2013-2014海淀区高三数学期末考试文科试卷

合集下载

【2013海淀二模】北京市海淀区2013届高三下学期期末练习 文科数学 扫描版试题Word版答案【2

【2013海淀二模】北京市海淀区2013届高三下学期期末练习 文科数学 扫描版试题Word版答案【2

海淀区高三年级第二学期期末练习数 学 (文科)参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)注:11题少写一个,扣两分,错写不给分 13题开闭区间都对三、解答题(本大题共6小题,共80分)15.(本小题满分13分) 解:(I )设{}n a 的公差为d因为11a =,1910101002a a S +=⨯= ……………………2分所以1101,19a a == ……………………4分所以2d =所以 21n a n =- ……………………6分 (II )因为26n S n n =-当2n ≥时,21(1)6(1)n S n n -=---所以27n a n =-,2n ≥ ……………………9分又1n =时,11527a S ==-=-所以 27n a n =- ……………………10分所以247n n S a n n +=--所以2472n n n -->,即2670n n --> 所以7n >或1n <-,所以7n >,N n ∈ ……………………13分16. 解:(I )因为75ADB ∠=,所以45DAC ∠=在ACD ∆中,AD =, 根据正弦定理有sin45sin30CD AD= ……………………4分所以2CD = ……………………6分(II )所以4BD = ……………………7分又在ABD ∆中,75ADB ∠=,6sin75sin(4530)4+=+= ……………………9分 所以1sin75312ADB S AD BD ∆=⋅⋅= ……………………12分所以32ABCABD S S ∆∆==……………………13分同理,根据根据正弦定理有sin105sin30AC AD=而 6sin105sin(4560)4+=+= ……………………8分所以1AC ……………………10分又4BD =,6BC = ……………………11分所以 ……………………13分17.解:(I )因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上所以PO ⊥平面ABC ,所以PO ⊥AC …………………2分因为AB BC =,所以O 是AC 中点, …………………3分所以//OE PA …………………4分同理//OF AD 又,OEOF O PA AD A ==所以平面//OEF 平面PDA …………………6分(II )因为//OF AD ,AD CD ⊥所以OF CD ⊥ …………………7分 又PO ⊥平面ADC ,CD ⊂平面ADC所以PO ⊥CD …………………8分 又OF PO O =所以CD ⊥平面POF …………………10分(III)存在,事实上记点E 为M 即可 …………………11分因为CD ⊥平面POF ,PF ⊂平面POF 所以CD PF ⊥又E 为PC 中点,所以 12EF PC =…………………12分 同理,在直角三角形POC 中,12EP EC OE PC ===, …………………13分 所以点E 到四个点,,,P O C F 的距离相等 …………………14分18.解:(I )当因为1a =, 211'(),()f x g x x x== …………………2分 若函数()f x 在点00(,())M x f x 处的切线与函数()g x 在点00(,())P x g x处的切线平行, 所以20011x x =,解得01x = 此时()f x 在点(1,0)M 处的切线为1y x =-()g x 在点(1,1)P - 处的切线为2y x =-所以01x = …………………4分 (II )若(0,e]x ∀∈,都有3()()2f xg x ≥+ 记33()()()ln 22a F x f x g x x x =--=+-, 只要()F x 在(0,e]上的最小值大于等于0221'()a x aF x x x x-=-= …………………6分 则'(),()F x F x 随x 的变化情况如下表:…………………8分 当e a ≥时,函数()F x 在(0,e)上单调递减,(e)F 为最小值所以3(e)102a F e =+-≥,得e 2a ≥ 所以e a ≥ …………………10分当e a <时,函数()F x 在(0,)a 上单调递减,在(,e)a 上单调递增 ,()F a 为最小值,所以3()ln 02a F a a a =+-≥,得a ≥e a < ………………12分a ………………13分19.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以1a b ==,椭圆C 的方程为2213x y += ………………4分 (II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又因为|||3AB PO ==,所以60PAO ∠=,所以PAB ∆是等边三角形,所以直线AB 的方程为0y = ………………6分当直线AB 的斜率存在且不为0时,设AB 的方程为y kx =所以2213x y y kx⎧+=⎪⎨⎪=⎩,化简得22(31)3k x +=所以1||x =||AO ==………………8分 设AB 的垂直平分线为1y x k =-,它与直线:30l x y +-=的交点记为00(,)P x y 所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则||PO =………………10分因为PAB ∆为等边三角形,所以应有|||PO AO =代入得到=0k =(舍),1k =-……………13分 此时直线AB 的方程为y x =-综上,直线AB 的方程为y x =-或0y = ………………14分20.解:(I )法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3: 14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列(写出一种即可)…………………3分- 11 - (II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果操作第三列,则22221212a a a a a a a a ----- 则第一行之和为21a -,第二行之和为52a -,210520a a -≥⎧⎨-≥⎩,解得1,2a a ==. …………………6分 ② 如果操作第一行22221212a a a a a a a a ----- 则每一列之和分别为22a -,222a -,22a -,22a解得1a = …………………9分综上1a = …………………10分(III) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和)由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得数阵中mn 个数之和增加,且增加的幅度大于等于1(1)2--=,但是每次操作都只 是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中mn 个数之和必然小于等于11||m nij i j a ==∑∑,可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立 …………………13分。

2013-2014海淀二模试题(文科)03版

2013-2014海淀二模试题(文科)03版

海淀区高三年级第二学期期末练习数 学 (文科) 2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集为R ,集合{|1}A x x =≥,那么集合A R ð等于A.{|1}x x >B.{|1}x x >-C.{|1}x x <D.{|1}x x <- 2. 已知命题p: 210x x x ∃∈+-<R ,,则p ⌝为A. 210x x x ∃∈+->R ,B.210x x x ∀∈+-≥R ,C. 210x x x ∃∉+-≥R ,D.210x x x ∀∉+->R ,3. 下列函数中,既是偶函数又在区间0+∞(,)上单调递增的是A.3y x =B.y =C.cos y x =D.2xy =4.设2log 3a =,4log 3b =,sin90c ︒=,则A.a c b <<B.b c a <<C.c a b <<D.c b a <<5.下面给出的四个点中, 位于10,10x y x y ++>⎧⎨-+<⎩表示的平面区域内,且到直线10x y -+=的距离A.(1,1)-B.(2,1)-C.(0,3)D.(1,1) 6.已知向量AC ,AD 和AB 在正方形网格中的位置如图所示, 若μλ+=,则=+μλA. 2B. 2-C. 3D. 3-7. 如图所示,为了测量某湖泊两侧A B ,间的距离,李宁同学首先选定了与A B ,不共线的一点C ,然后给出了三种测量方案:(ABC ∆的角,,A B C 所对的边分别记为,,a b c ):① 测量,,A C b ② 测量,,a b C ③测量,,A B aA则一定能确定A B ,间距离的所有方案的序号为A.①②B. ②③C. ①③D. ①②③8. 已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则与平面ABCD 垂直的直线MN 有A.0条B.1条C.2条D.无数条二、填空题:本大题共6小题,每小题5分,共30分.9. 复数2+i 的模等于______.10. 若抛物线22y px =(0)p >的准线经过双曲线221x y -=的左顶点,则p =_____.11. 执行如图所示的程序框图,则输出S 的值为_______. 12. 下列函数中:①sin 2y x =-;②cos2y x =;③3sin(2)4y x π=+,其图象仅通过向左(或向右)平移就能与函数()sin 2f x x =的图象重合的是_____.(填上符合要求的函数对应的序号)13. 已知实数0a >且1a ≠,函数, 3,(), 3.x a x f x ax b x ⎧<=⎨+≥⎩若数列{}n a 满足()n a f n =*()n ∈N ,且{}n a 是等差数列,则___,____.a b == 14. 农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/2m .4.52.42单株产量(千克)区域代号1D三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数2()cos 2sin f x x x x a =-+,a ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若函数()f x 有零点,求实数a 的取值范围.16.(本小题满分13分)下图为某地区2012年1月到2013年1月鲜蔬价格指数的变化情况:记Δx =本月价格指数-上月价格指数. 规定:当Δ0x >时,称本月价格指数环比增长; 当0x ∆<时,称本月价格指数环比下降;当0x ∆=时,称本月价格指数环比持平. (Ⅰ) 比较2012年上半年与下半年鲜蔬价格指数月平均值的大小(不要求计算过程); (Ⅱ) 直接写出从2012年2月到2013年1月的12个月中价格指数环比下降..的月份. 若从这12个月中随机选择连续的两个月进行观察,求所选两个月的价格指数都.环比下降的概率;(Ⅲ) 由图判断从哪个月开始连续三个月的价格指数方差最大. (结论不要求证明)17.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1,AB AC AC AA ⊥=,E 、F 分别是棱1BC CC 、的中点.(Ⅰ)求证:AB ⊥平面AA 1 C 1C ;(Ⅱ)若线段AC 上的点D 满足平面DEF //平面1ABC ,试确定点D 的位置,并说明理由; (Ⅲ)证明:EF ⊥A 1C .18.(本小题满分13分)已知函数321()43f x x ax x b =+++,其中,a b ∈R 且0a ≠.(Ⅰ)求证:函数()f x 在点(0,(0))f 处的切线与()f x 总有两个不同的公共点; (Ⅱ)若函数()f x 在区间(1,1)-上有且仅有一个极值点,求实数a 的取值范围.19.(本小题满分14分)已知椭圆G短轴端点分别为(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的标准方程;(Ⅱ)若C ,D 是椭圆G 上关于y 轴对称的两个不同点,直线BC 与x 轴交于点M ,判断以线段MD 为直径的圆是否过点A ,并说明理由.20.(本小题满分13分)给定正整数3k ≥,若项数为k 的数列{}n a 满足:对任意的1,2,,i k =,均有ki a k S ≤-1(其中12k k S a a a =+++),则称数列{}n a 为“Γ数列”.(Ⅰ)判断数列1,3,5,2,4-和2323333,,444是否是“Γ数列”,并说明理由;(Ⅱ)若{}n a 为“Γ数列”,求证:0i a ≥对1,2,,i k =恒成立;(Ⅲ)设{}n b 是公差为d 的无穷项等差数列,若对任意的正整数m ≥3,12,,,m b b b均构成“Γ数列”,求{}n b 的公差d .1。

