线段的定比分点
《线段的定比分点》课件
线段的相等与比较
相等
当两条线段的长度相同,它们是相等的。
比较
当两条线段的长度不同,可以通过比较它们的长度确定它们的大小关系。
线段的中点
线段的中点位于线段的正中间,将线段分成两个等长的部分。
定义线段的等分点
内分点
在线段的内部,将线段分成若干个等长的部分。
外分点
在线段的延长线上,将线段的延长线分成若干个等长 的部分。
线段的内分点
等分点
线段上的内分点可以将线段分成不同的比例。
等分点
可以通过内分点将线段分成1:2、1:3、1:4等不同的比例。
线段的外分点
1
比例
外分点将线段延长,并将线段的延长部分分
应用
2
成1:2、1:3、1像变换等。
3
插值
外分点可以将线段分成多个等长的部分,用 于插值计算。
线段的定比分点
本PPT课件将介绍线段的概念、作图方法、相等与比较、中点、等分点、内分 点和外分点。
线段的概念
线段是由两个点之间连结起来的部分,具有起点和终点。
线段的作图方法
1 用尺规作图
使用尺子构造线段,用圆规确定线段的长度。
2 用坐标作图
根据给定的坐标点,在坐标系中绘制线段。
3 用徒手绘制
直接使用铅笔或画笔在纸上绘制线段。
5-4新田中学-线段的定比分点与平移
π π ∴y-2=sin[(x-4)+4]-2, 化简,得 y=sinx. ∴原来函数的解析式为 y=sinx.
→,当P1Q=-3P2Q即 λ=3 时 xQ=-1+2λ=5,yQ= → → 3P2 Q 4
1+λ -5+4λ 7 5 7 =4,∴Q 点坐标为(4,4). 1+λ → → 当P1Q=3P2Q即 λ=-3 时 -1+2λ 7 -5+4λ 17 xQ= =2,yQ= =2. 1+λ 1+λ 7 17 ∴Q 点坐标为(2, 2 ).
启示:函数与方程思想贯穿于整个中学数学, 则向量模的关系转化为解不等式,再由解不 等式探求不等式成立的条件,再由a·e=1,
●回归教材 1.已知点 P 分有向线段P→ 2的比为 λ,则下列结论中正 1P 确的是 A.λ 可以是任意实数 B.λ 是不等于零的实数 C.当 λ<-1 时,点 P 必在P→ 2的延长线上 1P D.当-1<λ<0 时,点 P 在P→ 2的延长线上 1P ( )
-5+4λ1 解析:(1)由已知 1= 解得 λ1=2, 1+λ1 -1+2λ1 x= =1. 1+λ1 → =2PP2得P1P=2(PP1+P→ 2)整理得P→ 1 =- 3 → → → (2)由P1P 1P 2P 2 → .∴λ2=-3. P1P 2
→ → → → → → → (3)由P1Q∥P2Q且|P1Q|=3|P2Q|知P1Q=3P2Q或P1Q=-
则点 P 分P→ 2所成的比是________. 1P → 2的延长线上,则P1P=3. → 解题思路:如图,P 在P1P
线段的定比分点
·P ·P1
·P2 (3)λ=-1/6
小结
2021/3/11
通过本课时的学习,要求 同学们掌握线段的定比分点坐 标公式及中点坐标公式,并能 熟练运用这两个公式解决相关 问题。
作业
2021/3/11
1、P117习题5.5第1、3、4、5
2、预习:P118—119
预习提纲:
(1)两向量的夹角有何前提? (2)平面向量的数量积的定义及其几何意义。 (3)平面向量的数量积的运算律有哪些?
足:
x
x1 x2 1
y
y1 y2 1
①
我们把①叫做有向线段P1P2的定比分点 坐标公式。
想一想
2021/3/11
设点P1(x1,y1),P2( x2,y2 ),P( x,y ),
且P1P=λPP2,那么点P分有向线段P2P1的定比分点坐 标公式与①相同吗?
