2014海淀高三第一学期期末试题数学(理)

合集下载

北京市海淀区2014届高三上学期期中考试理科数学Word版含答案

北京市海淀区2014届高三上学期期中考试理科数学Word版含答案

海淀区高三年级第一学期期中练习数学(理科) 2013.11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( A )A. {1,1,2}-B. {1,2}C. {1,2}-D.{2}2.下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D.()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B.D.4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C.12D. 25.若a ∈R ,则“2a a >”是“1a >”的(B )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)n n a n =-,则数列的前n 项和n S 的最小值是(B ) A. 3SB. 4SC. 5SD. 6S7.已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为(D ) A. 2[,0)3- B.[1,0)- C.[2,3) D. (0,)+∞8.已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:①π是()f x 的一个周期;②()f x 的图象关于直线x 4π=对称; ③()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为(C ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知=-=αα2cos ,53cos 则( )A .257 B .257-C .2524D .2524-2.已知抛物线的方程为y 2=4x ,则此抛物线的焦点坐标为( )A .(-1,0)B .(0,-1)C .(1,0)D .(0,1)3.设集合1,,},4,3,2,1{22=+∈=nym xA n m A 则方程表示焦点位于x 轴上的椭圆有( )A .6个B .8个C .12个D .16个4.已知三条不同直线m 、n 、l ,两个不同平面βα,,有下列命题: ①βαββαα////,//,,⇒⊂⊂n m n m②ααα⊥⇒⊥⊥⊂⊂l n l m l n m ,,, ③αββαβα⊥⇒⊥⊂=⋂⊥n m n n m ,,, ④αα//,//m n n m ⇒⊂ 其中正确的命题是( )A .①③B .②④C .①②④D .③5.某台机器上安装甲乙两个元件,这两个元件的使用寿命互不影响.已知甲元件的使用寿命超过1年的概率为0.6,要使两个元件中至少有一个的使用寿命超过1年的概率至少为0.9,则乙元件的使用寿命超过1年的概率至少为 ( )A .0.3B .0.6C .0.75D .0.96.已知函数),20,0)(sin(πϕωϕω≤<>+=x y且此函数的图象如图所示,则点P (),ϕω的坐标是 ( ) A .)2,2(πB .)4,2(πC .)2,4(πD .)4,4(π7.已知向量),sin 3,cos 3(),sin ,cos 2(ββαα==b a 若向量a 与b 的夹角为60°,则直线 21)s i n ()c o s (021s i n c o s 22=++-=+-ββααy x y x 与圆的位置关系是 ( )A .相交B .相切C .相离D .相交且过圆心8.动点P 为椭圆)0(12222>>=+b a by ax 上异于椭圆顶点(±a ,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1、P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为除去坐标轴上的点的( )A .一条直线B .双曲线的右支C .抛物线D .椭圆二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知双曲线1422=-xy,则其渐近线方程是 ,离心率e= .10.在复平面内,复数i z i z 32,121+=+=对应的点分别为A 、B 、O 为坐标原点,OB OA OP λ+=.若点P 在第四象限内,则实数λ的取值范围是 .11.等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=. 12.已知正四棱锥P —ABCD 中,PA=2,AB=2,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角大小为 .13.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线1)4()4(:222=-+-y x C上,则平面区域C 1的面积为 ,|PQ|的最小值为 . 14.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°, 长为2的线段MN 的一个端点M 在 DD 1上运动,另一个端点N 在底面ABCD上运动.则MN 中点P 的轨迹与直平行 六面体表面所围成的几何体中较小体积值 为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题共13分)在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若B c a C b c o s )2(c o s -=. (Ⅰ)求∠B 的大小; (Ⅱ)若,4,7=+=c a b 求三角形ABC 的面积.16.(本小题共13分)已知圆C 的方程为:.422=+y x(Ⅰ)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若,32||=AB 求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行与x 轴的直线m ,设m 与y 轴的交点为N ,若向量 ON OM OQ +=,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.17.(本小题共13分)如图,在直三棱柱ABC —A 1B 1C 1中,,6,3,1,901===︒=∠AA CA CB ACB M 为侧棱CC 1上一点,AM ⊥BA 1 (Ⅰ)求证:AM ⊥平面A 1BC ; (Ⅱ)求二面角B —AM —C 的大小; (Ⅲ)求点C 到平面ABM 的距离.18.(本小题共14分)设函数)1ln(2)1()(2x x x f +-+=. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)当0<a <2时,求函数]30[1)()(2,在区间---=ax x x f x g 的最小值.19.(本小题共14分)设椭圆)0(12222>>=+b a by ax 的焦点分别为F 1(-1,0)、F 2(1,0),右准线l 交x 轴于点A ,且.221AF AF =(Ⅰ)试求椭圆的方程; (Ⅱ)过F 1、F 2分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.20.(本小题共13分)已知函数f (x )的定义域为[0,1],且满足下列条件: ①对于任意;4)1(,3)(],1,0[=≥∈f x f x ,且总有②若.3)()()(,1,0,021212121-+≥+≤+≥≥x f x f x x f x x x x 则有 (Ⅰ)求f (0)的值; (Ⅱ)求证:4)(≤x f ; (Ⅲ)当33)(,...)3,2,1](31,31(1+<=∈-x x f n x n n时,试证明:.参考答案一、选择题(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8答案B C A D C B C A二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.x y 2±=,(缺一扣1分)25 10.3121-<<-λ 11.-912.4π13.π48+,122- 14.92π三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)由已知及正弦定理可得sin B cos C = 2sin A cos B -cos B sin C …………………………………………………2分 ∴2sin A cos B = sin B cos C +cos B sin C = sin(B +C )又在三角形ABC 中,sin (B +C ) = sin A ≠0 ………………………………………3分 ∴2sinAcosB = sinA ,即在△ABC 中,cosB=21,………………………………5分3π=B ………………………………………………………………………………6分(Ⅱ)B ac c a b cos 27222-+==ac c a -+=∴227………………………………………………………………8分又ac c a c a 216)(222++==+3=∴ac …………………………………………………………………………10分 B ac S ABC sin 21=∴∆43323321=⨯⨯=∴∆ABC S …………………………………………………13分16.(共13分)解:(Ⅰ)①直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为32 满足题意………………………………………1分 ②若直线l 不垂直于x 轴,设其方和为)1(2-=-x k y ,即02=+--k y kx …………………………………………………………2分 设圆心到此直线的距离为d ,则24232d -=,得d =1…………………3分 1|2|12++-=∴kk ,43=k ,………………………………………………………4分故所求直线方程为0543=+-y x ………………………………………………5分 综上所述,所求直线方程为0543=+-y x 或x =1……………………………6分(Ⅱ)设点M 的坐标为)0)(,(000≠y y x ,Q 点坐标为(x ,y )则N 点坐标是),0(0y …7分,ON OM OQ +=2,)2,(),(0000y y x x y x y x ===∴即………………………………………………9分又)0(44,4222020≠=+∴=+y yx y x ……………………………………………11分∴Q 点的轨迹方程是)0(,116422≠=+y yx…………………………………………12分轨迹是一个焦点在y 轴上的椭圆,除去短轴端点. …………………………………13分注:多端点时,合计扣1分.17.(共13分)证明:(Ⅰ)在直三棱柱111C B A ABC -中,易知面⊥11A ACC 面ABC , ︒=∠90ACB ,11A A C C BC 面⊥∴,……………………………………………………………2分 11A A C C AM 面⊆ AM BC ⊥∴B BA BC BA AM =⊥11 ,且BC A AM 1平面⊥∴……………………………………………………………4分解:(Ⅱ)设AM 与A 1C 的交点为O ,连结BO ,由(Ⅰ)可 知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角 B -AM -C 的平面角,…………………………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC+∠ACO=90°, ∴∠AA 1C=∠MAC ∴Rt △ACM~ Rt △A 1AC ∴AC 2= MC ²AA 1 ∴26=MC ……………………………………7分∴在Rt △ACM 中,223=AMCO AM MC AC ⋅=⋅21211=∴CO∴在Rt △BCO 中,1tan ==COBC BOC .︒=∠∴45BOC ,故所求二面角的大小 为45°………………………………9分 (Ⅲ)设点C 到平面ABM 的距离为h ,易知2=BO ,可知2322232121=⨯⨯=⋅⋅=∆BO AM S ABM ……………………………10分A B C M A B M C V V --= ………………………………………………………………11分 A B C A B MS MC hS∆∆⋅=∴313122232326=⨯=⋅=∴∆∆A B MA B CS S MC h∴点C 到平面ABM 的距离为22………………………………………………13分解法二:(Ⅰ)同解法一…………………………4分 (Ⅱ)如图以C 为原点,CA ,CB ,CC 1所在直线 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则)0,1,0(),6,0,3(),0,0,3(1B A A ,设 M (0,0,z 1) 1BA AM ⊥ .01=⋅∴BA AM 即06031=++-z ,故261=z ,所以)26,0,0(M …………………6分设向量m =(x ,y ,z )为平面AMB 的法向量,则m ⊥AM ,m ⊥AB ,则 ⎪⎩⎪⎨⎧=⋅=⋅00AB m AM m 即,030263⎪⎩⎪⎨⎧=+-=+-y x z x 令x =1,平面AMB 的一个法向量为m =)2,3,1(,……………………………………………………………………8分 显然向量CB 是平面AMC 的一个法向量22||||,cos =⋅⋅>=<CB m CB m CB m易知,m 与CB 所夹的角等于二面角B -AM -C 的大小,故所求二面角的大小为 45°. ………………………………………………………………………………9分 (Ⅲ)所求距离为:2263||==⋅m CB m即点C 到平面ABM 的距离为22………………………………………………13分18.(共14分)解:(Ⅰ).1)2(212)1(2)('++=+-+=x x x x x x f …………………………2分由0)('>x f 得012>-<<-x x 或;由0)('<x f ,得.012<<--<x x 或 又)(x f 定义域为(-1,+∞)∴所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0)…5分 (Ⅱ))1(212)(x n ax x x g +--=,定义域为(-1,+∞) 1)2(122)('+--=+--=x ax a x a x g ……………………………………………7分0202,20>->-∴<<aa a a 且由0)('>x g 得aa x ->2,即)(x g 在⎪⎭⎫⎝⎛+∞-,2a a上单调递增;由0)('<x g 得aa x -<<-21,即)(x g 在⎪⎭⎫⎝⎛--a a2,1上单调递减…………8分 ①时 )(,320x g a a<-<在⎪⎭⎫ ⎝⎛-a a 2,0上单调递减,在⎪⎭⎫⎝⎛-3,2a a 上单调递增; ∴在区间[0,3]上,ana aa g x g --=-=2221)2()(min ; (2)30<<a …10分②当)(,32,223x g aa a ≥-<≤时在(0,3)上单调递减,∴在区间[0,3]上,42136)3()(min n a g x g --==…………………………13分 综上可知,当230<<a 时,在区间[0,3]上,ana aa g x g --=-=2221)2()(min ;当223<≤a 时,在区间[0,3]上42136)3()(min n a g x g --==.…14分19.(共14分)解:(Ⅰ)由题意,),0,(,22||221a A C F F ∴==…………………………………2分212AF AF = 2F ∴为AF 1的中点……………………………………………3分2,322==∴b a即:椭圆方程为.12322=+yx……………………………………………………5分(Ⅱ)当直线DE 与x 轴垂直时,342||2==abDE ,此时322||==a MN ,四边形DMEN 的面积为42||||=⋅MN DE .同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为42||||=⋅MN DE .…7 分当直线DE ,MN 均与x 轴不垂直时,设DE ∶)1(+=x k y ,代入椭圆方程,消去 y 得:.0)63(6)32(2222=-+++k x k x k设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x kkx x y x E y x D 则…………………………………8分所以,231344)(||222122121++⋅=-+=-kkx x x x x x ,所以,2221232)1(34||1||kk x x kDE ++=-+=,同理,.32)11(34)1(32)1)1((34||2222kkkkMN ++=-++-=………………………………10分所以,四边形的面积222232)11(3432)1(34212||||kkkk MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=kkkk ,…………………………………12分 令uuu S kk u 61344613)2(24,122+-=++=+=得因为,2122≥+=kk u当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,四边形DMEN 面积的最大值为4,最小值为2596.…………………14分20.(共13分)解:(Ⅰ)令021==x x ,由①对于任意]1,0[∈x ,总有3)0(,3)(≥∴≥f x f ……………………………1分 又由②得 3)0(,3)0(2)0(≤-≥f f f 即;……………………………………2分 .3)0(=∴f …………………………………………………………………………3分证明:(Ⅱ)任取2121]1,0[,x x x x <∈且设,则3)()()]([)(1211212--+≥-+=x x f x f x x x f x f , 因为1012≤-<x x ,所以03)(,3)(1212≥--≥-x x f x x f 即,).()(21x f x f ≤∴………………………………………………………………5分 .4)1()(,]1,0[=≤∈∴f x f x 时当……………………………………………7分(Ⅲ)先用数学归纳法证明:)(331)31(*11N n f n n ∈+≤-- (1)当n =1时,331314)1()31(+=+===f f ,不等式成立;(2)假设当n=k 时,)(331)31(*11N k f k k ∈+≤--由6)31()31()31(3)3131()31()]3131(31[)31(1-++≥-++≥++=-kkkkkkkkkk f f f f f f f得≤)31(3kf 9316)31(11+≤+--k k f331)31(+≤∴kkf即当n=k+1时,不等式成立. 由(1)(2)可知,不等式331)31(+≤∴kkf 对一切正整数都成立.于是,当)31(331331333,...)3,2,1](31,31(111---≥+=+⨯>+=∈n n nn nf x n x 时,,而x ∈[0,1],f (x )单调递增)31()31(1-<∴n nf f 所以33)31()31(1+<<∴-x f f n n……………………………………13分。