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 文科数学 Word版含答案-推荐下载

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 文科数学 Word版含答案-推荐下载

D
代代
C
C1
B1 A1
F B
E A
开始
S=0,n=1
S=S+n
n n2 1
否 n>10

输出 S
结束
试卷集合_Wuz
三、解答题: 本大题共 6 小题,共 80 分.解答应写出文字说明, 演算步骤或证明过程.
15.(本小题满分 13 分) 已知函数 f (x) 2 3 sin x cos x 2sin2 x a , a R .
x

x
6.已知向量 AC , AD 和 AB 在正方形网格中的位置如图所示,
若 AC AB AD ,则
A. 2
B. 2

y y
,那么集合
B. x R,x2 x 1 0 D. x R,x2 x 1 0
1 1
C. y cos x
D. (1,1)
D. 3
x

y

1
B AD
C
A

0
2014.5
的距离为
2的 2
① 测量 A,C,b ② 测量 a,b,C
则一定能确定 A, B 间距离的所有方案的序号为
A.①②
B. ②③
试卷集合_Wuz
8. 已知点 E, F 分别是正方体 ABCD A1B1C1D1 的棱 AB, AA1 的中点,点 D1
符合题目要求的一项.
1.
已知全集为
R
,集合
A

{x
|
x
≥ 1}
A.{x | x 1} B.{x | x 1} C.{x | x 1} D.{x | x 1}

20141104高三海淀区文科数学题

20141104高三海淀区文科数学题

20141104高三海淀区文科数学题1 / 3海淀区高三年级第一学期期中练习数学(文科)2013.11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合{1,0,1,2}A =-,{|1}B x x =≥,则A B =( )A. {2}B. {1,2}C. {1,2}-D. {1,1,2}-2. 下列函数中,为奇函数的是( )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()sin f x x =3. 已知向量(1,2),(,1)m =-=-a b ,且//a b ,则实数m 的值为( ) A. 2- B. 12-C.12D. 24.“π6α=”是“1sin 2α=”的() A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件5. 已知数列{}n a 的前n 项和为n S ,且*1110,3()n n a a a n +=-=+∈N ,则n S 取最小值时,n 的值是()A. 3B. 4C. 5D. 66.若函数tan ,0,()2(1)1,0x x f x a x x π⎧-<<⎪=⎨⎪-+≥⎩在π(,)2-+∞上单调递增,则实数a 的取值范围( )A. (0,1]B. (0,1)C. [1,)+∞D. (0,)+∞7.若函数()sin f x x kx =-存在极值,则实数k 的取值范围是( ) A. (1,1)-B. [0,1)C. (1,)+∞D. (,1)-∞-8.已知点(1,0)B ,P 是函数e x y =图象上不同于(0,1)A 的一点.有如下结论: ①存在点P 使得ABP ∆是等腰三角形;2②存在点P 使得ABP ∆是锐角三角形; ③存在点P 使得ABP ∆是直角三角形. 其中,正确的结论的个数为( ) A. 0B.1C. 2D. 3二、填空题:本大题共6小题,每小题5分,共30分。

2013-2014学年高三数学期末考试(含答案)

2013-2014学年高三数学期末考试(含答案)

2013-2014学年高三数学期末考试时间:2014.1一、选择题1.已知集合2{|20}A x x x a =-+>,且1A ∉,则实数a 的取值范围是( ) A .(],1-∞ B .[)1,+∞ C .[)0,+∞ D .(,1)-∞2.) A B .虚轴上 C .第一象限 D .第二象限 3.按照如图的程序框图执行,若输出结果为15,则M 处条件为( )A .16k ≥B .8k <C .16k <D .8k ≥4.已知S n 表示等差数列}{n a 的前n 项和,且5.已知随机变量服从正态分布),2(2σN ,84.0)4(=≤ξP ,则=≤)0(ξP ( )A. B.32.0 C.68.0 D.6.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( )A. 20种B. 30种C. 40种D. 60种 7.下列说法不正确的是A .“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”B .命题“若x>0且y>0,则x +y>0”的否命题是假命题C .212,0,a R x x a x x ∃∈++=使方程2的两根满足x 1<1<x 2”和“函数2()log (1)f x ax =-在[1,2]上单调递增”同时为真D .△ABC中A 是最大角,则22sin sin B C +<sin 2A 是△ABC 为钝角三角形的充要条件8.若2(nx 的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( )A .10-B .10C .-45D .459.已知F 是椭圆12222=+by a x (a>b>0)的左焦点, P 是椭圆上的一点,PF ⊥x 轴, OP ∥AB(O 为原点), 则该椭圆的离心率是( )A .22 B .42 C .21 D .2310.如图,函数y =f (x )的图象为折线ABC ,设f 1 (x )=f (x ),f n +1 (x )=f [f n (x )],n ∈N *,则函数y =f 4 (x )的图象为( )11.不等式组⎪⎩⎪⎨⎧>-<-1)1(log ,2222x x 的解集为( )A. )3,0(B. )2,3(C. )4,3(D. (2,4) 12.如果函数()f x x =()0a >没有零点,则a 的取值范围为 ( )A.()0,1 B .()0,1)+∞C .()0,1()2,+∞ D.(()2,+∞二. 填空题(每题4分,共16分)13.当实数x ,y 满足不等式组0,0,0x y x x y m -≤⎧⎪≥⎨⎪+-≤⎩(m 为常数)时,2x +y 的最大值为4,则m = 。

北京市海淀区2014届高三下学期期末练习(二模)数学文试题 含答案

北京市海淀区2014届高三下学期期末练习(二模)数学文试题 含答案

海淀区高三年级第二学期期末练习参考答案数 学 (文科) 2014.5 阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6{第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()2cos21f x x x a =++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分 ∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分 则π=12sin(2)6a x -+, --------------------------------9分 因为π1sin(2)16x -≤+≤, ---------------------------------11分 所以π112sin(2)36x -≤-+≤, --------------------------------12分 所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A , --------------------------------------7分在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分 ∴3().11P A = -----------------------------------------10分 (Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分17.解:(I )1A A ⊥Q 底面ABC ,1A A ∴⊥AB , -------------------------2分 AB AC ⊥Q ,1A A AC A =I ,AB ∴⊥面11A ACC . --------------------------4分 (II )Q 面DEF //面1ABC ,面ABC I 面DEF DE =,面ABC I 面1ABC AB =, AB ∴//DE , ---------------------------7分Q 在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分 (III )Q 三棱柱111ABC A B C -中1A A AC =∴侧面11A ACC 是菱形, 11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB AC ⊥, Q 1AB AC A =I ,1AC ∴⊥面1ABC , --------------------------------11分 1AC ∴⊥1BC . -------------------------------12分 又,E F Q 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分 1EF AC ∴⊥. ------------------------------14分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分 又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=. 0x ∴=或3x a =-, -----------------------------------5分 0a ≠Q 30a ∴-≠, ----------------------------------------6分 ()f x ∴与切线有两个不同的公共点. ----------------------------------------7分 (Ⅱ)()f x Q 在(1,1)-上有且仅有一个极值点,∴2'()24f x x ax =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分1由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分 综上,a 的取值范围是55(,)(,)22-∞-+∞U . -------------------------------13分 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e ,可得222112a e a -==,----------------------------------------------------------------3分 解得22a =, -----------------------------------------------------------4分 所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分 (Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠ ------------------------------------------------------6分 因为(0,1),(0,1)A B -,所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分 令0y =,得001M x x y =+,所以00(,0)1x M y +. ----------------------------------------------8分 所以0000(,1),(,1),1x AM AD x y y =-=--+u u u u r u u u r -------------------------------------------9分 所以200011x AM AD y y -⋅=-++u u u u r u u u r , ---------------------------------------------10分 又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+u u u u r u u u r --------------------11分 因为011y -<<,所以0AM AD ⋅≠u u u u r u u u r . -----------------------------------------------------------12分所以90MAN ∠≠o , -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分 法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分 由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21k x x k ==+, -------------------------------------8分所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分 所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++u u u u r u u u r ---------------------------------------------10分 所以2222421210212121k AM AD k k k ---⋅=-+=≠+++u u u u r u u u r , --------------------------------------12分 所以90MAN ∠≠o , ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解: (Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分 ②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分 (Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->L L .设12111max{,,,,,,,}j i i k k a a a a a a a -+-=L L ,则12111k i i i k k j S a a a a a a a k a -+--=+++++++L L ≤(-1),所以(1)j k k a S ->,即1k j S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S S b b b m m ====<-L ,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<L由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+- 整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立.综上讨论可知{}n b 的公差0d =. --------------------------------------------------13分。

【2014海淀二模】北京市海淀区2014届高三下学期期末练习(二模)数学文试题(扫描版,WORD答案)

【2014海淀二模】北京市海淀区2014届高三下学期期末练习(二模)数学文试题(扫描版,WORD答案)

