人教版初三数学下册反比例函数概念和解析式

合集下载

人教版九年级数学下册反比例函数知识点归纳及练习(含),文档

人教版九年级数学下册反比例函数知识点归纳及练习(含),文档

反比率函数26.1 知识点 1 反比率函数的定义一般地,形如 y k0 )的函数称为反比率函数,它能够从以下几个方面来理解:( k 为常数,kx⑴ x 是自变量, y 是 x 的反比率函数;⑵自变量 x 的取值范围是x 0的一确实数,函数值的取值范围是y 0 ;⑶比率系数 k0 是反比率函数定义的一个重要构成部分;⑷反比率函数有三种表达式:k① y(k0 ),x② y kx1( k0 ),③ x y k (定值)(k0 );⑸函数 y k0 )与xky 是 x 的反比率函数时, x 也是 y 的反比率函数。

( k( k 0 )是等价的,所以当x y( k 为常数,k0 )是反比率函数的一部分,当k=0 时,y k k x,就不是反比率函数了,因为反比率函数y( k 0x )中,只有一个待定系数,所以,只需一组对应值,就能够求出k 的值,进而确立反比率函数的表达式。

26.2 知识点 2 用待定系数法求反比率函数的分析式因为反比率函数 yk0 )中,只有一个待定系数,所以,只需一组对应值,就能够求出k 的值,进而确( kx定反比率函数的表达式。

26.3 知识点 3 反比率函数的图像及画法反比率函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,因为反比率函数中自变量函数中自变量x 0 ,函数值y0 ,所以它的图像与x 轴、 y 轴都没有交点,即双曲线的两个分支无穷凑近坐标轴,但永久达不到坐标轴。

反比率的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比率函数的图像时应注意以下几点:①列表时选用的数值宜对称选用;②列表时选用的数值越多,画的图像越精准;③连线时,一定依据自变量大小从左至右(或从右至左)用圆滑的曲线连结,切忌画成折线;④绘图像时,它的两个分支应所有画出,但切忌将图像与坐标轴订交。

( 1)图象的形状:双曲线.越大,图象的曲折度越小,曲线越平直.越小,图象的曲折度越大.(2)图象的地点和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大.(3)对称性:图象对于原点对称,即若(a, b)在双曲线的一支上,则(,)在双曲线的另一支上.图象对于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4. k 的几何意义如图 1,设点 P( a, b)是双曲线上随意一点,作PA⊥ x 轴于 A 点, PB⊥y 轴于 B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).如图 2,由双曲线的对称性可知,P 对于原点的对称点Q 也在双曲线上,作QC⊥PA 的延伸线于C,则有三角形PQC 的面积为.图1图 25.说明:(1)双曲线的两个分支是断开的,研究反比率函数的增减性时,要将两个分支分别议论,不可以混为一谈.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点对于原点成中心对称.(3)反比率函数与一次函数的联系.26.4 知识点 4 反比率函数的性质☆对于反比率函数的性质,主要研究它的图像的地点及函数值的增减状况,以下表:反比率k0 )y( kk 的符号k 0k 0图像① x 的 取 值 范 围 是 ① x 的 取 值 范 围 是x0 ,y 的取值范围是x0 ,y 的取值范围是yy性质②当 k0 时,函数图像 ② 当 k 0 时,函数图像的两个分支分别在第 的两个分支分别在第 一、第三象限,在每个 二、第四象限,在每个 象限内,y 随 x 的增大而 象限内,y 随 x 的增大而 减小。

九年级数学-反比例函数

九年级数学-反比例函数

第19讲 反比例函数知识导航1.反比例函数的定义和解析式;2.反比例函数的图象和性质;3.反比例面数与方程及不等式;4.反比例函教与神奇的几何性质;5.反比例函数与直线y =a 或x =a ;6.反比例函数与全等相似;7.反比例函数与图形变换;8.反比例函数与定值及最值。

【板块一】反比例函数的定义和解析式 方法技巧 根据定义解题1.定义:一般地,形如ky x=(k 为常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数.2.解析式:ky x=(k ≠0)或xy =k (k ≠0)或1y kx -= (k ≠0). 题型一根据定义判断反比例函数【例1】下列函数:①2x y =;@2y x =;③y =12y x =;⑤12y x =+;⑥12y x =- ;⑦2xy =; ⑧12y x -=;⑨22y x = .其中y 是x 的反比例函数的有 (填序号).【解析】②③④⑦⑧.题型二根据定义确定k 值或解析式 【例2】(1)反比例函数32y x =- ,化为ky x=的形式,相应的k = ; (2)函数ky x =中,当x =2时,y =3,则函数的解析式为 【解析】(1)32- ;(2)6y x=.题型三根据定义确定待定系数的值【例3】(1)如果函数2+1m y x = 是关于x 的反比例函数,则m 的值为 (2)若函数()252m y m x -=+ (m 为常数)是关于x 的反比例函数,求m 的值及函数的解析式。