数学理卷·2014届北京市海淀区高三上学期期末考试(2014.01)扫描版

数学理卷·2014届北京市海淀区高三上学期期末考试(2014.01)扫描版

---------------------------------------------4 分
(Ⅱ)由题意可得点 A(−2,0), M (1, 3) , 2
------------------------------------------6 分
所以由题意可设直线 l : y = 1 x + n , n ≠ 1 .------------------------------------------7 分 2Leabharlann +1>0
,解得
a > −e2 ,-------------------9 分
所以此时 −e2 < a < 0 ;
-----------------------------------------------10 分
②当 a > 0 时, F(x), F '(x) 的情况如下表:
第 8 页 共 11 页
=
1 2
x1
+
n

3 2
+
1 2
x2
+n− 3 2
=1+
n −1
+
n −1
x1 − 1
x2 −1
x1 − 1 x2 − 1
= 1 + (n − 1)(x1 + x2 − 2) x1x2 − ( x1 + x2 ) + 1
=1−
(n − 1)(n + 2) n2 + n − 2
=
0,
---------------------------------13 分
所以 sin A = 1 − cos2 A = 4 ,------------------------------------7 分 5

2014北京市海淀区高三(一模)数 学(理)

2014北京市海淀区高三(一模)数    学(理)

2014北京市海淀区高三(一模)数学(理)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(5分)已知集合A={1,2,},集合B={y|y=x2,x∈A},则A∩B=()A.{} B.{2} C.{1} D.∅2.(5分)复数z=(1+i)(1﹣i)在复平面内对应的点的坐标为()A.(1,0)B.(0,2)C.(0,1)D.(2,0)3.(5分)下列函数f(x)图象中,满足f()>f(3)>f(2)的只可能是()A.B.C.D.4.(5分)已知直线l的参数方程为(t为参数),则直线l的普通方程为()A.x﹣y﹣2=0 B.x﹣y+2=0 C.x+y=0 D.x+y﹣2=05.(5分)在数列{a n}中,“a n=2a n﹣1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.(5分)小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有()A.4种B.5种C.6种D.9种7.(5分)某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为()A.1 B.2 C.3 D.48.(5分)已知A(1,0),点B在曲线G:y=ln(x+1)上,若线段AB与曲线M:y=相交且交点恰为线段AB的中点,则称B为曲线G关于曲线M的一个关联点.记曲线G关于曲线M的关联点的个数为a,则()A.a=0 B.a=1 C.a=2 D.a>2二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)一个空间几何体的三视图如图所示,该几何体的体积为.10.(5分)函数y=x﹣x2的图象与x轴所围成的封闭图形的面积等于.11.(5分)如图,AB切圆O于B,AB=,AC=1,则AO的长为.12.(5分)已知圆x2+y2+mx﹣=0与抛物线y2=4x的准线相切,则m= .13.(5分)如图,已知△ABC中,∠BAD=30°,∠CAD=45°,AB=3,AC=2,则= .14.(5分)已知向量序列:,,,…,,…满足如下条件:||=4||=2,2•=﹣1且﹣=(n=2,3,4,…).若•=0,则k= ;||,||,||,…,||,…中第项最小.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=2sin xcos x,过两点A(t,f(t)),B(t+1,f(t+1))的直线的斜率记为g (t).(Ⅰ)求g(0)的值;(Ⅱ)写出函数g(t)的解析式,求g(t)在[﹣,]上的取值范围.16.(13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.17.(14分)如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.(Ⅰ)求证:AE⊥平面BCD;(Ⅱ)求二面角A﹣DC﹣B的余弦值.(Ⅲ)在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指明点M的位置;若不存在,请说明理由.18.(13分)已知曲线C:y=e ax.(Ⅰ)若曲线C在点(0,1)处的切线为y=2x+m,求实数a和m的值;(Ⅱ)对任意实数a,曲线C总在直线l:y=ax+b的上方,求实数b的取值范围.19.(14分)已知A,B是椭圆C:2x2+3y2=9上两点,点M的坐标为(1,0).(Ⅰ)当A,B两点关于x轴对称,且△MAB为等边三角形时,求AB的长;(Ⅱ)当A,B两点不关于x轴对称时,证明:△MAB不可能为等边三角形.20.(13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)A (n):A1,A2,A3,…,A n与B(n):B1,B2,B3,…,B n,其中n≥3,若同时满足:①两点列的起点和终点分别相同;②线段A i A i+1⊥B i B i+1,其中i=1,2,3,…,n﹣1,则称A(n)与B(n)互为正交点列.(Ⅰ)求A(3):A1(0,2),A2(3,0),A3(5,2)的正交点列B(3);(Ⅱ)判断A(4):A1(0,0),A2(3,1),A3(6,0),A4(9,1)是否存在正交点列B(4)?并说明理由;(Ⅲ)∀n≥5,n∈N,是否都存在无正交点列的有序整点列A(n)?并证明你的结论.数学试题答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.【解答】当x=1时,y=1;当x=2时,y=4;当x=时,y=,∴B={1,4,},∴A∩B={1}.故选:C.2.【解答】∵z=(1+i)(1﹣i)=1﹣i2=2,∴复数z=(1+i)(1﹣i)在复平面内对应的点的坐标为(2,0).故选:D.3.【解答】由所给的不等式可得,函数是先减后增型的,故排除A,B,由于C的图象关于x=1对称,左减右增,有f()=f()<f(3),故排除CD图象在(0,1)上递减且递减较快,在(1,+∞)递增,递增较慢,可能满足f()>f(3)>f(2),故选D.4.【解答】将直线l的参数方程为(t为参数),利用代入法,化成普通方程为x﹣y﹣2=0.故选:A.5.【解答】若“{a n}是公比为2的等比数列,则当n≥2时,a n=2a n﹣1,成立.当a n=0,n=1,2,3,4,…时满足a n=2a n﹣1,n=2,3,4,但此时{a n}不是等比数列,∴“a n=2a n﹣1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的必要不充分条件.故选:B.【解答】记反面为1,正面为2;则正反依次相对有12121212,21212121两种;有两枚反面相对有21121212,21211212,6.21212112;共5种摆法,故选B7.【解答】∵原价是:48×42=2016(元),2016×0.6=1209.6(元),∵每张订单金额(6折后)满300元时可减免100,∴若分成10,10,11,11,由于48×10=480,480×0.6=288,达不到满300元时可减免100,∴应分成9,11,11,11.∴只能减免3次,故答案选:C.8.【解答】设点B(x,ln(x+1)),则点A,B的中点的坐标是(,),由于此点在曲线M:y=上,故有=,即ln(x+1)=,此方程的根即两函数y=ln(x+1)与y=的交点的横坐标,由于此二函数一为增函数,一为减函数,故两函数y=ln(x+1)与y=的交点个数为1,故符合条件的关联点仅有一个,所以a=1故选:B.二、填空题:本大题共6小题,每小题5分,共30分.9.【解答】由三视图知:几何体为三棱柱,且三棱柱的高为8,底面三角形的一条边长为6,该边上的高为4,∴几何体的体积V=×6×4×8=96.故答案为:96.10.【解答】由方程组,解得,x1=0,x2=1.