海淀区高三年级第二学期期末练习参考答案数 学 (文科) 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6 {第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()2cos21f x x x a =++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分则π=12sin(2)6a x -+, --------------------------------9分因为π1sin(2)16x -≤+≤, ---------------------------------11分所以π112sin(2)36x -≤-+≤, --------------------------------12分所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A ,--------------------------------------7分在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分 其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分∴3().11P A =-----------------------------------------10分(Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分 17.解: (I )1A A ⊥底面ABC ,1A A ∴⊥AB , -------------------------2分AB AC ⊥,1A A AC A =,AB ∴⊥面11A ACC . --------------------------4分(II )面DEF //面1ABC ,面ABC面DEF DE =,面ABC面1ABC AB =,AB ∴//DE , ---------------------------7分在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分 (III )三棱柱111ABC A B C -中1A A AC = ∴侧面11A ACC 是菱形,11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB AC ⊥, 1AB AC A =,1A C ∴⊥面1ABC , --------------------------------11分1A C ∴⊥1BC . -------------------------------12分又,E F 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分1EF AC ∴⊥. ------------------------------141分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=.0x ∴=或3x a =-, -----------------------------------5分0a ≠ 30a ∴-≠, ----------------------------------------6分()f x ∴与切线有两个不同的公共点.----------------------------------------7分(Ⅱ)()f x 在(1,1)-上有且仅有一个极值点,∴2'()24f x x ax =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分综上,a 的取值范围是55(,)(,)22-∞-+∞. -------------------------------13分 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e =,可得222112a e a -==,----------------------------------------------------------------3分解得22a =, -----------------------------------------------------------4分所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分(Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠------------------------------------------------------6分 因为(0,1),(0,1)A B -, 所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分令0y =,得001M x x y =+,所以00(,0)1xM y +. ----------------------------------------------8分 所以000(,1),(,1),1x AM AD x y y =-=--+ -------------------------------------------9分所以200011x AM AD y y -⋅=-++,---------------------------------------------10分又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+ --------------------11分因为011y -<<,所以0AM AD ⋅≠. -----------------------------------------------------------12分所以90MAN ∠≠, -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21kx x k ==+, -------------------------------------8分所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++ ---------------------------------------------10分所以2222421210212121k AM AD k k k ---⋅=-+=≠+++, --------------------------------------12分所以90MAN ∠≠, ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解:(Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分(Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->.设12111max{,,,,,,,}j i i k k a a a a a a a -+-=,则12111k i i i k k j S a a a a a a a k a -+--=+++++++≤(-1),所以(1)j k k a S ->,即1kj S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S Sb b b m m ====<-,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+-整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立.综上讨论可知{}n b 的公差0d . --------------------------------------------------13分。

【解析】【2013海淀二模】北京市海淀区2013届高三下学期期末练习 文科数学 Word版含解析

【解析】【2013海淀二模】北京市海淀区2013届高三下学期期末练习 文科数学 Word版含解析

海淀区高三年级第二学期期末练习数 学(文科)2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作 答无效。

考试结束后,将本试卷和答题卡一并交回。

—、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出 符合题目要求的一项.1. 集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞ 【答案】B【KS5U 解析】{}|(1)(2)0{21}A x x x x x =-+≤=-≤≤,所以A B ={1}x x ≤,即选B.2 已知1211ln ,sin ,222a b c -===,则a,b ,c 的大小关系为A. a < b < cB. a <c <bC.b <a<cD. b <c < a【答案】A【KS5U 解析】1ln 02a =<,110sin sin 262π<<=所以102b <<,12122c -==>,的大小关系为c b a >>。

选A.3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m【答案】C【KS5U 解析】设图形Ω面积的为S ,则由实验结果得2S m a n=,解2ma S n =,所以选C.4.俯视图A.180B.240C.276D.300 【答案】B【KS5U 解析】由三视图可知,该几何体的下面部分是边长为6的正方体。

上部分为四棱锥。

四棱锥的底面为正方形,边长为 6.侧面三角形的斜高为 5.所以该几何体的表面积为21656542402⨯+⨯⨯⨯=,选B.5 下列函数中,为偶函数且有最小值的是A.f(x) =x 2 +xB.f(x) = |lnx|C.f(x) =xsinxD.f(x) =e x +e -x【答案】D【KS5U 解析】A ,B 为非奇非偶函数。

2013-2014年北京市海淀区高三第一学期期末数学(文)

2013-2014年北京市海淀区高三第一学期期末数学(文)

海淀区高三年级第一学期期末练习 文1数 学(文科) 2014.01 本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.复数i(i 1)+等于A. 1i +B.1i -+C. 1i -D.1i --2.已知直线1:210l x y +-=与直线2:0l mx y -=平行,则实数m 的取值为 A. 12- B.12C. 2D.2- 3.为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为 40尾,根据上述数据估计该水池中鱼的尾数为A .10000B .20000C .25000D .300004.阅读右边的程序框图,运行相应的程序,输出的S 值为A.15B.14C. 7D. 65.已知2log 3a =,4log 6b =,4log 9c =,则A .a b c =<B .a b c <<C .a c b =>D .a c b >> 6.已知函数22,2,()3,2,x f x x x x ⎧≥⎪=⎨⎪-<⎩ 若关于x 的方程()f x k =有三个不等的实根,则实数k 的取值范围是A.(3,1)-B. (0,1)C. (2,2)-D. (0,)+∞ 7.在ABC ∆中,若2a b =,面积记作S ,则下列结论中一定..成立的是 A .30B > B .2A B = C .c b < D .2S b ≤ 8.如图所示,正方体1111ABCD A B C D -的棱长为1,BD AC O = ,M 是线段1D O 上的动N O C 1D D 1B 1A 1CA B M 否是开始 a =1,S =1 a =2a S =S +a结束 S <10输出S点,过点M 做平面1ACD 的垂线交平面1111A B C D 于点N , 则点N 到点A 距离的最小值为A .2B .62C .233D .1 二、填空题:本大题共6小题,每小题5分,共30分。

北京2013届海淀高三二模数学文科试题及答案(修正版)

北京2013届海淀高三二模数学文科试题及答案(修正版)

