不合题意.因为,它们相切的充要条件是,解得,又,∴或,故选(A).例6求椭圆上的点到直线的最大、最小距离.解将椭圆普通方程化为参数方程(),则椭圆任意一点的坐标可设为(,),于是点到直线的距离∴,此时;,此时点评利用参数方程,将圆锥曲线上的点的坐标设为参数形式,这样减少曲线上点的坐标所含变量的个数,将二元函数的问题转化为一元函数的问题.例7已知点P是圆C:上一动点,点P关于点A(5,0)的对称点为Q,半径CP绕圆心C按逆时针方向旋转后得到点M,求的最大值和最小值.解如图,设点(,),则点M为(,),即M(,).又点A(5,0)为Q的中点,则点Q为(,),且所以时,取得最大值时,取得最小值点评此题根据圆的参数方程是利用转角作参数,由点坐标求点M坐标,再把与坐标,相关的的最值转化成的最值来求解.例8直线与椭圆交于A,B两点,当变化时,求线段AB中点M的轨迹.解设AB中点M(,),直线的方程为(,为参数)代入椭圆方程有中可得设A,B对应的参数值分别为,,则有,又,∴,又,故,即.所以M点的轨迹是直线在椭圆内部的一条线段.例9已知线段,直线垂直平分交于点O,并且在上O点的同侧取两点P,,使,求直线BP与直线的交点M的轨迹.解如图,以O为原点,为轴,为轴,建立直角坐标系,依题意,可知B(0,2),(0,-2),又可设P(,0),(,0),其中为参数,可取任意非零的实数.直线BP的方程为直线的方程为两直线方程化简为解得直线BP与的交点坐标为:(为参数).消去参数得()∴所求点M的轨迹是长轴为6,短轴为4的椭圆除去B,点.点评用参数法求解轨迹问题时,首先要建立适当的坐标系,然后选择参数,表示出有关点的坐标,求出动点轨迹的参数方程,必要时还要化成普通方程,根据方程确定轨迹的形状,大小等特征.。
高中数学参数方程大题(带答案)
高中数学参数方程大题(带答案)Ⅰ)写出曲线C1、C2的参数方程;Ⅱ)求曲线C1、C2的交点坐标.考点:参数方程的应用.专题:坐标系和参数方程.分析:(Ⅰ)由于C1、C2都是圆的参数方程,可以直接写出;Ⅱ)将C1、C2的参数方程代入,解方程组即可求得交点坐标.解答:解:(Ⅰ)由于C1、C2都是圆的参数方程,因此C1.(t为参数)C2.(θ为参数)Ⅱ)将C1、C2的参数方程代入,得到方程组:解得交点坐标为:点评:本题考查了参数方程的应用,需要掌握圆的参数方程的写法,以及解方程组的方法,难度中等。
r=2\cos\theta$,可以得到圆心的极坐标为$(2.\frac{\pi}{2})$;Ⅱ)把直线的参数方程化为普通方程得$y=x-2$,代入圆的极坐标方程可以得到圆心到直线的距离$d=\frac{2\sqrt{2}}{2}=\sqrt{2}$,再利用弦长公式可以得到$|AB|=2\sqrt{2}$。
由于$P$是圆$C$上的任意一点,所以$AB$是圆$C$的直径,所以$\triangle PAB$是直角三角形,面积为$\frac{1}{2}\times 2\sqrt{2}\times 2=2\sqrt{2}$。
所以$\triangle PAB$的最大面积为$2\sqrt{2}$。
点评:此题考查学生对极坐标系和参数方程的理解和应用,需要灵活运用点到直线的距离公式和弦长公式求解。
1.经过化简,得到圆C的普通方程为(x-1)^2 + (y+1)^2 = 2,圆心坐标为(1,-1),极坐标为(√2.135°)。
直线l的参数方程化为普通方程y = -1 + 2x,因此点P到直线l的距离为|2/√5|。
根据弦长公式和三角形面积计算公式,点P到线段AB的距离最大值为2/√5,最小值为0.此题考查了参数方程、极坐标、点到直线距离公式、弦长公式和三角形面积计算公式,属于中档题。
2.椭圆的参数方程为x = 3cosθ,y = 2sinθ,直线的极坐标方程为ρ = 2/√5cos(θ - 45°)。
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
参数方程求二阶导数的例题
参数方程求二阶导数的例题
为了解答你的问题,我将以一个具体的例题来说明如何求解参数方程的二阶导数。
假设我们有一个参数方程:
x = t^2 + 2t.
