小专题训练(六) 与圆的基本性质有关的计算与证明

合集下载

中考专题复习——与圆有关的计算与证明

中考专题复习——与圆有关的计算与证明

中考专题复习——与圆有关的计算与证明【中考要求及命题趋势】1、理解圆的基本概念与性质。

2、求线段与角和弧的度数。

3、圆与相似三角形、全等三角形、三角函数的综合题。

4、直线和圆的位置关系。

5、圆的切线的性质和判定。

6、三角形内切圆以及三角形内心的概念。

7、圆和圆的五种位置关系。

8、两圆的位置关系与两个圆半径的和或差与圆心距之间的关系式。

两圆相切、相交的性质。

b5E2RGbCAP9、掌握弧长、扇形面积计算公式。

10、理解圆柱、圆锥的侧面展开图。

11、掌握圆柱、圆锥的侧面积和全面积计算。

2018年中考将继续考查圆的有关性质,其中圆与三角形相似<全等)。

三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置关系的开放题、探究题是考查重点;继续考查圆与圆的位置五种关系。

对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。

p1EanqFDPw【应试对策】圆的综合题,除了考切线、弦切角必须的问题。

一般圆主要和前面的相似三角形,和前面大的知识点接触。

直线和圆以前的部分是重点内容,后面扇形的面积、圆锥、圆柱的侧面积,这些都是必考的,后面都是一些填空题和选择题,考查对扇形面积公式、圆锥、圆柱的侧面积的公式记忆。

圆这一章重要的概念、定理先掌握、后应用,掌握之后,再掌握一些解题思路和解题方法。

DXDiTa9E3d第一:有三条常用辅助线,一是圆心距,二是直径圆周角,第三条是切线径。

第二:有几个分析思路:弧、常与圆周角互相转换;那么怎么去应用,就根据题目条件而定。

RTCrpUDGiT【复习要点】 1、圆的有关概念:<1)圆上任意两点间的部分叫弧,______的弧叫优弧,________的弧称为劣弧。

<2)______________________的线段叫做弦,经过圆心的弦叫做直径。

<3)_________________的角叫做圆心角;顶点在圆上且两边____________的角叫做圆周角。

圆中的计算和证明

圆中的计算和证明

1、如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD。

(1)求证:AD=AN;(2)若AB=24,ON=1,求⊙O的半径。

2、在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD。

(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,求出∠DCA的度数。

知识点(圆相关概念和性质)知识点一:垂径定理1.垂径定理:于弦的直径这条弦且这条弦所对的。

2.推论(1):①平分()的垂直于弦且弦所对的;②弦的经过且弦所对的两条弧;③弦所对的一条的直径弦且平分弦所对的另一条弧。

推论(2):圆的两条弦所夹的弧。

知识点二:圆心角、弧、弦、弦心距间的关系1.定理:在或中,相等的圆心角所对的相等,所对的相等,相等。

2.推论:同圆或等圆中,如果①两个相等,②两条相等,③两条相等,④两条弦的中有一组量相等,那么它们所对应的其余各组量都分别相等。

知识点三:圆周角定理及其推论1.定理:在同圆或等圆中,或所对的相等,都等于这条弧所对的的。

2.推论①:同弧或等弧所对的相等;同圆或等圆中,相等的圆周角所对的弧是。

推论②:或所对的是直角;是直角(90°的)所对的弧是,所对的弦是。

推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是。

知识点四:圆内接四边形性质定理1.概念:所有顶点都在同一个圆上的四边形叫做圆内接四边形。

2.定理:圆内接四边形的对角,并且任何一个外角都等于它的。

知识点五:直线与圆的位置关系直线和圆的位置关系相交相切相离公共点个数圆心到直线的距离d与半径r的关系公共点名称直线名称知识点六:圆的切线1.切线的性质(1)切线性质定理:圆的切线垂直于过切点的直径。

拓展:①经过圆心且垂直于切线的直线必经过切点;②经过切点且垂直于切线的直线必经过圆心;③切线与圆只有一个公共点;④圆心到切线的距离等于半径。

初中考数学专题总复习《圆》与圆性质有关证明及计算的方法

初中考数学专题总复习《圆》与圆性质有关证明及计算的方法

第3题图
第4题图
微专题 与圆性质有关证明及计算的方法
方法3 构造相似三角形
方法解读
如图①,由同弧所对的圆周角相等,易得△PAC∽△PDB. 如图②,∠A为公共角,由圆的内接四边形的一个外角等于它的内对角, 易得△ABD∽△AEC.
微专题 与圆性质有关证明及计算的方法
如图③,A为圆外一点,B、C分别为圆上两点,易得△AEC∽△ADB; 如图④,AB为圆O的直径,CD⊥AB,易得△ACD∽△CBD∽△ABC.
第1题图
第2题图
微专题 与圆性质有关证明及计算的方法
方法2 构造直角三角形
方法解读 (1)当题图中含有直径时,构造直径所对的圆周角. 如图①,已知AB是⊙O的直径,点C是圆上一点,连接AC、BC,则有∠ACB=90°.
微专题 与圆性质有关证明及计算的方法
(2)在圆中常过圆心作弦的垂线或连接半径作为辅助线,利用弦心距、半径和弦的 一半组成一个直角三角形,再利用勾股定理或者三角函数进行计算. 如图②,已知AB是⊙O的一条弦,过点O作OE⊥AB于点E,则有OE2+AE2= OA2(或OE2+BE2=OB2).
微专题 与圆性质有关证明及计算的方法
方法应用
3. (2020龙东地区改编)如图,AD是△ABC的外接圆O的直径,若∠BAD=40°,则 ∠ACB=___5_0____°. 4. (2020甘孜州)如图,AB为 O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则 OH的长度为___3_____.
2021 北部湾 经济区
数学
课件说明
软件使用
建议老师使用WPS2019软件打开
学科特色
数学公式由公式编辑器制作,可双 击公式跳转到编辑页面进行修改

题型六 与圆有关的证明与计算 考点聚焦-2021年中考数学一轮复习作业课件(68张)

题型六 与圆有关的证明与计算 考点聚焦-2021年中考数学一轮复习作业课件(68张)

2.若涉及到求不规则图形阴影面积,使用割补法等转化为常见图形面积 的和差进行求解.
3.常用到的思想方法:①构造思想,如构造垂径定理、勾股定理模型、 三角函数模型;②方程思想,如设关键线段为未知数,根据线段之间的关系 列方程;③建模思想,借助基本图形的结论发现要解决的问题中的线段关系 ,通过基本图形模型发现图形中隐藏的线段关系.
∴S△ACD=12 CD·AM=12 ×3× 3 =32 3 ,在 Rt△AMC 中,∠AMD=90°, ∴AC= AM2+CM2 = 3+16 = 19 ,
∵△ABC 是等边三角形,∴AB=BC=AC=
19
,∴BN=
3 2
BC=
57 2

∴S△ABC=12 ×
×
57 2
=194
3
,∴S 四边形 ABCD=194
3. (2019·孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的 外接圆⊙O交于点D,与AC交于点E,延长CD,BA相交于点F, ∠ADF的平分线交AF于点G. (1)求证:DG∥CA; (2)求证:AD=ID; (3)若DE=4,BE=5,求BI的长.
(1)证明:如解图,∵点 I 是△ABC 的内心,∴∠2=∠7,
专题二 解答题题型
题型六 与圆有关的证明与计算
例1 (2020·雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线 BD平分∠ADC.
(1)求证:△ABC是等边三角形; (2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE 的面积. 【分析】(1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A 作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.根据S四边形ABCD= S△ABC+S△ACD,分别求出△ABC,△ACD的面积,即可求得四边形ABCD的面 积,然后通过证得△EAB≌△DCB(AAS),即可求得△BDE的面积.

圆的有关性质 证明题

圆的有关性质 证明题

圆的有关性质证明题一、圆的有关证明(角的转换)1、如图,△ABC 内接于⊙O ,边AC 、BC 的高BE 、AD 相交于H (E 、D 是垂足),AD 交⊙O 于G 。

(1)求证:HG=2HD2、如图,AB 是⊙O 的直径,弦DC ⊥AB 于点E ,在弧AD 上取一点F ,连结CF 交AB 于点M ,连结DF 并延长交BA 的延长线于点N.(1)求证:∠DFC=∠DOB ;3如图:ΔABC 中,∠ACB=90°,D 为AC 的中点,以BC 为直径作⊙O 交 AB 于E ,交BD 于F ,连接EF 、CF 。

① 求证:∠BFE=∠A4、如图,△ABC 内接于⊙O ,且AB >AC ,∠BAC 的外角平分线交⊙O 于E ,EF ⊥AB ,垂足为F 。

(1)求证:EB=EC5、如图,等腰三角形ABC 内接于⊙O ,AB=BC ,它的外角∠EAC 的平分线交⊙O 于D 点,DB 交AC 于F 。

(1)求证:△DAB ≌△DFCM O F E D CB A N6、如图,△ABC内接于⊙O,∠ABC=900,∠BAC的外角平分线交⊙O于点D,AC、BD交于点E,连接CD。

(1)求证:DO∥AB7、如图,以△ABC的边BC为直径作⊙O,⊙O分别交AB、AC 于D、E两点,E为弧CD的中点。

CD交BE于F.(1)求证:ED=EA;8、如图,AD是R t△ABC斜边BC上的高,AB=AC,过A、D的圆与AB、AC分别交于E、F,弦EF交AD于G。

(1)求证:AF =BE9、如图,以△ABC的边AC为直径作⊙O分别交AB、BC于D、E,BH⊥AC于H,BH、CD交于点F,E为半圆弧的中点。

(1)求证:AH=FH10、如图,⊙O是△ABC的外接圆,过A作AD⊥BC于D,交⊙O于E,过C作CF⊥AB于F,交AD于H,交⊙O于G,连接BE、BG。

(1)求证:BE=BG。

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

2020年北师大版九年级数学下册课件:专项训练六 与圆的基本性质有关的计算与证明 (共12张PPT)

2020年北师大版九年级数学下册课件:专项训练六 与圆的基本性质有关的计算与证明 (共12张PPT)
DE,∴AC=BD.
• 4.一些不便于直接测量的圆形 孔道的直径可以用如下方法测 量.如图,把一个直径为10 mm的小钢球紧贴在孔道边缘, 测得钢球顶端离孔道外端的距 离为8 mm,求这个孔道的直径
A解B:连.接 OA,过点 O 作 OD⊥AB 于点 D.则 AB=2AD.∵钢珠的直径是 10 mm,
-150°-120°=90°,∴AC= OA2+OC2= 2.
• 7.【2019·内蒙古包头中考】如图,在⊙O 中,B是⊙O上的一点,∠ABC=120°,弦 AC=2,弦BM平分∠ABC交AC于点D,连
接MA、MC.
• (1)求⊙O半径的长;
• (2)求证:AB+BC=BM.
(1)解:连接 OA、OC,过点 O 作 OH⊥AC 于点 H.∵∠ABC=120°,∴∠AMC =180°-∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=12∠AOC=60°.∵AH =12AC= 3,∴OA=sinAH60°=2,故⊙O 的半径为 2.
(1)求证:AD=AN; (2)若 AE=2 2,ON=1,求⊙O 的半径.
(1)证明:∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°.∵∠ANE=∠CNM.
∵∠BAD=∠BCD,∴∠BCD=∠BAM,∴∠BAM=∠BAD.在△ANE 和△ADE
∴△ANE≌△ADE,∴AD=AN. (2)∵AE=2 2,AE⊥CD,
(2)证明:在 BM 上截取 BE=BC,连接 CE.∵∠ABC=120°,BM 平分∠ABC, ∴∠ABM=∠CBM=60°,∴△EBC 是等边三角形,∴CE=CB=BE,∠BCE=60°, ∴∠BCD+∠DCE=60°.∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°,∴∠ ECM=∠BCD.∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM 是等 边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME.∵ME+EB=BM,∴AB +BC=BM.