故所求图形的面积为S=( x﹣x2)dx=(x2﹣x3)=.故答案为:.11.【解答】设圆的半径为r,则∵AB切圆O于B,∴AB2=AC•(AC+2r),∵AB=,AC=1,∴3=1+2r,∴r=1,∴AO=AC+1=2.故答案为:2.12.【解答】抛物线y2=4x的准线为x=﹣1,圆x2+y2+mx﹣=0的圆心O(﹣,0),半径r=,∵圆x2+y2+mx﹣=0与抛物线y2=4x的准线相切,∴圆心O(﹣,0)到准线为x=﹣1的距离d=r,∴d=|﹣1|=,解得m=,故答案为:.13.【解答】过C作CE∥AB,与AD的延长线相交于E,则∠AEC=30°.在△AEC中,∵∠CAD=45°,∴,∴CE=2,∵CE∥AB,AB=3,∴===.故答案为:.14.【解答】∵﹣=,∴=+(k﹣1),又∵||=4||=2,2•=﹣1∴||=2,||=,•=∴•=•[+(k﹣1)]=+(k﹣1)•=22+(k﹣1)()=0,解得k=9∴=[+(k﹣1)]2=+(k﹣1)2+2(k﹣1)•=22+(k﹣1)2﹣(k﹣1)=(k﹣3)2+3,故当k=3时,上式取最小值,即||最小,故答案为:9;3三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)∵f(x)=2sin xcos x,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∵,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)∴g(t)在上的取值范围是﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)16.【解答】(Ⅰ)甲公司员工A投递快递件数的平均数为:=(32+33+33+38+35+36+39+33+41+40)=36,众数为33.(2分)(Ⅱ)设a为乙公司员工B投递件数,则当a=34时,X=136元,当a>35时,X=35×4+(a﹣35)×7元,∴X的可能取值为136,147,154,189,203,(4分)P(X=136)=,P(X=147)=,P(X=154)=,P(X=189)=,P(X=203)=,X的分布列为:X 136 147 154 189 203P(9分)=.(11分)(Ⅲ)根据图中数据,由(Ⅱ)可估算:甲公司被抽取员工该月收入=36×4.5×30=4860元,乙公司被抽取员工该月收入=165.5×30=4965元.(13分)17.【解答】(Ⅰ)证明:∵平面ABD⊥平面BCD,交线为BD,又在△ABD中,AE⊥BD于E,AE⊂平面ABD∴AE⊥平面BCD.(3分)(Ⅱ)解:由(Ⅰ)结论AE⊥平面BCD,∴AE⊥EF.由题意知EF⊥BD,又AE⊥BD.如图,以E为坐标原点,分别以EF,ED,EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E﹣xyz,(4分)不妨设AB=BD=DC=AD=2,则BE=ED=1.由图1条件计算得,,,EF=,则,.∵AE⊥平面BCD,∴平面DCB的法向量为=(0,0,).(6分)设平面ADC的法向量为=(x,y,z),则,即令z=1,得=(﹣1,,1).(8分)∴cos<>==,∴二面角A﹣DC﹣B的余弦值为.(9分)(Ⅲ)解:设,其中λ∈[0,1].∵,∴,其中λ∈[0,1],(10分)∴,(11分)由,即,(12分)解得,(13分)∴在线段AF上存在点M,使,且.(14分)18.【解答】(Ⅰ)y'=ae ax,因为曲线C在点(0,1)处的切线为L:y=2x+m,所以1=2×0+m且y'|x=0=2.解得m=1,a=2(Ⅱ)法1:对于任意实数a,曲线C总在直线的y=ax+b的上方,等价于∀x,a∈R,都有e ax>ax+b,即∀x,a∈R,e ax﹣ax﹣b>0恒成立,令g(x)=e ax﹣ax﹣b,①若a=0,则g(x)=1﹣b,所以实数b的取值范围是b<1;②若a ≠0,g'(x )=a (e ax﹣1),由g'(x )=0得x=0,g'(x ),g (x )的情况如下: x (﹣∞,0)0 (0,+∞) g'(x )﹣ 0 + g (x ) ↘ 极小值 ↗ 所以g (x )的最小值为g (0)=1﹣b ,所以实数b 的取值范围是b <1;综上,实数b 的取值范围是b <1.法2:对于任意实数a ,曲线C 总在直线的y=ax+b 的上方,等价于∀x ,a ∈R ,都有e ax >ax+b ,即∀x ,a ∈R ,b <e ax ﹣ax 恒成立,令t=ax ,则等价于∀t ∈R ,b <e t ﹣t 恒成立,令g (t )=e t ﹣t ,则 g'(t )=e t ﹣1,由g'(t )=0得t=0,g'(t ),g (t )的情况如下: t (﹣∞,0)0 (0,+∞) g'(t )﹣ 0 + g (t ) ↘极小值 ↗所以 g (t )=e t ﹣t 的最小值为g (0)=1,实数b 的取值范围是b <1.19.【解答】(Ⅰ)解:设A (x 0,y 0),B (x 0,﹣y 0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)因为△ABM 为等边三角形,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)又点A (x 0,y 0)在椭圆上, 所以 消去y 0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)得到 ,解得x 0=2或,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)当x0=2时,;当时,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)证明:设A(x1,y1),则,且x1∈[﹣,],所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)设B(x2,y2),同理可得,且x2∈[﹣,]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)因为在[﹣,]上单调所以,有x1=x2⇔|MA|=|MB|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)因为A,B不关于x轴对称,所以x1≠x2.所以|MA|≠|MB|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)所以△ABM不可能为等边三角形.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)20.【解答】(Ⅰ)设点列A1(0,2),A2(3,0),A3(5,2)的正交点列是B1,B2,B3,由正交点列的定义可知B1(0,2),B3(5,2),设B2(x,y),,,由正交点列的定义可知,,即,解得所以点列A1(0,2),A2(3,0),A3(5,2)的正交点列是B1(0,2),B2(2,5),B3(5,2).(3分)(Ⅱ)由题可得,设点列B1,B2,B3,B4是点列A1,A2,A3,A4的正交点列,则可设,λ1,λ2,λ3∈Z因为A1与B1,A4与B4相同,所以有因为λ1,λ2,λ3∈Z,方程(2)显然不成立,所以有序整点列A1(0,0),A2(3,1),A3(6,0),A4(9,1)不存在正交点列;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)∀n≥5,n∈N,都存在整点列A(n)无正交点列.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∀n≥5,n∈N,设,其中a i,b i是一对互质整数,i=1,2,3…,n﹣1若有序整点列B1,B2,B3,…B n是点列A1,A2,A3,…A n正交点列,则,则有①当n为偶数时,取A1(0,0),.由于B1,B2,B3,…B n是整点列,所以有λi∈Z,i=1,2,3,…,n﹣1.等式(2)中左边是3的倍数,右边等于1,等式不成立,所以该点列A1,A2,A3,…A n无正交点列;②当n为奇数时,取A1(0,0),a1=3,b1=2,,由于B1,B2,B3,…B n是整点列,所以有λi∈Z,i=1,2,3,…,n﹣1.等式(2)中左边是3的倍数,右边等于1,等式不成立,所以该点列A1,A2,A3,…A n无正交点列.综上所述,∀n≥5,n∈N,都不存在无正交点列的有序整数点列A(n)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)。