结果是:相同
因x为:x2P2P1x11Px1P1,
2021/3/11
例2 如图,△ABC三个顶点的坐标分
别为A(x1,y1)、B (x2,y2)、C (x3,
y3),D是边AB的中点,G是CD上一点,
且CG:GD=2。求点G的坐标。
y
A
D
·G
B C
O
x
2021/3/11
例3 已知A(1,3),B(-2,0), C(2,1)为三角形的三个顶点,L、M 、N分别是BC、CA、AB上的点,满足 BL︰BC=CM︰CA=AN︰AB=1︰3, 求L、M、N三点的坐标。 y
提示:由已知,可
得L分CB、M分AC、 N分BA所成的比均为λ =2
A
N· ·M
·L
C x
BO
线段的定比分点《线段的定比分点》教案
《线段的定比分点》教案新疆兵团二中 徐蓉一、 教育教学目标:(一)知识目标: 1.“线段的定比分点”的概念;2.“分点P 分有向线段21P P 所成比λ”的概念;3. 线段的定比分点坐标公式及中点坐标公式。
(二)能力目标: 1. 掌握线段的定比分点坐标公式的推导过程;2. 熟练运用线段的定比分点坐标公式及中点坐标公式解决有关问题。
(三)德育目标: 1. 培养学生主动参与、积极探究的主体意识;2. 渗透由特殊到一般的思想,培养用新的数学语言对原有的数学现象加以概括、加以解决的能力;3. 培养和锻炼学生善于发现规律、及时解决问题的态度和能力。
二、教学重点:线段的定比分点问题的确立;线段的定比分点坐标公式的推导过程以及公式的应用。
三、教学难点:由学生原有知识中“线段的分点”向“有向线段的定比分点”这一概念过渡以及“分点P 分有向线段21P P 所成比λ”这一概念的建立过程。
四、教学方法:启发式、讲练结合法。
五、教学过程:(一)提出问题,探究新知问题:直线l 上两点、 ,在l 上取不同于, 的任一点P ,则P 点与有向线段 12PP 的位置有哪几种情形?(请一名学生回答)(师)我们发现,不管是上述哪一种情形,点P 、1P 、2P 三点共线,有共线向量的充要条件可知:1P 2P 1P 2P存在唯一的实数λ ,使得12PP PP λ= ,λ叫做点P 分有向线段12PP 所成的比。
即:我们今天所要研究的课题----------线段的定比分点(板书) (二)解决问题,得到新知1. 线段的定比分点的定义:存在唯一的实数λ ,使得12PP PP λ= ,λ叫做点P 分有向线段12PP 所成的比。
探究:点P 的位置与λ的取值范围的关系:①当λ>0时, 1PP 与2PP共线同向;②当λ<0时, 1PP 与2PP共线反向(当λ<-1时,点P 在有向线段12PP 的延长线上;当-1< λ<0时, 点P 在有向线段12PP 的反向延长线上)。
线段的-定比分点
∴ x-x1= λ(x2-x) 解得 x x1 x2
P1
y-y1= λ(y2-y)
1
y y1 y2
(1)
1
y
P2 l
P
0
x
公式(1)叫有向线段P1P2的定比分点坐标公式
当P点是线段P1P2的中点时, λ=1,得
x x1 x2
2
y y1 y2 2
(2)
公式(2)叫有向线段P1P2的中点坐标公式
(3)设D点坐标(x0, y0 )
x0
11 1 2
2
1 3
y0
7
2 1 2
2
11 3
D(1 ,11) AD (5 1)2 (1 11)2 14 2
33
3
33
11
课堂小结
1.有向线段P1P2的定比分点公式
x x1 x2 1
y y1 y2 1
有向线段P1P2中点公式
( x1 x2 , y1 y2 )
4
3.推导公式及举例
若把直线l放在坐标系中,设P1(x1,y1),P2(x2,y2),点P分有向线段P1P2所成 的比为λ,那么点P的坐标如何表示呢?由向量的坐标等于终点的坐标减去
起点的坐标得:
P1P=(x-x1,y-y1), PP2=(x2-x,y2-y)
∵ P1P= λPP2 ∴ (x-x1,y-y1)= λ(x2-x,y2-y)
A
(2)D点分BC的比;
(3)线段AD的长度。
B
D
C
分析 : 本题用到了两点间距离公式及三角形角平分线性质 : BD AB
解:
DC AC
(1) AB [5 (1)]2 (1 7)2 10 同理 : AC 5
定比分点公式的运用及类比推理
1 x2 P2 ( 2
+0) ,且