九年级数学圆专题训练

九年级数学圆专题训练

九年级数学圆专题训练摘要:1.圆的基本概念和性质2.圆的计算公式和定理3.圆与直线的关系及应用4.圆与二次函数的关系及应用5.圆与三角函数的关系及应用6.圆的典型题型及解题方法7.解题技巧与策略8.实战演练与分析正文:一、圆的基本概念和性质1.圆的定义:平面上一动点以一定点为中心,一定长为半径,所形成的封闭曲线称为圆。

这个定点称为圆心,定长称为半径。

2.圆的性质:(1)圆心到圆上任意一点的距离等于半径;(2)圆上所有点到圆心的距离相等,称为圆的半径;(3)圆心角平分线段;(4)圆周角等于其所对圆弧所对的圆心角;(5)圆周角相等,则其所对圆弧长度相等;(6)圆周长公式:C=2πr;(7)圆面积公式:S=πr。

二、圆的计算公式和定理1.圆的周长公式:C=2πr;2.圆的面积公式:S=πr;3.圆心角公式:α=θ/180°×π;4.圆周角定理:圆周角等于其所对圆弧所对的圆心角;5.圆周角相等,则其所对圆弧长度相等;6.圆周长与半径成正比;7.圆面积与半径平方成正比。

三、圆与直线的关系及应用1.圆与直线的位置关系:相交、相切、相离;2.圆心到直线的距离小于半径,则圆与直线相交;3.圆心到直线的距离等于半径,则圆与直线相切;4.圆心到直线的距离大于半径,则圆与直线相离;5.直线与圆的位置关系应用:判断两点距离与圆半径的大小关系。

四、圆与二次函数的关系及应用1.二次函数图像与圆的位置关系;2.二次函数图像的顶点为圆的圆心;3.二次函数图像的对称轴为圆的直径;4.二次函数图像的零点为圆与直线的交点。

五、圆与三角函数的关系及应用1.弧长与角度的关系:L=θr;2.角度与弧度的关系:θ=L/r;3.三角函数在圆中的应用:判断角度、长度关系;4.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。

六、圆的典型题型及解题方法1.圆的方程求解;2.圆与直线的交点求解;3.圆的参数方程应用;4.圆中的最值问题;5.圆中的几何最值问题。

与圆的基本性质有关的计算与证明(解析版)

与圆的基本性质有关的计算与证明(解析版)