y = 3t 1。
我们的目标是求解关于参数 t 的二阶导数。
首先,我们需要求解一阶导数。
对于 x 和 y 分别对 t 求导,得到:
dx/dt = 2t + 2。
dy/dt = 3。
接下来,我们需要对一阶导数再次求导以得到二阶导数。
对于
x 和 y 分别对 t 求导,得到:
d^2x/dt^2 = d/dt(2t + 2) = 2。
d^2y/dt^2 = 0。
因此,该参数方程关于 t 的二阶导数为:
d^2x/dt^2 = 2。
d^2y/dt^2 = 0。
这就是我们求解参数方程二阶导数的过程。
请注意,这只是一个简单的例题,实际情况可能更加复杂。
但是,无论参数方程多么复杂,我们都可以按照类似的步骤来求解二阶导数。
希望这个例题能帮助你理解如何求解参数方程的二阶导数。
如果你有更多问题,请随时提问。
特别解析:椭圆的参数方程
特别解析:椭圆的参数方程一、复习焦点在x 轴上的椭圆的标准方程:22221(0)x y a b a b +=>>焦点在y 轴上的椭圆的标准方程:22221(0)y x a b a b+=>>二、椭圆参数方程的推导1. 焦点在x 轴上的椭圆的参数方程因为22()()1x y a b +=,又22cos sin 1ϕϕ+=, 设cos ,sin x ya bϕϕ==,即a cos y bsin x ϕϕ=⎧⎨=⎩,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。
2.参数ϕ的几何意义如图,以原点O 为圆心,分别以a ,b (a >b >0)为半径作两个圆。
设A 为大圆上的任意一点,连接OA,与小圆交于点B 。
过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程.设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(x, y)。
那么点A 的横坐标为x ,点B 的纵坐标为y 。
由于点A,B 均在角ϕ的终边上,由三角函数的定义有:||cos cos x OA a ϕϕ==,||sin cos y OB b ϕϕ==。
当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是:a cos y bsin x ϕϕ=⎧⎨=⎩ ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。
()ϕ为参数在椭圆的参数方程中,通常规定参数ϕ的范围为[0,2)ϕπ∈。
思考:椭圆的参数方程中参数ϕ的意义与圆的参数方程r cos y r sin x θθ=⎧⎨=⎩ 中参数θ的意义类似吗?由图可以看出,参数ϕ是点M 所对应的圆的半径OA (或OB )的旋转角(称为点M 的离心角),不是OM 的旋转角。
参数θ是半径OM 的旋转角。
3. 焦点在y 轴上的椭圆的参数方程2222y 1,b ax +=三、例题分析例1.把下列普通方程化为参数方程.把下列参数方程化为普通方程例2. 已知椭圆22221(0)x y a b a b+=>>,求椭圆内接矩形面积的最大值.解:设椭圆内接矩形的一个顶点坐标为(cos ,sin )a b θθ4cos sin 2sin22S a b ab ab θθθ=⋅=≤ 矩形()224k k Z S ab ππθ∴=+∈=矩形当时,最大。
高中数学极坐标与参数方程例题
高中数学极坐标与参数方程例题引言在高中数学中,学习极坐标与参数方程是非常重要的一部分。
它们是描述点在平面上运动的数学工具。
本文将通过一些例题来介绍和解析高中数学中关于极坐标与参数方程的例题。
例题一:极坐标方程问题:给定极坐标方程 $r = 2\\sin(\\theta)$,求图形的极半径。
解析:极坐标方程的一般形式是 $r = f(\\theta)$,其中r表示点到原点的距离,$\\theta$ 表示点与极轴的夹角。
对于本题中的极坐标方程 $r = 2\\sin(\\theta)$,我们需要求解图形的极半径。
首先,我们可以观察到 $\\sin(\\theta)$ 的值域是[−1,1]。
因此,对于任意给定的 $\\theta$,有 $-2 \\leq 2\\sin(\\theta) \\leq 2$。
由此可知,图形的极半径的取值范围是[−2,2]。
例题二:极坐标与直角坐标的转化问题:将极坐标方程 $r = 3\\cos(\\theta)$ 转化为直角坐标方程。
解析:要将极坐标方程转化为直角坐标方程,我们需要使用一些基本的三角函数关系。
对于本题中的极坐标方程 $r = 3\\cos(\\theta)$,我们可以使用 $\\cos(\\theta) =\\frac{x}{r}$ 的关系来进行转化。
将上述关系代入原方程,得到 $r = 3\\cos(\\theta) = 3\\frac{x}{r}$。
将方程两边同时乘以r,化简得到r2=3x。
由此可知,将极坐标方程 $r = 3\\cos(\\theta)$ 转化为直角坐标方程为r2=3x。
例题三:参数方程问题:给定参数方程$$ \\begin{cases} x = 2t + 1 \\\\ y = t^2 - 3 \\\\ \\end{cases} $$求图形的方程。
解析:参数方程是一种用参数表示平面上点的方式。
对于本题中的参数方程$$ \\begin{cases} x = 2t + 1 \\\\ y = t^2 - 3 \\\\ \\end{cases} $$我们需要求解图形的方程。
参数方程解决问题的实例
参数方程解决问题的实例一、引言参数方程是解决数学问题的一种常见方法,它通过将一个函数的自变量和因变量都表示为另外两个变量的函数来简化问题。
本文将介绍几个参数方程解决问题的实例,包括曲线的参数方程、球面坐标系下的参数方程以及极坐标系下的参数方程。
二、曲线的参数方程1. 抛物线抛物线可以用以下参数方程表示:x = ty = t^2其中t为时间,x和y分别表示抛物线上某一点的横纵坐标。
通过这个参数方程,我们可以轻松地求出任意时刻抛物线上某一点的位置。
2. 椭圆椭圆可以用以下参数方程表示:x = a cos(t)y = b sin(t)其中a和b分别为椭圆长轴和短轴长度,t为角度。
通过改变a、b和t的值,我们可以得到不同形状和大小的椭圆。
3. 双曲线双曲线可以用以下参数方程表示:x = a sec(t)y = b tan(t)其中a和b分别为双曲线长轴和短轴长度,t为角度。
同样地,通过改变a、b和t的值,我们可以得到不同形状和大小的双曲线。
三、球面坐标系下的参数方程在球面坐标系下,一个点可以用以下参数方程表示:x = r sin(θ)cos(φ)y = r sin(θ) sin(φ)z = r cos(θ)其中r、θ和φ分别为球面坐标系下的半径、极角和方位角。
这个参数方程可以用来描述三维空间中的任意点,例如行星、卫星等天体的运动轨迹。
四、极坐标系下的参数方程在极坐标系下,一个点可以用以下参数方程表示:x = r cos(θ)y = r sin(θ)其中r和θ分别为极径和极角。
通过这个参数方程,我们可以得到各种形状的曲线,例如圆、椭圆、双曲线等。
五、结论通过以上几个实例,我们可以看到参数方程在解决数学问题中具有广泛的应用。
它不仅能够简化问题,还能够帮助我们更好地理解数学概念。
因此,在学习数学时,我们应该充分掌握参数方程这一方法,并灵活运用它来解决各种问题。
参数方程知识加例题(原创)