北京市海淀区2014届高三上学期期中考试 数学(理)试题 含解析

北京市海淀区2014届高三上学期期中考试 数学(理)试题 含解析

第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1。

已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( )A 。

{1,1,2}-B. {1,2}C. {1,2}-D.{2}2。

下列函数中,值域为(0,)+∞的函数是( ) A.()f x x= B 。

()ln f x x= C.()2xf x = D.()tan f x x =3。

在ABC ∆中,若tan 2A =-,则cos A =( ) 5 B.525 D 。

25【答案】B 【解析】试题分析:因为,在ABC ∆中,若tan 2A =-,所以,A (,)2ππ∈,2115cosA=-551tan A=-=-+, 故选B.考点:任意角的三角函数4。

在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( ) A.2-B.12-C. 12D 。

25。

若a ∈R ,则“2aa>"是“1a >”的( )A. 充分而不必要条件 B 。

必要而不充分条件 C 。

充分必要条件D 。

既不充分也不必要条件6。

已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和nS 的最小值是( ) A. 3SB 。

4SC. 5S D 。

6S【答案】B7.已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( ) A 。

2[,0)3- B.[1,0)- C 。

[2,3) D.(0,)+∞8.已知函数sin cos ()sin cos x x f x x x+=,在下列给出结论中:①π是()f x 的一个周期;②()f x 的图象关于直线x 4π=对称;③()f x 在(,0)2π-上单调递减.其中,正确结论的个数为( ) A 。

2014北京市海淀区高三第一学期期末数学理科试有答案

2014北京市海淀区高三第一学期期末数学理科试有答案

海淀区高三年级第一学期期末练习 数学 (理科2)2014.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i --2.已知直线2,:2x t l y t =+⎧⎨=--⎩(t 为参数)与圆2cos 1,:2sin x C y θθ=+⎧⎨=⎩(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是A.π,(1,0)4 B.π,(1,0)4- C.3π,(1,0)4 D.3π,(1,0)4- 3.向量(3,4),(,2)x ==a b , 若||⋅=a b a ,则实数x 的值为 A.1- B.12-C.13- D.1 4.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A.4,30n S ==B.5,30n S ==C.4,45n S ==D.5,45n S ==5.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是 A.BEC ∆∽DEA ∆ B.ACE ACP ∠=∠ C.2DE OE EP =⋅ D.2PC PA AB =⋅6.数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为A. 144B.120C. 108D.72B8. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是A.12(,)33B.1(,1)2C. 2(,1)3D.111(,)(,1)322二、填空题:本大题共6小题,每小题5分,共30分.9. 以y x =±为渐近线且经过点(2,0)的双曲线方程为______.10.数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____.11. 在261(3)x x+的展开式中,常数项为______.(用数字作答)12. 三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.13. 点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为___.k =14. 已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<,记点P 的轨迹的长度为()f r ,则1()2f =______________;关于r 的方程()f r k =的解的个数可以为________.(填上所有可能的值).三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数21()cos cos 2222x x x f x =+-,ABC ∆三个内角,,A B C 的对边分别为,,a b c .(I )求()f x 的单调递增区间;(Ⅱ)若()1,f B C +=1a b ==,求角C 的大小.DABC左视图16.(本小题满分13分)汽车租赁公司为了调查A,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:(I )从出租天数为3天的汽车(仅限A,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率; (Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,12,AB AC AA ===E 是BC 中点.(I )求证:1//A B 平面1AEC ;(II )若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.18. (本小题满分13分)已知函数e ().1axf x x =-(I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.EC 1B 1A 1CBA19. (本小题满分14分)已知()2,2E 是抛物线2:2C y px =上一点,经过点(2,0)的直线l 与抛物线C 交于,A B 两点(不同于点E ),直线,EA EB 分别交直线2x =-于点,M N . (Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O 为原点,求证:MON ∠为定值.20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x =在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”. 我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.。

2014-2015海淀区高三第一学期期末数学(理)试题(有答案)高清版

2014-2015海淀区高三第一学期期末数学(理)试题(有答案)高清版

数学(理)答案及评分参考一、选择题(共8小题,每小题5分,共40分)(1)C (2)D (3)B (4)C (5)B (6)A (7)C (8)B二、填空题(共6小题,每小题5分,共30分。