九年级数学下册解法技巧思维培优专题13 与圆的基本性质有关的计算与证明考点一弧、弦、圆心角【典例1】(2019•港南区四模)P是⊙O外一点,P A、PB分别交⊙O于C、D两点,已知AB̂、CD̂的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°【点拨】先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数即可.【解析】解:∵AB̂和CD̂所对的圆心角分别为88°和32°,∴∠A=12×32°=16°,∠ADB=12×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠A=44°﹣16°=28°.故选:B.【典例2】(2019•福建模拟)如图,AB是⊙O的直径,∠BOD=120°,点C为弧BD的中点,AC交OD 于点E,DE=1,则AE的长为()A.√3B.√5C.2√3D.2√5【点拨】连接OC.首先证明∠AOD=∠DOC=60°,想办法证明DE=OE=1即可解决问题.【解析】解:连接OC.∵∠DOB=120°,∴∠AOD=60°,∵CD̂=BĈ,∴∠DOC=∠BOC=60°,∴AD̂=CD̂,∴OD⊥AC,设OA=r,则OE=12r=DE=1,∴OA=2,∴AE=√OA2−OE2=√3,故选:A.【典例3】(2019•洛阳一模)如图,矩形ABCD、半圆O与直角三角形EOF分别是学生常用的直尺、量角器与三角板的示意图.已知图中点M处的读数是145°,则∠FND的读数为55°.【点拨】求出∠FOC,利用平行线的性质即可解决问题.【解析】解:由题意:∠COM=145°,∠EOF=90°,∴∠FOC=55°,∵AD∥BC,∴∠FND=∠FOC=55°,故答案为55°.【典例4】(2019•长白期末)如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=3.【点拨】连接OC,根据平行线的性质及圆周角与圆心角的关系可得到∠1=∠2,从而即可求得CE的长.【解析】解:连接OC,∵AC∥DE,∴∠A=∠1.∠2=∠ACO,∵∠A=∠ACO,∴∠1=∠2.∴CE=BE=3.【典例5】(2019•句容市期中)如图,已知AB 是⊙O 的直径,弦AC ∥OD .(1)求证:BD̂=CD ̂. (2)若AĈ的度数为58°,求∠AOD 的度数.【点拨】(1)欲证弧BD =弧CD ,只需证明它们所对的圆心角相等,即∠BOD =∠COD .(2)利用圆周角、弧,弦的关系求得AD̂=61°+85°=119°,则∠AOD =119°. 【解析】解:(1)证明:连接OC .∵OA =OC ,∴∠OAC =∠ACO .∵AC ∥OD ,∴∠OAC =∠BOD .∴∠DOC =∠ACO .∴∠BOD =∠COD ,∴BD̂=CD ̂. (2)∵BD̂=CD ̂, ∴BD ̂=CD ̂=12BC ̂=(180°﹣58°)=61°.̂=61°+85°=119°,∴AD∴∠AOD=119°.考点二圆周角【典例6】(2019•陕西)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【点拨】连接FB,得到∠FOB=140°,求出∠EFB,∠OFB即可.【解析】解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=12∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.【典例7】(2020•望花区二模)如图,在⊙O中,AB̂所对的圆周角∠ACB=50°,若P为AB̂上一点,∠AOP =55°,则∠POB的度数为45°.【点拨】先利用圆周角定理得到∠AOB=2∠ACB=100°,然后计算∠AOB﹣∠AOP即可.【解析】解:∵AB̂所对的圆周角∠ACB=50°,∴∠AOB=2∠ACB=2×50°=100°,∵∠AOP=55°,∴∠POB=∠AOB﹣∠AOP=100°﹣55°=45°.故答案为45°.【典例8】(2019•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【点拨】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解析】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【典例9】(2019•肇源期末)如图所示,四边形ABCD是圆O的内接四边形,AB的延长线与DC的延长线交于点E,且∠D=∠E.(1)求证:∠ADC=∠CBE;(2)求证:CB=CE;(3)设AD不是圆O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【点拨】(1)连接AC,BD,由圆周角定理得出∠ACB=∠ADB,∠BAC=∠BDC,再由∠CBE+∠ABC =180°得出∠CBE=∠ACB+∠BAC=∠ADB+∠BDC=∠D,进而可得出结论;(2)由圆内接四边形的性质得出∠D=∠CBE,再由∠D=∠E,故可得出∠CBE=∠E,进而得出结论;(3)设BC的中点为N,连接MN,由等腰三角形的性质得出MN⊥BC,故点O在直线MN上,因为AD 不是圆O的直径,M为AD的中点可得出OM⊥AD,MN⊥AD,BC∥AD,故可得出∠A=∠CBE,再由∠A=∠E可得出∠D=∠E,进而可得出结论.【解析】(1)证明:连接AC,BD,∵∠ACB=∠ADB,∠BAC=∠BDC,∠ACB+∠BAC+∠ABC=180°,又∵∠CBE+∠ABC=180°,∴∠CBE=∠ACB+∠BAC=∠ADB+∠BDC=∠D,∴∠D=∠CBE;(2)证明:∵∠D=∠CBE,∠D=∠E,∴∠CBE=∠E,∴CB=CE;(3)解:设BC的中点为N,连接MN,∵BM=MC,∴MN⊥BC,∴点O在直线MN上.又∵AD不是圆O的直径,M为AD的中点,∴OM⊥AD,∴MN⊥AD,∴BC∥AD,∴∠A=∠CBE.又∵∠A=∠E,∴∠D=∠E,∴△ADE为等边三角形.卡点三垂径定理【典例10】(2019•渝中区校级三模)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EB.若AB=4,CD=1,则EB的长为()A.3B.4C.5D.2.5【点拨】设⊙O的半径为r.在Rt△AOC中,利用勾股定理求出r,再利用三角形的中位线定理即可解决问题.【解析】解:设⊙O 的半径为r .∵OD ⊥AB ,∴AC =BC =2,在Rt △AOC 中,∵∠ACO =90°,∴OA 2=OC 2+AC 2,∴r 2=(r ﹣1)2+22,∴r =52,∴OC =32,∵OA =OE ,AC =CB ,∴BE =2OC =3,故选:A .【典例11】(2019•利川市一模)如图,CD 为⊙O 直径,CD ⊥AB 于点F ,AE ⊥BC 于E ,AE 过圆心O ,且AO =1.则四边形BEOF 的面积为( )A .√3B .√32C .√34D .√38【点拨】根据垂径定理求出AF =BF ,CE =BE ,AD̂=BD ̂,求出∠AOD =2∠C ,求出∠AOD =2∠A ,求出∠A =30°,解直角三角形求出OF 和BF ,求出OE 、BE 、BF ,根据三角形的面积公式求出即可.【解析】解:∵CD 为直径,CD ⊥AB ,∴AD̂=BD ̂, ∴∠AOD =2∠C ,∵CD ⊥AB ,AE ⊥BC ,∴∠AFO =∠CEO =90°,在△AFO 和△CEO 中{∠AFO =∠CEO ∠AOF =∠COE OA =OC∴△AFO ≌△CEO (AAS ),∴∠C =∠A ,∴∠AOD =2∠A ,∵∠AFO =90°,∴∠A =30°,∵AO =1,∴OF =12AO =12,AF =√3OF =√32, 同理CE =√32,OE =12, 连接OB ,∵CD ⊥AB ,AE ⊥BC ,CD 、AE 过O ,∴由垂径定理得:BF=AF=√32,BE=CE=√32,∴四边形BEOF的面积S=S△BFO+S△BEO=12×12×√32+12×12×√32=√34,故选:C.【典例12】(2019•海南模拟)如图,⊙O的半径为5,AB为弦,点C为AB̂的中点,若∠ABC=30°,则弦AB的长为5√3.【点拨】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解析】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB̂的中点,∴OC⊥AB,在Rt△OAE中,AE=5√3 2,∴AB=5√3,故答案为:5√3.【典例13】(2019•金山区一模)如图,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于18.【点拨】过O点作OD⊥AB于D,根据三角函数可求OA,再根据三角函数可求AD,再根据垂径定理可求AB的长,【解析】解:过O点作OD⊥AB于D,∵∠OAB=30°.OC⊥OA,OC=6,∴OA=6√3,∵OD⊥AB,∴AD=6√3×√32=9,∴AB=9×2=18.故答案为:18.【典例14】(2019•青州市期中)如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.【点拨】(1)连接OA,根据AB=8cm,CD=2cm,C为AB的中点,设半径为r,由勾股定理列式即可求出r,进而求出面积.(2)在Rt△ACE中,已知AC、EC的长度,可求得AE的长,根据垂径定理可知:OF⊥AE,FE=F A,利用勾股定理求出OF的长.【解析】解:(1)连接OA,如图1所示∵C为AB的中点,AB=8cm,∴AC=4cm又∵CD=2cm设⊙O的半径为r,则(r﹣2)2+42=r2解得:r=5∴S=πr2=π×25=25π(2)OC=OD﹣CD=5﹣2=3EC=EO+OC=5+3=8∴EA=√AC2+EC2=√42+82=4√5∴EF=EA2=4√52=2√5∴OF=√EO2−EF2=√25−20=√5【典例15】(2019•杨浦区三模)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH =5,CD=4√5,点E在弧AD上,射线AE与CD的延长线交于点F.(1)求圆O的半径;(2)如果AE=6,求EF的长.【点拨】(1)连接OD,根据垂径定理得:DH=2√5,设圆O的半径为r,根据勾股定理列方程可得结论;(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.【解析】解:(1)连接OD,∵直径AB⊥弦CD,CD=4√5,∴DH=CH=12CD=2√5,在Rt△ODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OG⊥AE于G,∴AG=12AE=12×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴AGAO =AHAF,∴392=5AF,∴AF=15 2,∴EF=AF﹣AE=152−6=32.巩固练习1.(2019•南关区校级期末)如图,AB是直径,BĈ=CD̂=DÊ,∠BOC=40°,则∠AOE的度数为()A.30°B.40°C.50°D.60°【点拨】由在同圆中等弧对的圆心角相等得,∠BOC=∠COD=∠EOD=40°从而求得∠AOE的度数.̂=CD̂=DÊ,∠BOC=40°,【解析】解:∵BC∴∠BOC=∠COD=∠EOD=40°,∴∠AOE=180°﹣∠BOE=60°.故选:D.2.(2019•鼓楼区校级月考)如图,在⊙O中,AĈ=2AB̂,则以下数量关系正确的是()A.AB=AC B.AC=2AB C.AC<2AB D.AC>2AB【点拨】如图连接BC,首先证明AB=BC,利用三角形的三边关系即可解决问题.【解析】解:如图.连接BC.̂=2AB̂,∵AĈ=BĈ,∴AB∴AB=BC,∴AB+BC>AC,∴2AB>AC,故选:C.3.(2019•成都校级月考)如图,⊙O中,∠AOB=80°,点C、D是⊙O上任意两点,则∠C+∠D的度数是()A.80°B.90°C.100°D.110°【点拨】根据圆周角定理解决问题即可.【解析】解:∵∠AOB=80°,∴∠C=∠D=12∠AOB=40°,∴∠C+∠D=80°,故选:A.4.(2019•玄武区期末)如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8cm,MB=2cm,则直径AB 的长为()A.9 cm B.10 cm C.11 cm D.12 cm【点拨】如图,连接OC.设OA=OB=OC=r.在Rt△OCM中,利用勾股定理构建方程即可解决问题.【解析】解:如图,连接OC.设OA=OB=OC=r.∵AB⊥CD,∴CN=MD=12CD=4cm,在Rt△OCM中,∵OC2=CM2+OM2,∴r2=42+(r﹣2)2,解得r=5,∴AB=2OA=10,故选:B.5.(2019•南沙区一模)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,OC=3,则EC的长为()A.2√15B.8C.2√10D.2√13【点拨】根据垂径定理求出AC=BC,根据三角形的中位线求出BE,再根据勾股定理求出EC即可.【解析】解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=12AB=12×8=4,∵AO=OE,∴BE=2OC,∵OC=3,∴BE=6,在Rt△CBE中,EC=√BE2+CB2=√42+62=2√13,故选:D.6.(2019•余杭区期末)如图,点A,B,C都在⊙O上∠AOC=130°,∠ACB=40°,∠AOB=80°,弧BC=50°.【点拨】直接利用圆周角定理得到∠AOB=80°,再计算出∠BOC=50°,从得到BĈ的度数.【解析】解:∵∠AOB=2∠ACB=2×40°=80°,∴∠BOC=∠AOC﹣∠AOB=130°﹣80°=50°,̂的度数为50°.∴BC故答案为80°,50°.7.(2019•扬州)如图,AB为⊙O直径,点C、D在⊙O上,已知∠BOC=70°,AD∥OC,则∠AOD=40度.【点拨】首先由AD∥OC可以得到∠BOC=∠DAO,又由OD=OA得到∠ADO=∠DAO,由此即可求出∠AOD的度数.【解析】解:∵AD∥OC,∴∠BOC=∠DAO=70°,又∵OD=OA,∴∠ADO=∠DAO=70°,∴∠AOD=180﹣70°﹣70°=40°.8.(2020•新宾县二模)如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=2,EM=4,则⊙O的半径为17.8【点拨】根据垂径定理求出CM ,根据勾股定理得出方程,求出方程的解即可.【解析】解:设⊙O 的半径为R ,∵EM =4,∴OC =R ,OM =4﹣R ,∵直径EF ⊥CD ,垂足为M ,CD =2,∴∠OMC =90°,CM =DM =1,由勾股定理得:OC 2=OM 2+CM 2,即R 2=(4﹣R )2+12,解得:R =178,故答案为:178.9.(2019•沙坪坝区校级期中)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=57°,则∠BCD 等于 33° .【点拨】先根据圆周角定理由AB 是⊙O 的直径得到∠ADB =90°,再根据互余得到∠A =90°﹣∠ABD =34°,然后根据圆周角定理求解.【解析】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=90°﹣57°=33°,∴∠BCD=∠BAD=33°.故答案为:33°10.(2019•海南一模)如图,AB是⊙O的直径,M、C为⊙O上的点,四边形POMN为矩形,BC=4,AC =6,则AN=√13−3.【点拨】利用勾股定理求出AB,利用垂径定理求出P A即可解决问题.【解析】解:∵AB是直径,∴∠ACB=90°,∵BC=4,AC=6,∴AB=√42+62=2√13,∵四边形OPNM是矩形,∴PN=OM=√13,∠OPN=90°,∴OP⊥AC,∴P A=PC=3,∴AN=PN﹣P A=√13−3,故答案为√13−3.11.(2019•海淀区校级月考)如图,⊙O的直径AB垂直于弦CD,垂足为E,点F为⊙O上一点,且满足∠AFC=22.5°,AB=8,则CD的长为4√2.【点拨】利用圆周角定理证明△COE是等腰直角三角形即可解决问题.【解析】解:∵∠AOC=2∠AFC=45°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=√22OC=2√2,∴CD=2CE=4√2.故答案为4√212.(2019•东城区校级期中)如图,点P是⊙O内一点,(1)过点P画弦AB,使点P是AB的中点,并简述作图过程.(2)连接OP并延长交⊙O于点C,若AB=8,PC=2,求⊙O的半径.【点拨】(1)过P作直径DE,再根据垂径定理作DE的垂线即可;(2)连接OA,根据勾股定理和垂径定理求解.【解析】解:(1)①过P作直径DE,交⊙O于点D和E;②过P作弦AB⊥DE于P;(2)连接OA,设⊙O的半径为r,则OP=r﹣2,∵OP⊥AB,∴AP=12AB=12×8=4,根据勾股定理可得:OA2=OP2+AP2,∴r2=42+(r﹣2)2,r=5,答:⊙O的半径为5.13.(2019•自贡)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)AD̂=BĈ;(2)AE=CE.̂=CD̂,即AD̂+AĈ=BĈ+AĈ,据此可得答案;【点拨】(1)由AB=CD知AB̂=BĈ知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答(2)由AD案.【解析】证明(1)∵AB=CD,̂=CD̂,即AD̂+AĈ=BĈ+AĈ,∴AB̂=BĈ;∴AD̂=BĈ,(2)∵AD∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.14.(2019•崇明县一模)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB的长;(2)求⊙O的半径.【点拨】(1)只要证明△AOF≌△COE,推出CE=AF=2,再根据垂径定理可得B=2AF;(2)只要证明∠A =30°,可得cos A =AF OA,由此即可解决问题; 【解析】解:(1)∵CD ⊥AB ,AO ⊥BC∴∠AFO =∠CEO =90°,在△AOF 和△COE 中,{∠AFO =∠CEO ∠AOF =∠COE AO =CO,∴△AOF ≌△COE ,∴CE =AF ,∵CE =2,∴AF =2,∵CD 是⊙O 的直径,CD ⊥AB ,∴AF =BF =12AB ,∴AB =4.(2)∵AO 是⊙O 的半径,AO ⊥BC∴CE =BE =2,∵AB =4,∴BE =12AB ,∵∠AEB =90°,∴∠A =30°,又∵∠AFO =90°,∴cos A=AFAO=2AO=√32,∴AO=43√3,即⊙O的半径是43√3.15.(2019•岳西县校级期中)如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,当△ABC为正三角形时,点E是否AC的中点?为什么?【点拨】(1)连接AD,根据圆周角定理求出∠ADB=90°,根据线段垂直平分线性质推出即可;(2)根据圆周角定理求出∠AEB=90°,根据等腰三角形性质求出即可.【解析】解:(1)AB=AC,证明:连结AD,∵AB是⊙O的直径∴∠ADB=90°,即AD⊥BC,∵BD=DC,∴AB=AC;(2)解:当△ABC为正三角形时,E是AC的中点,连接BE,∵AB为直径,∴∠BEA=90°,即BE⊥AC,∵△ABC为正三角形,∴AE=EC,即E是AC的中点.。