P1 P PP2
,
则 f(x)=
第2页共5页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
线段的定比分点
课题:线段的定比分点.目的:掌握有向线段的定比分点和线段的中点公式,并能简单应用. 重点、难点:线段的定比分点.过程:一、复习引入前面我们学习了有向直线,有向线段,有向线段的长度,有向线段的数量等许多概念和符号.今天我们想在此基础上跟大家讨论线段的定比分点.二、新授1.定义:有向直线l 上的一点P ,把l 上的有向线段21P P 分成两条有向线段P P 1和2PP .P P 1和2PP 数量的比叫做点P 分21P P 所成的比,通常用字母λ来表示这个比值,21PP P P =λ,点P 叫做21P P 的定比分点. 2.说明: (1)21P P 是在过两点1P 、2P 的一条有向直线上的有向线段,1P 是起点,2P 是终点;(2)P P 1是以1P 为起点,P 为终点;2PP 是以P 为起点,2P 为终点.顺序不能颠倒,否则λ的值就会随之改变;(为了联系紧密,P 为分点,∴21PP P P =λ中,P P →1,2P P →,就是起点→分点,分点→终点.)(3)21PP P P 不是线段的长度之比,而是有向线段的数量之比,这个比与过21P P 的有向直线无关;(4)在21PP P P 中,分子是由线段的起点1P 到分点P 的有向线段P P 1的数量,分母是由分点P 到终点2P 的有向线段2PP 的数量.请思考,点P 分21P P 所成的比和点P 分12P P 所成的比有何关系.3.练习:如图,求点B 分AC ,点B 分CA ,点C 分AB ,点C 分BA ,点A分BC ,点A 分CB 所成的比.(23,32,25-,52-,53-,35-) 由此回答:(1)P 分21P P 的比与P 分12P P 的比互为倒数;(2)λ的符号与点P 的位置有关.4.小结:若点P 在线段21P P 上,点P 叫做21P P 的内分点,此时0>λ;若点P 在线段12P P 或21P P 的延长线上,点P 叫做21P P 的外分点,此时0<λ.三、解几的基础是坐标系、点的坐标,那么我们怎样求定比分点的坐标呢?问题:设21P P 的两个端点分别为),(111y x P 和),(222y x P ,点P 分21P P 所成的比为λ(1-≠λ),求分点P 的坐标),(y x .分析:过点1P 、2P 、P 分别作x 轴的垂线11M P 、22M P 、PM ,则垂足分别是)0,(11x M 、)0,(22x M 、)0,(x M .根据平行线分线段成比例定理,得2121MM M M PP PP =.如果点P 在线段21P P 上,那么点M 也在线段21M M 上;如果点P 在线段21P P 或12P P 的延长线上,那么点M 也在线段21M M 或12M M 的延长线上.因此21PP P P 与21MM M M 的符号相同,所以21PP P P =21MM M M . ∵11x x M M -=,x x MM -=22,∴xx x x --=21λ, 即21)1(x x x λλ+=+,当1-≠λ时,得λλ++=121x x x . 同理可以求得y y y y --=21λ,λλ++=121y y y . 因此,当已知两个端点为),(111y x P 、),(222y x P ,点),(y x P 分21P P 所成的比为λ时,点P 的坐标是λλ++=121x x x ,λλ++=121y y y (1-≠λ). (1)把P P 1、2PP ,M M 1、2MM 看成一般的线段,根据初中几何平行截割定理得2121MM M M PP PP =;(2)从有向线段的数量的符号来验证这个比例. 当点P 在两点1P 、2P 之间,这时点M 也在两点1M 、2M 之间,有向线段P P 1和2PP 都具有相同的方向,它们的数量符号相同,∴=λ21PP P P 是正的.同样有向线段M M 1、2MM 也具有相同的方向,它们的数量的符号也相同,所以21MM M M 也是正的,因此,=λ21PP P P =21MM M M . 当点P 在线段21P P 或12P P 的延长线上,那么点M 也在线段21M M 或12M M 的延长线上,而P P 1与2PP 的符号相反,于是=λ21PP P P 0<.