参数方程(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 îíì==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:(二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线:的直线: aa sin cos 00t y y t x x +=+= (t 为参数)为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.间的有向距离.根据t 的几何意义,有以下结论.的几何意义,有以下结论. ○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ×--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +.2.中心在(x 0,y 0),半径等于r 的圆:的圆: qq sin cos 00r y y r x x +=+= (q 为参数)为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:轴)上的椭圆: qq sin cos b y a x == (q 为参数)为参数) (或(或qq sin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)a a a (.sin ,cos 00îíì+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:轴)上的双曲线:qq tg sec b y a x == (q 为参数)为参数) (或(或qq ec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为a 的直线的参数方程是的直线的参数方程是 îíì+=+=aasin cos 00t y y t x x (t 为参数). 参数方程例题例1.讨论下列问题:讨论下列问题:1、已知一条直线上两点()111,yxM、()222,y xM ,以分点M (x ,y )分21MM 所成的比l 为参数,写出参数方程。
含参数因式分解典型例题
含参数因式分解典型例题一、例题1:分解因式x^2+ax + bx+ab1. 解析- 将原式进行分组:(x^2+ax)+(bx + ab)。
- 然后,对每一组分别提取公因式,第一组提取x得x(x + a),第二组提取b得b(x + a)。
- 再提取公因式(x + a),得到(x + a)(x + b)。
二、例题2:分解因式x^2-mx - nx+mn1. 解析- 分组可得(x^2-mx)-(nx - mn)。
- 第一组提取x得x(x - m),第二组提取-n得-n(x - m)。
- 提取公因式(x - m)后,结果为(x - m)(x - n)。
三、例题3:分解因式ax^2+bx - ax - b1. 解析- 分组为(ax^2+bx)-(ax + b)。
- 第一组提取x得x(ax + b),第二组提取-1得-(ax + b)。
- 提取公因式(ax + b),得到(ax + b)(x - 1)。
四、例题4:分解因式a^2x - b^2x+a^2y - b^2y1. 解析- 分组为(a^2x - b^2x)+(a^2y - b^2y)。
- 第一组提取x得x(a^2-b^2),第二组提取y得y(a^2-b^2)。
- 再提取公因式(a^2-b^2),根据平方差公式a^2-b^2=(a + b)(a - b),最终结果为(a + b)(a - b)(x + y)。
五、例题5:分解因式x^3+ax^2+bx + ab1. 解析- 分组(x^3+ax^2)+(bx + ab)。
- 第一组提取x^2得x^2(x + a),第二组提取b得b(x + a)。
- 提取公因式(x + a)得(x + a)(x^2+b)。
六、例题6:分解因式2ax - 10ay+5by - bx1. 解析- 重新分组(2ax - bx)-(10ay - 5by)。
- 第一组提取x得x(2a - b),第二组提取-5y得-5y(2a - b)。
2参数方程知识讲解及典型例题
2参数方程知识讲解及典型例题参数方程一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数⎧x =f (t ) ⎧t 的函数,即⎧y =f (t ) ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数.1x y Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程:中心在原点,焦点在x 轴上的椭圆:x =a cos θy =b sin θ(θ为参数,θ的几何意义是离心角,如图角AON 是离心角)注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0x =x 0+a cos θy =y 0+b sin θEg 3,4x =2pt 2y =2pt (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数)直线方程与抛物线方程联立即可得到。
三、一次曲线(直线)的参数方程过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t,P0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程x =x 0+t cos αy =y 0+t sin α(t 为参数,t 的几何意义为有向距离)说明:①t 的符号相对于点P 0,正负在P 0点两侧②|P 0P |=|t |x =x 0+at y =y 0+bt,但此时t 的几何意义不是有向距离,只有当t 得xy Eg123≤y ≤1) 4A .x +y =0或y =1 B .x =1 C .x +y =0或x =1 D .y =1 5.点M 的直角坐标是(-1,则点M 的极坐标为()A .(2,2222ππ2ππ) B .(2,-) C .(2,) D .(2,2k π+),(k ∈Z )33336.极坐标方程ρcos θ=2sin 2θ表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线⎧⎧x =3+4t(t 为参数) 的斜率为______________________。
经典好题:参数方程中的取值范围与最值问题(详解答案)
经典好题:参数方程中的取值范围与最值问题 一、好题精讲典例:已知曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),点P 是曲线C 上的动点.(1)求曲线C 的普通方程;(2)已知点Q 是直线:2(0)l y x m m =+>上的动点,若P Q 、之间的距离PQ 最小m 的值. 名师指点:(1)曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),可得cos sin y αα==⎩,根据()()22sin cos 1αα+=,即可求得答案;(2)因为点P 是曲线C上的动点,可设点),sin Pαα,直线:2(0)l y x m m =+>,结合P Q 、之间的距离PQ公式和辅助角公式,即可求得答案. 满分解答: (1)曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数)可得cos sin y αα==⎩,故()()2222sin cos 1y αα+=+= ∴曲线C 的普通方程:2212x y +=(2)点P 是曲线C 上的动点,由曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),可设点),sin Pαα又Q 是直线:2(0)l y x m m =+>上的动点,要保证P Q 、之间的距离PQ 取最小值,只需保证点),sin Pαα到直线:2(0)l y x m m =+>距离最小设),sin Pαα到直线:20l x y m -+=距离为d根据点到直线距离公式可得:d==tan ϕ=0m >∴()sin 1αϕ-=时d 取最小值,=8m =或2m =-(舍)∴8m =名师点评:本题主要考查了参数方程化为直角方程和直线与椭圆动点距离最值问题,解题关键是掌握点到直线距离公式和辅助角公式,考查了分析能力和计算能力,属于中档题. 二、好题精练1.在直角坐标系xOy 中,曲线C 的方程为221124x y +=,以原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l ()cos 40a a πθ⎛⎫- ⎪⎝=>⎭. (1)求直线l 的直角坐标方程;(2)已知P 是曲线C 上的一动点,过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45°,若PA 的最大值为6,求a 的值.2.