海淀区高三年级第二学期期末练习数 学〔文科〕—、选择题:本大题共8小题,每题5分,共40分.在每题列出的四个选项中,选出 符合题目要求的一项. 1. 集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =A .(,0-∞)B .(,1]-∞C .[1,2]D .[1,)+∞2 已知1211ln ,sin ,222a b c -===,则,,a b c 的大小关系为A. a b c <<B. a c b <<C. b a c <<D. b c a <<3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,假设 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的外表积为A.180B.240C.276D.3005 、以下函数中,为偶函数且有最小值的是A. 2()f x x x =+B. ()|ln |f x x =C. ()sin f x x x =D. ()x x f x e e -=+6 、在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点.设双曲线C 与该抛物线的一个交点为A ,假设12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为1+1D.28. 假设数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a+->⎧⎪⎨<≤⎪⎩,则以下结论中错误的选项是...... A. 假设45m =,则53a = B 假设32a =,则m 可以取3个不同的值俯视图C.假设m ={}n a 是周期为3的数列 D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每题5分,共30分.9、 复数ii-12=______10 、甲、乙两名运发动在8场篮球比赛中得分的数据统计如右图, 则甲乙两人发挥较为稳定的是_____.11 、已知数列{}n a 是等比数列,且134a a ⋅=,48a =, 则5a 的值为____.12、 直线1y x =+被圆22230x x y -+-=所截得的弦长为_____13 、已知函数()sin(2)(01)6f x x πωω=-<<的图象经过点(,0)6π ,则ω= ,()f x 在区间[0,]π上的单调递增区间为________.14 、设变量,x y 满足约束条件⎪⎩⎪⎨⎧-≤-≤-+≥-)1(10401x k y y x y 其中k ,k 0∈>R .(I)当1k =时,2yx 的最大值为______; (II)假设2yx 的最大值为1,则实数k 的取值范围是_____. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15 、(本小题总分值13分〕已知等差数列{}n a 的前n 项和为n S .(I)假设11a =,10100S =,求{}n a 的通项公式; (II)假设26n S n n =-,解关于n 的不等式2n n S a n +>.16 、(本小题总分值13分〕已知点 D 为ΔABC 的边 BC 上一点.且 BD =2DC, ADB ∠=750,∠ACD =30°,AD =2. (I)求CD 的长; (II)求ΔABC 的面积17、 (本小题总分值14分〕如图1,在直角梯形ABCD 中,AD//BC, ADC ∠=900,BA=BC .把ΔBAC 沿AC 折起到PAC ∆的位置,使得P 点在平面ADC 上的正投影O 恰好落在线段AC 上,如图2所示,点,E F 分别为线段PC ,CD 的中点.(I) 求证:平面OEF//平面APD ; (II)求直线CD ⊥与平面POF ;(III)在棱PC 上是否存在一点M ,使得M 到点P,O,C,F 四点的距离相等?请说明理由.18 、(本小题总分值13分〕 已知函数()ln ,()(0)af x xg x a x==->. (1)当1a =时,假设曲线()y f x =在点00(,())M x f x 处的切线与曲线()y g x =在点00(,())P x g x 处的切线平行,求实数0x 的值;(II)假设(0,]x e ∀∈,都有3()()2f xg x ≥+,求实数a 的取值范围.19、 (本小题总分值丨4分〕已知椭圆C:22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(I)求椭圆C 的方程;(II)假设直线y kx =交椭圆C 于A ,B 两点,在直线:30l x y +-=上存在点P,使得 ΔPAB 为等边三角形,求k 的值.20 、(本小题总分值13分〕设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行〔或某一列〕各数之和为负数,则改变该行〔或该列〕中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,假设经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表〔写出一种方法即可〕;(Ⅱ) 数表A 如表2所示,假设经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a 的值;(Ⅲ)对由m n ⨯个整数组成的m 行n 列的任意一个数表A , 能否经过有限次“操作”以后,使得得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.222212122a a a a a a a a ------表海淀区高三年级第二学期期末练习数 学 〔文科〕参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题〔本大题共8小题,每题5分,共40分〕二、填空题〔本大题共6小题,每题5分, 有两空的小题,第一空3分,第二空2分, 共30分〕9. 1i -+;10. 乙 ;11. 16-或 16;12. . 1π2π;(,)233-;14. 1;02k <≤注:11题少写一个,扣两分,错写不给分 13题开闭区间都对三、解答题(本大题共6小题,共80分) 15.〔本小题总分值13分〕 解:〔I 〕设{}n a 的公差为d因为11a =,11010101002a a S +=⨯= ……………………2分 所以1101,19a a == ……………………4分 所以2d = 所以 21n a n =- ……………………6分〔II 〕因为26n S n n =-当2n ≥时,21(1)6(1)n S n n -=---所以27n a n =-,2n ≥ ……………………9分又1n =时,11527a S ==-=-所以 27n a n =- ……………………10分所以247n n S a n n +=-- 所以2472n n n -->,即2670n n -->所以7n >或1n <-,所以7n >,N n ∈ ……………………13分16. 解:〔I 〕因为75ADB ∠=,所以45DAC ∠=在ACD ∆中,AD =sin45sin30CD AD=……………………4分 所以2CD = ……………………6分 〔II 〕所以4BD = ……………………7分 又在ABD ∆中,75ADB ∠=,6sin75sin(4530)4+=+= …………………9分 所以1sin75312ADB S AD BD ∆=⋅⋅= ……………………12分所以32ABC ABD S S ∆∆== ……………………13分 法2:同理,根据根据正弦定理有sin105sin30AC AD=而 6sin105sin(4560)4+=+=……………………8分所以1AC = ……………………10分 又4BD =,6BC = ……………………11分 所以133sin302ABC S AC BC ∆=⋅⋅=……………………13分 17.解:〔I 〕因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上所以PO ⊥平面ABC ,所以PO ⊥AC …………………2分因为AB BC =,所以O 是AC 中点, …………………3分 所以//OE PA …………………4分 同理//OF AD 又,OEOF O PA AD A ==所以平面//OEF 平面PDA …………………6分 〔II 〕因为//OF AD ,AD CD ⊥所以OF CD ⊥ …………………7分 又PO ⊥平面ADC ,CD ⊂平面ADC 所以PO ⊥CD …………………8分 又OFPO O = 所以CD ⊥平面POF …………………10分(III)存在,事实上记点E 为M 即可 …………………11分 因为CD ⊥平面POF ,PF ⊂平面POF 所以CD PF ⊥又E 为PC 中点,所以 12EF PC =…………………12分 同理,在直角三角形POC 中,12EP EC OE PC ===, …………………13分所以点E 到四个点,,,P O C F 的距离相等 …………………14分18.解:〔I 〕当因为1a =, 211'(),()f x g x x x== …………………2分假设函数()f x 在点00(,())M x f x 处的切线与函数()g x 在点00(,())P x g x 处的切线平行,所以20011x x =,解得01x = 此时()f x 在点(1,0)M 处的切线为1y x =-()g x 在点(1,1)P - 处的切线为2y x =-所以01x = …………………4分〔II 〕假设(0,e]x ∀∈,都有3()()2f xg x ≥+ 记33()()()ln 22a F x f x g x x x =--=+-, 只要()F x 在(0,e]上的最小值大于等于0221'()a x aF x x x x-=-= …………………6分 则'(),()F x F x 随x 的变化情况如下表:…………………8分 当e a ≥时,函数()F x 在(0,e)上单调递减,(e)F 为最小值所以3(e)102a F e =+-≥,得e2a ≥ 所以e a ≥ …………………10分 当e a <时,函数()F x 在(0,)a 上单调递减,在(,e)a 上单调递增 ,()F a 为最小值,所以3()ln 02a F a a a =+-≥,得a ≥e a ≤< ………………12分 a ≤ ………………13分19.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点,所以1a b =,椭圆C 的方程为2213x y += ………………4分 (II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又因为|||3AB PO ==,所以60PAO ∠=,所以PAB ∆是等边三角形,所以直线AB 的方程为0y = ………………6分 当直线AB 的斜率存在且不为0时,设AB 的方程为y kx =所以2213x y y kx ⎧+=⎪⎨⎪=⎩,化简得22(31)3k x +=所以1||x =||AO =………………8分 设AB 的垂直平分线为1y x k=-,它与直线:30l x y +-=的交点记为00(,)P x y所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则||PO =………………10分 因为PAB ∆为等边三角形,所以应有|||PO AO =代入得到=0k =〔舍〕,1k =-……………13分 此时直线AB 的方程为y x =-综上,直线AB 的方程为y x =-或0y = ………………14分20.解:〔I 〕法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列〔写出一种即可〕 …………………3分 (II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -,210520a a -≥⎧⎨-≥⎩,解得1,2a a ==. …………………6分② 如果操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a解得1a = …………………9分 综上1a = …………………10分 (III) 证明:按要求对某行〔或某列〕操作一次时,则该行的行和〔或该列的列和〕 由负整数变为正整数,都会引起该行的行和〔或该列的列和〕增大,从而也就使得 数阵中mn 个数之和增加,且增加的幅度大于等于1(1)2--=,但是每次操作都只 是改变数表中某行〔或某列〕各数的符号,而不改变其绝对值,显然,数表中mn 个数之和必然小于等于11||mnij i j a ==∑∑,可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立 …………………13分。

2013北京市海淀区高三二模文科数学Word版含答案

2013北京市海淀区高三二模文科数学Word版含答案

海淀区高三年级第二学期期末练习数 学(文科)2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作 答无效。

考试结束后,将本试卷和答题卡一并交回。

—、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出 符合题目要求的一项.1. 集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =U A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞ 2 已知a =ln21,b=sin 21,c=212-,则a,b ,c 的大小关系为A. a < b < cB. a <c <bC.b <a<cD. b <c < a3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005 下列函数中,为偶函数且有最小值的是A.f(x) =x 2 +xB.f(x) = |lnx|C.f(x) =xsinxD.f(x) =e x +e -x6 在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==u u u r u u u r u u u r u u u r ”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为B.1+1+2俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若m=54,则a 5=3 B 若a 3=2,则m 可以取3个不同的值 C. 若2m =,则数列{}n a 是周期为3的数列 D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9 复数ii-12=______ 10 甲、乙两名运动员在8场篮球比赛中得分的数据统计 如右图,则甲乙两人发挥较为稳定的是_____.11 已知数列{a n }是等比数列,且a 1 .a3 =4,a 4=8,a 3的值为____. 12 直线y= x+1被圆x 2-2x +y 2-3 =0所截得的弦长为_____ 13 已知函数f(x)=sin()10)(62<<-ωπωx 的图象经过点[0, π]上的单调递增区间为________14 设变量x,y 满足约束条件⎪⎩⎪⎨⎧-≤-≤-+≥-)1(10401x k y y x y 其中k 0,>∈k R(I)当k=1时的最大值为______; (II)若2x y的最大值为1,则实数a 的取值范围是_____. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15 (本小题满分13分)已知等差数列{a n }的前n 项和为 S n (I)若a 1=1,S 10= 100,求{a n }的通项公式; (II)若S n =n 2-6n ,解关于n 的不等式S n +a n >2n16 (本小题满分13分)已知点 D 为ΔABC 的边 BC 上一点.且 BD =2DC, ADB ∠=750,ACB ∠=30°,AD =2.(I)求CD 的长; (II)求ΔABC 的面积17 (本小题满分14分)如图1,在直角梯形ABCD 中,AD//BC, ADC ∠=900,BA=BC 把ΔBAC 沿AC 折起到PAC∆的位置,使得点P 在平面ADC 上的正投影O 恰好落在线段AC 上,如图2所示,点,E F 分别为线段PC ,CD 的中点.(I) 求证:平面OEF//平面APD ; (II)求直线CD 与平面POF(III)在棱PC 上是否存在一点M ,使得M 到点P,O,C,F 四点的距离相等?请说明理由.18 (本小题满分13分)已知函数f(x) =lnx g(x) =-)0(>a ax(1)当a=1时,若曲线y=f(x)在点M (x 0,f(x 0))处的切线与曲线y=g(x)在点P (x 0, g(x 0))处的切线平行,求实数x 0的值;(II)若∈∀x (0,e],都有f(x)≥g(x) 23,求实数a 的取值范围.19 (本小题满分丨4分)已知椭圆C:22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o 的菱形的四个顶点.(I)求椭圆C 的方程;(II)若直线y =kx 交椭圆C 于A ,B 两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB 为等边三角形,求k 的值.20 (本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 表1 (Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之表2和与每列的各数之和均为非负整数?请说明理由.数 学 (文科)22221212a a a a a a a a ------参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)注:11题少写一个,扣两分,错写不给分 13题开闭区间都对三、解答题(本大题共6小题,共80分)15.(本小题满分13分) 解:(I )设{}n a 的公差为d因为11a =,1910101002a a S +=⨯= ……………………2分 所以1101,19a a == ……………………4分 所以2d =所以 21n a n =- ……………………6分(II )因为26n S n n =-当2n ≥时,21(1)6(1)n S n n -=---所以27n a n =-,2n ≥ ……………………9分又1n =时,11527a S ==-=-所以 27n a n =- ……………………10分所以247n n S a n n +=--所以2472n n n -->,即2670n n --> 所以7n >或1n <-,所以7n >,N n ∈ ……………………13分16. 解:(I )因为75ADB ∠=o ,所以45DAC ∠=o在ACD ∆中,AD =, 根据正弦定理有sin45sin30CD AD=o o……………………4分 所以2CD = ……………………6分 (II )所以4BD = ……………………7分 又在ABD ∆中,75ADB ∠=o ,sin75sin(4530)=+=o o o ……………………9分所以1sin7512ADB S AD BD ∆=⋅⋅=o ……………………12分所以3322ABC ABD S S ∆∆== ……………………13分同理,根据根据正弦定理有sin105sin30AC AD=o o而 sin105sin(4560)=+=o o o ……………………8分所以1AC ……………………10分 又4BD =,6BC = ……………………11分 所以 ……………………13分17.解:(I )因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上所以PO ⊥平面ABC ,所以PO ⊥AC …………………2分因为AB BC =,所以O 是AC 中点, …………………3分所以//OE PA …………………4分 同理//OF AD又,OE OF O PA AD A ==I I所以平面//OEF 平面PDA …………………6分(II )因为//OF AD ,AD CD ⊥所以OF CD ⊥ …………………7分 又PO ⊥平面ADC ,CD ⊂平面ADC所以PO ⊥CD …………………8分 又OF PO O =I所以CD ⊥平面POF …………………10分 (III)存在,事实上记点E 为M 即可 …………………11分 因为CD ⊥平面POF ,PF ⊂平面POF 所以CD PF ⊥又E 为PC 中点,所以 12EF PC =…………………12分 同理,在直角三角形POC 中,12EP EC OE PC ===, …………………13分所以点E 到四个点,,,P O C F 的距离相等 …………………14分18.解:(I )当因为1a =, 211'(),()f x g x x x== …………………2分 若函数()f x 在点00(,())M x f x 处的切线与函数()g x 在点00(,())P x g x处的切线平行, 所以20011x x =,解得01x = 此时()f x 在点(1,0)M 处的切线为1y x =-()g x 在点(1,1)P - 处的切线为2y x =-所以01x = …………………4分(II )若(0,e]x ∀∈,都有3()()2f xg x ≥+ 记33()()()ln 22a F x f x g x x x =--=+-, 只要()F x 在(0,e]上的最小值大于等于0221'()a x aF x x x x-=-= …………………6分 则'(),()F x F x 随x 的变化情况如下表:…………………8分 当e a ≥时,函数()F x 在(0,e)上单调递减,(e)F 为最小值所以3(e)102a F e =+-≥,得e2a ≥ 所以e a ≥…………………10分 当e a <时,函数()F x 在(0,)a上单调递减,在(,e)a 上单调递增 ,()F a 为最小值,所以3()ln 02a F a a a =+-≥,得a ≥ e a< ………………12分 a ≤ ………………13分19.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o 的菱形的四个顶点, 所以1a b ==,椭圆C 的方程为2213x y += ………………4分 (II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又因为|||3AB PO ==,所以60PAO ∠=o ,所以PAB∆是等边三角形,所以直线AB 的方程为0y = ………………6分 当直线AB 的斜率存在且不为0时,设AB 的方程为ykx =所以2213x y y kx⎧+=⎪⎨⎪=⎩,化简得22(31)3k x +=所以 1||x =||AO ==………………8分设AB 的垂直平分线为1y x k =-,它与直线:30l x y +-=的交点记为00(,)P x y 所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则||PO =………………10分因为PAB ∆为等边三角形,所以应有|||PO AO =代入得到=0k =(舍),1k =-……………13分 此时直线AB 的方程为y x =-综上,直线AB 的方程为y x =-或0y = ………………14分20.解:(I )法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列(写出一种即可) …………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -,210520a a -≥⎧⎨-≥⎩,解得1,2a a ==. …………………6分② 如果操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a解得1a = …………………9分综上1a = …………………10分 (III) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和) 由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得 数阵中mn 个数之和增加,且增加的幅度大于等于1(1)2--=,但是每次操作都只 是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中mn 个数之和必然小于等于11||mnij i j a ==∑∑,可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立 …………………13分。