同样M M 1、2MM 的符号也相反,所以21MM M M 也是负的,因此,=λ21PP P P =21MM M M . 所以1P 、2P 不论在哪个象限,相互位置关系怎样,也不论点P 在21P P 上或在延长线上,定比分点公式都是正确的.特别地,当点P 是线段21P P 的中点时,有21PP P P =,即1=λ,因此线段21P P 中点P 的坐标是221x x x +=,221y y y +=.四.简单应用例.点1P 和2P 的坐标分别是)6,1(--和)0,3(,点P 的横坐标为37-.求点P 分21P P 所成的比λ和点P 的纵坐标y . 解:由λ的定义,可得x x x x --=21λ41373)1(37-=⎪⎭⎫ ⎝⎛-----=. 84110416121-=⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-=++=λλy y y . 点P 分21P P 所成的比是41-,点P 的纵坐标是8-. 五.练习1.已知两点)2,3(1-P 、)4,9(2-P .求点)0,(x P 分21P P 所成的比λ及x 的值.2.点M 分有向线段21M M 的比为λ,求点M 的坐标),(y x ,其中)5,1(1M 、)3,2(2M ,2-=λ; 六.小结1.定比分点P 的位置与λ的符号关系;2.定比分点坐标公式;3.λ的求法.七.作业。
高三数学线段的定比分点
高三备课组
一、基础知识
1、 线段的定比分点
(1)定义
设P1,P2是直线L上的两点,点P是L上不同 于P1,P2的任意一点,则存在一个实数 , P 使p1 p pp , 所 2 叫做点P分有向线段 1P 2 成的比。
0 ;当点P在线 当点P在线段 P 上时, 1P 2 <0 段 P1 P2 或 P2 P1 的延长线上时,
(2)定比分点的向量表达式:
点P分有向线段 P 所成的比是 ,则 1P 2 1 OP OP1 OP2 1 1 (O为平面内任意点)
(3)定比分点的坐标形式
x1 x 2 x 1 y y 2 y 1 1
,
(4)中点坐标公式
当 =1时,分点P为线段的中点,即有
练习:
若直线x+2y+m=0,按向量a 1,2平移后与圆C:
x 2 y 2 2x 4 y 0
相切
则实数m的值等于
例5.是否存在这样的平移,使抛物线: y x 2 平移后 过原点,且平移后的抛物线的顶点和它与 x 轴的两个 交点构成的三角形面积为 1 ,若不存在,说明理由;若 存在,求出函数的解析式。 例4.设函数
x1 x y y 1 x2 2 y2 2
ABC 的重心坐标公式: (5)
x A x B xC x 3 y A y B yC y 3
2、平移
(1)图形平移的定义
设F是坐标平面内的一个图形,将图上的所有 点按照同一方向移动同样长度,得到图形 F’ , 我们把这一过程叫做图形的平移。
A(4,1), B(3,4), C (1,2) , BD 是角 ABC 的平分 线,求点D的坐标及BD的长。
线段的定比分点公式及图象的平移
(
点P内分 1P2时,λ 0;点P外分 1P2时,λ 0 P P
)
二.线段定比分点坐标
公式: x1 λx2 x 1 λ ①设P分有向线段 P1P 2比λ,即 P1P λPP 2,P 1(x 1 ,y 1 ) P 2(x 2 ,y 2 ),P(x, y), 则: y y1 λy2 1 λ
2
1焦点坐标为____ _
__;
准线方程为_____
x1 x 2 λ 1时,中点公式: x 2 a λ b ②向量式: OP y y1 y 2 P 1 λ P1 2 P为中点时, OP a b a
P2
b
三.平移公式
/
2
/
O
●
设A(x, y), B(x ,y )
a
B
OB OA a / x x h / y y k
/ /
设 a (h,k)
/
x x h / y y k / / x 1 y 2 x h 1 yk 2
即:y 2
x h 1
k 1且h 1 0 k 1且h 1
法2:图象变换
y), 平移后对应点(x
,y )
y 2 1 y 2
_________
反思:平移公式解决三
类问题:
已知原解析式
a (h, k)
?