在直角坐标系xOy 中,曲线1C 的参数方程为2cos ,sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρθ=-.(1)求曲线2C 的直角坐标方程;(2)设曲线1C 与2C 交于,A B 两点,若(2,P ,求||||PA PB +的取值范围. 3.在平面直角坐标系中,直线l 的参数方程为102x ty t =⎧⎨=-⎩(t 为参数),以坐标原点为236(1)求直线l 的普通方程以及曲线C 的参数方程;(2)过曲线C 上任意一点M 作与直线l 的夹角为60︒的直线,交l 于点N ,求MN 的最小值4.在直角坐标系xOy 中,曲线C 1的参数方程为cos 2sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为22413sin ρθ=+.(1)写出曲线C 1和C 2的直角坐标方程;(2)已知P 为曲线C 2上的动点,过点P 作曲线C 1的切线,切点为A ,求|P A |的最大值.5.在中面直角坐标系xOy 中,已知1C:6x ty =-⎧⎪⎨=⎪⎩t 为参数),2C :2cos 22sin x y θθ=⎧⎨=+⎩(其中θ为参数).以O 为极点、x 轴的非负半轴为极轴建立极坐标系(两种坐标系的单位长度相同).(1)求1C 和2C 的极坐标方程;(2)设以O 为端点、倾斜角为α的射线l 与1C 和2C 分别交于A ,B 两点,求OA OB的最小值.6.以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为2cos sin 60ρθρθ+-=,曲线C 的参数方程为:2cos 3sin x y αα=⎧⎨=⎩(α为参数)(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)直线l 与x 轴、y 轴分别交于A ,B 两点,设点P 为C 上的一点,求PAB △的面积的最小值.7.在平面直角坐标系xOy 中,直线l的参数方程为1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,⊙O的极坐标方程为ρθ=. (1)写出⊙O 的直角坐标方程;(2)P 为直线上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.8.在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2212,1sin ρθ=+射线(0)4πθρ=≥交曲线C 于点A ,倾斜角为α的直线l 过线段OA 的中点B 且与曲线C 交于P 、Q 两点. (1)求曲线C 的直角坐标方程及直线l 的参数方程;(2)当直线l 倾斜角α为何值时, |BP |·|BQ |取最小值, 并求出|BP |·|BQ |最小值. 9.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.10.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin 26πρα⎛⎫+= ⎪⎝⎭,曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)以曲线C 上的动点M 为圆心、r 为半径的圆恰与直线l 相切,求r 的最大值. 11.在平面直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C的极坐标方程为ρ=.(1)直接写出曲线2C 的普通方程;(2)设A 是曲线1C 上的动点,B 是曲线2C 上的动点,求AB 的最大值.12.在直角坐标系xOy 中,曲线1C的参数方程是sin x y αα⎧=⎪⎨=⎪⎩(α是参数).以原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程是sin 4πρθ⎛⎫ ⎪⎭=⎝+(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,过P 点且与x 垂直的直线交2C 于点A ,求||PA 的最小值,并求此时点P 的直角坐标.13.在平面直角坐标系xOy 中,将曲线方程()()22221164x y -++=,先向左平移2个单位,再向上平移2个单位,得到曲线C .(1)点M (x ,y )为曲线C 上任意一点,写出曲线C 的参数方程,并求出12x 的最大值;(2)设直线l 的参数方程为22x ty t=⎧⎨=-⎩,(t 为参数),又直线l 与曲线C 的交点为E ,F ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段EF 的中点且与l 垂直的直线的极坐标方程.14.在平面直角坐标系中,曲线1C的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩(θ为参数,0πθ≤≤,π2θ≠),以标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,曲线2π:cos 4C ρθ⎛⎫-= ⎪⎝⎭(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)若点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最小值.参考答案1.解:(1cos 4a πθ⎛⎫- ⎪⎭=⎝cos cos sin sin 44a ππθθ⎛⎫+= ⎪⎝⎭, 即cos sin a ρθρθ+=. ∵cos x ρθ=,sin y ρθ=,∴直线l 的直角坐标方程为x y a +=,即0x y a +-=.(2)依题意可知曲线C的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩(α为参数).设(),2sin P αα,则点P 到直线l 的距离为:d ==∵0a >,∴当sin 13πα⎛⎫+=- ⎪⎝⎭时,max d =. 又过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45,∴cos 45dPA=,即PA =. ∴PAmax 6=6=.∵2a >,∴解得2a =. 2.解:解:(1)cos ,sin x y ρθρθ==,由ρθ=-,∴曲线2C的直角坐标方程为220x y ++=.(2)将曲线1C 的参数方程代入曲线2C 的直角坐标方程, 化简得24cos 10t t α++=,由>0∆,得21cos4α>. 设,A B 两点对应的参数分别为12,t t , 则12124cos ,10t t t t α+=-=>,12||||4|cos |PA PB t t α∴+=+=,又1cos 12α<≤,24|cos |4α∴<≤, ||||PA PB ∴+的取值范围为(2,4].3.解:(1)将直线l 的参数方程消去参数t , 可得直线l 的普通方程为210x y +-=0.将222p x y =+,cos x ρθ=代入曲线C 的极坐标方程,可得曲线C 的直角坐标方程为229436x y +=,即22149x y +=故曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)(2)设()2cos ,3sin M ϕϕ,则M 到l 的距离d ==,其中tan 43r =.如图,过点M 作MP l ⊥于点P ,则d MP =,则在Rt MNP △中,sin60||dMN ︒==. 当()sin 1r ϕ+=时,d故MN=4.解:(1)由cos 2sin x y αα=⎧⎨=+⎩(α为参数),消去参数α,可得22(2)1x y +-=.∴曲线C 1的直角坐标方程为22(2)1x y +-=; 由22413sin ρθ=+,得ρ2+3ρ2sin 2θ=4, 即x 2+y 2+3y 2=4,即2214x y +=.∴曲线C 2的直角坐标方程为2214x y +=;(2)∵P 为曲线C 2上的动点,又曲线C 2的参数方程为2cos sin x y αα=⎧⎨=⎩∴设P (2cos α,sin α), 则P 与圆C 1的圆心的距离d ===. 要使|P A |的最大值,则d 最大,当sin α23=-时,d∴|P A |==. 5.