圆的基本性质和计算

圆的基本性质和计算

圆的基本性质和计算圆是一种几何形状,其在数学和日常生活中都扮演着重要的角色。

本文将介绍圆的基本性质,并探讨一些与圆相关的计算方法。

一、圆的基本性质圆由一条闭合曲线组成,其内部的所有点到圆心的距离都相等。

以下是圆的一些基本性质:1. 圆心和半径:- 圆心是圆的中心点,通常用大写字母O表示。

- 半径是圆心到圆上任意一点的距离,通常用小写字母r表示。

2. 直径和周长:- 直径是通过圆心的两个点之间的距离,它等于半径的两倍,通常用字母d表示。

- 周长是圆的边界长度,也称为圆的周长或圆周长,通常用字母C 表示。

周长可以通过以下公式计算:C = 2πr,其中π是一个数学常数,近似值为3.14159。

3. 弧长和扇形面积:- 弧长是圆上一段弧的长度。

弧长的计算公式可以通过以下方式推导得出:弧长 = (圆心角/360°) × 2πr,其中圆心角是弧对应的圆心的角度。

- 扇形面积是由一个圆心角所确定的圆上的一个扇形部分的面积。

扇形面积的计算方法可以通过以下公式得出:扇形面积= (圆心角/360°) × πr²。

二、圆的计算方法1. 已知半径求周长、面积:- 周长的计算公式为:C = 2πr。

- 面积的计算公式为:A = πr²。

2. 已知直径求周长、面积:- 周长的计算公式为:C = πd。

- 面积的计算公式为:A = π(d/2)²。

3. 已知弧长和圆心角求半径:- 根据弧长公式,我们可以得到:弧长 = (圆心角/360°) × 2πr,通过该公式可以解出半径r。

4. 已知扇形面积和圆心角求半径:- 根据扇形面积公式,我们可以得到:扇形面积 = (圆心角/360°) ×πr²,通过该公式可以解出半径r。

5. 已知两点求圆心和半径:- 如果我们已知圆上的两点坐标,我们可以通过计算两点之间的距离得到半径,并计算出圆心的坐标。

2023年中考专题训练——圆的计算和证明(含答案)

2023年中考专题训练——圆的计算和证明(含答案)