有两空的小题,第一空2分,第二空3分)(9)15(10)11)3 (12)2π3(13)13;4(14)11,,A B D 三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)ϕ的值是π6. ………………2分0x 的值是53. (5)分(Ⅱ)由题意可得:11ππ()cos(π())cos(π)sin π3362f x x x x +=++=+=-. ………………7分所以1π()()cos(π)sin π36f x f x x x ++=+- ππcos πcos sin πsin sin π66x x x =--………………8分1πsin πsin π2x x x =--3ππsin ππ)23x x x =-=+. ………………10分 因为11[,]23x ∈-,所以ππ2ππ633x -≤+≤.所以当ππ03x +=,即13x =-时,()g x当π2ππ33x +=,即13x =时,()g x 取得最小值2-. ………………13分(16)(共13分)解:(Ⅰ)抽取的5人中男同学的人数为530350⨯=,女同学的人数为520250⨯=. ………………4分(Ⅱ)由题意可得:2323551(3)10A A P X A ===. ………………6分 因为321105a b +++=, 所以15b =. ………………8分 所以113232101105105EX =⨯+⨯+⨯+⨯=.………………10分 (Ⅲ)2212s s =. (13)分(17)(共14分) 证明:(Ⅰ)连接1BC .在正方形11ABB A 中,1AB BB .因为 平面11AA B B ⊥平面11BB C C ,平面11AA B B平面111BB C C BB =,AB平面11ABB A ,所以 AB 平面11BB C C . ………………1分 因为 1B C 平面11BB C C ,所以1ABB C . ………………2分在菱形11BB C C 中,11BC B C .因为 1BC 平面1ABC ,AB平面1ABC ,1BC AB B ,CBC 1B 1A 1A所以 1B C 平面1ABC . (4)分 因为1AC 平面1ABC ,所以 1B C ⊥1AC .………………5分(Ⅱ)EF ∥平面ABC ,理由如下: (6)分取BC 的中点G ,连接,GE GA . 因为 E 是1B C 的中点, 所以GE ∥1BB ,且GE 112BB . 因为 F 是1AA 的中点, 所以AF112AA . 在正方形11ABB A 中,1AA ∥1BB ,1AA 1BB .所以 GE ∥AF ,且GEAF .所以 四边形GEFA 为平行四边形.所以 EF ∥GA . ………………8分 因为 EF平面ABC ,GA平面ABC ,所以 EF ∥平面ABC . ………………9分(Ⅲ)在平面11BB C C 内过点B 作1Bz BB .由(Ⅰ)可知:AB平面11BB C C . 以点B 为坐标原点,分别以1,BA BB 所在的直线为,x y轴,建立如图所示的空间直角坐标系B xyz -,设(2,0,0)A ,则1(0,2,0)B . 在菱形11BB C C 中,11=60BB C ∠,所以(0,C -,1(0,1C .GFECB C 1B 1A 1A设平面1ACC 的一个法向量为(,,1)x y =n .因为10,0AC CC ⎧⋅=⎪⎨⋅=⎪⎩n n即(,,1)(2,0,(,,1)(0,2,0)0,x y x y ⎧⋅--=⎪⎨⋅=⎪⎩所以20,x y ⎧=⎪⎨⎪=⎩即=n .………………11分由(Ⅰ)可知:1CB 是平面1ABC 的一个法向量.………………12分所以1113((0,3,2cos ,CBCB CB ⋅⋅<>===⋅n n n . 所以二面角1B AC C --的余弦值为7.………………14分(18)(共13分)解:(Ⅰ)由22143x y +=得:2,a b ==. 所以椭圆M 的短轴长为………………2分 因为1c ==, 所以12c e a ==,即M 的离心率为12. ………………4分(Ⅱ)由题意知:1(2,0),(1,0)C F --,设000(,)(22)B x y x -<<,则2200143x y+=. (7)分因为10000(1,)(2,)BF BC x y x y ⋅=---⋅---2200023x x y =+++………………9分20013504x x =++>,………………11分 所以π(0,)2B ∠∈.所以点B 不在以AC 为直径的圆上,即:不存在直线l ,使得点B 在以AC 为直径的圆上. (13)分另解:由题意可设直线l 的方程为1x my =-,1122(,),(,)A x y B x y .由221,431x y x my ⎧+=⎪⎨⎪=-⎩可得:22(34)690m y my +--=. 所以122634m y y m +=+,122934y y m -=+. ………………7分 所以1122(2,)(2,)CA CB x y x y ⋅=+⋅+21212(1)()1m y y m y y =++++22296(1)13434m m m m m -=++⋅+++ 25034m -=<+. ………………9分因为cos (1,0)CA CB C CA CB⋅=∈-⋅,所以π(,π)2C ∠∈. ………………11分所以π(0,)2B ∠∈.所以点B 不在以AC 为直径的圆上,即:不存在直线l ,使得点B 在以AC 为直径的圆上.………………13分(19)(共13分)解:(Ⅰ)函数()f x 是偶函数,证明如下: ………………1分对于ππ[,]22x ∀∈-,则ππ[,]22x -∈-. ………………2分因为()cos()sin()cos sin ()f x a x x x a x x x f x -=---=+=,所以()f x 是偶函数. ………………4分 (Ⅱ)当0a >时,因为 ()cos sin 0f x a x x x =+>,ππ[,]22x ∈-恒成立, 所以集合{|()0}A x f x ==中元素的个数为0. ………………5分 当0a =时,令()sin 0f x x x ==,由ππ[,]22x ∈-, 得0x =.所以集合{|()0}A x f x ==中元素的个数为1. ………………6分 当0a <时,因为 π'()sin sin cos (1)sin cos 0,(0,)2f x a x x x x a x x x x =-++=-+>∈,所以函数()f x 是π[0,]2上的增函数. ………………8分因为ππ(0)0,()022f a f =<=>,所以()f x 在π(0,)2上只有一个零点.由()f x 是偶函数可知,集合{|()0}A x f x ==中元素的个数为 2. ………………10分综上所述,当0a >时,集合{|()0}A x f x ==中元素的个数为0;当0a =时,集合{|()0}A x f x ==中元素的个数为1;当0a <时,集合{|()0}A x f x ==中元素的个数为2.(Ⅲ)函数()f x 有3个极值点. ………………13分(20)(共14分)解:(Ⅰ)因为123224(,),(,),(,)a a a a a a T ∈,所以21(,)0T d a a =,23(,)0T d a a =,24(,)1T d a a =,故2()1T l a =.………………1分因为24(,)a a T ∈,所以42(,)0T d a a =.所以4414243()(,)(,)(,)1012T T T T l a d a a d a a d a a =++≤++=.所以当244143(,),(,),(,)a a a a a a T ∈时,4()T l a 取得最大值2. ………………3分 (Ⅱ)由(,)T d a b 的定义可知:(,)(,)1T T d a b d b a +=.所以122113311()[(,)(,)][(,)(,)]n T i T T T T i la d a a d a a d a a d a a ==+++∑1111[(,)(,)][(,)(,)]T n T n T n n T n n d a a d a a d a a d a a --+⋅⋅⋅+++⋅⋅⋅++21(1)2n C n n ==-. ………………6分设删去的两个数为(),()T k T m l a l a ,则1()()(1)2T k T m l a l a n n M +=--. 由题意可知:()1,()1T k T m l a n l a n ≤-≤-,且当其中一个不等式中等号成立,不放设()1T k l a n =-时,(,)1T k m d a a =,(,)0T m k d a a =.所以()2T m l a n ≤-. ………………7分 所以()()1223T k T m l a l a n n n +≤-+-=-. 所以1()()(1)232T k T m l a l a n n M n +=--≤-,即1(5)32M n n ≥-+. ………………8分(Ⅲ)对于满足()1T i l a n <-(1,2,3,,i n =)的每一个集合T ,集合S 中都存在三个不同的元素,,e f g ,使得(,)(,)(,)3T T T d e f d f g d g e ++=恒成立,理由如下:任取集合T ,由()1T i l a n <-(1,2,3,,i n =)可知,12(),(),,()T T T n l a l a l a ⋅⋅⋅中存在最大数,不妨记为()T l f (若最大数不唯一,任取一个).因为()1T l f n <-,所以存在e S ∈,使得(,)0T d f e =,即(,)e f T ∈. 由()1T l f ≥可设集合{|(,)}G x S f x T =∈∈≠∅. 则G 中一定存在元素g 使得(,)1T d g e =. 否则,()()1T T l e l f ≥+,与()T l f 是最大数矛盾.所以(,)1T d f g =,(,)1T d g e =,即(,)(,)(,)3T T T d e f d f g d g e ++=. ………………14分。

北京市海淀区2014届海淀高三上学期期中考试数学理试题带答案

北京市海淀区2014届海淀高三上学期期中考试数学理试题带答案

海淀区高三年级第一学期期中练习数学(理科) 2013.11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B = ( ) A. {1,1,2}-B. {1,2}C. {1,2}-D.{2}2.下列函数中,值域为(0,)+∞的函数是( ) A. ()f x x =B. ()ln f x x =C. ()2x f x =D.()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( )A.55 B.55-C.255D.255-4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC,则实数m 的值为( )A. 2-B. 12-C.12D. 25.若a ∈R ,则“2a a >”是“1a >”的(B ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)n n a n =-,则数列的前n 项和n S 的最小值是( ) A. 3SB. 4SC. 5SD. 6S7.已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( ) A. 2[,0)3- B.[1,0)- C.[2,3) D. (0,)+∞8.已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:①π是()f x 的一个周期; ②()f x 的图象关于直线x 4π=对称; ③()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为( ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。