解:(1)在6x ty =-⎧⎪⎨=⎪⎩中,消去参数t,得)6y x =-0y +-=.由cos x ρθ=,sin y ρθ=,得)sin ρθθ+=,所以1C的极坐标方程为πsin 3ρθ⎛⎫+= ⎪⎝⎭(未化成这种形式可不扣分)在2cos 22sin x y θθ=⎧⎨=+⎩中,消去参数θ,得()2224x y +-=,即2240x y y +-=. 由cos x ρθ=,sin y ρθ=,得24sin 0ρρθ-=,即4sin ρθ=.(2)射线l 的极坐标方程为θα=,则OA =4sin OB α=.所以OAOB==12sin 26α=+- ⎪⎝⎭. 故OA OB当且仅当πsin 216α⎛⎫-= ⎪⎝⎭即π3α=时取得. 6.解:(1)直线l 的直角坐标方程为260x y +-=;因为22cos sin 1αα+=,所以曲线C 的普通方程为22149x y +=;(2)对直线l ,令0y =可得3x =,则(3,0)A ;令0x =可得6y =,则(0,6)B , 设(2cos ,3sin )P αα,点P 到直线l的距离d ==其中34cos ,sin 55ϕϕ==, PAB △的面积35sin()611222S AB d αϕ⨯+-=⋅⋅=⨯=, 当sin()=1αϕ+时,PAB △的面积取得最小值32. 7.解:(1)由222,sin x y y ρρθ=+=得222sin x y ρθρθ=⇒=⇒+=,即⊙O 的直角坐标方程为220x y +-=,即22(3x y +=;(2)设P 点坐标为1(3)2t +,P 到圆心C 的距离d ==≥=当0t =时,P 到圆心C 的距离取最小值 此时(3,0)P .8.解:(1)由题,因为22121sin ρθ=+,即()221sin 12ρθ+=, 因为222sin x y y ρρθ⎧=+⎨=⎩, 所以22212x y y ++=,即22212x y +=,则曲线C 的直角坐标方程为221126x y +=,因为射线(0)4πθρ=≥交曲线C 于点A ,所以点A 的极坐标为4π⎛⎫⎪⎝⎭, 则点A 的直角坐标为()2,2,所以OA 的中点B 为()1,1,所以倾斜角为α且过点B 的直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数).(2)将直线l 的参数方程1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数)代入曲线C 的方程221126x y+=中,整理可得()()222cos2sin 2cos 4sin 90t t αααα+++-=,设P 、Q 对应的参数值分别是1t 、2t ,则有12229cos 2sin t t αα-=+, 则1222299cos 2sin 1sin BP BQ t t ααα⋅===++, 因为(]0,απ∈,当sin 1α=,即2πα=时,BP BQ ⋅取得最小值为929.解:(Ⅰ)∵曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数), ∴曲线C 的普通方程为22149x y +=, ∵直线l 的极坐标方程是:12cos sin 6θθρ+=, ∴2cos sin 6ρθρθ+=,∴直线l 的直角坐标方程为260x y +-=.(Ⅱ)∵点P 是曲线C 上的动点,∴设()2cos ,3sin P ϕϕ,则P 到直线l 的距离:d ==,∴当()sin 1ϕθ+=-时,点P 到直线l距离取最大值max 5d ==; 当()sin 1ϕθ+=时,点P 到直线l距离取最小值min 5d ==. 10.解:(1)由sin 26πρα⎛⎫+=⎪⎝⎭1sin cos 22αρα+=, 将sin y ρα=,cos x ρα=代入上式,得直线l 的直角坐标方程为40x +-=.由曲线C 的参数方程2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数), 得曲线C 的普通方程为22143x y +=.(2)设点M 的坐标为()2cos θθ,则点M 到直线l :40x +-=的距离为2cos 3sin 42d θθ+-==2tan 3ϕ=,ϕ为锐角), 当d r =时,圆M 与直线l 相切,故当()sin 1θϕ+=-时,r 取最大值,且r的最大值为42+. 11.解:(1)曲线2C 的普通方程为2214y x +=; (2)由曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数), 得曲线1C 的普通方程为2224x y -+=(), 它是一个以20C (,)为圆心,半径等于2的圆, 则曲线2C 的参数方程为:cos (2sin x y βββ=⎧⎨=⎩为参数), ∵A 是曲线1C 上的点,B 是曲线2C 上的点, ∴max max 2AB BC =+.设cos 2sin B ββ(,),则BC, ∴当2cos =3β-时,max 3BC∴max 23AB =+. 12.解:(1)由曲线1:sin x C y αα⎧=⎪⎨=⎪⎩,可得:cos sin y αα⎧=⎪⎨⎪=⎩两式两边平方相加可得:曲线1C 的普通方程为:2213x y +=.由曲线2:sin 4C πρθ⎛⎫+= ⎪⎝⎭(sin cos )ρθθ+= 即()sin cos 8ρθθ+=,所以曲线2C 的直角坐标方程为:80x y +-=. (2)由(1)知椭圆1C 与直线2C 无公共点,椭圆上的点),sin P αα到直线80x y +-=的距离为d ==, 当sin 13πα⎛⎫+= ⎪⎝⎭时,d的最小值为 此时||PA 的最小值为6,此时点P 的坐标为31,22⎛⎫⎪⎝⎭. 13.解:(1)将曲线方程()()22221164x y -++=,先向左平移2个单位,再向上平移2个单位,得到曲线C 的方程为()()2222221164x y -++-+=, 即221164x y +=, 故曲线C 的参数方程为42x cos y sin θθ=⎧⎨=⎩(θ为参数);又点M (x ,y )为曲线C 上任意一点,所以12x =2cos θθ-=4cos (3πθ+).所以12x 的最大值为4; (2)由(1)知曲线C 的直角坐标方程为221164x y +=, 又直线l 的参数方程为22x t y t =⎧⎨=-⎩,(t 为参数), 所以直线l 的普通方程为x +2y ﹣4=0,所以有222401164x y x y +-=⎧⎪⎨+=⎪⎩, 解得40x y =⎧⎨=⎩或02x y =⎧⎨=⎩.所以线段EF 的中点坐标为(402022++,), 即线段EF 的中点坐标为(2,1),直线l 的斜率为12-, 则与直线l 垂直的直线的斜率为2,故所求直线的直角坐标方程为y ﹣1=2(x ﹣2), 即2x ﹣y ﹣3=0,将x =ρcos θ,y =ρsin θ代入,得其极坐标方程为2ρcos θ﹣ρsin θ﹣3=0.14.解:(1)由已知可得222224tan 2tan 112tan 1x y θθθ⎧=⎪⎪+⎨⎪=⎪+⎩, 所以2222x y +=,又0θπ≤≤且2πθ≠,所以(]0,1y =,故1C 普通方程为2212x y +=(01y <≤),由2π:cos 4C ρθ⎛⎫-= ⎪⎝⎭cos sin 20ρθρθ+-=, 所以2C :20x y +-=.(2)设),sin P ϕϕ,(0ϕπ<<). 则点P 到直线20x y +-=的距离2d -+===,其中tan α=当()sin 1ϕα+=时,min d ==.所以PQ。
高中数学参数方程大题(带答案)