【解析】(1)-1;(2)m =2,y =4x .针对练习11.下列函数中,为反比例函数的是(B )A . 3x y =B . 13y x =C . 13y x =-D .21y x=答案:B2.反比例函数y =一化为ky x=的形式后,相应的k =答案: 3.若关于x 的函数()2274mm y m x --=- 是反比例函数,求m 的值答案:3.【板块二】反比例函数的图象和性质 式抓住反比例函数的性质并结合图象解题 一般地,对于反比例函数()0ky k x=≠,由函数图象,并结合解析式,我们可以发现: 1.图象分布当k >0时,x ,y (同号或异号),函数图象为第 象限的两支曲线;当k <0时,x ,y (同号或异号),函数图象为第 象限的两支曲线。

反比例函数解析式的三种表达形式

反比例函数解析式的三种表达形式

反比例函数解析式的三种表达形式反比例函数解析式的三种表达形式。

反比例函数的定义:在x=-b,y=-y, x-y=0上,当-b=0,即图像与y轴有交点时,该函数是一条抛物线,以原点为中心,开口向下。

y=-3/2,开口向下,实际已超出了y=-3/2的图像范围,不符合反比例函数的要求。

这个图像应怎样变换成y=-1,才能使得其与y轴有交点呢?在x=-b, y=-y, x-y=0上,当-b=0,即图像与y轴有交点时,该函数是一条抛物线。

由于在图像与y轴有交点时,图像是反比例函数的交点,因此,对于反比例函数图像与y轴交点的函数值而言,只有两种情况:一是它的一次函数值等于二次函数值,即y=kx+b,若图像是正比例函数,则为1;-b>0时,就是y=kx+b。

二是它的一次函数值大于二次函数值,即y=kx+b,若图像是负比例函数,则为-1;所以,在图像与y轴交点处的一次函数值为k,可令k=b,此时一次函数的图像与y轴交于(0, b);这时反比例函数的解析式为y=-kx+b。