2013北京市海淀区高三二模文科数学Word版含答案

2013北京市海淀区高三二模文科数学Word版含答案

2013北京市海淀区高三二模文科数学Word版含答案海淀区高三年级第二学期期末练习数 学(文科)2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作 答无效。

考试结束后,将本试卷和答题卡一并交回。

—、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出 符合题目要求的一项.1. 集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则AB =A .(,0]-∞B .(,1]-∞C .[1,2]D .[1,)+∞2 已知a =ln 21,b=sin 21,c=212-,则a,b ,c 的大小关系为A. a < b < cB. a <c <bC.b <a<cD. b <c < a3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为 A.ma nB.na mC.2ma nD.2na m4.某空间几何体的三视图如右图所示,则该几何Ω体的表面积为A.180B.240C.276D.3005 下列函数中,为偶函数且有最小值的是A.f(x) =x 2+x B.f(x) = |lnx| C.f(x)=xsinx D.f(x) =e x +e -x6 在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x=的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为 A.2B.12C.13+D.238. 若数列{}na 满足:存在正整数T ,对于任意正整数n 都有n Tnaa +=成立,则称数列{}na 为周期数列,周期为T . 已知数列{}na 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,6665俯视图则下列结论中错误..的是 A. 若m=54,则a 5=3B 若a 3=2,则m 可以取3个不同的值 C. 若2m =,则数列{}na 是周期为3的数列D.Q m ∃∈且2m ≥,数列{}na 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9 复数ii -12=______10 甲、乙两名运动员在8场篮球比赛中得分的数据统计 如右图,则甲乙两人发挥较为稳定的是_____.11 已知数列{a n }是等比数列,且a 1 .a3 =4,a 4=8,a 3的值为____.12 直线y= x+1被圆x 2-2x +y 2-3 =0所截得的弦长为_____13 已知函数f(x)=sin()10)(62<<-ωπωx 的图象经过点[0, π]上的单调递增区间为________14 设变量x,y 满足约束条件⎪⎩⎪⎨⎧-≤-≤-+≥-)1(10401x k y y x y 其中k 0,>∈k R(I)当k=1时的最大值为______;y的最大值为1,则实数a的取值范围(II)若2x是_____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15 (本小题满分13分)已知等差数列{a n}的前n项和为 S n(I)若a1=1,S10= 100,求{a n}的通项公式;(II)若S n=n2-6n,解关于n的不等式S n+a n>2n16 (本小题满分13分)已知点 D 为ΔABC 的边 BC 上一点.且 BD =2DC, ADB∠=30°,AD =2.∠=750,ACB(I)求CD的长;(II)求ΔABC的面积17 (本小题满分14分)如图1,在直角梯形ABCD中,AD//BC,ADC∠=900,BA=BC 把ΔBAC 沿AC 折起到PAC ∆的位置,使得点P 在平面ADC 上的正投影O 恰好落在线段AC 上,如图2所示,点,E F 分别为线段PC ,CD 的中点.(I) 求证:平面OEF//平面APD ; (II)求直线CD 与平面POF(III)在棱PC 上是否存在一点M ,使得M 到点P,O,C,F 四点的距离相等?请说明理由.18 (本小题满分13分) 已知函数f(x) =lnx g(x) =-)0(>a ax(1)当a=1时,若曲线y=f(x)在点M (x 0,f(x 0))处的切线与曲线y=g(x)在点P (x 0, g(x 0))处的切线平行,求实数x 0的值;(II)若∈∀x(0,e],都有f(x)≥g(x) 23,求实数a的取值范围.19 (本小题满分丨4分)已知椭圆C:22221(0)x ya ba b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(I)求椭圆C的方程;(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得ΔPAB为等边三角形,求k的值.20 (本小题满分13分)设A是由m n⨯个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. 1 2 3 7-2-1 0 1(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.数 学 (文科)参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题22221212a a a a a a a a ------分数.一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案 B A C B D C B D 二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)注:11题少写一个,扣两分,错写不给分 13题开闭区间都对三、解答题(本大题共6小题,共80分)15.(本小题满分13分) 解:(I )设{}na 的公差为d因为11a=,1910101002a a S +=⨯= ……………………2分所以1101,19a a == ……………………4分9. 1i -+ 10.乙 11. 16-或 16 12.2213.1π2π;(,)233-14.1;02k <≤所以2d = 所以21n a n =- ……………………6分 (II )因为26nS n n=-当2n ≥时,21(1)6(1)n S n n -=---所以27na n =-,2n ≥ ……………………9分又1n =时,11527a S ==-=-所以27n a n =- ……………………10分所以247nn S a n n +=--所以2472nn n-->,即2670nn -->所以7n >或1n <-, 所以7n >,Nn ∈ ……………………13分16. 解:(I )因为75ADB ∠=,所以45DAC ∠=在ACD ∆中,2AD =根据正弦定理有sin45sin30CD AD=……………………4分所以2CD = ……………………6分(II )所以4BD = ……………………7分又在ABD ∆中, 75ADB ∠=,62sin75sin(4530)+=+= (9)分所以1sin75312ADB S AD BD ∆=⋅⋅= ……………………12分所以33332ABC ABD S S ∆∆+== ……………………13分同理,根据根据正弦定理有sin105sin30AC AD=而62sin105sin(4560)+=+=……………………8分所以AC=31……………………10分又4BD=,BC=……6………………11分所以……………………13分17.解:(I)因为点P在平面ADC上的正投影O恰好落在线段AC上所以PO⊥平面ABC,所以PO⊥AC…………………2分因为AB BC=,所以O是AC中点,…………………3分所以OE PA//…………………4分同理//OF AD又,OE OF O PA AD A== 所以平面//OEF 平面PDA…………………6分 (II )因为//OF AD ,AD CD ⊥所以OF CD⊥…………………7分又PO ⊥平面ADC ,CD ⊂平面ADC 所以PO ⊥CD…………………8分 又OF PO O=所以CD ⊥平面POF…………………10分(III)存在,事实上记点E为M即可 …………………11分 因为CD ⊥平面POF ,PF ⊂平面POF 所以CD PF ⊥ 又E为PC中点,所以12EF PC = (12)分同理,在直角三角形POC中,12EP EC OE PC ===, …………………13分所以点E到四个点,,,P O C F的距离相等 …………………14分18.解:(I)当因为1a =,211'(),()f x g x x x== (2)分若函数()f x 在点0(,())M x f x 处的切线与函数()g x 在点0(,())P x g x处的切线平行, 所以20011x x =,解得01x=此时()f x 在点(1,0)M 处的切线为1y x =-()g x 在点(1,1)P - 处的切线为2y x =-所以01x =…………………4分 (II )若(0,e]x ∀∈,都有3()()2f xg x ≥+记33()()()ln 22a F x f x g x x x =--=+-,只要()F x 在(0,e]上的最小值大于等于0221'()a x a F x x x x-=-=…………………6分则'(),()F x F x 随x 的变化情况如下表:x (0,)a a (,)a +∞ '()F x - 0+ ()F x 极大值…………………8分当e a ≥时,函数()F x 在(0,e)上单调递减,(e)F 为最小值所以3(e)102a F e =+-≥,得e 2a ≥所以ea ≥…………………10分 当e a <时,函数()F x 在(0,)a 上单调递减,在(,e)a 上单调递增 ,()F a 为最小值,所以3()ln 02a F a a a =+-≥,得e a所以e ea ≤<………………12分综上,e a≤………………13分19.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以3,1a b ==,椭圆C的方程为2213x y += ………………4分(II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y轴与直线:30l x y +-=的交点为(0,3)P ,又因为||3,||3AB PO ==,所以60PAO ∠=,所以PAB ∆是等边三角形,所以直线AB 的方程为0y = ………………6分当直线AB 的斜率存在且不为0时,设AB的方程为y kx =所以2213x y y kx⎧+=⎪⎨⎪=⎩,化简得22(31)3kx +=所以123||31x k =+,则2222333||13131k AO kk k +=+++………………8分设AB的垂直平分线为1y xk=-,它与直线:30l x y +-=的交点记为0(,)P x y所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则2299||(1)k PO k +=-………………10分因为PAB ∆为等边三角形, 所以应有||3|PO AO =代入得到222299333(1)31k k k k ++=-+解得0k =(舍),1k =-……………13分此时直线AB 的方程为y x =- 综上,直线AB的方程为y x=-或y = ………………14分20.解:(I )法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列(写出一种即可) …………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -,210520a a -≥⎧⎨-≥⎩,解得1,2a a ==. …………………6分② 如果操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a 解得1a = …………………9分综上1a =…………………10分(III) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和)由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得数阵中mn 个数之和增加,且增加的幅度大于等于1(1)2--=,但是每次操作都只是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中mn个数之和必然小于等于11||mniji j a ==∑∑,可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立 …………………13分。

