社会统计学第七章 (二)

合集下载

第七章--统计指数

第七章--统计指数

8240
Q1P1
1 kp
Q1P1
10400
8240
2160元
【例2】计算甲、乙两种商品旳销售量总指数
商品 名称
计量 单位
销售额
(万元) 基期 报告期
销售量比上年 增长(%)
甲 •件
20
25
10
乙 • 公斤 30
45
20
合计 — 50 70
——
K Q
Q1P0
Q1 Q0
Q0 P0
1.1 20 1.2 30 116%
到同度量 和权数 旳作用
基本编制原理
根据客观现象间旳内在联络,引入 同度量原因; 将同度量原因固定,以消除同度量 原因变动旳影响; 将两个不同步期旳总量指标对比, 以测定指数化指标旳数量变动程度。
一般编制原则和措施
⒈数量指标综合指数旳编制:
—采用基期旳质量指标作为同度量原因
KQ
Q1P0 Q0 P0
统计指数是研究社会经济现象数量关系旳变 动情况和对比关系旳一种特有旳分析措施。
指因为各个部分旳不同性质 而在研究其数量时,不能直 接进行加总或对比旳总体
从广义上讲,指数是指反应社会经济现象总体
数量变动旳比较指标;
从狭义上讲,指数是指反应复杂社会经济现象
总体数量变动情况和对比关系旳特殊相对数。
《统计学》第七章 统计指数
对象 指数
销售额 销售量 价格 指数 指数 指数
(总动态指数)
原因 指数
指数体系旳基本形式
⑴ 相对数形式:——对象指数等于各个 原因指数旳连乘积
Q1P1
Q0 P0
k PQ
Q1P0 Q0 P0
K Q Q1P1 Q1P0

社会统计学教学大纲

社会统计学教学大纲

社会统计学教学大纲课程名称:社会统计学英文名称:social statistics课程编号:12600722j使用专业:社会工作专业总学时数:48学时总学分:3学分大纲撰写人:文法学院社工系马永方内容简介社会统计学是社会学主干课之一,与社会学调查研究方法结合起来,完整地介绍了当代社会调查研究的科学方法和资料处理技术。

社会统计学则侧重介绍资料的收集、整理、分析和推论的处理技术。

从事社会工作研究理论和实践的人都有必要掌握社会统计学这门有用的工具。

本课程共7章。

第一章导论,介绍社会统计学和相关概念,第二章统计资料的搜集,第三章统计资料的整理,第四章到第七章是统计分析。

第四章和第五章是描述统计,第六到第七章是统计推断,第六章概率论是统计推断的基础,统计推断有两个基本内容:假设检验第七章。

一、讲授的主要内容第一章社会学研究和统计分析(2学时)第一节社会学研究的科学性第二节社会调查资料的特点和统计学的运用第二章单变量统计描述分析第一节分布统计表统计图第二节集中趋势测量法第三节离散趋势测量法第三章概率(3学时)第一节基础概率第二节概率分布、均值和方差第四章二项分布及其他离散型随机变量的分布(3学时)第一节二点分布第二节排列与组合第三节二项分布第四节多项分布第五节超几何分布第六节泊松分布第五章正态分布、常用统计分布和极限定理(3学时)第一节什么是正态分布第二节标准正态分布第三节标准正态分布表的使用第四节常用统计分布第五节大数定理和中心极限定理第六章参数估计(4学时)第一节名词解释第二节参数的点估计第四节正态总体的区间估计第五节大样本区间估计第七章假设检验(4学时)第一节统计假设第二节统计检验的基本步骤一、建立假设二、求抽样分布三、选择显著性水平和否定域四、计算检验统计量五、判定第八章单总体假设检验(4学时)第一节大样本假设检验第二节小样本假设检验第九章二总体假设检验第一节引言第二节大样本二总体假设检验第三节小样本二总体假设检验第十章列联表(4学时)第一节什么是列联表第二节列联表的检验第三节列联强度第十一章等级相关(定序变量之间)(4学时)第一节斯皮尔曼等级相关系数第二节Gamma等级相关第三节其他等级相关系数第十二章回归与相关(6学时)第一节回归研究的对象第二节回归直线方程的建立与最小二乘法第三节回归方程的假定与检验第四节相关第五节用回归方程进行预测第十三章方差分析(3学时)第一节引言第二节一元方差分析第三节二元方差分析第四节多元方差分析第十四章非参数检验(4学时)第一节非参数检验第二节符号检验第三节符号秩检验第四节累计频次检验第十五章抽样(4学时)第一节引言第二节抽样调查方法第四节样本容量的确定二、参考书目1. 社会统计学,卢淑华,北京大学出版社,2005年第三版.2.社会统计学,张彦,高等教育出版社,2005年第一版.3.社会统计学导论,周德民、贺翠微,中南大学出版社,2004年第一版.教学大纲说明一、教学目的与课程性质任务本课程属于专业限选课,是社会工作专业课程体系的重要组成部分。