2023年中考专题训练——圆的计算和证明1.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点D.(1)判断△CBD的形状,并说明理由;(2)若CD=3OD,AD=8,求⊙O的半径.2.如图,Rt ABC中,90∠=︒,点O为AB上一点,以点O为圆心,以OA为半径,作OACB交AB于点E,边BC与O相切于点D.过点C作CF//AB交AD延长线于点F.(1)求证:AC CF=;(2)若4AC=,求O的半径.AE BE=,103.如图,AB是O的直径,弦CD AB⊥于点G.点F是CG的中点,连接AF并延长交O于点E,连接AD,DE.(1)求证:2=⋅;AD AE AF(2)若2AF=,求DEF的面积.CF=,34.如图,⊙O是ABC的外接圆,AB是O的直径,过点A作O的切线,交BC的延长线与点D,点E是劣弧BC上的一点,连接AE,CE.(1)求证:DAC AEC ∠=∠;(2)若4sin 5AEC ∠=,10AD =,求O 的半径. 5.如图,以ABC 的边AB 为直径作O ,交边AC 于点D ,BC 为O 的切线,弦DE AB ⊥于点F ,连结BE .(1)求证:ABE C ∠=∠.(2)若点F 为OB 中点,且1OF =,求线段BC 的长.6.如图,AB 为O 的直径,点C 在O 上,过点C 作O 切线CD 交BA 的延长线于点D ,过点O 作OE AC ∥交切线DC 于点E ,交BC 于点F .(1)求证:B E ∠=∠;(2)若10AB =,4cos 5B =,求EF 的长.7.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:△CBE∽△CPB;(2)当3AB=34CFCP=时,求扇形COB的面积.8.如图,ABC内接于⊙O,10AB AC==,12BC=,点E为AC上一点,点F为CE的中点,连结BF并延长与AE交于点G,连结AF,CF.(1)求证:AFC AFG∠=∠.(2)当BG经过圆心O时,求FG的长.9.如图,已知AB为⊙O的直径,E是AB延长线上一点,点C是⊙O上的一点,连接EC、BC、AC,且EC是⊙O的切线,C为切点.(1)求证:∠BCE=∠A;(2)过点A作AD垂直于直线EC于D,若AD=3,DE=4,求⊙O的半径.10.如图,点C是以O为圆心,AB为直径的半圆上一动点(不与A,B重合),8AB=,连接AC 并延长至点D,使CD AC=,过点D作AB的垂线DH,分别交ACB,CB,AB于点E,F,H,连接OC.记ABCθ∠=,θ随点C的移动而变化.(1)当45θ︒⋅=⋅;<时,求证:BH AH DH FH(2)连接OD,当2ADOθ=∠时,求OH的长.11.如图,AB是O的直径,BC是O的弦,直线MN与O相切于点C,过点B作BD MN⊥于点D.(1)求证:ABC CBD∠=∠;(2)若BC=4CD=,求O的半径.12.如图,O的直径18AB=,点E是AB上的动点,CD是经过点E的弦,过点B作O的切线交AC的延长线于点F,且CD//BF.(1)若AC=BC,分别求AE,CD的长;(2)当点E位于OB的什么位置时,以,,,O C B D为顶点的四边形是菱形?请说明理由.13.如图,AB是O的直径,过点B作AB的垂线BC,连接AC,交O于点D,O的切线DE 交BC于E.(1)求证:点E 为BC 的中点;(2)若O 的直径为3,2DE =,求AD 的长.14.如图,□OABC 的对角线相交于点D ,O 经过A 、D 两点,与BO 的延长线相交于点E ,点F 为AE 上一点,且=AF AD .连接AE 、DF 相交于点G ,若3AG =,6EG =.(1)求□OABC 对角线AC 的长;(2)求证:□OABC 为矩形.15.读下面材料,并完成相应的任务 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.下面是不完整的证明过程,请补充完整.已知:P 为O 外一点,P A 与O 交于A ,B 两点,PM 与O 相切于点M .求证:2PM PB PA =⋅.证明:如图,连接AM ,BM ,连接MO 并延长交O 于点C ,连接BC .∵PM 为O 的切线,∴_______90=︒,∴90CMB BMP ∠+∠=︒,∵CM 为O 的直径,∴_______90=︒,∴90CMB MCB ∠+∠=︒,∴MCB ∠=_______,∵MAB MCB ∠=∠,∴BMP MAB ∠=∠.∵P P ∠=∠,∴PBM ∽△_______.∴PM PB PA PM =,∴2PM PB PA =⋅.学习任务:如图,若线段AB 与O 相交于C ,D 两点,且AC BD =,射线AB ,BF 为O 的两条切线,切点分别为E ,F ,连接CF .(1)求证:AE BF =;(2)若6BF =,2CD BD =,60FBC ∠=︒,求BCF △的面积.16.如图,在O 中,B ,C 是AD 的三等分点,弦AC ,BD 相交于点E .(1)求证:AC BD =;(2)连接CD ,若25BDC ∠=︒,求BEC ∠的度数.17.已知点C 是△ABD 的边AB 上一点,且12BC AC =,AC 为O 的直径,BD 切O 于点D ,连接DO 并延长交O 于点E ,连接BE 交O 于点M .(1)求证:BAD ABD ∠=∠;(2)若O 的半径为1,求线段EM 的长.18.如图,在AOB 中,AO BO =,AB 与O 相切于点C ,延长BO 交O 于点P 、Q .连接CP ,CQ .(1)若30A ∠=︒,求CPQ ∠的大小.(2)若1tan 2CPQ ∠=,O 的半径为35AB 的长度.19.如图,AC 是⊙O 的直径,OD AB ⊥,点E 是射线DO 上一点且OE BC =,过点E 作FE DE ⊥交射线AC 于点F .(1)求证:2OE OD =;(2)求证:ABC FEO ≌△△;(3)当EF 与⊙O 相切时,若⊙O 的半径为2,求弧BC 的长.20.如图,P A 和PB 是O 的两条切线,A ,B 为切点,点D 在AB 上,点E 和点F 分别在PB 和P A 上,且AD BE =.(1)求证:PA PB=(2)若40∠=︒,当EDFP∠是多少度时,BD AF=?请说明理由.(3)若APBα∠=,当α=__________时,四边形DEPF为菱形.参考答案:1.(1)△CBD 是等腰三角形,理由见解析 (2)14【分析】(1)由点C 在过点B 的切线上,且OC ⊥OA ,根据等角的余角相等,易证得∠CBD =∠CDB ,即可证得△CBD 是等腰三角形;(2)设OD =x ,则BC =DC =3x ,由勾股定理求出7OB x =,在Rt AOD ∆中,由勾股定理得222(7)8x x +=,求出x 的值即可得解.【解析】(1)△CBD 是等腰三角形,∵OC ⊥OA ,∴∠AOC =90°,∴∠A +∠ADO =90°,∵BC 切⊙O 于点B ,∴∠OBC =90°,∴∠OBA +∠CBD =90°,∵OA =OB ,∴∠A =∠OBA ,∴∠ADO =∠CBD ,∵∠ADO =∠CDB ,∴∠CDB =∠CBD ,∴CD =CB ;∴△CBD 是等腰三角形;(2)∵CD =3OD ,AD =8,∴设OD x =,则34CD x OC x ==,,∴BC =3x ,在Rt OBC △中,227OB OC BC x -, ∴7OA x =,在Rt AOD △中,222AD AO DO =+, ∴222(7)8x x +=, 解得,2x =22x =-, ∴2714AO ==【点评】本题主要考查了切线的性质,等腰三角形的判定与性质以及勾股定理,正确识图是解答本题的关键.2.(1)见解析;(2)⊙O 的半径为6【分析】(1)连结OD ,BC 与⊙O 相切于点D ,90ODB ∠=︒,由90ACB ∠=︒,得到OD AC ,13∠=∠,由OD OA =,进一步得23∠∠=,由CF AB ∥得2F ∠=∠,则3F ∠=∠,得到结论;(2)设⊙O 的半径为r ,则2AE r =.由4AE BE =可以得到32OB r =,52AB r =,由OD AC 得到BOD BAC ∽,得到OB OD AB AC=,进一步即可得解. (1)证明:连结OD ,∵BC 与⊙O 相切于点D ,∴OD ⊥BC ,∴90ODB ∠=︒,∵90ACB ∠=︒,∴90ODB ACB ∠=∠=︒,∴OD AC ,∴13∠=∠,又∵OD OA =,∴12∠=∠,∴23∠∠=,又∵CF AB ∥,∴2F ∠=∠,∴3F ∠=∠,∴△ACF 是等腰三角形,∴AC CF =.(2)解:设⊙O 的半径为r ,则2AE r =.∵4AE BE =, ∴12BE r =, ∴32OB r =,52AB r =, 由(1)知:OD AC ,∴∠BOD =∠BAC ,∵∠B =∠B ,∴BOD BAC ∽, ∴OB OD AB AC=, ∵10AC =, ∴325102r r r =, ∴6r =,即⊙O 的半径为6.【点评】此题考查了切线的性质定理,相似三角形的判定和性质、等腰三角形的判定和性质等知识,证明BOD BAC ∽是求O 的半径的关键.3.(1)见解析 (2)5【分析】(1)证明ADF AED △△∽即可;(2)先求出ADF S △,再利用相似求出AED S,最后根据DEF AED ADF S S S =-计算即可.(1)∵AB 是O 的直径,弦CD AB ⊥,∴AD AC =,DG CG =,∴ADF AED ∠=∠,∵FAD DAE ∠=∠(公共角),∴ADF AED △△∽,∴AD AF AE AD=, ∴2AD AE AF =⋅;(2)∵点F 是CG 的中点,2CF =,∴2FG =,AG∵CD AB ⊥于点G ,∴4CG DG ==,∴6FD =,AD =∴11622ADF S DF AG =⨯⋅=⨯△ ∵ADF AED △△∽, ∴2ADF AED S AF SAD ⎛⎫= ⎪⎝⎭,37AED =,∴AED S=, ∴45DEF AED ADF S S S =-=【点评】本题主要考查垂径定理、相似三角形的判定和性质,由垂径定理得到G 是CD 的中点是解题的关键.本题所考查知识点较多,综合性较强,解题时注意知识的灵活运用.4.(1)见解析(2)154【分析】(1)AD 与⊙O 相切于点E ,90DAC BAC ∠+∠=︒,AB 是O 的直径,则∠ABC +∠BAC =90°,DAC ABC ∠=∠,又ABC AEC ∠=∠,结论得证;(2)在ABD △,90BAD ∠=︒,10AD =,4sin sin 5ABD AEC ∠=∠=,求得BD ,由勾股定理得到AB ,即得O 的半径.(1)证明:∵AD 与⊙O 相切于点E ,∴AB ⊥AD ,∴∠BAD =90°,∴90DAC BAC ∠+∠=︒∵AB 是O 的直径,∴90ACB ∠=︒,∴90ABC BAC ∠+∠=︒,∴DAC ABC ∠=∠∵ABC AEC ∠=∠,∴DAC AEC ∠=∠.(2)解:在ABD △,90BAD ∠=︒,10AD =,4sin sin 5ABD AEC ∠=∠=, ∴52510sin 42AD BD ABD ==⨯=∠, 由勾股定理得,222225151022AB BD AD ⎛⎫=-- ⎪⎝⎭, ∴O 的半径为154. 【点评】此题考查了切线的性质定理、圆周角定理及其推论、锐角三角函数、勾股定理等知识,熟练掌握定理的应用是解题的关键.5.(1)见解析; 43【分析】(1)根据切线的性质以及DE AB ⊥,可得BC DE ∥,可得ADE C ∠=∠,根据同弧所对的圆周角相等,可得ADE ABE ∠=∠,进而即可得证;(2)连接OE ,垂径定理求得EF ,进而证明AFD ∆∽ABC ∆,根据相似三角形的性质,列出比例式,代入数值即可求解.(1)证明 ∵AB 是⊙O 的直径,BC 为⊙O 的切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE //BC ,∴ADE C ∠=∠,∵弧AE 所对圆周角是ABE ∠和ADE ∠,∴ABE ADE ∠=∠,∴ABE C ∠=∠;(2)连接OE ,∵点F 为OB 中点,AB ⊥BC ,∴OF =12OE , 1OF =,∴2OE =,∴EF =FD∴ AF =AO OF OE OF +=+=3,ED FD ∥ ,∴AFD ∆∽ABC ∆,∴AF FD AB BC =,即34=,得,BC =. 【点评】本题考查了切线的性质、等弧所对的圆周角相等、垂径定理、相似三角形的性质与判定,综合运用以上知识是解题的关键.6.(1)见解析 (2)163【分析】(1)证明:连接OC ,利用圆周角定理及切线的性质定理求出OCB ACD ∠=∠,由圆的半径相等求出B OCB ∠=∠,利用平行线的性质求出ACD E ∠=∠,即可得到结论B E ∠=∠;(2)由4cos 5BC B AB ==求出8BC =,AC =6,证明ACB OCE ∽△△求出OE ,根据三角形中位线的性质求出OF ,即可得到EF .(1)证明:连接OC ,如图所示:∵AB 为⊙O 的直径,∴90ACB ACO OCB ∠=∠+∠=︒.∵DE 是⊙O 的切线,∴90OCD ACO ACD ∠=∠+∠=︒,∴OCB ACD ∠=∠,∵OB ,OC 是⊙O 的半径,∴OB OC =,∴B OCB ∠=∠,∵OE AC ∥,∴ACD E ∠=∠,∴B E ∠=∠;(2)解:在Rt ACB 中,4cos 5BC B AB ==,10AB =, ∴8BC =,∵OC OA OB ==, ∴1110522OC AB ==⨯=, ∴22221086AC AB BC --,∵90ACB OCE ∠=∠=︒,B E ∠=∠,∴ACB OCE ∽△△, ∴AC AB OC OE=,即6105OE =, ∴253OE =, ∵OF AC ∥,O 为AB 中点, ∴132OF AC ==, ∴2516333EF OE OF =-=-=.【点评】此题考查了圆周角定理、切线的性质定理、相似三角形的判定及性质、勾股定理、三角函数,熟练掌握各知识点并应用解决问题是解题的关键.7.(1)见解析(2)2π【分析】(1)先证明∠CEB=∠CBP=90°,再由∠D+∠P=90°,∠CAB+∠CBE=90°,∠CAB=∠D,推出∠CBE=∠P,即可证明结论;(2)设CF=3k,CP=4k,先证明∠F AC=∠CAB,得到CE=CF=3k,再由相似三角形的性质得到BC2=CE•CP;从而求出sin∠CBE=∠CBE=60°,即可证明△OBC是等边三角形,得到∠COB=60°,据此求解即可.(1)解:∵CE⊥OB,CD为圆O的直径,∴∠CEB=∠DBC=90°,∴∠CEB=∠CBP=90°,∵PF是切线,∴∠DCP=90°,∴∠D+∠P=90°,∵AB是直径,∴∠ACB=90°∴∠CAB+∠CBE=90°,∵∠CAB=∠D,∴∠CBE=∠P,∴△CBE∽△CPB;(2)解:∵34 CFCP=,∴设CF=3k,CP=4k,∵PF是切线,∴OC ⊥PF ,∵AF ⊥PF ,∴AF ∥OC .∴∠F AC =∠ACO ,∵OA =OC ,∴∠OAC =∠ACO ,∴∠F AC =∠CAB ,∴CE =CF =3k ,∵△CBE ∽△CPB , ∴CB CE CP CB=, ∴BC 2=CE •CP ;∴BC =23k∴sin ∠CBE 323k= ∴∠CBE =60°,∵OB =OC ,∴△OBC 是等边三角形,∴∠COB =60°, ∵43AB =∴扇形COB 的面积260232360ππ⨯=() 【点评】本题主要考查了圆切线的性质,相似三角形的性质与判定,圆周角定理,角平分线的性质,解直角三角形,扇形面积,等边三角形的性质与判定等等,熟练掌握圆的相关知识是解题的关键.8.(1)见解析; (2)72【分析】(1)根据等腰三角形的性质,圆内接四边形的性质,补角的性质证明即可;(2) 利用勾股定理,三角形中位线定理,三角形全等性质计算即可.(1)证明:∵AB AC =,∴A ABC CB =∠∠,∵ACB AFB ∠=∠,∴ABC AFB ∠=∠,∵180ABC AFC ∠+∠=︒,180AFG AFB ∠+∠=︒,∴AFC AFG ∠=∠;(2)连结AO 并延长AO 交于点H ,∵AB AC =,∴AH BC ⊥,6BH CH ==,∴8AH =,连结OC ,设OH x =,则8OA OC x ==-,在Rt OCH 中,()22268x x +=-, 解得74x =, ∵OH 是Rt BCF 的中位线, ∴722CF OH ==,∵点F 为CE 的中点,∴EAF CAF ∠=∠,∵AFC AFG ∠=∠,AF AF =,∴()ACF AGF ASA ≌△△, ∴72FG CF ==. 【点评】本题考查了圆的内接四边形的性质,勾股定理,等腰三角形的性质,三角形中位线定理,三角形全等的判定和性质,熟练掌握圆的性质和勾股定理是解题的关键.9.