参数方程极坐标系解答题1.已知曲线C:+=1,直线 l:(t为参数)(Ⅰ)写出曲线 C 的参数方程,直线l 的普通方程.(Ⅱ)过曲线 C 上任意一点P 作与 l 夹角为 30°的直线,交l 于点 A ,求 |PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线 C 的参数方程,直接消掉参数t 得直线 l 的普通方程;(Ⅱ)设曲线 C 上任意一点P( 2cosθ, 3sinθ).由点到直线的距离公式得到P 到直线 l 的距离,除以sin30°进一步得到 |PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1 ,可令 x=2cos θ、 y=3sin θ,故曲线 C 的参数方程为,(θ为参数).对于直线l:,由① 得: t=x ﹣ 2,代入②并整理得: 2x+y ﹣ 6=0;(Ⅱ)设曲线 C 上任意一点P( 2cosθ, 3sinθ).P 到直线 l 的距离为.则,其中α为锐角.当 sin(θ+α)=﹣ 1 时, |PA|取得最大值,最大值为.当 sin(θ+α)=1 时, |PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线 C 的参数方程为:(α为参数).( I)写出直线 l 的直角坐标方程;(Ⅱ)求曲线 C 上的点到直线 l 的距离的最大值.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线 C 的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:( 1)∵直线 l 的极坐标方程为:,∴ρ(sinθ﹣cosθ) =,∴,∴x﹣ y+1=0 .(2)根据曲线 C 的参数方程为:(α为参数).得2 2(x﹣ 2) +y =4 ,它表示一个以(2, 0)为圆心,以 2 为半径的圆,圆心到直线的距离为:d=,∴曲线 C 上的点到直线l 的距离的最大值=.点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C1:(t为参数),C2:(θ为参数).( 1)化 C1,C2的方程为普通方程,并说明它们分别表示什么曲线;( 2)若 C1上的点 P 对应的参数为t=,Q为C2上的动点,求PQ 中点 M 到直线C3:(t为参数)距离的最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.专题:计算题;压轴题;转化思想.分析:(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C1表示一个圆;曲线C2表示一个椭圆;(2)把 t 的值代入曲线C1的参数方程得点 P 的坐标,然后把直线的参数方程化为普通方程,根据曲线C2的参数方程设出 Q 的坐标,利用中点坐标公式表示出M 的坐标,利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:22解:( 1)把曲线 C1:(t 为参数)化为普通方程得:(x+4 ) +( y﹣3) =1,所以此曲线表示的曲线为圆心(﹣4, 3),半径 1 的圆;把 C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在 x 轴上,长半轴为8,短半轴为 3 的椭圆;(2)把 t=代入到曲线C1的参数方程得:P(﹣ 4, 4),把直线 C3:(t为参数)化为普通方程得:x﹣ 2y﹣ 7=0,设Q 的坐标为 Q( 8cosθ, 3sinθ),故 M (﹣ 2+4cosθ, 2+ sinθ)所以 M 到直线的距离d==,(其中sinα=,cosα=)从而当 cosθ=,sinθ=﹣时,d取得最小值.点评:此题考查学生理解并运用直线和圆的参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴建立直角坐标系,圆 C 的极坐标方程为,直线 l 的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于 A , B 的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△ PAB 面积的最大值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由圆 C 的极坐标方程为2,把,化为ρ=代入即可得出.(II )把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得 |AB|=2,利用三角形的面积计算公式即可得出.解答:2,解:(Ⅰ)由圆 C 的极坐标方程为,化为ρ=把代入可得:圆 C 的普通方程为2222.x +y﹣ 2x+2y=0 ,即( x﹣ 1) +( y+1) =2∴圆心坐标为(1,﹣ 1),∴圆心极坐标为;(Ⅱ)由直线l 的参数方程(t为参数),把t=x代入y=﹣1+2t 可得直线l 的普通方程:,∴圆心到直线l 的距离,∴|AB|=2==,点 P 直线 AB 距离的最大值为,.点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy 中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.分析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4 分)点到直线的距离(6 分)所以椭圆上点到直线距离的最大值为,最小值为.( 10 分)点评:此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy 中,直线 I 的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为ρ=cos(θ+).(1)求直线 I 被曲线 C 所截得的弦长;(2)若 M ( x, y)是曲线 C 上的动点,求 x+y 的最大值.考点:参数方程化成普通方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(1)将曲线 C 化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M ,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.解答:解:( 1)直线 I 的参数方程为(t为参数),消去t,可得, 3x+4y+1=0 ;由于ρ=cos(θ+) =(),222﹣x+y=0,其圆心为(,﹣),半径为 r=,即有ρ=ρcosθ﹣ρsinθ,则有 x +y圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M (,),则 x+y=由于θ∈R,则x+y的最大值为=sin (1.),点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.7.选修 4﹣ 4:参数方程选讲已知平面直角坐标系xOy ,以 O 为极点, x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线 C 的极坐标方程为.(Ⅰ)写出点P 的直角坐标及曲线 C 的普通方程;(Ⅱ)若 Q 为 C 上的动点,求PQ 中点 M 到直线 l:(t为参数)距离的最小值.考参数方程化成普通方程;简单曲线的极坐标方程.点:专坐标系和参数方程.题:分( 1)利用 x= ρcosθ, y= ρsinθ即可得出;析:( 2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,解解( 1)∵ P 点的极坐标为,答:∴=3,=.∴点 P 的直角坐标222把ρ=x +y, y= ρsinθ代入可得,即∴曲线 C 的直角坐标方程为.( 2)曲线 C 的参数方程为(θ为参数),直线 l 的普通方程为 x﹣ 2y﹣ 7=0设,则线段 PQ 的中点.那么点 M 到直线 l 的距离.,∴点 M 到直线 l 的最小距离为.点本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的评:单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆 C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O, P,与直线l 的交点为Q,求线段 PQ 的长.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:直线与圆.分析:(I)圆 C的参数方程2 2.把 x= ρcosθ, y= ρsinθ代入(φ为参数).消去参数可得:( x﹣ 1) +y =1化简即可得到此圆的极坐标方程.