电大 社会统计学 第七章 统计推断

电大 社会统计学  第七章 统计推断

(二)置信水平和置信空间
置信区间是在区间估计中,由样本统计量所构造的 总体参数的估计区间,它有估计量加减抽样误差构 成,我们将区间的最小值称为置信下限,区间的最 大值称为置信上限。 置信水平就是将构造置信区间的步骤重复很多次, 置信区间包含总体参数真值的次数所占的比例。
求置信区间的步骤
(四)区间估计
(三)样本均值抽样分布的特征
• 假设从容量N的总体中抽取容量为n的样本,其中总体的均值 为μ,方差为σ2,样本均值的数学期望为E( X ),方差为σ2x
三、样本比例的抽样分布
• 用π表示总体比例,用P表示样本比例。
第三节 参数估计
• 参数估计是统计推断的一个重要部分,它是用样本统计量推 断总体参数的过程。 • 参数估计可分为点估计和区间估计两种类型。 • 一、点估计 • 点估计就是直接用估计量作为总体参数θ的估计值。用样本均 值直接作为总体均值μ的估计值,用样本比例P直接作为总体 比例π的估计值,用样本方差直接作为总体方差的估计值 等。例如,随机样本的均值为6分,我们用6分直接作为总体 的估计值,认为这次考试总体平均分为6分,这就是点估计。
• 假设检验的基本思想可以用小概率原理解释。 • 小概率原理,就是在一次试验中小概率事件是几乎 不可能发生的。也就是说,如果我们对总体的某个 假设是真实的,那么极端值(不支持假设的事件) 是几乎不可能发生的。如果发生了,我们就有理由 怀疑这一假设的真实性,拒绝这一假设。
第四节 假设检验
• 二、虚无假设和替换假设
• (3)有效性。是指当总体参数的无偏估计不止一个统计量时, 标准差小的估计量更有效,标准差大的有效性就相对差。也 就是说,估计量与总体参数的离散程度也要较小。 • (4)充分性。是指一个容量为的样本统计量,是否充分反映 了全部个数据所反映总体的信息,这就是充分性。

《统计学》第七章抽样推断第二节 抽样误差

《统计学》第七章抽样推断第二节 抽样误差
6-3
经济、管理类 基础课程
统计学
二、抽样误差的影响因素
差异越大,抽 样误差越大
单位数越多, 抽样误差越小
1.总体各单位标志值的差异程度; 2.样本的单位数; 3.抽样的方法; 4.抽样调查的组织形式。
重复抽样的抽 样误差比不重 复抽样的大 6-4 简单随机抽样 的抽样误差最 大
三、抽样平均误差

p p P


如果抽样极限误差用抽样平均误差来 衡量,则有: x t x 或 p t p
9
式中, N为总体单位数; n为样本容量;σP2 为总体成数方 差一般情况下是末知,可用样本成数方差替代σp2 。
8
四、抽样极限误差

抽样极限误差是指用绝对值形式表示的样本指 标与总体指标偏差可允许的最大范围。即:

x x X

即,抽样极限误差是 抽样平均误差的多少 式中, x样本平均指标 ;X 为总体平均指标 倍。我们把倍数 t称 p为样本成数;P 为总体成数 。 为抽样误差的概率度
2
n ( 1- ) 当N 很大时,可近似表示为: = n N
6
1. 重复抽样的条件下
平均数的抽样平均误差 : x

n
式中,n为样本容量; 为总体标准 。


成数的抽样平均误差 : p
p
n
式中,n为样本容量; 为总体成数标准差 P 一般情况下是末知,可用样本成数标准差替代 p。
P(1 P)

7
2. 不重复抽样的条件下
平均数的抽样平均误差 : x 当N很大时近似为 x
2 ( N n)
n( N 1)

2

社会统计学,卢淑华(第4版),第7,8章.pptx

社会统计学,卢淑华(第4版),第7,8章.pptx

假设检验的基本步骤
第1步:提出原假设和备择假设。 支持的命题为:备择假设 备择假设的对立面则为原假设 第2步:选择适当的检验统计量(test statistic) ,并 根据样本信息计算检验统计量的值
估计量-假设(H 0 )值 标准化检验统计量= 标准误差
第3步:选择显著性水平,确定临界值
总体参数的区间估计
用样本信息检验总体信息
第七章 假设检验 Hypothesis testing
一、假设检验的基本内容
(一)假设检验的基本思想 假设检验(hypothesis testing)是除参数估计之 外的另一类重要的统计推断问题。它的基本思想可以 用小概率原理来解释。所谓小概率原理,就是认为小 概率事件在一次试验中是几乎不可能发生的。也就是 说,如果对于总体的某个假设是真实的,那么不利于 或不可能支持这一假设的小概率事件A在一次试验中 几乎是不可能发生的,要是一次试验中事件A竟然发 生了,我们就有理由怀疑这一假设的真实性,拒绝这 一假设。
原假设 H0 原假设(null hypothesis)通常是研究 者想收集证据予以反对的假设,也称为 零假设,用表示。一般来说,原假设建 立的依据都是已有的、具有稳定性的, 从经验看,没有发生条件的变化,是不 会被轻易否定的。换句话讲,进行假设 检验的基本目的,就在于作出决策:接 受原假设还是拒绝原假设。
临界值计算 比较判断
由于 z 2.77 z 1.645
故不能拒绝原假设。
例6(P251) H0:μ≤20
右侧检验 H1:μ>20 假设设定
分析:正态总体,方差未知,小样本
统计量选择
统计量计算
23.5 20 t 3.5 s/ n 3/ 9
x 0