专题31以立体几何中探索性问题为背景的解答题-2021年高考数学备考优生百日闯关系列(解析版)

专题31以立体几何中探索性问题为背景的解答题-2021年高考数学备考优生百日闯关系列(解析版)

【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题.2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【精选名校模拟】1.【成都石室中学2014届高三上期“一诊”模拟考试(一)(理)】(本小题满分12分)已知直三棱柱111C B A ABC -的三视图如图所示,且D 是BC 的中点.(Ⅰ)求证:1A B ∥平面1ADC ; (Ⅱ)求二面角1C AD C --的余弦值;(Ⅲ)试问线段11A B 上是否存在点E ,使AE 与1DC 成60︒角?若存在,确定E 点位置,若不存在,说明理由.2.【四川省绵阳市高2014届第二次诊断性考试数学(理)】(本题满分12分)如图,在直角梯形ABCD 中,AD //BC ,∠ADC =90º,AE ⊥平面ABCD ,EF //CD , BC =CD =AE =EF =12AD =1. (Ⅰ)求证:CE //平面ABF ; (Ⅱ)求证:BE ⊥AF ;(Ⅲ)在直线BC 上是否存在点M ,使二面角E -MD -A 的大小为6π?若存在,求出CM 的长;若不存在,请说明理由.试题解析:(I)证明:如图,作FG∥EA,AG∥EF,连结EG交AF于H,连结BH,BG,∵EF∥CD且EF=CD,∴AG∥CD,即点G在平面ABCD内.由AE⊥平面ABCD知AE⊥AG,∴四边形AEFG为正方形,故在直线BC 上存在点M ,且|CM |=|32(2)3-±|=33.………………………12分 法二、作AH DM ⊥,则3AH =,由等面积法得:233,33DM CM =∴=. 3.【四川省成都七中高2014届高三“一诊”模拟考试数学(理)】如图四棱锥ABCD P -中,底面ABCD 是平行四边形,⊥PG 平面ABCD ,垂足为G ,G 在AD 上且GD AG 31=,GC BG ⊥,2==GC GB ,E 是BC 的中点,四面体BCG P -的体积为38. (1)求二面角P BC D --的正切值; (2)求直线DP 到平面PBG 所成角的正弦值;(3)在棱PC 上是否存在一点F ,使异面直线DF 与GC 所成的角为060,若存在,确定点F 的位置,若不存在,说明理由.试题解析:(1)由四面体BCG P -的体积为38.∴4PG =设二面角P BC D --的大小为θ2==GC GB E 为中点,∴GE BC ⊥ 同理PE BC ⊥∴PEG θ∠=∴tan 22θ=……………………………………………………3分4.【湖北省稳派教育2014届高三上学期强化训练(三)数学(理)试题】如图,正方形ABCD 所在平面与圆O 所在的平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在的平面,垂足E 为圆O 上异于C 、D 的点,设正方形ABCD 的边长为a ,且a AE 21=.(1)求证:平面⊥ABCD 平面ADE ;(2)若异面直线AB 与CE 所成的角为θ,AC 与底面CDE 所成角为α,二面角E CD A --所成角为β ,求证βαθtan tan sin =.又)21,0,0(a EA =,)21,,23(a a CA -=,4222141||||,cos sin 2=⋅=⋅>=<=∴a a a CA EA α,由此得77tan =α,5.【2014安徽省六校教育研究会高三2月联考数学理】(本小题满分12分)(Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.【答案】(Ⅱ)在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = 【解析】试题分析:(Ⅰ)二面角1A DE B --为直二面角,要证1A D ⊥平面BCED ;只要证1A D DE ⊥;设PB x =()03x ≤≤,则2x BH =,3PH x =,在Rt △1PA H 中,160PA H ∠=,所以112A H x = ,在Rt △1A DH 中,11A D =,122DH x =- ,由22211A D DH A H +=, 得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭ ,解得52x =,满足03x ≤≤,符合题意 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = ………………………12分解得54a =,即522PB a ==,满足023a ≤≤,符合题意,所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = . ………………………12分6.【2014年“皖西七校”高三年级联合考试】(本小题满分12分)如图1,已知O ⊙的直径4AB =,点C 、D 为O ⊙上两点,且=45CAB ∠,60DAB ∠=,F 为弧BC 的中点.将O ⊙沿直径AB 折起,使两个半圆所在平面互相垂直(如图2). (Ⅰ)求证://OF AC ;(Ⅱ)在弧BD 上是否存在点G ,使得//FG 平面ACD ?若存在,试指出点G 的位置;若不存在,请说明理由;(Ⅲ)求二面角C -AD -B 的正弦值.⊥于E,连CE.(Ⅲ)过O作OE AD⊥,平面ABC⊥平面ABD,故CO⊥平面ABD.因为CO AB则CEO ∠是二面角C -AD -B 的平面角,又60OAD ∠=,2OA =,故3OE =. 由CO ⊥平面ABD ,OE ⊂平面ABD ,得CEO ∆为直角三角形, 又2CO =,故7CE =,可得cos CEO ∠=37=217,故二面角C -AD -B 的正弦值为27.121210(3)03121cos 771n n |n ||n |θ⋅⨯+-⨯+⨯∴===⋅⋅,故二面角C -AD -B 的正弦值为27. 7.(山东省日照市2014届高三12月校际联考)(本小题满分12分)在四棱锥P-ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥DC ,90,1,2ADC AB AD PD CD ∠=====ADC -900,AB=AD= PD=1.CD=2. (I)求证:BC ⊥平面PBD :(II)设E 为侧棱PC 上异于端点的一点,PE PC λ=,试确定λ的值,使得二面角 E-BD-P 的大小为45.试题解析:(Ⅰ)证明:因为侧面PCD ⊥底面ABCD ,PD ⊥CD ,所以PD ⊥底面ABCD ,所以PD ⊥AD .又因为ADC ∠=90,即AD ⊥CD ,以D 为原点建立如图所示的空间直角坐标系,则(1,0,0)A ,(1,1,0)B ,(0,2,0)C ,(0,0,1)P ,所以(1,1,0),(1,1,0).DB BC ==- 所以0DB BC ⋅=,所以BC BD ⊥ 由PD ⊥底面ABCD ,可得PD BC ⊥, 又因为PDDB D =,所以BC ⊥平面PBD . ……5分8.【昌平区2013-2014学年第一学期高三年级期末质量抽测(理)】(本小题满分14分)在四棱锥P ABCD -中,PD ⊥平面ABCD ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由. 【答案】(Ⅰ)详见解析;(Ⅱ)10Ⅲ) E 为PB 中点时,AE ⊥平面PBC(Ⅲ)(法一)当E 为线段PB 的中点时,AE ⊥平面PBC . 如图:分别取,PB PC 的中点,E F ,连结,,AE DF EF . 所以//EF BC ,且12EF BC =. 因为//,AD BC 且12AD BC =, 所以//,AD EF 且AD EF =. 所以四边形AEFD 是平行四边形.9.【海淀区2014届高三年级第一学期期末练习数学(理科)】(本小题共14分) 如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,AC BD O =,PAC ∆是边长为2的等边三角形,6PB PD ==,4AP AF =. (Ⅰ)求证:PO ⊥底面ABCD ;(Ⅱ)求直线CP 与平面BDF 所成角的大小;(Ⅲ)在线段PB 上是否存在一点M ,使得CM ∥平面BDF ?如果存在,求BMBP的值,如果不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)30;(Ⅲ)存在,BM BP =13【解析】试题分析:(Ⅰ)ACBD O =,所以O 为,AC BD 中点。

北京市海淀区2014-2015学年度高三第一学期期中试卷(理)-含答案

北京市海淀区2014-2015学年度高三第一学期期中试卷(理)-含答案

数 学(理) 2014.11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)设集合1{|}A x x >=∈R ,{|12}B x x =∈-R ≤≤,则A B =( )(A )[1,)-+∞(B )(1,)+∞(C )(1,2](D )[1,1)-(2)已知向量(2,1)=-a ,(3,)x =b . 若3⋅=a b ,则x =( ) (A )6(B )5(C )4(D )3(3)若等比数列{}n a 满足135a a +=,且公比2q =,则35a a +=( ) (A )10(B )13(C )20(D )25(4)要得到函数πsin(2)3y x =+的图象,只需将函数sin 2y x =的图象( ) (A )向左平移3π个单位 (B )向左平移6π个单位 (C )向右平移3π个单位 (D )向右平移6π个单位 (5)设131()2a =,21log 3b =,2log 3c =,则( )(A )a b c >>(B )c a b >>(C )a c b >>(D )c b a >>(6) 设,a b ∈R ,则“0ab >且a b >”是“11a b<”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(7)已知函数,0,()0.x x f x x -<⎧⎪=≥若关于x 的方程()(1)f x a x =+有三个不相等的实数根,则实数a 的取值范围是( ) (A )1[,)2+∞(B )(0,)+∞ (C )(0,1) (D )1(0,)2(8)设等差数列{}n a 的前n 项和为n S .在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )(A )当4n =时,n S 取得最大值 (B )当3n =时,n S 取得最大值 (C )当4n =时,n S 取得最小值(D )当3n =时,n S 取得最小值二、填空题共6小题,每小题5分,共30分。