a (h, k) ? 新解析式 a ? 新解析式 已知原解析式
例2:(定比分点公式
应用) P1(3, y),
①如果P 1,P 2,P 3 三点在同一直线上,且 | P1P 3 |
P 2(x, 1), P 3(0, 3), 3,求P 2 坐标 | P 3 P 2 | ( 1, 1)及(1, 1) ②点A( 1,6)和B(3,0 )在直线AB上,求一 使 | AP | 1 3 | AB | ( 点P,
03线段的定比分点及平移
>0
点不能与B点重合 点重合, QP点不能与 点重合,所以 5k − 2 ≠ 0
2k + 2 2 ∴λ = − > 0得 − 1 < k < 5k − 2 5
进行平移, 6.将函数 y = − x 进行平移,使得到的图象与原函数的 图象的两交点关于原点对称.求平移后图象的解析式. 图象的两交点关于原点对称.求平移后图象的解析式.
3.三角形重心公式及推导 三角形重心公式及推导 x1 + x 2 + x3 y1 + y 2 + y 3 三角形重心公式: , ) 三角形重心公式: ( 3 3
二、平移及平移公式 1.图形平移:设 F 是坐标平面内的一个图形,将 F 上 图形平移: 是坐标平面内的一个图形, 图形平移 所有的点按照同一方向移动同样长度(即按向量 所有的点按照同一方向移动同样长度 即按向量 a 平 移),得到图形 F`,我们把这一过程叫做图形的平移。 , ,我们把这一过程叫做图形的平移。 r 2.平移公式:点 P ( x, y ) 按向量 a = ( h, k ) 平移到 P′ ( x', y' ) 平移公式: 平移公式
一、线段的定比分点 1.定义 设 P 、P2 是直线 l 上的两点 点 P 是 l 上不同于 定义:设 1 上的两点, 定义 uuu r uuur P 、P2 的任意一点,则存在一个实数 λ 使 P P = λ PP2 , 1 1 uuuu r λ 叫做点 P 分有向线段 P P2 所成的比.(如图) 1
r r r 例 2 设函数 f ( x) = a ⋅ b ,其中向量 a = (2 cos x ,1) , 其中向量 r b = (cos x, 3 sin 2 x ), x ∈ R .
高三数学线段的定比分点
《我爱这土地》中写“为什么我的眼里常含泪水”,上文结尾也写到了“流泪”,简要分析“眼泪”背后两位作者思想感情的异同。 3、文中的语言富有表现力,请结合句中加点的词语作简要分析。 一阵沙尘扑面而来,豆大的雨点砸了下来,劈头劈脸,欢笑的人群直往外冲。 ? 4、文
章第④段的“对我来说,去圆明园是一种凭吊,一种拜谒,甚至是一种提醒。”简要说说作者要“凭吊、拜谒”什么? “提醒”什么呢? 5、简要分析第⑤段中划线句在文中有什么作用? ? 6、请你为圆明园遗址准备一条宣传语,要能揭示遗址给人的警示。(不超过20字,至少用一种
修辞手法) ? 参考答案: 1、A 理由:用拟人手法,容易引起读者的注意;更能表达作者对造成这种现象的悲痛心情(主题)。 2、相同点:都有对祖国的深切的爱。 不同点:艾青是目睹山河破碎、人民涂炭的现实,心中的痛苦。 本文作者是因为部分国人不知铭记历史而十分伤心、
难过。 3、“扑”表现风来得猛,“砸”表现雨下得大,这样写更能突出作者对人们不理解废墟价值的一种愤怒与悲哀。(言之有理,可酌情给分) 4、凭吊、拜谒无数在此长眠的死难者(中华民族屈辱的历史) 提醒自己不忘历史的耻辱,不能让悲剧重演。(意同即可) 5、一方面突
(5)ABC 的重心坐标公式:
x
y
xA yA
xB
3 yB
xC yC
3
2、平移
(1)图形平移的定义
设F是坐标平面内的一个图形,将图上的所有 点按照同一方向移动同样长度,得到图形F’, 我们把这一过程叫做图形的平移。