社会统计学(卢淑华),第七章

社会统计学(卢淑华),第七章



3、给出小概率 4、用样本统计量的观测值进行判断
例:某地收入水平调查状况如下:x 870 s 21 n 50 问:该地上报的平均收入为880元是否 可信?(显著性水平为 0.05)


(二)两类错误 1、弃真错误: 把一次观测中出现在拒绝域的小概率事件 当作对原假设的拒绝,此时会发生。犯错 误的大小为 2、纳伪错误:
在接受原假设时犯的错误,犯错误的概率 为 。 0 越小, 数值越大
2
拒绝 H 0 ;反之接受 2)单边检验

H
0
右侧:只有当样本计算统计量的值过大:
z z 才会落入拒绝域;如果 z z 接受。

左侧: pz z
三、假设检验的步骤不两类错误
其分布
0



3、假设检验的基本原理: 小概率原理: 1)小概率事件是在一次观察中是不可能出现的事 件。 2)如果在一次观察中出现了小概率事件,那么, 合理的想法是否定原有事件具有小概率的说法。 假设检验思想在统计学中的描述:经过抽样获得 一组数据(即样本):根据样本计算的统计量, 如果:原假设成立的条件下几乎不可能发生的, 就拒绝或否定原假设;如果在原假设成立的条件 下,根据样本计算的统计量发生的可能性不是 小,则接受。
第七章 假设检验的基本概念
一、统计假设 1、统计假设:

收集资料的范围仅是全体的一部分,是一 个随机样本,那么,这种和抽样手段联系 在一起,并且依靠抽样数据进行验证的假 设,即统计假设。
2、原假设和备择假设
1)原假设(虚无假设或解消假设)H 0 : 根据已有资料周密考虑后确定 2)备择假设(研究假设)H 1 : 原假设的逻辑对立假设 三种形式:单边(左、右) 双边

统计学 第 七 章 相关与回归分析

统计学 第 七 章 相关与回归分析
3. 利用所求的关系式,根据一个或几个变量 的取值来预测或控制另一个特定变量的取 值,并给出这种预测或控制的精确程度
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。

统计学 第七章 统计指数

统计学 第七章 统计指数

④按指数化指标的性质不同分为: 数量指标指数: 数量指标指数:也称物量指数 例如:产量指数、销售量指数、结构影响指数
质量指标指数: 质量指标指数:
例如:价格指数、单位成本指数、固定构成指数 ⑤按其比较现象的特征不同: 时间指数: 时间指数:反映同类现象在不同时间的发展变动情况对比的相 对数 区域指数: 区域指数:反映同类现象在不同地区或不同单位之间对比的相 对数 计划完成指数: 计划完成指数:反映研究现象在同一单位或同一地区实际数 与计划数之间对比的相对数 ⑥按其在指数体系中所处的位置与作用不同: 现象总体指数: 现象总体指数:包括两个或两个以上因素同时变动的相对数 影响因素指数: 影响因素指数:只有一个因素变动,并从属于某一现象总体 指数的相对数
狭义理解: 反映复杂现象总体数量变动的相对数。 反映复杂现象总体数量变动的相对数。 复杂现象总体数量变动的相对数 狭义理解: 百科全书》 复杂现象总体是相对于简单现象总体而言的。 复杂现象总体是相对于简单现象总体而言的。 简单现象总体指总体的单位和标志值可以直接加 简单现象总体指总体的单位和标志值可以直接加 以总计,如某种产品产量、产品成本等; 以总计,如某种产品产量、产品成本等; 复杂现象总体指总体单位和标志值不能直接加以 复杂现象总体指总体单位和标志值不能直接加以 不同商品的价格。 总计,如不同产品的产量、不同商品的价格。
下标 1表示报告期, 表示基期 0

反映多种商品销售量变动的指数公式有: 反映多种商品销售量变动的指数公式有: ∑ q1 p0 ∑ q1 p1 ∑ q1 pn
∑q
0
p0
∑q
0
p1
∑q
0
pn
拉氏指数
帕氏指数
不变价指数
反映多种商品销售价格变动的指数公式有: 反映多种商品销售价格变动的指数公式有:

统计学 第七章 参数估计

统计学 第七章 参数估计

[
]
2 χα (n) (n)的α 分位数,记为k≜ n k≜
抽样分布
(3)性质 • 若X服从χ2 (n),则均值E(X)=n ,方差 D(X) =2n 。 • χ2分布具有可加性。若 X1,X2相互独立,
X1~ χ2(n1) ,X2~χ2(n2)
则(X1+X2)~χ2(n1+n2) • 当n→∞时,χ2分布渐进于正态分布
σ
2
~ χ (n −1)
2
第三节两个总体参数的区 间估计(112页)
• • • • • • • 一、两个总体均值之差的区间估计 (一)两个总体均值之差的估计:独立样本 大样本:近似于正态分布 小样本: (1)两个总体的方差均已知,近似于正态分布 (2)两个总体的方差均未知但相等,近似于t分布 (3)两个服从正态分布的总体的方差均未知且不等, 但样本容量相等,近似于t分布 • (4)两个总体的方差均未知且不等,样本容量也不 等,近似于t分布,自由度为V
• 解:求(3)的计算步骤: • ①求样本指标:
x =1000小时
σ=50 (小时)
µ x=
σ
n