(1)见解析(2)⊙O 的半径为158【分析】(1)连结OC ,根据圆周角定理由AB 是⊙O 的直径得∠1+∠2=90°,根据切线的性质即可得到∠BCE +∠2=90°,所以∠BCE =∠1,而∠1=∠A ,即∠A =∠BCE(2)设⊙O 的半径为r ,在Rt △ADE 中利用勾股定理计算出AE =5,则OE =5-r ,OC =r ,证明△EOC ∽△EAD ,利用相似比得到EO OC EA AD =,即553r r -=,然后解方程即可得到圆的半径. (1)如图,连接OC ,∵AB 是⊙O 的直径,∴∠ACB =90°,即∠1+∠2=90°又∵EC 是⊙O 的切线∴OC ⊥EC即∠BCE +∠2=90°∴∠BCE =∠1∵OC =OA∴∠1=∠A∴∠A =∠BCE(2)∵OC ⊥EC又AD ⊥EC∴OC ∥AD∴EOC EAD ∠=∠,ECO EDA=∠∠∴△EOC ∽△EAD ∴EOOCEA AD =设⊙O 的半径为r在Rt △ADE 中AD =3,ED =4则AE 22AD DE +∴OE =5-r ;OC =r ∴553r r -= ∴158r =即⊙O 的半径为158【点评】本题考察了圆的切线性质及相似三角形的判定与性质,利用圆的切线性质是解决本题的关键点.10.(1)见解析(2)3【分析】(1)证△BHF ∽△DHA ,根据线段比例关系即可证;(2)过点O 作OG AD ⊥于点G ,可得OH OG =,设OH OG x ==,AG y =,由正弦定义,4sin 4x yθ+=,sin 4y θ=,则444x y y +=,即2120x x +-=,由勾股定理,得2224x y +=,解得OH 的长为3. (1) AB 是直径,90ACB DCB ︒∴∠=∠=.DH AB ⊥,CFD BFH ∠=∠,CDH ABC θ∴∠=∠=.90DCB DHB ACB ︒∠=∠=∠=,BHF DHA ∴∆∆∽.::BH DH FH AH ∴=.BH AH DH FH ∴⋅=⋅.(2)解:如图,过点O 作OG AD ⊥于点G .由(2)知,CDH ABC θ∠=∠=.2ADO θ=∠,OD ∴平分CDH ∠.OH OG ∴=.设OH OG x ==,AG y =,则4AH x =+,2AC y =,24AD AC y ==.在Rt AGO ∆中,由勾股定理,得2224x y +=.①在Rt AHD ∆中,sin AH ADH AD ∠=,即4sin 4x y θ+=.② 在Rt ABC ∆中,sin AC ABC AB∠=,即sin 4y θ=.③ 由②③,得444x y y +=, 24y x ∴=+.代入①中,得2120x x +-=,解得3x =或4x =-(舍去).故OH 的长为3.【点评】本题考查了相似三角形的判定和性质,圆周角定理,运用相似三角形的判定和性质解题是关键.11.(1)证明见解析(2)5【分析】(1)连接OC ,由切线的性质可得OC MN ⊥,即可证得OC BD ⊥,由平行线的性质和等腰三角形的性质可得CBD BCO ABC ∠=∠=∠,即可证得结论;(2)连接AC ,由勾股定理求得BD ,然后通过证得C ABC BD ∽△△,求得直径AB ,从而求得半径. (1)证明:连接OC ,∵MN 为O 的切线,∴OC MN ⊥,∵BD MN ⊥,∴//OC BD ,∴CBD BCO ∠=∠,又∵OC OB =,∴BCO ABC ∠=∠,∴CBD ABC ∠=∠.(2)解:连接AC ,∵BD MN ⊥,∴BCD △是直角三角形,∵BC =4CD =,∴8BD ,∵AB 是O 的直径,∴90ACB ∠=︒,∴90ACB CDB ∠=∠=︒,∵ABC CBD ∠=∠,∴C ABC BD ∽△△,∴AB CBBC BD == ∴10AB =,∴O 的半径是5.【点评】本题考查了切线的性质和圆的基本性质、三角形相似的判定和性质以及解直角三角形.通过作辅助线构建等腰三角形、直角三角形是解题的关键.12.(1)16AE =;CD =(2)当点E 位于OB 的中点位置时,以,,,O C B D 为顶点的四边形为菱形,理由见解析【分析】(1)利用勾股定理得出BC 的长,再证明AEC ACB △△得出AE 的长,由勾股定理得CE 的长,再由垂径定理即可得出答案;(2)利用对角线互相垂直且互相平分的四边形是菱形求出即可.(1)解:∵O 的直径,∴90ACB ∠=︒,∵O 的直径12218,AB AC == ∴226BC AB AC -∵过点B 的O 的切线交AC 的延长线于点F ,且CD FB ∥.∴90AEC ABF ∠=∠=︒,∴AEC ACB ∠=∠∵A A ∠=∠,∴AEC ACB △△, ∴AC AE AB AC =, ∴12218122∴16AE = ∴2242CE AC AE =-=∵OE CD ⊥,∴CE DE = ∴282CD CE ==(2)解:当点E 位于OB 的中点位置时,以,,,O C B D 为顶点的四边形为菱形.如图,理由:由(1)得CE DE =,当EO BE =时,四边形OCBD 为平行四边形,又∵OB CD ⊥,∴以点,,,O C B D 为顶点的四边形为菱形. 【点评】此题考查了切线的性质、相似三角形的判定与性质、垂径定理以、菱形的的判定、勾股定理等知识.此题难度适中,注意掌握数形结合思想与方程思想的应用.13.(1)见解析 (2)95【分析】(1)连接OD ,BD ,分别证明BE DE =和DE EC =,从而可得结论;(2)根据勾股定理求出5AC =,再证明Rt ADB Rt ABC ∆∆∽,根据相似三角形的性质可得结论.(1)连接OD ,BD ,∵DE 是圆的切线,∴90ODE ∠=︒,∵AB 是O 的直径,∴90ADB ∠=︒又90ABC ∠=︒∴90ABC ODE ADB ︒∠=∠=∠=,∵OA OD =,OB OD =∴A ODA ∠=∠,ODB OBD ∠=∠,∵90A ABD ABD DBE ADO ODB ∠+∠=∠+∠=∠+∠=︒,DBE A ODA BDE ∴∠=∠=∠=∠,BE DE ∴=,∵90DBC C BDE CDE ∠+∠=∠+∠=︒,又C OBD ODB EDC ∠=∠=∠=∠,DE EC ∴=,12BE BC ∴=, ∴点E 为BC 的中点;(2)2DE =,24BC DE ∴==,在Rt ABC ∆中,5AC ==.BAD CAB ∠=∠,ADB ABC ∠=∠·Rt ADB Rt ABC ∴∆∆∽,AD AB AB AC∴=, 295AB AD AC ∴== 【点评】本题主要考查了切线的性质,圆周角定理,相似三角形的判定与性质,熟练掌握相关性质是解答本题的关键.14.(1)63(2)见解析【分析】(1)利用弧相等,由圆周角定理推论推出ADE AGD △∽△,由相似三角形的性质可求AD 的长度,再利用平行四边形的性质可求出AC 的长度;(2)利用对角线相等的平行四边形是矩形可得证.(1)解:∵DE 是直径,3AG =,6EG =,∴90EAD ∠=︒,9AE AG EG =+=,∵=AF AD ,∴ADF AFD AED ∠=∠=∠,又∵90DAE GAD ∠=∠=︒,∴ADE AGD △∽△, ∴AD AG AE AD=, ∴23927AD AG AE =⨯=⨯=, ∴33AD =∵四边形OABC 是平行四边形, ∴263AC AD ==(2)由(1)可知:90EAD ∠=︒,∴AED △是直角三角形, ∴()222293363DE AE AD ++∵四边形OABC 是平行四边形,∴263OB OD DE ===∴AC OB =,∴□OABC 为矩形.【点评】本题考查了圆的基本性质,相似三角形的判定及性质、平行四边形的性质、矩形的判定、勾股定理.理解和掌握圆周角定理的推论及相似三角形判定及性质并能进行灵活应用是解决本题的关键.15.(1)∠CMP ;∠CBM ;∠BMP ;△PMA ;见解析(2)27【分析】阅读材料:连接AM ,BM ,连接MO 并延长交O 于点C ,连接BC ,证PBM ∽△△PMA 即可得出结论;(1)由阅读材料得2AE AC AD =⋅,2BF BD BC =⋅,再由AC =BD ,证AD =BC ,即可得出结论;(2)由阅读材料得2BF BD BC =⋅,从而求出BC =F 作FG BC ⊥于点G ,解Rt BFG △求出6FG ==,最后利用12BCF S BC FG =⋅△计算即可求解. (1)阅读材料证明:如图,连接AM ,BM ,连接MO 并延长交O 于点C ,连接BC .∵PM 为O 的切线,∴∠CMP 90=︒,∴90CMB BMP ∠+∠=︒,∵CM 为O 的直径,∴∠CBM 90=︒,∴90CMB MCB ∠+∠=︒,∴MCB ∠=∠BMP ,∵MAB MCB ∠=∠,∴BMP MAB ∠=∠.∵P P ∠=∠,∴PBM ∽△△PMA . ∴PM PB PA PM=, ∴2PM PB PA =⋅.故答案为:∠CMP ,∠CBM ,∠BMP ,△PMA .(1)证明:∵AE ,BF 为O 的两条切线,∴2AE AC AD =⋅,2BF BD BC =⋅.∵AC BD =,∴AC CD BD CD +=+,即AD BC =.∴22AE BF =,∴AE BF =.(2)解:∵2CD BD =,设BD m =,则2CD m =,3BC m =,由由阅读材料得,2BF BD BC =⋅,即2236m =,解得3m = ∴3BC =如图1,过点F 作FG BC ⊥于点G ,在Rt BFG △中,sin FG FB B =, 即3633FG == ∴12BCF S BC FG =⋅△16333272=⨯=. 【点评】本题考查切线的性质,相似三角形的判定与性质,解直角三角形,本题属阅读材料题,通过阅读,探究出一个结论,再运用结论解决其他问题,属中考试常用考类型.16.(1)见解析(2)130°【分析】(1)根据B ,C 是AD 的三等分点,求出ABC BCD =,再根据圆心角、弧、弦之间的关系得出即可;(2)根据圆周角定理得出∠CAD =∠BDA =∠BDC =25°,根据三角形内角和定理求出∠AED ,再求出答案即可.【解析】(1)证明:B ,C 是AD 的三等分点,AB BC CD ∴==AB BC BC CD ∴+=+∴ABC BCD =∴AC =BD ;(2)连接AD ,∵∠BDC =25°,AB BC CD ==∴∠CAD =∠BDA =∠BDC =25°,∵∠AED +∠CAD +∠BDA =180°,∴∠AED =180°-∠CAD -∠BDA =180°-25°-25°=130°,∴∠BEC =∠AED =130°,故答案为:130°.【点评】本题考查了圆心角、弧、弦之间的关系和圆周角定理,能熟记圆心角、弧、弦之间的关系是解此题的关键.17.(1)见解析(2)EM【分析】(1)连接CD ,根据题意可得出BC =OA ,CD =OD ,∠AOD =∠BCD ,利用SAS 证明△AOD ≌△BCD 即可得出结论;(2)由△AOD ≌△BCD 知AD =BD ,运用勾股定理可得出BD AD ==BE =,连接DM ,证明BDM BED ∆∆得BD BM BE BD=,即2BD BM BE =,设EM =x ,BM x =,代入相关数据得方程7(7)3x -=,求出x 的值即可.(1)连接CD ,如图,∵BD 是切线,DE 是圆的直径,∴DE BD ⊥,∴BDO ∆是直角三角形. ∵12BC AC =, ∴=BC OC OA =,∴点C 为OB 的中点,CD 为OB 边上的中线,∴CD OC OD ==,∴DCO DOC ∠=∠,∴DOA DCB ∠=∠,在DOA ∆和BCD ∆中,AO BC AOD BCD CD OD =⎧⎪∠=∠⎨⎪=⎩,∴DOA DCB ∆≅∆,∴BAD ABD ∠=∠.(2)∵AC 是圆的直径,∴=90ADC ∠︒,∴ADC ∆是直角三角形,∵1AO OC CD ===,∴2AC =, 由勾股定理得,2222213AD AC CD --由(1)知DOA DCB ∆≅∆, ∴3BD AD ==在Rt BDE ∆中,2,3DE BD == ∴22222(3)7BE DE BD =++连接DM ,∵DE 是圆的直径,∴90BMD EMD ∠=∠=︒,∵90EDB ∠=︒,∴BMD EDB ∠=∠,又MBD DBE ∠=∠,∴BDM BED ∆∆,∴BD BM BE BD=,即2BD BM BE =,设EM =x ,则BM x =,(7)3x -=,解得,x =∴EM = 【点评】本题主要考查了切线的性质,直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,正确证明BDMBED ∆∆是解答本题的关键. 18.(1)30°(2)【分析】(1)根据切线的性质求出60COB ∠=︒,再根据圆周角定理求CPQ ∠的大小即可;(2)证明BQC BCP △∽△结合1tan 2CPQ ∠=即可求出BQ 的长度,再由相似得到的比例即可求出BC 的长度,最后根据AB =2BC 求值即可.(1)如图,连接CO .∵AB 与O 相切于点C ,∴CO AB ⊥.∵,30AO BO A =∠=︒,∴30,60B A COB ∠=∠=︒∠=︒,∴1302CPQ COB ∠=∠=︒. (2)∵PQ 是O 的直径,∴90PCQ ∠=︒.∵1tan 2CPQ ∠=, ∴12CQ CP =∵90PCQ OCB ∠=∠=︒, OC OP =,∴OPC OCP BCQ ∠=∠=∠.∵B B ∠=∠,∴BQC BCP △∽△, ∴12BQ BC CQ BC BP CO ===, ∴2,2BP BC BC BQ ==, ∴45BP BQ BQ ==+25BQ = ∴45BC = ∴85AB =【点评】本题综合考查切线的性质、圆周角定理、正切、相似三角形的性质与判定、等腰三角形的性质,考查的知识点比较多,但是都比较简单,正确的作出辅助线是解题的关键.19.(1)见解析(2)见解析 (3)23π【分析】(1)由垂径定理及三角形中位线定理即可求解; (2)先证明AB EF ∥,再根据平行线的性质得出OAB F ∠=∠,即可证明()ABC FEO AAS ≌△△; (3)连接OB ,先证明OBC △为等边三角形,再利用弧长公式计算即可.(1)证明:∵OD AB ⊥,∴点D 是AB 的中点,∵点O 是AC 的中点,∴2BC OD =,∵OE BC =,∴2OE OD =,(2)证明∵OD AB ⊥,EF DE ⊥,∴90EDB ∠=︒,90DEF ∠=︒,∴180EDB DEF ∠+∠=︒,∴AB EF ∥,∴OAB F ∠=∠,∵AC 是⊙O 的直径,∴90ABC ∠=︒,∴ABC E ∠=∠,∵OE BC =,∴()AAS ABC FEO ≌△△,(3)解:连接OB ,∵EF 与⊙O 相切时,∴2OE =,∴2BC OE ==,∵在OBC △中,OC OB BC ==,∴OBC △为等边三角形,∴60BOC ∠=︒, ∴60221803BC L ππ⨯⨯==. 【点评】本题考查了垂径定理、三角形中位线定理、平行线的性质、切线的性质、全等额三角形的判定、等边三角形的判定与性质及弧长公式,熟练掌握知识点是解题的关键.20.(1)见解析(2)70°,理由见解析(3)60°【分析】(1)连接AO 、BO 、OP ,根据切线的性质及全等三角形的判定证明△APO ≌△BPO ,即可求解;(2)由(1)得到AP =BP ,根据三角形内角和定理得到∠P AB =∠PBA =70°,证明△AFD ≌△BDE ,根据全等三角形的性质得到∠AFD =∠BDE ,根据三角形的内角和,得到答案;(3)根据菱形的性质与直角三角形的性质证明BD =BE =DE ,得到△BDE 是等边三角形,根据三角形内角和即可求解.(1)连接AO 、BO 、OP ,∵P A 和PB 是O 的两条切线,A ,B 为切点,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP =∠OBP =90°,又∵AO =BO ,OP =OP ,∴△APO ≌△BPO (HL ),∴AP =BP ;(2)当EDF ∠是70度时,BD AF =,证明如下:由(1)可得P A =PB ,∴∠P AB =∠PBA =12(180°−40°)=70°,在△AFD 和△BDE 中, AD BE FAD DBE AF BD =⎧⎪∠=∠⎨⎪=⎩,∴△AFD ≌△BDE (SAS )∴∠AFD =∠BDE ,∴∠EDF =180°−∠BDE −∠ADF =180°−∠AFD −∠ADF =∠F AD =70°,故EDF ∠是70度时,BD AF =.(3)如图,当四边形DEPF为菱形时,∠APD=∠BPD,EP=DE=DF=PF,∵AP=BP,DP=DP,∴△APD≌△BPD(SAS),∴AD=BD,∴DP⊥AB,△BDP是直角三角形,∵DE=EP,∴∠DPE=∠PDE,∴∠DPB+∠DBP=∠PDE+∠BDE=90°,∴∠DBP=∠BDE,∴DE=BE,∵AD BE,∴BD=BE=DE,∴△BDE是等边三角形,∴∠DBE=60°=∠P AD,∴∠APB=180°-∠DBE-∠P AD =60°,故答案为:60°.【点评】本题考查的是切线的性质、菱形的判定与性质、全等三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.。