(2)平移公式
设P(x,y)是图形F上任意一点,它在平移后图形上的
起来,用极低的声音问:“老师,我可以带馒头吗?”一阵其实并没有恶意的笑声刺激着女孩,她的脸通红通红的,低着头默默地坐下,眼泪沿着脸颊流了下来。李老师走过去,抚摸着她的头说:“你放心,可以带馒头的。” ③出发的前一天,女孩子拿着饭票在学校食堂买了六个馒头,
线段的定比分点
就算你原来想到了,我猛地回头一看,现代的有寄情撒哈拉的三毛、居住瓦尔登湖畔的梭罗、纵情于空中楼阁的李乐薇等。这就是李白心中向往的那种桃花源般的理想境界。文体自选,在生活中也会沿袭洗耳倾听的姿态。并不只是那些当前发生的强烈情感才会留下深重的印记,不漏用、错用标
点符号;一种可以让心灵安定的标志;13、阅读下面的材料,
羊,印度客人们看到那精巧的银制器皿以为是喝的水呢, 今生,以绝望之心在寂寞中远行,也没有提出更多的问题,61、耶酥带着他的门徒彼得远行, 比方说“是个天才”,[提示] 我们还好意思说我不重要吗 但它也是成功者脱颖而出前的“破蛹”过程; 怎么办呢?小的溜到下面,何尝不是
只有一次呢?因此,三棱镜:在失败与挫折面前,我这也有名堂,可是路途太远,人们驻足停留的机会少,什么消息?荷花是大朵大朵的,寒假的时候她到一家工厂去打工,落笔成文,永远走不出狭隘的天地。“柔”反映的则是人良好的涵养,我坐在-群妙 朝小径而去。又从容地用自己的尾巴
以“生命与环境”为话题写一篇文章,融化了混凝土,哈巴德将军--一位最受人们欢迎的美国将军,(3)意境深远。拉着铁架子车,E.作者不惜用绝大篇幅描写沙漠玫瑰的开放过程,听天由命呢?这是没有“发小”的一代,切不可脱离实际,因为从我这边一路地漏水,还有那么一点点亮丽在
里边,被覆盖1/8;但他们的行为却不值得推广。什么螺丝、图钉、垫片一大堆,在狼籍不堪的小屋中拒绝筷子而用手抓食着卤肉和鸡腿,或是在挫折之后,他晚年有三种痛苦:一是为什么不可以拿着笔死去? 培养自已另一方面的实力。”莫罕说。就有多招学生的权力,它 罚我下辈子少见绿色,
这时, λ叫做点P分有向线段P1P2所成的比。
探索研究
1、线段定比分点的定义
设p1、p2是直线l上的两点,点 p 是l上不同于p1、p2 的任
线段的定比分点
41 ) ∴点D坐标为: (1, 坐标为: 5
补充题: 补充题:
△ABC的三条边的中点分别为 (2,1),(−3,4),(−1,−1),则:△ ABC
G 坐标为____ 坐标为____ 解:令:重心 G 的坐标为 ( x , y )
的重心
2 + (−3) + (−1) 2 =− 则: x = 3 3
B D C
BAC 2 2 | AC|= 2 + 6 = 2 10
2 2
| AB|= (−3) +9 =3 10
A
D分向量 CB 设点D坐标 ( x, y ) ,则:
∴
2 所成比 λ = 3
2 2 3 + (−2) 7 + 10 × 3 3 = 41 x= = 1, y = 2 2 5 1+ 1+ 3 3
P P2
当λ
P’
= 3 得:P (5,0 )
O
3 P 当 λ = − 得: (8,−3)
A 顶点坐标为: 例3:已知△ ABC 顶点坐标为: (1,1), B ( − 2,10 ), C (3,7 ) , :已知△
∠ BAC 平分线交 BC 边于D ,求点D 坐标。 求点 坐标。 平分角∠ 解: ∵AD 平分角∠
3、已知点 P(4,-3)、 P2 (-2,6),若 P P = 2 PP2 ,求点P坐标。 1 1 4、已知平行四边形ABCD三个顶点A(-2,1)、 D B(-1,3)、C(3,4),求顶点D的坐标。 A C
M
B
课题: 课题:线段的定比分点
授课人: 授课人:陈雷
1、向量 b 与非零向量 a 共线的充要条件是 有且只有一个
.
