2020-2021中考数学圆的综合综合经典题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学圆的综合综合经典题含答案
一、圆的综合
1.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC
(1)求证:AC 是⊙O 的切线;
(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.
【答案】(1)见解析;(2)30.
【解析】
【分析】
(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.
【详解】
(1)证明:∵CD 与⊙O 相切于点E ,
∴OE CD ⊥,
∴90CEO ∠=︒,
又∵OC BE P ,
∴COE OEB ∠=∠,∠OBE=∠COA
∵OE=OB ,
∴OEB OBE ∠=∠,
∴COE COA ∠=∠,
又∵OC=OC ,OA=OE ,
∴OCA OCE SAS ∆∆≌()
, ∴90CAO CEO ∠=∠=︒,
又∵AB 为⊙O 的直径,
∴AC 为⊙O 的切线;
(2)解:∵四边形FOBE 是菱形,
∴OF=OB=BF=EF ,
∴OE=OB=BE ,
∴OBE ∆为等边三角形,
∴60BOE ∠=︒,
而OE CD ⊥,
∴30D ∠=︒.
故答案为30.
【点睛】
本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.
2.已知▱ABCD 的周长为26,∠ABC=120°,BD 为一条对角线,⊙O 内切于△ABD ,E ,F ,G
为切点,已知⊙O 的半径为▱ABCD 的面积.
【答案】
【解析】
【分析】
首先利用三边及⊙O 的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD 的长即可解答.
【详解】
设⊙O 分别切△ABD 的边AD 、AB 、BD 于点G 、E 、F ;
平行四边形ABCD 的面积为S ;
则S=2S △ABD =2×
12
(AB·OE+BD·OF+AD·(AB+AD+BD ); ∵平行四边形ABCD 的周长为26,
∴AB+AD=13, ∴
;连接OA ;
由题意得:∠OAE=30°,
∴AG=AE=3;同理可证DF=DG ,BF=BE ;
∴DF+BF=DG+BE=13﹣3﹣3=7,
即BD=7,
∴13+7)
即平行四边形ABCD 的面积为.
3.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;
()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;
()3如图3,在()2的条件下,当DG 3CE 4
=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于
点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.
【答案】(1)证明见解析(2)证明见解析(3)837+
【解析】
【分析】
(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;
(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;
(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;
【详解】
()1证明:如图1中,
O Q e 与CE 相切于点C ,
OC CE ∴⊥,
OCE 90∠∴=o ,
D E 90∠∠∴+=o ,
2D 2E 180∠∠∴+=o ,
AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,
AOD 2E 180∠∠∴+=o .
()2证明:如图2中,作OR AF ⊥于R .
OCF F ORF 90∠∠∠===o Q ,
∴四边形OCFR 是矩形,
AF//CD ∴,CF OR =,
A AOD ∠∠∴=,
在AOR V 和ODG V 中,
A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,
AOR ∴V ≌ODG V ,
OR DG ∴=,
DG CF ∴=,
()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .
设DG 3m =,则CF 3m =,CE 4m =,
OCF F BTE 90∠∠∠===o Q ,
AF//OC//BT ∴,
OA OB =Q ,
CT CF 3m ∴==,
ET m ∴=,
CD Q 为直径,
CBD CND 90CBE ∠∠∠∴===o ,
E 90EBT CBT ∠∠∠∴=-=o ,
tan E tan CBT ∠∠∴=,
BT CT ET BT
∴=, BT 3m m BT
∴=, BT 3m(∴=负根已经舍弃),
3m tan E 3∠∴== E 60∠∴=o ,
CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,