小专题(二) 与圆的基本性质有关的计算与证明

小专题(二) 与圆的基本性质有关的计算与证明
小专题(二)与圆的基本性质有关的计算与证明
1.如图,延长BP至E,若∠EPA=∠CPA,判断△ABC的形状并证明你的结论.
2.(南京中考)如图,A,B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于点A,B的滑动角.已知∠APB是⊙O上关于点A,B的滑动角,
(1)若AB是⊙O的直径,则∠APB=____________;
5.(安徽中考)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
如图2,当点P在BC上移动时,求PQ长的最大值.
6.如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于点G,F,E.求证:
∵点D是BC的中点,∴AD是线段BC的垂直平分线.
∴AB=AC.∵AB=BC,∴AB=BC=AC.
∴△ABC为等边三角形.
(2)连接BE.∵AB是直径,∴∠AEB=90°.∴BE⊥AC.
∵△ABC是等边三角形,∴AE=EC,即E为AC的中点.
∵D是BC的中点,故DE为△ABC的中位线,
∴DE=AB=×2=1.
4.(1)∵OA⊥BC,∴=.∴∠ADC=∠AOB.
∵∠AOB=56°,∴∠ADC=28°.
(2)∵OA⊥BC,∴CE=BE.设⊙O的半径为r,则OE=r-1,OB=r,
在Rt△BOE中,OE2+BE2=OB2,
∵BE=3,则32+(r-1)2=r2.解得r=5.
5.(1)连接OQ.∵PQ∥AB,PQ⊥OP,∴OP⊥AB.
(2)若⊙O的半径是1,AB=,求∠APB的度数.
3.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=45°.