北京市海淀区2013 — 2014学年度第一学期期末试卷高三数学(文科)

北京市海淀区2013 — 2014学年度第一学期期末试卷高三数学(文科)

北京市海淀区2013 — 2014学年度第一学期期末试卷高三数学(文科)一、选择题(共8小题;共40分)1. 复数等于A. B. C. D.2. 已知直线与直线平行,则实数的取值为A. B. C. D.3. 为了估计某水池中鱼的尾数,先从水池中捕出尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出尾鱼,其中有标记的鱼为尾,根据上述数据估计该水池中鱼的尾数为A. B. C. D.4. 阅读如图所示的程序框图,运行相应的程序,输出的值为A. B. C. D.5. 已知,,,则A. B. C. D.6. 已知函数若关于的方程有三个不等的实根,则实数的取值范围是A. B. C. D.7. 在中,若,面积记作,则下列结论中一定成立的是A. B. C. D.8. 如图所示,正方体的棱长为,,是线段上的动点,过点做平面的垂线交平面于点,则点到点距离的最小值为A. B. C. D.二、填空题(共6小题;共30分)9. 双曲线的离心率为.10. 某四棱锥的三视图如图所示,则该四棱锥的体积为.11. 已知点的坐标满足则的最大值为.12. 已知等差数列和等比数列满足,,则满足的的所有取值构成的集合是.13. 某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取件做使用寿命的测试,则第一分厂应抽取的件数为;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为小时,小时,小时,估计这个企业所生产的该产品的平均使用寿命为小时.14. 直线与抛物线交于,两点,点是抛物线准线上的一点,记(),其中为抛物线的顶点.(1)当与平行时,.(2)结出下列命题:①,不是等边三角形;②且,使得与垂直;③无论点在准线上如何运动,总成立.其中,所有正确命题的序号是.三、解答题(共6小题;共78分)15. 函数.(1)求的值;(2)求函数的最小正周期及其图象的所有对称轴的方程.16. 根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示(1)求上图中的值;(2)求甲队员命中环数大于环的概率(频率当作概率使用);(3)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)17. 如图,在四棱锥中,底面是菱形,,且侧面平面,点是棱的中点.(1)求证:平面;(2)求证:;(3)若,求证:平面平面.18. 已知函数,其中为常数.(1)若函数是区间上的增函数,求实数的取值范围;(2)若在时恒成立,求实数的取值范围.19. 已知椭圆()的离心率为,右焦点为,右顶点在圆()上.(1)求椭圆和圆的方程;(2)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.20. 如果函数满足在集合上的值域仍是集合,则把函数称为函数.例如:就是函数.(注:“ ”表示不超过的最大整数)(1)判断下列函数:①,②,③中,哪些是函数?(只需写出判断结果)(2)判断函数是否为函数,并证明你的结论;(3)证明:对于任意实数,,函数都不是函数.答案第一部分1. B2. A3. C4. A 【解析】和的值分别是,,,,故最后输出.5. C【解析】应用对数的换底公式可得,所以,而由对数函数的单调性可得,于是可得.6. B 【解析】作出图象:则.7. D 【解析】由可得,由可得,这与矛盾,所以A不成立;若,由可得,,所以B不成立;由可得,所以C不成立;,D成立.8. B 【解析】容易得知平面,所以平面平面,而平面,平面且平面,所以点在线段上,问题转化为求线段上一点到点距离的最小值,容易求得最小值为.第二部分9.10.11.12.13. ;【解析】;.14. ;①②③【解析】由题可设,且可设,,因此,,,.当和平行时,可得出,;对于①:当为等边三角形时,可知点需为,此时,,故不可能为等边三角形;对于②:当时,可得,再结合,可算得,,故成立;对于③:由,可得恒成立.第三部分15. (1).(2)由得,,因为,所以的最小正周期.因为函数的对称轴为,,又由,,得,,所以的对称轴的方程为,.16. (1)由上图可得,所以.(2)设事件为“甲队员射击,命中环数大于环”,它包含三个两两互斥的事件:甲队员射击,命中环数为环,环,环.所以.(3)甲队员的射击成绩更稳定.17. (1)因为底面是菱形,所以,又因为平面,平面,所以平面.(2)因为,点是棱的中点,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以.(3)因为,点是棱的中点,所以,由(2)可得,而,所以平面,又因为平面,所以平面平面.18. (1),.因为函数是区间上的增函数,所以,即在上恒成立,因为是增函数,所以只需,即.(2)令,解得.,的情况如下:极小值(i)当,即时,在上的最小值为,若满足题意只需,解得,所以此时,;(ii)当,即时,在上的最小值为,若满足题意只需,求解可得此不等式无解,所以不存在;(iii)当,即时,在上的最小值为,若满足题意只需,解得,所以此时,不存在.综上讨论,所求实数的取值范围为.19. (1)由题意可得,又由题意可得,所以,所以,所以椭圆的方程为.所以椭圆的右顶点,代入圆的方程,可得,所以圆的方程为.(2)法1:假设存在直线()满足条件,由得设,则,可得中点,由点在圆上可得,化简整理得.又因为,所以不存在满足条件的直线.法2:假设存在直线满足题意.由(1)可得是圆的直径,所以.由点是中点,可得.设点,则由题意可得.又因为直线的斜率不为,所以,所以,这与矛盾,所以不存在满足条件的直线.20. (1)只有是函数.(2)函数是函数.证明如下:显然,,.不妨设,,由可得,即.因为,恒有成立,所以一定存在,满足,所以,总存在满足,所以函数是函数.(3)(i)当时,有,所以函数都不是函数.(ii)当时,①若,有,所以函数都不是函数.②若,由指数函数性质易得,所以,都有,所以函数都不是函数.③若,令,则,所以一定存在正整数使得,所以,使得,所以.又因为当时,,所以;当时,,所以,所以,都有,所以函数都不是函数.综上所述,对于任意实数,,函数都不是函数.。