50 100
=(小时) 5
• ②根据给定的F(t)=95%,查概率表得t=1.96。 • ③根据∆x=t×µx=1.96×5=9.8,计算总体平均耐 用时间的上、下限: x − ∆ x=1000-9.8=990.(小时) 2 • 下限 x +∆ x=1000+9.8=1009 .(小时) 8 • 上限 • 所以,以95%的概率保证程度估计该批产品的平均耐 用时间在990.2~1009.8小时之间。
f (x;θ ) 其中 θ
或概率密度为
是未知参数。 是未知参数。
如何求极大似然估 计量呢? 计量呢?

统计学第四版第七章课后题最全答案

统计学第四版第七章课后题最全答案

第七章 练习题参考答案7.1 (1)已知σ=5,n=40,x =25,α=0.05,z05.0=1.96样本均值的抽样标准差σx=n σ=79.0405= (2)估计误差(也称为边际误差)E=z 2αnσ=1.96*0.79=1.55 7.2(1)已知σ=15,n=49,x =120,α=0.05,z05.0=1.96(2)样本均值的抽样标准差σx=nσ==49152.14 估计误差E=z 2αnσ=1.96*=49154.2 (3)由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=120±1.96*2.14=120±4.2,即(115.8,124.2)7.3(1)已知σ=85414,n=100,x =104560,α=0.05,z05.0=1.96由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=104560±1.96*=10085414104560±16741.144即(87818.856,121301.144)7.4(1)已知n=100,x =81,s=12, α=0.1,z21.0=1.645由于n=100为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=81±1.645*=1001281±1.974,即(79.026,82.974)(2)已知α=0.05,z205.0=1.96由于n=100为大样本,所以总体均值μ的95%的置信区间为:ns x z 2α±=81±1.96*=1001281±2.352,即(78.648,83.352)(3)已知α=0.01,z201.0=2.58由于n=100为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=81±2.58*=1001281±3.096,即(77.94,84.096)7.5(1)已知σ=3.5,n=60,x =25,α=0.05,z05.0=1.96由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=25±1.96*=60.5325±0.89,即(24.11,25.89)(2)已知n=75,x =119.6,s=23.89, α=0.02,z202.0=2.33由于n=75为大样本,所以总体均值μ的98%的置信区间为:ns x z 2α±=119.6±2.33*=759.823119.6±6.43,即(113.17,126.03)(3)已知x =3.419,s=0.974,n=32,α=0.1,z21.0=1.645由于n=32为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=3.419±1.645*=3274.90 3.419±0.283,即(3.136,3.702)7.6(1)已知:总体服从正态分布,σ=500,n=15,x =8900,α=0.05,z205.0=1.96由于总体服从正态分布,所以总体均值μ的95%的置信区间为:nx z σα2±=8900±1.96*=155008900±253.03,即(8646.97,9153.03)(2)已知:总体不服从正态分布,σ=500,n=35,x =8900,α=0.05,z205.0=1.96虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的95%的置信区间为:nx z σα2±=8900±1.96*=355008900±165.65,即(8734.35,9065.65)(3)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500, α=0.1,z21.0=1.645虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=8900±1.645*=355008900±139.03,即(8760.97,9039.03)(4)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500, α=0.01,z201.0=2.58虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=8900±2.58*=355008900±218.05,即(8681.95,9118.05)7.7 已知:n=36,当α=0.1,0.05,0.01时,相应的z21.0=1.645,z205.0=1.96,z201.0=2.58根据样本数据计算得:x =3.32,s=1.61由于n=36为大样本,所以平均上网时间的90%置信区间为:ns x z 2α±=3.32±1.645*=361.61 3.32±0.44,即(2.88,3.76)平均上网时间的95%置信区间为:ns x z 2α±=3.32±1.96*=361.61 3.32±0.53,即(2.79,3.85)平均上网时间的99%置信区间为:ns x z 2α±=3.32±2.58*=361.61 3.32±0.69,即(2.63,4.01)7.8 已知:总体服从正态分布,但σ未知,n=8为小样本,α=0.05,)(18t205.0-=2.365 根据样本数据计算得:x =10,s=3.46 总体均值μ的95%的置信区间为:ns x t 2α±=10±2.365*=83.4610±2.89,即(7.11,12.89)7.9 已知:总体服从正态分布,但σ未知,n=16为小样本,α=0.05,)(116t205.0-=2.131 根据样本数据计算得:x =9.375,s=4.113从家里到单位平均距离的95%的置信区间为:ns x t 2α±=9.375±2.131*=144.1139.375±2.191,即(7.18,11.57)7.10 (1)已知:n=36,x =149.5,α=0.05,z205.0=1.96由于n=36为大样本,所以零件平均长度的95%的置信区间为:ns x z 2α±=149.5±1.96*=361.93149.5±0.63,即(148.87,150.13)(2)在上面的估计中,使用了统计中的中心极限定理。