(II )由直线 l 的极坐标方程是ρ( sinθ+)=3,射线 OM :θ= .可得普通方程:直线 l,射线 OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:( I)圆 C 的参数方程22(φ为参数).消去参数可得:( x﹣ 1) +y =1.把 x= ρcosθ,y= ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II )如图所示,由直线l 的极坐标方程是ρ( sinθ+) =3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.点评:本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系 xoy 中,曲线 C1的参数方程为(α为参数),以原点 O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线 C2的极坐标方程为ρsin(θ+) =4.( 1)求曲线 C1的普通方程与曲线 C2的直角坐标方程;( 2)设 P 为曲线 C1上的动点,求点 P 到 C2上点的距离的最小值,并求此时点P 的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、 y=ρsinθ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y﹣8=0的距离为,可得 d 的最小值,以及此时的α的值,从而求得点P的坐标.解答:解:( 1)由曲线 C1:,可得,两式两边平方相加得:,即曲线 C1的普通方程为:.由曲线 C2:得:,即ρsinθ+ρcosθ=8,所以 x+y ﹣ 8=0,即曲线 C2的直角坐标方程为:x+y ﹣ 8=0 .(2)由( 1)知椭圆 C1与直线 C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时, d 的最小值为,此时点P 的坐标为.点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线 l 的参数方程是( t 为参数),圆 C 的极坐标方程为ρ=2cos(θ+ ).(Ⅰ)求圆心 C 的直角坐标;(Ⅱ)由直线l 上的点向圆 C 引切线,求切线长的最小值.考点:简单曲线的极坐标方程.专题:计算题.分析:(I)先利用三角函数的和角公式展开圆 C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用222C 的直角坐标.ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得圆 C 的直角坐标方程,从而得到圆心(II )欲求切线长的最小值,转化为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:( I)∵,∴,∴圆 C 的直角坐标方程为,即,∴圆心直角坐标为.(5 分)(II )∵直线 l 的普通方程为,圆心 C 到直线 l 距离是,∴直线 l 上的点向圆 C 引的切线长的最小值是(10 分)点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.11.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣ 4sinθ) =12 ,定点 A ( 6, 0),点 P 是曲线 C1上的动点, Q 为 AP 的中点.( 1)求点 Q 的轨迹 C2的直角坐标方程;( 2)直线 l 与直线 C2交于 A ,B 两点,若 |AB| ≥2,求实数 a 的取值范围.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将曲线 C1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q 的轨迹 C2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答:解:( 1)根据题意,得22曲线 C1的直角坐标方程为: x +y﹣ 4y=12,设点 P( x′, y′), Q( x, y),根据中点坐标公式,得22,代入 x +y ﹣ 4y=12 ,22得点 Q 的轨迹 C2的直角坐标方程为:( x﹣3) +( y﹣ 1) =4,(2)直线 l 的普通方程为: y=ax ,根据题意,得,解得实数 a 的取值范围为:[0,] .点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy 中以 O 为极点,x 轴正半轴为极轴建立坐标系.圆 C1,直线 C2的极坐标方程分别为ρ=4sin θ,ρcos () =2.(Ⅰ)求 C1与 C2交点的极坐标;(Ⅱ)设 P 为 C 1 的圆心, Q 为 C 1 与 C 2 交点连线的中点, 已知直线 PQ 的参数方程为( t ∈R 为参数),求 a ,b 的值.考点 : 点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程. 专题 : 压轴题;直线与圆.分析: (I )先将圆 C 1,直线 C 2 化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3),从而直线 PQ 的直角坐标方程为 x ﹣y+2=0 ,由参数方程可得 y= x ﹣ +1,从而构造关于 a , b 的方程组,解得 a , b 的值.解答:解:( I )圆 C 1,直线 C 2 的直角坐标方程分别为 x 2+( y ﹣2) 2 =4, x+y ﹣ 4=0 ,解得 或 ,∴C 1 与 C 2 交点的极坐标为( 4, ).( 2 , ).(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3),故直线 PQ 的直角坐标方程为x ﹣ y+2=0 ,由参数方程可得 y= x ﹣ +1,∴ ,解得 a=﹣ 1,b=2 .点评: 本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.13.在直角坐标系 xOy 中, l 是过定点 P ( 4, 2)且倾斜角为 α的直线;在极坐标系(以坐标原点 O 为极点,以 x 轴非负半轴为极轴,取相同单位长度)中,曲线 C 的极坐标方程为 ρ=4cos θ(Ⅰ)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(Ⅱ)若曲线 C 与直线相交于不同的两点 M 、 N ,求 |PM|+|PN|的取值范围.解答:解:( I )直线 l 的参数方程为( t 为参数).2曲线 C 的极坐标方程 ρ=4cos θ可化为 ρ=4 ρcos θ.222 2把 x= ρcos θ,y= ρsin θ代入曲线 C 的极坐标方程可得 x +y =4x ,即( x ﹣ 2) +y =4.(II )把直线 l 的参数方程为 ( t 为参数)代入圆的方程可得: t 2 +4( sin α+cos α) t+4=0 . ∵曲线 C 与直线相交于不同的两点 M 、 N ,∴△ =16 ( sin α+cos α)2﹣ 16> 0, ∴sin αcos α>0,又 α∈[0,π),∴.又 t 1+t 2=﹣ 4( sin α+cos α), t 1t 2=4.∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵ ,∴,∴.∴|PM|+|PN| 的取值范围是.点评:本题考查了直线的参数方程、圆的极坐标方程、直线与圆相交弦长问题,属于中档题.14.在直角坐标系xOy 中,直线l 的参数方程为(t为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙ C 的直角坐标方程;(Ⅱ) P 为直线 l 上一动点,当P 到圆心 C 的距离最小时,求P 的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:2,把代入即可得出;.(I)由⊙ C 的极坐标方程为ρ=2 sinθ.