2014海淀高三二模数学文科

2014海淀高三二模数学文科

海淀区高三年级第二学期期末练习 数学 (文科) 2014.05一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集为R ,J 集合R A ð,那么集合R A ð等于 ( ) A. {}|1x x > B. {}|1x x >- C. {}|1x x < D. {}|1x x <-2.已知命题p :x ∀∈R ,210x x +-<,则p ⌝为 ( )A. x ∃∈R ,210x x +->B. x ∀∈R ,210x x +-… C. x ∃∉R ,210x x +-… D. x ∀∉R ,210x x +->3.下列函数中,既是偶函数又在区间 (0,)+∞上单调递增的是 ( ) A. 3y x =B. y =C. cos y x =D. ||2x y =4.设2log 3a =,4log 3b =,sin 90c =︒的圆心到极轴的距离为 ( ) A. a c b << B. b c a << C. c a b << D. c b a <<5.下面给出的四个点中,位于1010x y x y ++>⎧⎨-+<⎩,表示的平面区域内,且到直线10x y -+=的点是( )A. (1,1)-B. (2,1)-C. (0,3)D. (1,1)6.已知向量AC ,AD 和AB 在正方形网格中的位置如图所示,若AC AB AD λμ=+,则λμ+=( ) A. 2 B. 2- C. 3 D. 3-7.如图所示,为了测量某湖泊两侧A,B 间的距离,李宁同学首先选定了与A,B 不共线的一点C ,然后给出了三种测量方案(△ABC 的角A,B,C 所对的边分别记为,,a b c ):①测量A,C, b ;②测量,a b ,C ;③测量A,B ,a .则一定能确定A,B 见距离的所有方案的序号为 ( )A. ① ②B. ② ③C. ① ③D. ① ② ③8.已知点,E F 分别是正方体1111ABCD A BC D -的棱AB ,1AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有 ( )A. 0条B. 1条C. 2条D. 无数条二、填空题:本大题共6小题,每小题5分,共30分. 9.复数2i +的模等于 .10.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的左顶点,则p = . 11. 执行如图所示的程序框图,则输出的S 的值为 .12.下列函数中:①sin 2y x =-;②cos 2y x =;③3sin2+4y x π=(),其图象仅通过向左(或向右)平移就能与函数的图象重合的是 .(填上符合要求的函数对应的序号)13.已知实数0a >且1a ≠,函数,3(),3ax x f x ax b x <⎧=⎨+⎩…,若数列{}n a 满足()(N )n a f n n *=∈,且{}n a 是等差数列,则a = ,b = .14.农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其他影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第 号区域的总产量最大,该区域种植密度为 株/2m .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()cos 2sin ,f x x x x a a =-+∈R . (I)求函数()f x 的最小正周期;(II)若函数()f x 有零点,求实数a 的取值范围.16.(本小题满分13分)下图为某地区2012年1月到2013年1月鲜蔬价格指数的变化情况:记x ∆=本月价格指数-上月价格指数.规定:当0x ∆>时,称本月价格指数环比增长;当0x ∆<时,称本月价格指数环比下降;当0x ∆=时,称本月价格指数环比持平.(I)比较2012年上半年与下半年鲜蔬价格指数月平均的大小(不要求计算过程); (II)直接写出从2012年2月到2013年1月的12个月中价格指数环比下降..的月份.若从这12个月中随机选择连续的两个月进行观察,求所选两个月的价格指数都.环比下降的概率; (III )由图判断从哪个月开始连续三个月的价格指数方差最大?(结论不要求证明)17.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC ⊥,1AC AA =,,E F 分别是棱BC ,1CC 的中点.(I) 求证:AB ⊥平面11AAC C ;(II)若线段AC 上的点D 满足平面DEF ∥平面1ABC , 试确定点D 的位置,并说明理由; (III) 证明:1EF A C ⊥.18.(本小题满分13分) 已知函数321()4,3f x x ax x b =+++其中,a b ∈R 且0a ≠. (I)求证:函数()f x 在点(0))f (0,处的切线与()f x 总有两个不同的公共点; (II)若函数()f x 在区间(1,1)-上有且仅有一个极值点,求实数a 的取值范围.19.(本小题满分14分) 已知椭圆G ,其短轴两端点为(0,1),B(0,1)A -. (I)求椭圆G 的方程;(II)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线BC 与x 轴分别交于点M ,判断以线段MD 为直径的圆是否经过点A ,并说明理由.20.(本小题满分13分)给定正整数3k …,若项数为k 的数列{}n a 满足:对任意的1,2,,i k =,均有1ki S a k -…(其中12k k S a a a =+++),则称数列{}n a 为“Γ数列”. (I)判断数列1,3,5,2,4-和2323333,,444是否是“Γ数列”,并说明理由;(II)若{}n a 为“Γ数列”,求证:0i a …对1,2,,i k =恒成立;(III)设{}n b 是公差为d 的无穷项等差数列,若对任意的正整数3k …,12,,,m b b b 均构成“Γ数列”,求{}n b 的公差d .数学(理科)参考答案2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.A ;2.C ;3.D ;4.A ;5.D6.B ;7.C ;8.D ;二、填空题:本大题共6小题,每小题5分,共30分.9. 01x <<{或(0,1)} ;11. 1 ; 12. 2 ;13. 14. 6,5050{本题第一空3分,第二空2分};三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)由正弦定理可得sin sin a bA B=----------------------------2分因为,a A b =所以sin sin b A B a ===分 在锐角ABC ∆中,60B = ---------------------------7分 (Ⅱ)由余弦定理可得2222cos b a c ac B =+- ----------------------------9分 又因为3a c =所以2222193c c c =+-,即23c =-------------------------------11分解得c 分经检验,由222cos 02b c a A bc +-==<可得90A >,不符合题意,所以c .--------------------13分 16.解:(Ⅰ)因为1//C F 平面AEG又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,所以1//C F AG . ---------------------------------3分 因为F 为1AA 中点,且侧面11ACC A 为平行四边形所以G为1CC 中点,所以1112CG CC =.------------------------4分 (Ⅱ)因为1AA ⊥底面ABC ,所以1AA AB ⊥,1AA AC ⊥, ------------------------5分 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得11(2,0,0),(0,2,0),(2,0,2),(0,0,2)C B C A -----------------------------6分因为,E G 分别是1,BC CC 的中点,所以(1,1,0),(2,0,1)E G . -----------------------------7分1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=.--------------------------------8分所以1EG CA ⊥,所以1EG AC ⊥. --------------------------------9分 (Ⅲ)设平面AEG 的法向量(,,)x y z =n ,则0,0,AE AG ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20.x y x z +=⎧⎨+=⎩--------------------------10分 令1x =,则1,2y z =-=-,所以(1,1,2)=--n .--------------------------11分 由已知可得平面1A AG 的法向量(0,1,0)=m -------------------------------11分所以cos ,||||⋅<>==⋅n m n m n m --------------------------------13分 由题意知二面角1A AG E --为钝角, 所以二面角1A AG E --的余弦值为.--------------------------------14分 16.解:(Ⅰ)设A 车在星期i 出车的事件为i A ,B 车在星期i 出车的事件为i B ,1,2,3,4,5i = 由已知可得()0.6,()0.5i i P A P B ==设该单位在星期一恰好出一台车的事件为C ,-------------------------------1分 因为,A B 两车是否出车相互独立,且事件1111,A B A B 互斥 ----------------2分所以111111111111()()()()()()()()P C P A B A B P A B P A B P A P B P A P B =+=+=+0.6(10.5)(10.6)0.5=⨯-+-⨯--------------------------4分 0.5=所以该单位在星期一恰好出一台车的概率为0.5. --------------------------5分 {答题与设事件都没有扣1分,有一个不扣分}(Ⅱ)X 的可能取值为0,1,2,3 ----------------------------6分112(0)()()0.40.50.40.08P X P A B P A ===⨯⨯=2112(1)()()()()0.50.40.40.50.60.32P X P C P A P A B P A ==+=⨯+⨯⨯= 1122(2)()()()()0.60.50.40.50.60.42P X P A B P A P C P A ==+=⨯⨯+⨯=112(3)()()0.60.50.60.18P X P A B P A ===⨯⨯=----------------------------10分所以的的分布列为--------------11分()00.0810.3220.4230.18 1.7E X =⨯+⨯+⨯+⨯=-------------------------------13分18.解:(Ⅰ)当π2a =时,π()()sin cos ,(0,)2f x x x x x π=-+∈π'()()cos 2f x x x =- --------------------------------1分由'()0f x =得π2x = --------------------------------------2分(),'()f x f x 的情况如下分因为(0)1f =,(π)1f =-,所以函数()f x 的值域为(1,1)-. -------------------------------------------------5分 (Ⅱ)'()()cos f x x a x =-, ①当ππ2a <<时,(),'()f x f x 的情况如下-------------------------------------------------9分 所以函数()f x 的单调增区间为π(,)2a ,单调减区间为π(0,)2和(,π)a ②当πa ≥时,(),'()f x f x 的情况如下------------------------------------------------13分 所以函数()f x 的单调增区间为π(,π)2,单调减区间为π(0,)2.19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)1x y a a +=>.-------------------------------1分 由e =,可得222112a e a -==,-----------------------------------------------------2分 解得22a =, ----------------------------------------------3分所以椭圆的标准方程为22121x y +=. ------------------------------------------4分 (Ⅱ)法一:设00(,),C x y 且00x ≠,则00(,)D x y -. ----------------------------------------5分 因为(0,1),(0,1)A B -,所以直线AC 的方程为0011y y x x -=+. --------------------------6分 令0y =,得001M x x y -=-,所以00(,0)1x M y --. ------------------------------------7分 同理直线BD 的方程为0011y y x x +=--,求得00(,0)1x N y -+.-----------------------8分0000(,1),(,1),11x xAM AN y y -=-=--+ -----------------------------------------9分所以AM AN ⋅=202011x y -+-, --------------------------------------10分由00(,)C x y 在椭圆G :2212x y +=上,所以22002(1)x y =-,-------------------11分 所以10AM AN ⋅=-≠, -----------------------------13分 所以90MAN ∠≠,所以,以线段MN 为直径的圆不过点A . -------------14分 法二:因为,C D 关于y 轴对称,且B 在y 轴上所以CBA DBA ∠=∠. ------------------------------------------5分 因为N 在x 轴上,又(0,1),(0,1)A B -关于x 轴对称所以NAB NBA CBA ∠=∠=∠, ------------------------------------------6分 所以//BC AN , -------------------------------------------7分 所以180NAC ACB ∠=-∠, ------------------------------------------8分设00(,),C x y 且00x ≠,则22002(1)x y =-. ----------------------------------------9分 因为22200000003(,1)(,1)(1)02CA CB x y x y x y x ⋅=-+=--=>,----------------11分 所以90ACB ∠≠, -----------------------------------12分 所以90NAC ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆不过点A . -------------------------------14分 法三:设直线AC 的方程为1y kx =+,则1(,0)M k-, ---------------------------------5分22220,1,x y y kx ⎧+-=⎨=+⎩化简得到222(1)20x kx ++-=, 所以22(12)40k x kx ++=,所以12240,21kx x k -==+, -----------------------------6分所以22222421112121k k y kx k k k --+=+=+=++,所以222421(,)2121k k C k k --+++, ----------------------------7分 因为,C D 关于y 轴对称,所以222421(,)2121k k D k k -+++.