《统计学》第七章(抽样调查)

《统计学》第七章(抽样调查)

20
(1)以99.73%的概率保证程度估计这批茶叶平均每包重量的 范围,以便确定平均重量是否达到规格要求。
第七章 抽样调查
第一节 抽样调查概述 第二节 抽样估计 第三节 抽样的组织形式
1
第一节 抽样调查概述 一、抽样调查的含义
(一)抽样推断的含义 抽样调查是按随机原则,从全部研究对象中抽取一
部分单位进行观察,并根据样本的实际数据,对总体的 数量特征做出具有一定可靠程度的估计和判断,从而达 到对全部研究对象的认识的一种统计方法。其中心问题 是如何根据已知的部分资料来推断未知的总体情况。
(3)抽样总体标准差和抽样总体方差。
说明抽样总体之间标志值变异程度的指标,叫做抽样
总体标准差。抽样总体标准差的平方称为抽样总体方
差(简称样本方差)。其计算公式为:
s
2
xx n
2
s2 x x n
20
一个总体可以抽取许多个样本,而样本不同, 抽样指标的数值也各不相同。可见,抽样指标的数 值不是惟一确定的。因为抽样指标是样本变量的函数, 是随机可变的变量。也就是说,由 样本观测值所决定的 统计量是随机变量。
x=2*60=120
8480~8720
(2) up=3.1%
p=6.2%
68.8%~81.2%
50
例4,某外贸公司出口一种茶叶,规定每包规格不低于150克。 现在用不重复抽样的方法抽取其中1%进行检验,其结果如下:
每包重量 (克)
包数
148~149
10
149~150
20
150~151
50
151~152
21
(三)重复抽样和不重复抽样 1.重复抽样(重置抽样) 采用这种方法抽取样本单位的特点是:同一单位 有多次重复被抽中的机会,并且总体单位数目始 终不变,每个单位抽中或抽不中的机会在各次都 是相同的。

《社会统计学》全书目录

《社会统计学》全书目录

《社会统计学》全书目录第一章导论第一节什么是社会统计学社会统计的产生与发展·社会统计学的对象与特点·社会统计的方法·社会统计工作的程序第二节社会统计学的几个基本概念总体与单位·标志与变量·指标与指标体系第二章社会统计资料的搜集第一节统计调查的方法及种类原始资料与次级资料·静态资料与静态资料·全面调查与非全面调查·一般调查与专项调查·经常性调查与一次性调查第二节统计调查的组织形式普查·重点调查·典型调查·抽样调查第三节概念的操作化与测量概念的操作化·定类尺度·定序尺度·定距尺度·定比尺度第四节统计误差登记性误差·代表性误差·抽样误差第三章社会统计资料的整理第一节统计分组的原则与标准“穷举”与“互斥”·频数(或次数)分布数列·品质数列与变量数列第二节统计表统计表的格式、内容与种类·统计表的制作规则第三节变量数列的编制对于离散变量·对于连续变量·组距和组数的确定·累计频数第四节统计图直方图·折线图·曲线图·累计顿数分布曲线·洛仑兹曲线与基尼系数第四章集中趋势测量法第一节算术平均数对于未分组资料的算术平均数计算·对于分组资料的算术平均数计算·算术平均数的性质第二节中位数对于未分组资料的中位数计算·对于分组资料的中位数计算·中位数的性质·其他分割法第三节众数对于未分组资料的众数计算·对于分组资料的众数计算·众数的性质第四节几何平均数、调和平均数及其他几何平均数·调和平均数·各种平均数的关系第五章离中趋势测量法第一节全距与四分位差全距·四分位差第二节平均差对于未分组资料A·D的计算·对于分组资料A·D的计算·平均差的性质第三节标准差对于未分组资科S的计算·对于分组资料S的计算·标准差的性质·标准分第四节相对离势变异系数·异众比率·偏态系数第六章概率与概率分布第一节概率论随机现象和随机事件·事件之间的关系·先验概率·经验概率第二节概率的数学性质概率的数学性质·排列与样本点的计数·运用概率方法进行统计推断的前提第三节概率分布、期望值与变异数离数型随机变量及其概率分布·连续型随机变量的概率分布·分布函数·数学期望·变异数第七章假设检验第一节二项分布二项分布的数学形式·二项分布的讨论第二节统计检验的基本步骤建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布正态分布的数学形式·标准正态分布·正态曲线下的面积·二项分布的正态近似法第四节中心极限定理抽样分布·中心极限定理第五节总体均值和成数的单样本检验σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验)·关于总体成数的检验第八章常用统计分布第一节超几何分布超几何分布的数学形式·超几何分布的数学期望与方差·关于超几何分布的近似第二节泊松分布泊松分布的数学形式·泊松分布的性质·关于泊松分布的近似第三节卡方分布(2 分布)卡方分布的数学形式·卡方分布的性质·样本方差的抽样分布第四节F分布F分布数学形式·F分布的性质·关于F分布的近似第九章参数估计第一节点估计无偏性·一致性·有效性第二节区间估计精确性和可靠性·抽样平均误差与概率度·区间估计的步骤第三节其他类型的置信区间σ未知,小样本总体均值的区间估计·总体成数的估计·总体方差的区间估计第四节抽样平均误差简单随机抽祥的抽样误差·分层抽样的抽样误差·整群抽样的抽样误差·等距抽祥的抽样误差第五节样本容量的确定影响样本容量的因素·确定样本容量第十章双样本假设检验及区间估计第一节两总体大样本假设检验大样本均值差检验·大样本成数差检验第二节两总体小样本假设检验小样本均值差检验·小样本方差比检验第三节配对样本的假设检验单一实验组的假设检验·一实验组与一控制组的假设检验·对实验设计与相关检验的评论第四节双样本区间估计σ12和σ22已知,对均值差的区间估计·σ12和σ22未知,对均值差的区间估计·大样本成数区间估计·配对样本均值差的区间估计第十一章非参数检验第一节符号检验配对样本的“符号检验”·符号检验与二项检验·简便检验·“符号检验”的作用第二节配对符号秩检验配对样本的符号秩检验·配对符号秩检验的步骤·符号秩检验的效力第三节秩和检验独立样本的秩和检验·秩和·秩和检验的具体步骤·U检验第四节游程检验独立样本的游程检验·游程·游程检验的具体步骤·差符号游程检验第五节累计频数检验独立样本的累计频数检验·累计频数检验的步骤·没有预测方向和已经预测方向·经验分布与理论分布之比较第十二章相关与回归分析第一节变量之间的相互关系相关程度与方向·因果关系第二节定类变量的相关分析列联表·削减误差比例·λ系数·τ系数第三节定序变量的相关分析同序对、异序对、同分对·G amma系数·肯德尔等级相关系数·萨默斯(d系数)·斯皮尔曼等级相关系数·肯德尔和谐系数第四节定距变量的相关分析相关表和相关图·积差系数的导出和计算·积差系数的性质第五节回归分析线性回归·积差系数的PRE性质·相关指数R第六节曲线相关与回归第十三章2 检验与方差分析第一节拟合优度检验问题的导出·拟合优度检验(比率拟合检验)·正态拟合检验第二节无关联性检验独立性、理论频数及自由度·关于频数比较和连续性修正·列联表的卡方分解·关系强度的量度第三节方差分析总变差及其分解·关于自由度·关于检验统计量F o的计算·相关比率·关于方差分析的几点讨论第四节回归方程与相关系数的检验回归系数的检验·积差系数的检验·回归方程的区间估计第十四章动态分析与指数分析第一节时间数列及其指标分析时间数列的构成与分类·动态比较指标·动态平均指标第二节时间数列的趋势分析随手绘法·移动平均法·半数平均法·最小平方法第三节指数分析法动态指数及其分类·质量指标综合指数·数量指标综合指数·用与个体指数的联系来求综合指数·其他权数形式的质量和数量综合指数·指数体系和因素分析·静态指数。