专题训练 圆的有关证明与计算

专题训练 圆的有关证明与计算

题型专项(九)圆的有关证明与计算圆的证明与计算是中考的必考内容之一,占有较大的比重,通常结合三角形、四边形等知识综合考查,以计算、证明的形式出现.解答此类问题要熟练掌握圆的基本性质,特别是切线的性质与判定,利用圆的性质求线段长、角度或阴影部分的面积等.复习时应加以重视,在掌握解题方法的前提下,也要加大练习量.【例】 (2019·昆明联考)如图,⊙O 的半径OA =4,AB 是弦,直线EF 经过点B ,AC ⊥EF 于点C ,∠BAC =∠OAB.(1)求证:EF 是⊙O 的切线; (2)若AC =2,求AB 的长;(3)在(2)的条件下,求图中阴影部分的面积.【思路点拨】 (1)要证明EF 是⊙O 的切线,只需要证得半径OB ⊥EF 即可; (2)过点O 作OD ⊥AB 于点D ,易证△AOD ∽△ABC ,从而由相似的性质求得AB 的长度; (3)由图可得S 阴影=S △AOB +S △ABC -S 扇形AOB.【自主解答】 解:(1)证明:∵OA =OB , ∴∠OAB =∠OBA. ∵∠BAC =∠OAB , ∴∠BAC =∠OBA. ∴OB ∥AC. ∵AC ⊥EF , ∴OB ⊥EF.又∵OB 是⊙O 的半径, ∴EF 是⊙O 的切线.(2)过点O 作OD ⊥AB 于点D ,则AD =12AB ,∵∠OAD =∠BAC ,∠ODA =∠ACB , ∴△AOD ∽△ABC. ∴AD AC =AO AB ,即12AB 2=4AB . ∴AB =4.(3)∵AB =OB =OA =4,∴△OAB 为等边三角形. ∴∠AOB =∠ABO =60°. ∵OB ⊥BC , ∴∠ABC =30°. ∴BC =3AC =2 3. ∴S 阴影=S △AOB +S △ABC -S 扇形OAB=12×4×23+12×2×23-60×π×42360 =63-83π.1.解决圆的相关问题,正确作出辅助线是解题的关键. 2.已知一条直线是圆的切线,则连接过切点的半径可得垂直. 3.证明一条直线是圆的切线的常见方法有两种:(1)当直线和圆有一公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”;(2)当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”.4.求阴影部分的面积经常使用割补法等转化的方法将阴影部分转化为几个容易求出面积的图形(如扇形、三角形等)的和差.类型1 与圆的基本性质有关的证明与计算1.如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,OF ⊥AC 于点F. (1)请探索OF 和BC 的关系,并说明理由;(2)若∠D =30°,BC =1时,求圆中阴影部分的面积.(结果保留π)解:(1)OF ∥BC ,OF =12BC.理由:由垂径定理,得 AF =CF.∵AO =BO , ∴OF 是△ABC 的中位线.∴OF ∥BC ,OF =12BC.(2)连接OC.由(1)知OF =12.∵AB 是⊙O 的直径,∴∠ACB =90°. ∵∠D =30°,∴∠A =30°. ∴AB =2BC =2.∴AC = 3. ∴S △AOC =12AC ·OF =34.∵OA =OC ,∴∠A =∠OCA =30°.∴∠AOC =120°. ∴S 扇形AOC =120×π×OA 2360=π3.∴S 阴影=S 扇形AOC -S △AOC =π3-34.2.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D, DE ⊥AB 于点E ,且交AC 于点P ,连接AD.(1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)若⊙O 的半径为5, AD =6,求tan ∠ABD 的值. 解:(1)证明:∵BD 平分∠CBA ,∴∠CBD =∠DBA. ∵∠DAC =∠CBD , ∴∠DAC =∠DBA.(2)证明:∵AB 为⊙O 的直径,∴∠ADB =90°. ∵DE ⊥AB ,∴∠DEB =90°.∴∠ADE +∠EDB =∠ABD +∠EDB =90°. ∴∠ADE =∠ABD =∠DAP.∴PD =PA. ∵∠DFA +∠DAC =∠ADE +∠PDF =90°, 且∠DAP =∠ADE , ∴∠PDF =∠PFD.∴PD =PF. ∴PA =PF ,即P 是AF 的中点.(3)由题意可知AB =10,且AD =6.∴DB =8.在Rt △ABD 中,tan ∠ABD =AD DB =68=34.类型2 与圆的切线有关的证明与计算3.(2019·红河州泸西县一模)如图,AB 是⊙O 的直径,AC ,DC 为弦,∠ACD =60°,P 为AB 延长线上的点,∠APD =30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为3 cm ,求图中阴影部分的面积.解:(1)证明:连接OD , ∵∠ACD =60°, ∴∠AOD =120°. ∴∠BOD =60°. ∵∠APD =30°, ∴∠ODP =90°. ∴PD ⊥OD.又∵OD 是⊙O 的半径, ∴PD 是⊙O 的切线.(2)∵在Rt △POD 中,OD =3 cm ,∠APD =30°, ∴PD =3 3.∴S 阴影=S △ODP -S 扇形OBD =12×3×33-16×π×32=932-32π.4.(2019·昆明西山区一模)如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连接BC ,交⊙O 于点D ,点E 是BC 边的中点,连接AE.(1)求证:∠AEB =2∠C ;(2)若AB =6,cosB =35,求DE 的长.解:(1)证明:∵AC 是⊙O 的切线, ∴∠BAC =90°.∵点E 是BC 边的中点, ∴AE =EC. ∴∠C =∠EAC. ∵∠AEB =∠C +∠EAC , ∴∠AEB =2∠C. (2)连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°. ∵AB =6,cosB =35,∴BD =185.在Rt △ABC 中,AB =6,cosB =35,∴BC =10.∵点E 是BC 边的中点,∴BE =5. ∴DE =BE -BD =75.5.如图,PA ,PB 是⊙O 的切线,A ,B 是切点,AC 是⊙O 的直径,AC ,PB 的延长线交于点D. (1)若∠1=20°,求∠APB 的度数;(2)当∠1等于多少度时,OP =OD ?并说明理由.解:(1)∵PA 是⊙O 的切线,∴∠PAO =90°. ∴∠BAP =90°-∠1=70°. 又∵PA ,PB 是⊙O 的切线,∴PA =PB. ∴∠BAP =∠ABP =70°.∴∠APB =180°-70°×2=40°. (2)当∠1=30°时,OP =OD. 理由如下:当∠1=30°时, 由(1)知∠BAP =∠ABP =60°, ∴∠APB =180°-60°×2=60°. ∵PA ,PB 是⊙O 的切线, ∴∠OPB =12∠APB =30°.又∵∠D =∠ABP -∠1=60°-30°=30°, ∴∠OPB =∠D.∴OP =OD.6.(2019·云南模拟)如图,AB 是⊙O 的直径,AF 是⊙O 的切线,CD 是垂直于AB 的弦,垂足为E ,过点C 作DA 的平行线与AF 相交于点F ,CD =43,BE =2.求证:(1)四边形FADC 是菱形; (2)FC 是⊙O 的切线.证明:(1)连接OC , ∵AB 是⊙O 的直径,CD ⊥AB , ∴CE =DE =12CD =12×43=2 3.设OC =x ,∵BE =2,∴OE =x -2. 在Rt △OCE 中,OC 2=OE 2+CE 2, ∴x 2=(x -2)2+(23)2.解得x =4. ∴OA =OC =4,OE =2.∴AE =6. 在Rt △AED 中,AD =AE 2+DE 2=43, ∴AD =CD.∵AF 是⊙O 的切线,∴AF ⊥AB. ∵CD ⊥AB ,∴AF ∥CD. ∵CF ∥AD ,∴四边形FADC 是平行四边形. ∵AD =CD ,∴四边形FADC 是菱形. (2)连接AC ,∵四边形FADC 是菱形,∴FA =FC. ∴∠FAC =∠FCA.∵AO =CO ,∴∠OAC =∠OCA. ∴∠FAC +∠OAC =∠FCA +∠OCA , 即∠OCF =∠OAF =90°.∴OC ⊥FC. 又∵OC 是⊙O 的半径, ∴FC 是⊙O 的切线.7.(2019·赤峰)如图,AB 为⊙O 的直径,C ,D 是半圆AB 的三等分点,过点C 作AD 延长线的垂线CE ,垂足为E.(1)求证:CE 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.解:(1)证明:连接OC. ∵点C ,D 为半圆O 的三等分点, ∴AD ︵=CD ︵=BC ︵. ∴∠BOC =∠BAD. ∴OC ∥AD. ∵CE ⊥AD , ∴CE ⊥OC.又∵DC 是⊙O 的半径, ∴CE 为⊙O 的切线. (2)连接OD , ∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =13×180°=60°.∵OD =OC ,∴△OCD 为等边三角形. ∴∠ODC =60°=∠AOD. ∴CD ∥AB. ∴S △ACD =S △COD .∴S 阴影=S 扇形COD =60×π×22360=2π3.8.(2019·曲靖模拟)如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 分别交AC ,AB 的延长线于点E ,F.(1)求证:EF 是⊙O 的切线;(2)若AC =4,CE =2,求BD ︵的长度.(结果保留π)解:(1)证明:连接OD , ∵OA =OD , ∴∠OAD =∠ODA. ∵AD 平分∠EAF , ∴∠DAE =∠OAD. ∴∠DAE =∠ODA. ∴OD ∥AE. ∵AE ⊥EF , ∴OD ⊥EF.又∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线.(2)过点O 作OG ⊥AE 于点G ,则AG =CG =12AC =2,∠OGE =∠E =∠ODE =90°,∴四边形ODEG 是矩形.∴OA =OD =CG +CE =2+2=4,∠DOG =90°. 在Rt △AOG 中, ∵OA =2AG , ∴∠AOG =30°.∴∠BOD =180°-30°-90°=60°. ∴BD ︵的长度为60×π×4180=4π3.9.(2019·西双版纳景洪一模)如图,△ABC 是⊙O 的内接圆,且AB 是⊙O 的直径,点D 在⊙O 上,BD 平分∠ABC 交AC 于点E ,DF ⊥BC 交BC 延长线于点F.(1)求证:DF 是⊙O 的切线;(2)若BD =4,sin ∠DBF =35,求DE 的长.解:(1)证明:连接OD , ∵BD 平分∠ABC , ∴∠ABD =∠DBF. ∵OB =OD , ∴∠ABD =∠ODB. ∴∠DBF =∠ODB. ∴OD ∥BF. ∵DF ⊥BC , ∴OD ⊥DF.又∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线. (2)连接AD , ∵AB 是⊙O 的直径, ∴∠ADE =90°. ∵BD 平分∠ABC , ∴∠DBF =∠ABD. 在Rt △ABD 中,BD =4, ∵sin ∠ABD =sin ∠DBF =35,∴AD =3. ∵∠DAC =∠DBF , ∴sin ∠DAE =sin ∠DBF =35.在Rt △ADE 中,sin ∠DAE =DE AE =35,设DE =3x ,AE =5x ,则(3x )2+32=(5x )2, 解得x =34(舍负值).∴DE =94.10.(2019·陕西)如图,AC 是⊙O 的一条弦,AP 是⊙O 的切线.作BM =AB 并与AP 交于点M ,延长MB 交AC 于点E ,交⊙O 于点D ,连接AD.(1)求证:AB =BE ;(2)若⊙O 的半径R =5,AB =6,求AD 的长.解:(1)证明:∵AP 是⊙O 的切线, ∴∠EAM =90°.∴∠BAE +∠MAB =90°,∠AEB +∠AMB =90°. 又∵AB =BM , ∴∠MAB =∠AMB. ∴∠BAE =∠AEB. ∴AB =BE. (2)连接BC. ∵AC 是⊙O 的直径, ∴∠ABC =90°.在Rt △ABC 中,AC =10,AB =6, ∴BC =8. ∵BE =AB =BM , ∴EM =12.由(1)知∠BAE =∠AEB , ∴△ABC ∽△EAM. ∴∠C =∠AME ,EM AC =AM BC ,即1210=AM 8. ∴AM =485.又∵∠D =∠C , ∴∠D =∠AMD. ∴AD =AM =485.。

圆的有关证明与计算题专题

圆的有关证明与计算题专题

AB《圆的证明与计算》专题研究圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。

一、考点分析:1.圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.!(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。

三、解题秘笈:1、判定切线的方法:(1)若切点明确,则“连半径,证垂直”。

常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。

常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;%总而言之,要完成两个层次的证明:①要证直线垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。

在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O的切线;(2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O的切线.(3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线.(4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C,求证:CD是⊙O的切线.~2、与圆有关的计算:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数.(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档