----------------------------8分 所以直线BD 的方程为22221121121k k y x k -+++=-+,即112y x k =-.------------------10分 令0y =,得到2x k =,所以(2,0)N k . --------------------11分1(,1)(2,1)10AM AN k k⋅=--⋅-=-≠, ----------------------12分所以90MAN ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆恒过(0,2)和(0,2)-两点.--------------------------14分{法4 :转化为文科题做,考查向量AC AN ⋅的取值}20.解:(Ⅰ)110d =,27d =,20142d =---------------------------3分 (Ⅱ)法一:①当2d =时,则(,,)(,1,2)a b c a a a =++所以1(,1,2)(1,2,)f a a a a a a ++=++,122d a a =+-=,由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次小数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变. 所以,当2d =时,(1,2,3,)n d d n ==恒成立. ②当3d ≥时,则1(,,)(1,1,2)f a b c a b c =++-所以11(1)d b a b a c a d =+-+=-<-=或12(1)3d c a d =--+=-所以总有1d d ≠.综上讨论,满足(1,2,3,)n d d n ==的d 的取值仅能是2.---------------------8分 法二:因为a b c <<,所以数组(,,)a b c 的极差2d c a =-≥所以1(,,)(1,1,2)f a b c a b c =++-,若2c -为最大数,则12(1)3d c a c a d =--+=--< 若121b c a +≥->+,则1(1)(1)d b a b a c a d =+-+=-<-= 若112b a c +>+≥-,则1(1)(2)3d b c b c =+--=-+, 当3b c d -+=时,可得32b c -+≥,即1b c +≥ 由b c <可得1b c +≤ 所以1b c += 将1c b =+代入3b c c a -+=-得1b a =+所以当(,,)(,1,2)a b c a a a =++时,2n d =(1,2,3,n =)由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次小 数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变.所以满足(1,2,3,)n d d n ==的d 的取值仅能是2. ---------------------8分(Ⅲ)因为,,a b c 是以4为公比的正整数等比数列的三项,所以,,a b c 是形如4k m ⋅(其中*m ∈N )的数,又因为1114(31)3331k k k k k k k C C --=+=++++所以,,a b c 中每两个数的差都是3的倍数.所以(,,)a b c 的极差0d 是3的倍数.------------------------------------------------9分 法1:设(,,)(,,)i i i i f a b c a b c =,不妨设a b c <<,依据操作f 的规则,当在三元数组(,,)i f a b c (1,2,3,,i x =,x ∈N )中,总满足i c 是唯一最大数,ia 是最小数时,一定有2a xb xc x +<+<-,解得3c bx -<. 所以,当2,3,,13c bi -=-时,111(2)(1)3i i i i i i d c a c a d ---=-=--+=-. 3322(,,)(,,)333c b a c b c b c bf a b c -+-++=,3c bd b a -=- 依据操作f 的规则,当在三元数组(,,)i f a b c (,1,,333c b c b c bi y ---=++,y ∈N )中,总满足i i c b =是最大数,i a 是最小数时,一定有32233a cbc b y y +-++<-,解得3b ay -<. 所以,当,1,,1333c b c b c ai ---=+-时,111(1)(2)3i i i i i i d c a c a d ---=-=--+=-.2014 海淀高三二模数学理科 第 11 页 共 11 页 3(,,)(,,)333c a a b c a b c a b c f a b c -++++++=,30c a d -= 所以存在3c a n -=,满足(,,)n f a b c 的极差0nd =.--------------------------------13分 法2:设(,,)(,,)i i i i f a b c a b c =,则①当(,,)i i i a b c 中有唯一最大数时,不妨设i i i a b c ≤<,则 1111,1,2i i i i i i a a b b c c +++=+=+=-,所以111111,3,3i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=--=---=-- 所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i b c +≤,则3i d ≥,1130i i i i c b c b ++-=--≥,所以111i i i a b c +++≤≤ 所以11133i i i i i i d c a c a d +++=-=--=--------------------------------------------11分 ②当(,,)i i i a b c 中的最大数有两个时,不妨设i i i a b c <=,则 1112,1,1i i i i i i a a b b c c +++=+=-=-,所以1111113,3,i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=---=---=-, 所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i a b +≤,则3i d ≥,1130i i i i b a b a ++-=--≥所以11133i i i i i i d b a b a d +++=-=--=-.所以当3i d ≥时,数列{}i d 是公差为3的等差数列.------------------------------12分 当3i d =时,由上述分析可得10i d +=,此时1113i i i a b c a b c +++++=== 所以存在3d n =,满足(,,)n f a b c 的极差0n d =.----------------------------------13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高三年级第一学期期末练习数 学 (文)参考答案及评分标准 2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案BACACBDB二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)πcosππ02()2sin 22ππ4422sin cos 4422f =+=+=++. ------------------------3分 (Ⅱ)由sin cos 0x x +≠得ππ,4x k k ≠-∈Z . 因为cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x xx x x-=++ ------------------------------------5分 cos sin x x =+π2sin()4x =+, -------------------------------------7分所以()f x 的最小正周期2πT =. -------------------------------------9分 因为函数sin y x =的对称轴为ππ+,2x k k =∈Z , ------------------------------11分 又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z ,所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .-----------------------------------13分9. 210. 1611. 712. {1,2,4}13. 50,101514. 1-;①②③16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =. ----------------------------------4分(Ⅱ)设事件A 为“甲队员射击,命中环数大于7环”,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10环.所以()0.290.450.010.75P A =++=. ----------------------------------9分 (Ⅲ)甲队员的射击成绩更稳定. ---------------------------------13分 17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,所以//CD AB . ----------------------------1分 又因为CD ⊄平面PAB , -------------------3分 所以//CD 平面PAB . --------------------------4分 (Ⅱ)因为PA PB =,点E 是棱AB 的中点,所以PE AB ⊥. ----------------------------------5分 因为平面PAB ⊥平面ABCD ,平面PAB 平面ABCD AB =,PE ⊂平面PAB ,----------------------------------7分所以PE ⊥平面ABCD , ------------------------------------8分 因为AD ⊂平面ABCD ,所以PE AD ⊥. ------------------------------------9分 (Ⅲ)因为CA CB =,点E 是棱AB 的中点,所以CE AB ⊥. --------------------------------10分 由(Ⅱ)可得PE AB ⊥, ---------------------------------11分 所以AB ⊥平面PEC , --------------------------------13分 又因为AB ⊂平面PAB ,所以平面PAB ⊥平面PEC . --------------------------------14分18.(本小题共13分)解:(Ⅰ)'()(1)e x f x x a =++,x ∈R . -------------------------------2分 因为函数()f x 是区间[3,)-+∞上的增函数,PAEBCD所以'()0f x ≥,即10x a ++≥在[3,)-+∞上恒成立.------------------------------3分 因为1y x a =++是增函数,所以满足题意只需310a -++≥,即2a ≥. -------------------------------5分 (Ⅱ)令'()0f x =,解得1x a =-- -------------------------------6分 (),'()f x f x 的情况如下: x (,1)a -∞--1a --(1,)a --+∞'()f x -0 +()f x↘极小值↗--------------------------------------10分①当10a --≤,即1a ≥-时,()f x 在[0,2]上的最小值为(0)f , 若满足题意只需2(0)e f ≥,解得2e a ≥,所以此时,2e a ≥; --------------------------------------11分②当012a <--<,即31a -<<-时,()f x 在[0,2]上的最小值为(1)f a --, 若满足题意只需2(1)e f a --≥,求解可得此不等式无解,所以a 不存在; ------------------------12分③当12a --≥,即3a ≤-时,()f x 在[0,2]上的最小值为(2)f , 若满足题意只需2(2)e f ≥,解得1a ≥-,所以此时,a 不存在. ------------------------------13分综上讨论,所求实数a 的取值范围为2[e ,)+∞. 19. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =, 所以2a =, ----------------------------------2分所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分可得中点22286(,)4343k kP k k -++, --------------------------------11分由点P 在圆F 上可得2222286(1)()14343k k k k --+=++化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分 所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分 20. (本小题共13分)解:(Ⅰ)只有[]y x =是N 函数. ----------------------------3分 (Ⅱ)函数()[ln ]1g x x =+是N 函数. 证明如下:显然,*x ∀∈N ,*()[ln ]1g x x =+∈N . ---------------------------------------4分不妨设*[ln ]1,x k k +=∈N ,由[ln ]1x k +=可得1ln k x k -≤<, 即11e e k k x -≤≤<.因为*k ∀∈N ,恒有11e e e (e 1)1k k k ---=->成立, 所以一定存在*x ∈N ,满足1e e k k x -≤<, 所以设*k ∀∈N ,总存在*x ∈N 满足[ln ]1x k +=,所以函数()[ln ]1g x x =+是N 函数. ---------------------------------------8分 (Ⅲ)(1)当0b ≤时,有2(2)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ---------------------------9分(2)当0b >时,① 若0a ≤,有(1)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ------------------10分② 若01a <≤,由指数函数性质易得 x b a b a ⋅≤⋅,所以*x ∀∈N ,都有()[][]x f x b a b a =⋅≤⋅所以函数()[]x f x b a =⋅都不是N 函数. -----------------11分③ 若1a >,令12m m b a b a +⋅-⋅>,则2log (1)am b a >⋅-,所以一定存在正整数k 使得 12k k b a b a +⋅-⋅>, 所以*12,n n ∃∈N ,使得112k k b a n n b a +⋅<<<⋅, 所以12()(1)f k n n f k <<≤+.又因为当x k <时,x k b a b a ⋅<⋅,所以()()f x f k ≤; 当1x k >+时,1x k b a b a +⋅>⋅,所以()(1)f x f k ≥+, 所以*x ∀∈N ,都有*1{()|}n f x x ∉∈N ,所以函数()[]x f x b a =⋅都不是N 函数.------------------13分综上所述,对于任意实数,a b ,函数()[]x f x b a =⋅都不是N 函数.。

相关文档
最新文档