统计学第七章课后题及答案解析

统计学第七章课后题及答案解析

第七章 一、单项选择题1.按指数所包括的范围不同, 可以把它分为( )A.个体指数和总指数 B .数量指标指数和质量指标指数C.综合指数和平均指数 D.定基指数和环比指数2. 某集团公司为了反映所属各企业劳动生产率水平的提高情况 ,需要编制(A.质量指标综合指数B.数量指标综合指数C.可变构成指数D.固定构成指数3.在一般情况下,商品销售量指数和工资水平指数的同度量因素分别为( 商品销售量、平均工资水平 单位商品销售价格、职工人数 下列指数中属于数量指标指数的是 产品价格指数 产量指数 下面属于价格指数的是(B .商品销售量、职工人数D.单位商品销售价格、平均工资水平 )B .单位成本指数 D.劳动生产率指数5. A.工RQ 1 氓Q 1B -F 1Q 1ZFO Q OC.QZP0QoD E pQ oZP0Q O6. A.7. 某商品价格发生变化,现在的10%B. 90% 固定构成指数的公式是(100元只值原来的 C. 110%)90元,则价格指数为(D. 111%A. C.1. A. D.2. A. C. E.3. A. D.4.A. C. ZX i F i ZF iZX 1F 1ZF I... ZX P F O 1F0 D. ZX O F^ IXo F oIX 0F 1ZF iZFoIX 1F 0ZF O、多项选择题下列属于数量指标指数的有( 产量指数单位产品成本指数 下列表述正确的是( 综合指数是先综合后对比 平均数指数必须使用全面资料 固定构成指数受总体结构影响 同度量因素的作用有( 同度量作用 B.比较作用E. )B.销售量指数E.职工人数指数C.价格指数B .平均数指数是先对比后综合 D.平均数指数可以使用固定权数联系作用平衡作用c.权数作用对某商店某时期商品销售额的变动情况进行分析,其指数体系包括( 销售量指数B.销售价格指数总平均价格指数 D.销售额指数 E.个体指数若用某企业职工人数和劳动生产率的分组资料来进行分析时,该企业总的劳动生产率的A.C.4.A.C.变动主要受到()A.企业全部职工人数变动的影响B.企业劳动生产率变动的影响C.企业各类职工人数在全部职工人数中所占比重的变动影响D.企业各类工人劳动生产率的变动影响E.受各组职工人数和相应劳动生产率两因素的影响6.下列指数中,属于拉氏指数的有()' Q1P01 0 1 01 1 1 1P0Q0 P0Q1 C X Q0 P0 P0Q1 Q0 P1 7.某企业产品总成本报告期为183150元,比基期增长10%单位成本综合指数为104%则()A.总成本指数110%B.产量增长了5.77%C.基期总成本为166500元D.单位成本上升使总成本增加了7044元E.产量增产使总成本增加了9606元三、判断题1.综合指数的编制方法是先综合后对比。