北京市海淀区高三数学上学期期末考试试题 理(扫描版)新人教A版

北京市海淀区高三数学上学期期末考试试题 理(扫描版)新人教A版

北京市海淀区2014届高三数学上学期期末考试试题理(扫描版)新人教A版海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)由sin cos 0x x +≠得ππ,4x k k≠-∈Z . 因为cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x x x x x-=++-----------------------------------2分cos sin x x =+π)4x+,-------------------------------------4分因为在ABC ∆中,3cos 05A =-<,所以ππ2A <<,-------------------------------------5分 所以4sin 5A ==,------------------------------------7分所以431()sin cos 555f A A A =+=-=.-----------------------------------8分9. 2 10.4511. (0,1);412. 13 14.43;①②③(Ⅱ)由(Ⅰ)可得π())4f x x +,所以()f x 的最小正周期2πT =. -----------------------------------10分 因为函数sin y x =的对称轴为ππ+,2x k k =∈Z,-----------------------------------11分又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z , 所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =.--------------------------------3分(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为0.450.290.010.75++=----------------------------------4分由题意可知随机变量X 的取值为:0,1,2,3.----------------------------------5分事件“X k =”的含义是在3次射击中,恰有k 次击中目标靶的环数不低于8环.3333()1(0,1,2,3)44kkk P X k C k -⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭----------------------------------8分 即X 的分布列为所以X 的期望是1927279()0123646464644E X =⨯+⨯+⨯+⨯=.------------------------10分 (Ⅲ)甲队员的射击成绩更稳定.---------------------------------13分17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,AC BD O =,所以O 为,AC BD 中点.-------------------------------------1分又因为,PA PC PB PD ==,所以,P O A ⊥⊥,---------------------------------------3分所以PO ⊥底面A.----------------------------------------4分 (Ⅱ)由底面ABCD 是菱形可得AC BD ⊥,又由(Ⅰ)可知,PO AC PO BD ⊥⊥. 如图,以O 为原点建立空间直角坐标系O xyz -.由PAC ∆是边长为2的等边三角形,PB PD ==,可得PO OB OD ===所以(1A C-.---------------------------------------5分所以(1CP =,(1AP =-.由已知可得13(,0,44O FOA A =+= -----------------------------------------6分设平面BDF 的法向量为(,,)x y z =n ,则0,0,OB OF ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.4x ⎧=⎪⎨+=⎪⎩ 令1x =,则z =,所以(1,0,=n .----------------------------------------8分因为1cos 2||||CP CP CP ⋅<⋅>==-⋅n n n ,----------------------------------------9分所以直线CP 与平面BDF 所成角的正弦值为12, 所以直线CP 与平面BDF 所成角的大小为30.-----------------------------------------10分 (Ⅲ)设BMBPλ=(01)λ≤≤,则(1)CM CB BM CB BP λλ=+=+=-.---------------------------------11分若使CM ∥平面B D F ,需且仅需0CM ⋅=n 且CM ⊄平面B D F ,---------------------12分解得1[0,1]3λ=∈,----------------------------------------13分 所以在线段PB 上存在一点M ,使得CM ∥平面BDF .此时BMBP=13.-----------------------------------14分 18.(本小题共13分) 解:(Ⅰ)2e (2)(2)'()(e )e x x xa x a x f x ----==,x ∈R .------------------------------------------2分当1a =-时,()f x ,'()f x 的情况如下表:所以,当1a =-时,函数()f x 的极小值为2e --.-----------------------------------------6分 (Ⅱ)(2)'()'()e xa x F x f x --==. ①当0a <时,(),'()F x F x 的情况如下表:--------------------------------7分因为(F =>,------------------------------8分若使函数()F x 没有零点,需且仅需2(2)10eaF =+>,解得2e a >-,-------------------9分所以此时2e 0a -<<;-----------------------------------------------10分 ②当0a >时,(),'()F x F x 的情况如下表:--------11分 因为(2F F >>,且10110101110e 10e 10(1)0eea aaF a------=<<,---------------------------12分所以此时函数()F x 总存在零点.--------------------------------------------13分 综上所述,所求实数a 的取值范围是2e 0a -<<. 19.(本小题共14分)解:(Ⅰ)由题意得1c =,---------------------------------------1分 由12c a =可得2a =,------------------------------------------2分 所以23b a c =-=,-------------------------------------------3分所以椭圆的方程为22143x y +=. ---------------------------------------------4分 (Ⅱ)由题意可得点3(2,0),(1,)2A M -, ------------------------------------------6分 所以由题意可设直线1:2l y x n =+,1n ≠.------------------------------------------7分 设1122(,),(,)B x y C x y , 由221,4312x y y x n ⎧+=⎪⎪⎨⎪=+⎪⎩得2230x nx n ++-=.由题意可得2224(3)1230n n n ∆=--=->,即(2,2)n ∈-且1n ≠.-------------------------8分21212,3x x n x x n +=-=-.-------------------------------------9分 因为1212332211MB MCy y k k x x --+=+-------------------------------------10分 121212121212131311222211111(1)(2)1()1x n x n n n x x x x n x x x x x x +-+---=+=++-----+-=+-++2(1)(2)102n n n n -+=-=+-, ---------------------------------13分 所以直线,MB MC 关于直线m 对称. ---------------------------------14分20.(本小题共13分)解:(Ⅰ)①②③都是等比源函数. -----------------------------------3分(Ⅱ)函数()2x f x =+不是等比源函数. ------------------------------------4分证明如下:假设存在正整数,,m n k 且m n k <<,使得(),(),()f m f n f k 成等比数列, 2(21)(21)(21)n m k +=++,整理得2122222n n m k m k +++=++,-------------------------5分等式两边同除以2,m 得2122221n m n m k k m --+-+=++.因为1,2n m k m -≥-≥,所以等式左边为偶数,等式右边为奇数,所以等式2122221n m n m k k m --+-+=++不可能成立,所以假设不成立,说明函数()21x f x =+不是等比源函数.-----------------------------8分(Ⅲ)法1:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. *,d b ∀∈N ,2(1),(1)(1),(1)(1)g g d g d ++成等比数列,因为(1)(1)(1)((1)11)[(1)1]g d g g d g g +=++-=+,2(1)(1)(1)(2(1)(1)11)[2(1)(1)1]g d g g g d d g g g d +=+++-=++,所以(1),[(1)1],[2(1)(1)1]g g g g g g d +++*{()|}g n n ∈∈N ,所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分(Ⅲ)法2:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. 由2()(1)()g m g g k =⋅,(其中1m k <<)可得2[(1)(1)](1)[(1)(1)]g m d g g k d +-=⋅+-,整理得(1)[2(1)(1)](1)(1)m g m d g k -+-=-,令(1)1m g =+,则(1)[2(1)(1)](1)(1)g g g d g k +=-,所以2(1)(1)1k g g d =++,所以*,d b ∀∈N ,数列{()}g n 中总存在三项(1),[(1)1],[2(1)(1)1]g g g g g g d +++成等比数列.所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分。

2013-2014年北京市海淀区高三第一学期期末数学(文)

2013-2014年北京市海淀区高三第一学期期末数学(文)