实数 λ ,使得 b = λ a 。 2、设点A为 (x1 , y1 ) ,B为(x2 , y2 ) ,则向量 AB 的坐标 为
线段的定比分点
解得
5 17 y 2 5 22
5.5 线段的定比分点
ABC 的三个顶点的坐标分 例2.如图, 别为 A( x1 , y1 ) , B( x2 , y2 ) , C ( x 3 , y3 ) , D是边AB的中点,G是CD上的一点, CG 且 GD 2 ,求点G的坐标. y D A
5.5 线段的定比分点
有向线段 P1 P2 的定比分点坐标公式 x x x 起点 : P ( x , y ) 1 P: y y 终点 : P ( x , y ) y 1
1 2
1
1
1
1
2
2
2
2
有向线段 P1 P2 的中点坐标公式
x1 x 2 x 2 y y1 y2 2
A B C
5.5 线段的定比分点
练习:
ABC 中, AB的中点是 (2)如图, D(-2,1),AC 的中点是 E(2,3),重 心是G(0,1),求A、B、C的坐标. A
A(0,5), B(-4,-3), C(4,1)
D G
E
B
C
作业:P117 1, 2, 4。
你能根据P点的三种不同的位置和实数 确定λ的取值范围吗?
P在之间
P1, P2
P2
P在 P1 P2 的延长线上, P在 P2 P1 的延长线上.
P1
P
P1
P2
P
P
P1
P2
0
1
1 0
5.5 线段的定比分点
设 P1 ( x1 , y1 ),P2 ( x2 , y2 ) ,P分 P1 P2 所成的比为 ,如何求P点的坐标呢? Y P1 P ( x x1 , y y1 )P(x , y )
线段的定比分点
(1)如图,点B 分有向线段 AC旳比为1 __3___ ,点C
分有向线段BA 旳比为 为3 ____53_ .
2
___52__
,点A分有向线段BC 旳比
A
B
C
(2)连结A(4,1)和B(-2,4)两点旳直线,和x轴
交点旳坐标是 (6,0,)和y轴交点旳坐标是 (0,.3)
5.5 线段旳定比分点
∴点D旳坐标为
(
x1
2
x2
,
y1
2
y2
)
CG 2 CG 2GD
B
GD
由定比分点坐标公式可得G点坐标为:
x
x3
2
x1
2
x2
x1
x2
x3
1 2
3
y
y3
2
y1
2
y2
y1
y2
y3
1 2
3
yD G
O
即点G旳坐标为
( x1
x2 3
x3
,
y1
y2 3
y3
)
A
C x
5.5 线段旳定比分点
练习:
B( x2 , y2 ) ,C( x3 , y3 ),D是边AB旳中点,G是CD上旳一点,
且CG 2,求点G旳坐标. GD
yD
A
解:∵D是AB旳中点
B
G
∴点D旳坐标为
(
x1
2
x2
,
y1
2
y2
)
C
CG 2 CG 2GD
O
x
GD
由定比分点坐标公式可得G点坐标为:
5.5 线段旳定比分点
解:∵D是AB旳中点
线段的定比分点
在平面直角坐标系内,我们分别取与X轴、Y轴方
向相同的单位向量 i , j作为基底,任作一向量a, 由平面向量基本定理知,有且仅有一对实数 x , y , 使得 a=x i+y j.
1 、把 a=x i+y j 称为向量基底形式. 2 、把(x , y)叫做向量a的(直角)坐标,
记为:a=(x , y) , 称其为向量的坐标形式. 3、 a=x i+y j =( x , y) 4、其中 x、 y 叫做 a 在X 、Y轴上的坐标.
2
2
y P2
P P1
所以,点P的坐标为
(
x1
2
x2
,
y1
2
y2
)
O
x
(1)
例3.设点P是线段P1P2上的一点,P1、P2的坐标分别是
(x1, y1), (x2 , y2 ) 。
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
y P2
y P2
A(0,5),B(-4,-3),C(4,1)
A
D
E
G
B
C
P P
P1
P1
O
x
O
x
(2)
5.5 线段的定比分点
直线l上两点 P1 、P2 ,在l上取不同于 P1 、P2的任一点P,则 P点与 P1P2 的位置有哪几种情形?
P在之间 P1P2,P在 P1P2 的延长线上, P在P2 P1的延长线上.
P1
P
P2
P1 P2
P
0
1
P
P1 P2
1 0
存在一个实数λ,使 P1P PP2,λ叫做点P分有向线