统计学原理第七章_相关分析

统计学原理第七章_相关分析

各类相关关系的表现形态图
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象 之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个 合适的数学模型,来近似地表达变量之 间的平均变化关系。(高度相关)
• (三)相关分析与回归分析的联系
• 1. 它们有具有共同的研究对象。
n
(x x )(y y ) n
σx
(x x )
n
2

(x x ) n
(y y ) n
1
1
2
σy
(y y )
n
2

2
再代入到原公式中,得:
r σ
2 xy
σx y σ

( x x ) ( y y ) ( x x ) ( y y )
2
·· ·②
销售收入 (百万元)
40 30 20 10 0 0 20 40 60 80 100
广告费(万元)
钢材消费量与国民收入
2500
2000
1500
钢材消费量(万吨)
1000
500
0
(相关图)
0
500
1000
1500
2000
2500
3000
国民收入(亿元)
例子
表1 某企业产量与生产费用的关系
企业编号 1 2 3 4 5 6 7 8
量,哪个是因变量,变量都是随机的。
• 2. 回归分析是对具有相关关系的变量间
的数量联系进行测定,必须事先确定变
量的类型。通常因变量是随机的,自变
量可以是随机的,也可以是非随机的。
第二节 简单线性相关分析

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学第七章、第⼋章课后题答案统计学复习笔记第七章参数估计⼀、思考题1.解释估计量和估计值在参数估计中,⽤来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本⽐例、样本⽅差等。

根据⼀个具体的样本计算出来的估计量的数值称为估计值。

2.简述评价估计量好坏的标准(1)⽆偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的⽅差尽可能⼩。

对同⼀总体参数的两个⽆偏估计量,有更⼩⽅差的估计量更有效。

(3)⼀致性:是指随着样本量的增⼤,点估计量的值越来越接近被估总体的参数。

3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道⼀些调查结果只给出百分⽐和误差(即置信区间),并不说明置信度,也不给出被调查的⼈数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查⼈数是负责任的表现。

这样则可以由此推算出置信度(由后⾯给出的公式),反之亦然。

4.解释95%的置信区间的含义是什么置信区间95%仅仅描述⽤来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,⽆穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某⼀样本数据得到总体参数的某⼀个95%置信区间,就以为该区间以的概率覆盖总体参数。

5.简述样本量与置信⽔平、总体⽅差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信⽔平1-α、总体⽅差、估计误差E 之间的关系为与置信⽔平成正⽐,在其他条件不变的情况下,置信⽔平越⼤,所其中: 2222α2222)(E z n σα=n z E σα2=需要的样本量越⼤;与总体⽅差成正⽐,总体的差异越⼤,所要求的样本量也越⼤;与与总体⽅差成正⽐,样本量与估计误差的平⽅成反⽐,即可以接受的估计误差的平⽅越⼤,所需的样本量越⼩。

社会统计学第7章假设检验的基本概念

社会统计学第7章假设检验的基本概念
即直接检验H0,间接检验H1。
•小概率 原理:
如果对总体的某种假设是真实的,那么不利于 或不能支持这一假设的事件A(小概率事件)在 一次试验中几乎不可能发生的;要是在一次试 验中A竟然发生了,就有理由怀疑该假设的真实 性,拒绝这一假设。
总体
抽样
(某种假设)
检验
(接受)
小概率事件 未发生
样本 (观察结果)
H0:μ≤μ0,H1:μ>μ0(右端检验)
右端检验与左端检验
右端检验:临界值和显
著性水平有如下的关系式:
P(Z>Z)= 左端检验:临界值和显著
性水平有如下关系式:
P(Z<-Z)=
注意:相同的情况下,
接受域
否定域
Z
一端检验比二端检验功效高些,
也就是说二端检验更难否定研
接受域
究假设。
否定域-Z
四、假设检验的检验规则
第七章
假设检验的基本概念
一、什么是假设检验
所谓假设检验,就是先成立一个关于 总体情况的假设,然后抽取一个随机样本, 以样本的统计值来验证对总体的假设。
假设检验的意义:由于我们难以完全 知道所关心的总体的数量特征与变化情况, 因此常常需要对其进行假设,而假设是否 成立,需要进行检验。
假设在社会科学中可以用于不同的层次。最高 层次是理论假设,而理论层次的假设一般是无法加 以直接验证的。为了能从理论上证实这些假设,必 须概念操作化,把理论假设转变为可操作的经验性 假设。再通过社会调查证明原有的假设是否合理。
显著性水平
显著性水平,一般是指在原假设成立
条件下,统计检验中所规定的小概率的标
准,即规定小概率的数量界线,常用的标
准有=0.10,=0.05或=0.01(即否定