1。

对于y=kx+b,当a>0时,它的一次函数值为y=kx+b,当-b>0时,它的一次函数值为y=kx+b,所以该函数的解析式为y=kx+b。

2。

对于y=kx+b,当-b>0时,它的一次函数值为y=kx+b,当-b<0时,它的一次函数值为y=kx+b,所以该函数的解析式为y=kx+b。

3。

对于y=kx+b,当-b>0时,它的一次函数值为y=kx+b,当-b<0时,它的一次函数值为y=kx+b,所以该函数的解析式为y=kx+b。

当-b>0时,则是: 4。

对于y=kx+b,当-b>0时,它的一次函数值为y=kx+b,当-b<0时,它的一次函数值为y=kx+b,所以该函数的解析式为y=kx+b。

当-b>0时,则是: y=-kx+b5。

对于y=kx+b,当-b>0时,它的一次函数值为y=kx+b,当-b<0时,它的一次函数值为y=kx+b,所以该函数的解析式为y=kx+b。

九年级数学下册 反比例函数知识点总结

九年级数学下册 反比例函数知识点总结

九年级数学下册反比例函数知识点总结反比例函数是数学中常见的一种函数形式。

在反比例函数中,当自变量的值增大时,因变量的值会减小;当自变量的值减小时,因变量的值会增大。

下面是九年级数学下册关于反比例函数的知识点总结:1.反比例函数的定义:反比例函数是指一个函数,其方程形式为y = k/x,其中k是常数,x是自变量,y是因变量。

2.反比例函数的特点:当x为正数且逐渐增大,y的值会逐渐减小。

当x为正数且逐渐减小,y的值会逐渐增大。

如果x等于0,函数的值为无穷大或无穷小。

反比例函数的图像通常是一个曲线,经过原点,并且关于y轴和x轴都对称。

3.反比例函数的图像:反比例函数的图像通常是一个双曲线的一支。

当k为正数时,双曲线的开口朝上。

当k为负数时,双曲线的开口朝下。

当k的绝对值变大时,双曲线的形状越陡峭。

4.反比例函数的应用:反比例函数在实际生活中有许多应用,例如:速度与时间的关系:当行驶的时间增加时,速度会减小。

工作的时间与人数的关系:当完成工作的时间减少时,需要的人数会增加。

投资的金额与收益的关系:当投资的金额增加时,收益会减少。

5.反比例函数的求解:给定反比例函数的方程,可以通过代入不同的自变量的值来计算相应的因变量的值。

给定一组包含自变量和因变量的数值对,可以通过取自变量与因变量的乘积的比值来求解反比例函数的常数k。

以上是九年级数学下册关于反比例函数的知识点总结。

反比例函数在数学中扮演着重要的角色,并在实际生活中有许多应用。

通过理解这些知识点,可以更好地应用和解决与反比例函数相关的问题。

初中数学:反比例函数的概念,真简单

初中数学:反比例函数的概念,真简单

初中数学:反比例函数的概念,真简单反比例函数是数学中一个基本的函数类型,它的特点是当自变量增大时,函数值减小;当自变量减小时,函数值增大。

下面,我们将会深入探讨反比例函数的概念以及它的相关知识点。

一、反比例函数的定义反比例函数,简称反比函数,指的是若一函数 y 与另一函数 x 成反比例关系,即 y = k/x(k为常数),则称 y 为 x 的反比函数。

其中,k 为反比例函数的比例系数,通常用正数表示。

二、反比例函数的图像特点反比例函数的图像呈现出 x 轴的非零实数的全体是定义域,y 轴的非零实数的全体是值域的形态,其图像是一个对称于第二象限和第四象限的双曲线。

三、反比例函数的性质1. 反比函数的定义域为 R - {0},值域也是 R - {0}。

2. 当 x > 0 时,反比例函数单调递减;当 x < 0 时,反比例函数单调递增。

3. 反比例函数在原点处不存在定义,但是可以趋近于无穷大或无穷小。

4. 当 x 的值增加,k 不变时 y 的值逐渐减小,表现出反比例函数的反比例关系。

四、反比例函数的应用反比例函数是数学中非常重要的函数类型,具有广泛的应用。

下面我们列举一些实际中应用反比例函数的例子:1. 银行利率:银行将存款金额与利息之间的关系建立为反比例关系,可以使用反比例函数来描述。

2. 太阳能电池板:当太阳光照射到电池板上时,电压和电流成反比例关系,可以使用反比例函数来描述。

3. 计算机处理速度:计算机的处理速度与处理任务的复杂程度呈反比例关系。

4. 等比例速度问题:有时需要研究物体在不同速度下的行驶时间,这时可以使用反比例函数来描述。

以上是反比例函数的定义、图像特点、性质及应用的详细介绍。

相信通过对反比例函数的学习,我们可以更好地理解数学中的基本概念。

人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。

另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。

反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。

二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。

在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。

2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。

3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。

图像关于直线y=x和y=-x对称。

4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。

初三反比例函数知识点

初三反比例函数知识点

初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。

二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。

2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。

3. 对称性:反比例函数的图象关于原点对称。

三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。

2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。

3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。

四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。

五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。

2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。

六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。

2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。

七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。

八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。

2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。

九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。

人教版九年级下册数学知识点归纳总结(附习题)

人教版九年级下册数学知识点归纳总结(附习题)

第二十六章 反比例函数26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了。

26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十六章反比例函数
26.1 反比例函数
26.1.1 反比例函数
【知识与技能】
1.理解反比例函数的意义.
2.能够根据已知条件确定反比例函数的解析式.
【过程与方法】
经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.
【情感态度】
经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.
【教学重点】
理解反比例函数的意义,确定反比例函数的解析式
【教学难点】
反比例函数解析式的确定.
一、情境导入,初步认识
问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?
【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.
二、思考探究,获取新知
问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?
问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.
思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.
【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.
反比例函数:形如y =k
x
(k≠0)的函数称为反比例函数,其中x是自变量,
y是x的函数,自变量x的取值范围是不等于0的一切实数.
试一试
下列问题中,变量间的对应关系,可用怎样的函数解析式表示?
(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;
(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.
(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.
【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.
三、典例精析,掌握新知
例1 已知y 是x 的反比例函数,当x =2 时,y = 6.
(1) 写出y 与x 之间的函数解析式;
(2) 当x =4时,求y 的值.
【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x
,只须把x =2,y=6代入,求出k 值,即可得y =12x
,再把x =4代入可求出 y=3. 【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.
例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?
【分析】 因为y 是z 的反比例函数,故可设y =1k z
(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠
0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x
是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教
师予以评讲,针对学生可能出现的问题(如设:y =k x
,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.
四、运用新知,深化理解
1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x
= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.
(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?
(2)求出当x =1.5时y 的值.
【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.
【答案】1.只有等式xy=123中,y 是x 的反比例函数.
2.解:(1)由题知可设y =2,3k y x x
==时y=4,∴ k= 4×9 = 36,即 y = 236x
,y 不是 x 的反比例函数. (2)y=236x
,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结
1.知识回顾.
2.谈谈这节课你有哪些收获?
【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.
1.布置作业:从教材“习题26. 1”中选取.
2.完成创优作业中本课时的“课时作业”部分.
反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
此外,教师在例题的处理上,应要求学生将解题步骤写完整.。

相关文档
最新文档