化为ρ=2(II )设 P,又 C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:( I)由⊙ C 的极坐标方程为ρ=2sin θ.222,∴ρ=2,化为 x +y =配方为=3.(II )设 P,又 C.∴|PC|==≥2 ,因此当 t=0 时, |PC|取得最小值 2.此时 P( 3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线 C1, C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦 AB 的长度.考点:简单曲线的极坐标方程.专题:计算题.分析:(Ⅰ)利用直角坐标与极坐标间的关系,即利用C1的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(长度.解答:解:(Ⅰ)曲线 C2:( p∈R)表示直线y=x,2曲线 C1:ρ=6cosθ,即ρ=6ρcosθ2222所以 x +y=6x 即( x﹣3) +y =9222C2及曲线ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得曲线3,0)到直线的距离,最后结合点到直线的距离公式弦AB 的(Ⅱ)∵圆心(3, 0)到直线的距离,r=3 所以弦长 AB==.∴弦 AB 的长度.点评:本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴建立坐标系,直线l 的极坐标方程为ρsin(θ+)=,圆 C 的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心 C 的极坐标;(Ⅱ)当 r 为何值时,圆 C 上的点到直线l 的最大距离为3.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:计算题.分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的普通方程;利用同角三角函数的基本关系,消去θ可得曲线 C 的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线 l 的距离的最大值,最后列出关于 r 的方程即可求出r 值.解答:解:( 1)由ρsin(θ+ ) =,得ρ( cosθ+sin θ) =1,∴直线 l: x+y ﹣ 1=0 .由得 C:圆心(﹣,﹣).∴圆心 C 的极坐标( 1,).(2)在圆 C:的圆心到直线l 的距离为:∵圆 C 上的点到直线l 的最大距离为3,∴.r=2﹣∴当 r=2 ﹣时,圆C上的点到直线l 的最大距离为3.点评:本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.17.选修 4﹣ 4:坐标系与参数方程在直角坐标 xOy 中,圆2222C1: x+y =4,圆 C2:(x﹣ 2)+y =4.(Ⅰ)在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆C1, C2的极坐标方程,并求出圆C1, C2的交点坐标(用极坐标表示);(Ⅱ)求圆 C1与 C2的公共弦的参数方程.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;压轴题.分析:(I)利用,以及 x2 2 2C1, C2的交点极坐标,+y =ρ,直接写出圆 C1, C2的极坐标方程,求出圆然后求出直角坐标(用坐标表示);(II )解法一:求出两个圆的直角坐标,直接写出圆C1与 C2的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与 C2的公共弦的参数方程.解答:解:( I)由2 22, x +y=ρ,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆 C1, C2的交点坐标( 2,),( 2,).(II )解法一:由得圆 C1, C2的交点的直角坐标( 1,),(1,).故圆 C1, C2的公共弦的参数方程为(或圆 C1, C2的公共弦的参数方程为)(解法二)将 x=1 代入得ρcosθ=1从而于是圆 C1, C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数方程典型例题分析
例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0)
分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为,,点P分所成的比为,那么点P对应的参数是().
(A)(B)(C)(D)
分析将,分别代入参数方程,
得A点的横坐标致为,B点的横坐标为,
由定比分点坐标公式得P的横坐标为
,
可知点P所对应的参数是故应选(C).
例3化下列参数方程为普通方程,并画出方程的曲线.
(1)(为参数,)
(2)(为参数);
(3)(为参数),
解:(1)∵
∴,
∴或
故普通方程为(或),方程的曲线如图.
(2)将代入得∵普通方程为(),方程的曲线如图.
(3)两式相除得代入得
整理得
∵
∴普通方程为(),方程的曲线如图.
点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价.
例4已知参数方程
①若为常数,为参数,方程所表示的曲线是什么?
②若为常数,为参数,方程所表示的曲线是什么?
解:①当时,由(1)得,由(2)得,
∴,它表示中心在原点,
长轴长为,短轴长为焦点在轴上的椭圆.
当时,,,
它表示在轴上的一段线段.
②当()时,由(1)得,
由(2)得.平方相减得,
即
它表示中心在原点,实轴长为,虚轴长为,
焦点在轴上的双曲线.
当()时,,它表示轴;
当()时,,
∵(时)或(时)
∴,∴方程为(),
它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线.
点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数.
例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().
(A)或(B)或(C)或(D)或
分析将参数方程化为普通方程,直线为(),
当时不合题意.
因为,它们相切的充要条件是,
解得,又,
∴或,故选(A).
例6求椭圆上的点到直线的最大、最小距离.
解将椭圆普通方程化为参数方程(),
则椭圆任意一点的坐标可设为(,),
于是点到直线的距离
∴,此时;,此时
点评利用参数方程,将圆锥曲线上的点的坐标设为参数形式,这样减少曲线上点的坐标所含变量的个数,将二元函数的问题转化为一元函数的问题.
例7已知点P是圆C:上一动点,点P关于点A(5,0)的对称点为Q,半径CP绕圆心C按逆时针方向旋转后得到点M,求的最大值和最小值.
解如图,设点(,),
则点M为(,),
即M(,).
又点A(5,0)为Q的中点,则点Q为(,),
且
所以时,取得最大值
时,取得最小值
点评此题根据圆的参数方程是利用转角作参数,由点坐标求点M坐标,再把与坐标,相关的的最值转化成的最值来求解.
例8直线与椭圆交于A,B两点,当变化时,求线段AB中点M的轨迹.
解设AB中点M(,),
直线的方程为(,为参数)
代入椭圆方程有中可得
设A,B对应的参数值分别为,,则有,
又,
∴,又,
故,即.
所以M点的轨迹是直线在椭圆内部的一条线段.
例9已知线段,直线垂直平分交于点O,并且在上O点的同侧取两点P,,使,求直线BP与直线的交点M的轨迹.
解如图,以O为原点,为轴,为轴,建立直角坐标系,
依题意,可知B(0,2),(0,-2),
又可设P(,0),(,0),其中为参数,可取任意非零的实数.
直线BP的方程为
直线的方程为
两直线方程化简为
解得直线BP与的交点坐标为:(为参数).
消去参数得()
∴所求点M的轨迹是长轴为6,短轴为4的椭圆除去B,点.
点评用参数法求解轨迹问题时,首先要建立适当的坐标系,然后选择参数,表示出有关点的坐标,求出动点轨迹的参数方程,必要时还要化成普通方程,根据方程确定轨迹的形状,大小等特征.。