《统计学》-第7章-习题答案

《统计学》-第7章-习题答案

第七章思考与练习参考答案1 •答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在定的范围内变化。

2•答:相关和回归都是研究现象及变量之间相互关系的方法。

相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。

3•答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数二样本相关系数,「一】。

复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数R2的正的平方根。

偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。

4.答:回归模型假定总体上因变量Y与自变量X之间存在着近似的线性函数关系,可表示为Y^ 11X t u t,这就是总体回归函数,其中u t是随机误差项,可以反映未考虑的其他各种因素对Y的影响。

根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:Y?=耳+弭x t。

总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。

两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。

第二,总体回归函数中的-0和-1是未知的参数,表现为常数;而样本回归直线中的'?Q和?i是随机变量,其具体数值随所抽取的样本观测值不同而变动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23
二、双均值检定
双均值: 比较两个总体的均值是否相同。 对两个总体的关系进行假设:H1:M1≠M2 通过两个样本值来检验该假设,成立H0:M1=M2 • 双均值的检定: Z检定(大样本,n1+n2≥100) (不严格时,n1+n2≥50 ) t检定(小样本,n1+n2<100 )
24
(一)Z检定
16
17
自由度:
• 是指当以样本的统计量来估计总体的参数时, 样 本中能自由变化的个案的数量,称为该统计量的 自由度。 • 在计算t值时,需要的是样本均值,在样本均值一 定的情况下,该样本中有多少个个案的取值可以 自由变化?
• df=n-1
18
• 不同的自由度t分布形状不同,同一显著度 下否定域的大小也有所不同。
第三篇
统计推论:单变量与双变量
1
• 第五章:抽样与统计推论 • 第六章:参数值的估计
• 第七章:假设检定:均值与百分率
• 第八章:假设检定:两个变量的相关
2
第二节 单均值与均值差异
3
一、单均值
研究假设是总体的一个均值的情况,怎样检验虚无 假设? • Z检定:大样本。 (n≥100;有时n≥50 ) • t检定:小样本。(尤其n≤30) • 两者都是参数检定法,要求总体具备以下条件: ①定距变量 ②随机样本 ③总体呈正态分布。(此项要求不严格,尤其是样 本量大的时候。)
例子:
27
28
19
例子
20
在利用t检定之前,我们首先考虑这种状况是否适合 进行t检定: 1.是定距变量吗? 2.是随机样本吗? 3.样本量多大? 4.总体呈正态分布吗?
21
t检定解题步骤:
一、H0:M=60。 二、显著度为p≤0.05,一端检定。 三、自由度:df=n-1=25 查附录五可知否定域为:
四、计算t值:
13
(二)t检定
• t分布(又称学生分布) • t检定法适用于小样本(n≤30),
14
15
t分布的特点:
①左右对称,单峰 ②t分布在n无限大时接近正态分布。 ③t分布的尾巴拖得比较长(比正态分布)——扁平 ④t分布的形状取决于自由度df=n-1 自由度越小,t分布越扁平,自由度越大,t分布越 高耸。
6
7
8
例子
9
在利用Z检定之前,我们首先考虑这种状况是否适合 进行Z检定: 1.是定距变量吗? 2.是随机样本吗? 3.样本量大于100吗? 4.总体呈正态分布吗?
10
Z检定的解题步骤:
一、H0:M=60。 二、显著度为p≤0.05,二端检定。 三、查附录三可知否定域为
四、计算Z值:
五、比较可知Z值不在否定域。因此不能否定H0。 六、结论:
4
(一)Z检定
Z检定的原理: • 设立虚无假设H0,据此成均值抽样分布。 • 计算随机样本的均值在此抽样分布中出现的概率。 • 当这个概率小于我们选定的显著度的时候,我们 就否定虚无假设H0,转而接受研究假设H1。
5
Z值的计算公式:
其中 是样本均值,M是总体均值(通过假设的方 式得到),S是样本的标准差,n是样本量。
五、比较可知t值在否定域。因此可以否定H0。 六、结论: 若以0.05为显著度,可以接受研究假设:即认来自某校学生的 平均成绩大于60分。
22
课后作业: • 为了验证统计报表的正确性,共作50位老人的随 机抽样调查,人均养老金收入为:
• 问能否证明统计报表中养老金人居收入为M=880 元是正确的(显著度为0.05)?(解题步骤要写 完整)
11
思考:若上述例子中将研究假设定为H1:M<60。 那么,结果会怎样? • 由此可知:当研究假设能够定出方向的时候,就 更容易否定虚无假设。 • 还可以知道:当显著度一定的时候,两端检定比 一端检定更难否定虚无假设。
12
再思考:若上述例子中H1:M<60,将显著度选为p ≤0.01,结果会怎样? • 由此可知:同一情况,选择的显著度越小,越难 否定虚无假设。
• 中央极限定理的一个推论,当样本量较大时,两 个随机样本的均值差的抽样分布近似正态。 总体1:均值M1 样本1:均值X1,标准差S1 总体2:均值M2 样本2:均值X2 ,标准差S2 • (X1- X2)的抽样分布在大样本时是近似正态 的。
25
• H0的抽样分布下,Z值的计算公式为:
26
相关文档
最新文档