海淀区高三年级第一学期期末练习 文1数 学(文科) 2014.01 本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.复数i(i 1)+等于A. 1i +B.1i -+C. 1i -D.1i --2.已知直线1:210l x y +-=与直线2:0l mx y -=平行,则实数m 的取值为 A. 12- B.12C. 2D.2- 3.为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为 40尾,根据上述数据估计该水池中鱼的尾数为A .10000B .20000C .25000D .300004.阅读右边的程序框图,运行相应的程序,输出的S 值为A.15B.14C. 7D. 65.已知2log 3a =,4log 6b =,4log 9c =,则A .a b c =<B .a b c <<C .a c b =>D .a c b >> 6.已知函数22,2,()3,2,x f x x x x ⎧≥⎪=⎨⎪-<⎩ 若关于x 的方程()f x k =有三个不等的实根,则实数k 的取值范围是A.(3,1)-B. (0,1)C. (2,2)-D. (0,)+∞ 7.在ABC ∆中,若2a b =,面积记作S ,则下列结论中一定..成立的是 A .30B > B .2A B = C .c b < D .2S b ≤ 8.如图所示,正方体1111ABCD A B C D -的棱长为1,BD AC O = ,M 是线段1D O 上的动N O C 1D D 1B 1A 1CA B M 否是开始 a =1,S =1 a =2a S =S +a结束 S <10输出S点,过点M 做平面1ACD 的垂线交平面1111A B C D 于点N , 则点N 到点A 距离的最小值为A .2B .62C .233D .1 二、填空题:本大题共6小题,每小题5分,共30分。

2014年北京市海淀区高三一模数学(理)试题和答案

2014年北京市海淀区高三一模数学(理)试题和答案

海淀区高三年级第二学期期中练习数学(理科) 2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭集合则 A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ2.复数()()1i 1i z =+-在复平面内对应的点的坐标为 A. (1,0) B. (0,2) C.()1,0 D. (2,0)1((2)f >的只可能是A BC D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有 A. 4种 B.5种 C.6种 D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为 线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点 的个数为a ,则 A .0a = B .1a = C .2a = D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______. 10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______. 11.如图,AB 切圆O 于B ,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=________. 14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sincos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t .(Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围. 16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、10天的数据,制表如下:35件以内(含35AB D俯视图主视图侧视图件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望; (Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费. 17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB=30°,∠ABC=90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1) 处的切线为2y x m =+,求实数a 和m 的值;(Ⅱ)对任意实数a , 曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围. 19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点, 点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长;(Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

北京市海淀区2014届高三上学期期末考试数学(理)试题

北京市海淀区2014届高三上学期期末考试数学(理)试题

北京市海淀区2014届高三上学期期末考试理科数学试题2014.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.复数i(i 1)+等于A. 1i +B. 1i --C. 1i -D. 1i -+ 2.设非零实数,a b 满足a b <,则下列不等式中一定成立的是 A.11a b> B. 2ab b < C. 0a b +> D. 0a b -< 3.下列极坐标方程表示圆的是A. 1ρ=B. 2πθ=C. sin 1ρθ=D. (sin cos )1ρθθ+= 4.阅读如右图所示的程序框图,如果输入的n 的值为6,那么运行相应程序,输出的n 的值为A. 3B. 5C. 10D. 16 5. 322x x ⎛⎫-⎪⎝⎭的展开式中的常数项为 A. 12 B. 12- C.6 D. 6-6.若实数,x y 满足条件20,0,3,x y x y y +-≥⎧⎪-≤⎨⎪≤⎩则34z x y =-的最大值是 A.13- B. 3- C.1- D.7.已知椭圆C 22143x y +=的左、右焦点分别为12,F F ,椭圆C 上点A 满足212AF F F ⊥. 若点P 是椭圆C 上的动点,则12F P F A ⋅的最大值为A.B. 233C. 94D. 154开始结束输入n 输出ni =0n 是奇数n =3n +1i<3i =i +12n n =是否8.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有A.50种B.51种C.140种D.141种二、填空题本大题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高三年级第一学期期末练习
数学(理科) 2014.01
本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要
求的一项。

1.复数i(i 1)+等于
A. 1i +
B. 1i --
C. 1i -
D.1i -+
2.设非零实数,a b 满足a b <,则下列不等式中一定成立的是 A.
11
a b
> B.2ab b < C. 0a b +> D.0a b -< 3.下列极坐标方程表示圆的是 A. 1ρ= B. 2
π
θ=
C.sin 1ρθ=
D.(sin cos )1ρθθ+=
4.阅读如右图所示的程序框图,如果输入的n 的值为6,那么运行相应程序,输出的n 的值为 A. 3B. 5 C. 10D. 16
5. 3
22x x ⎛
⎫- ⎪⎝
⎭的展开式中的常数项为
A. 12
B. 12-
C.6
D. 6-
6.若实数,x y 满足条件20,
0,3,x y x y y +-≥⎧⎪-≤⎨⎪≤⎩
则34z x y =-的最大值是 A.13- B. 3- C.1- D.1
7.已知椭圆C :22
143x y +=的左、
右焦点分别为12,F F ,椭圆C 上点A 满足212AF F F ⊥. 若点P 是椭圆C 上的动点,则12F P F A ⋅
的最大值为
B.2
33 C.9
4D. 154
开始
结束
输入n 输出n i =0
n 是奇数
n =3n +1
i<3
i =i +1
2
n n =是

8.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有 A.50种B.51种C.140种D.141种
二、填空题:本大题共6小题,每小题5分,共30分。

9.已知点(1,0)F 是抛物线C :22y px =的焦点,则p =_______.
10.在边长为2的正方形ABCD 中有一个不规则的图形M ,用随机模拟方法来估计不规则图形的面积.若在正方形ABCD 中随机产生了10000个点,落在不规则图形M 内的点数恰有2000个,则在这次模拟中,不规则图形M 的面积的估计值为__________.
11.圆C :2cos ,
12sin x y θθ=⎧⎨=+⎩
(θ为参数)的圆心坐标为__________;直线l :21y x =+被圆C 所截得的弦长
为__________.
12.如图,AB 与圆O 相切于点B ,过点A 作圆O 的割线交圆O 于,C D 两点,
AD BC ⊥,22AB AC ==,则圆O 的直径等于______________.
13. 已知直线l 过双曲线的左焦点F ,且与以实轴为直径的圆相切,若直线l 与双曲线的一条渐近线恰好平行,则该双曲线的离心率是_________.
14. 已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示.
(1)若该四棱锥的左视图为直角三角形,则它的体积为__________; (2)关于该四棱锥的下列结论中: ①四棱锥中至少有两组侧面互相垂直; ②四棱锥的侧面中可能存在三个直角三角形; ③四棱锥中不.可能存在四组互相垂直的侧面. 所有正确结论的序号是___________.
D
A
三、解答题: 本大题共6小题,共80分。

解答应写出文字说明, 演算步骤或证明过程。

15.(本小题共13分)
函数cos2()2sin sin cos x
f x x x x
=
++.
(Ⅰ)在ABC ∆中,3cos 5
A =-,求()f A 的值;
(Ⅱ)求函数()f x 的最小正周期及其图象的所有对称轴的方程.
16.(本小题共13分)
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示.
假设每名队员每次射击相互独立. (Ⅰ)求上图中a 的值;
(Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数X 的分布列及数学期望(频率当
作概率使用);
(Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)
17.(本小题共14分)
如图所示,在四棱锥P ABCD -中,底面四边形ABCD
是菱形,
AC BD O = ,PAC ∆是边长为2的等边三角形,PB PD ==,
4AP AF =.
(Ⅰ)求证:PO ⊥底面ABCD ;
(Ⅱ)求直线CP 与平面BDF 所成角的大小; (Ⅲ)在线段PB 上是否存在一点M ,使得CM ∥平面BDF ?如果存在,
求BM
BP
的值,如果不存在,请说明理由.
18.(本小题共13分)
已知关于x 的函数()(0)e
x
ax a
f x a -=
≠ (Ⅰ)当1a =-时,求函数()f x 的极值;
(Ⅱ)若函数()()1F x f x =+没有零点,求实数a 取值范围.
19.(本小题共14分)
已知椭圆G :)0(12222>>=+b a b
y a x 的离心率为1
2,过椭圆G 右焦点F 的直线:1m x =与椭圆G
交于点M (点M 在第一象限).
(Ⅰ)求椭圆G 的方程;
(Ⅱ)已知A 为椭圆G 的左顶点,平行于AM 的直线l 与椭圆相交于,B C 两点.判断直线,MB MC 是否
关于直线m 对称,并说明理由.
20.(本小题共13分)
若函数()f x 满足:集合*{()|}A f n n =∈N 中至少存在三个不同的数构成等比数列,则称函数()f x 是等比源函数.
(Ⅰ)判断下列函数:①2y x =;②1
y x =;③2log y x =中,哪些是等比源函数?(不需证明)
(Ⅱ)判断函数()21x f x =+是否为等比源函数,并证明你的结论; (Ⅲ)证明:*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.。

相关文档
最新文档