导数及其应用(1)
教师用导数及其应用1
第十二章 导数及其应用【知识图解】【方法点拨】导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。
同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。
1.重视导数的实际背景。
导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。
这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。
2.深刻理解导数概念。
概念是根本,是所有性质的基础,有些问题可以直接用定义解决。
在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。
3.强化导数在函数问题中的应用意识。
导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。
4.重视“数形结合”的渗透,强调“几何直观”。
在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。
5.加强“导数”的实践应用。
导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。
6.(理科用)理解和体会“定积分”的实践应用。
定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。
第1课 导数的概念及运算【考点导读】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念;3.熟记基本导数公式;4.掌握两个函数和、差、积、商的求导法则;5.了解复合函数的求导法则.会求某些简单函数的导数.(理科)【基础练习】1.设函数f (x )在x =x 0处可导,则0lim →h hx f h x f )()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。
考研数学-专题5 导数的概念及应用
f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0
则
lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n
_高中数学第一章导数及其应用1
ΔΔst=29+31+Δt-3Δ2t-29-31-32=3Δt-12,
∴物体在 t=1 处的瞬时变化率为lim Δt→0
ΔΔst =Δlitm→0
(3Δt-12)
=-12(m/s),
即物体在 t=1 时的瞬时速度为-12 m/s.
3.求函数f(x)在某点处的导数
• 例题3 若函数y=x2+ax在x=2处的导数为8,求a的值.
8分
10 分 12 分
规律方法
利用导数定义求导数的三步曲:
(1)求函数的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0;
(3)取极限,得导数 f′(x0)=Δlixm→0
Δy Δx.
简记为:一差,二比,三趋近. 特别提醒:取极限前,要注意化简ΔΔyx,保证使 Δx→0 时,分母
不为 0.
• 3.已知函数y=2x2+4x,(1)求函数在x=3处的导数. • (2)若函数在x0处的导数是12,求x0的值. 解析: (1)Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3) =12Δx+2(Δx)2+4Δx =2(Δx)2+16Δx, ∴ΔΔyx=2Δx2Δ+x 16Δx=2Δx+16. ∴y′|x=3=Δlixm→0 ΔΔyx=Δlixm→0 (2Δx+16)=16.
=Δx+1+ΔxΔx,
ΔΔyx=Δx+Δ1x+ΔxΔx=1+1+1Δx,
∴ lim Δx→0
ΔΔyx=Δlixm→0
1+1+1Δx=2,
从而 y′|x=1=2.
典例导航
1.求函数的平均变化率
• 例题1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均 变化率,并求当x0=2,Δx=0.1时平均变化率的值.
高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二
1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。
导数的应用(一)
课题:导数的应用(一)
考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超
过三次).
2.了解函数在某点取得极值的必要条件和充分条件;会
用导数求函数的极大值、极小值(其中多项式函数一般不
超过三次);会求闭区间上函数的最大值、最小值(其中多
项式函数一般不超过阿三次).
3.会利用导数解决某些实际问题.
热点要求:1.在高考中,重点考查利用导数研究函数的单调性,求单调区间、极值、最值,以及利用导数解决生活中的优化问
题.有时在导数与解析几何、不等式、平面向量等知识交
汇点处命题.
2.多以解答题的形式出现,属中、高档题目.
课时目标:能利用导数求解函数的单调性及极值,会熟练掌握导数基本运算。
导学过程:
一·知识整合
问题1你之前是学习过导数及其应用,请你疏理一下关于导数的应用,主要体现在哪些方面?
二·典例研习:
(一)利用导数判断(或证明)函数的单调性
例1·求出函数f(x)=x3+x2-x的单调区间。
问题2你能说出求一个函数的单调区间的一般步骤有哪些吗?
拓展练习:讨论二次函数f(x)=ax2+bx+c的单调区间。
(二)·利用导数求函数极值
问题3你能说说如何求函数的极值?一般步骤是什么?
问题4.本例中若添上条件x,则该函数的最值又是什么?最值与极值的区别何在?
三·易错扫描
问题五·你能找出上述解答错在哪里吗?
问题六·通过这节课的复习,请你谈谈怎样来进行高三复习?四.自我检测
五.课后作业
2013.9.6。
导数及其应用第一讲(学生)
导数及其应用(一)知识点1 导数的概念及其运算 1.2. (1) '[()()]____________.u x v x ±= (2) [()()]____________u x v x '=(3) ()[]_______________(()0)()u x v x v x '=≠ 例1-1. 求下列各函数的导数: (1);sin 25x xx x y ++=(2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫ ⎝⎛--=x x y (4).1111xx y ++-=例1-2 已知f(x)=sinx(cosx+1),则)(xf'等于()A.cos2x-cosxB.cos2x-sinxC.cos2x+cosxD.cos2x+cosx 例1-3 若函数y=f(x)在R上可导且满足不等式x)(xf'>-f(x)恒成立,且常数a,b 满足a>b,则下列不等式一定成立的是()A.a f(b)>bf(a)B.a f(a)>bf(b)C.a f(a)<bf(b)D.a f(b)<bf(a)知识点2导数的几何意义例2-1已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.例2-2 (2008·辽宁理,6)设P 为曲线C :y=x 2+2x+3上的点,且曲线C 在点P处切线倾斜角的取值范围是⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为( )A.⎥⎦⎤⎢⎣⎡--21,1 B.[-1,0] C.[0,1] D.⎥⎦⎤⎢⎣⎡1,21练习2-1已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线 y =x -3相切,求实数a 、b 、c 的值.练习2-2 (2012年高考(课标文))曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________练习2-3 若直线y=kx 与曲线y=x 3-3x 2+2x 相切,则k= .知识点3 函数的单调性1、 函数y =)(x f 在某个区间可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .(逆命题不成立)2、 如果在某个区间内恒有0)(='x f ,则)(x f.注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. 3、 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ;② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.例3-1已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )的单调区间.例3-2 已知f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.练习3-1(2012年辽宁文)函数y=12x2-㏑x的单调递减区间为()A.(-1,1] B.(0,1] C.[1,+∞)D.(0,+∞)练习3-2 若f(x)=-12(x-2)2+b ln x在(1,+∞)上是减函数,则b的取值范围是()A.[-1,+∞) B.(-1,+∞) C.(-∞,-1] D.(-∞,-1)练习3-3 已知函数f(x)=-12x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是________.基础练习:1.已知f(x)=x2+3xf′(2),则f′(2)=________.2.已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于3x-y=0,则点P的坐标为________.3.曲线y=xx+2在点(-1,-1)处的切线方程为____________.4.(2012·烟台模拟)函数f(x)=x2-2ln x的递减区间是( ).A.(0,1] B.[1,+∞)C.(-∞,-1),(0,1) D.[-1,0),(0,1]5.已知函数f(x)=x3-ax2-3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)的单调区间.答案:1. 解析 由题意得f ′(x )=2x +3f ′(2),∴f ′(2)=2×2+3f ′(2),∴f ′(2)=-2. 2.答案 (1,0)解析 由题意知,函数f (x )=x 4-x 在点P 处的切线的斜率等于3,即f ′(x 0)=4x 30-1=3,∴x 0=1,将其代入f (x )中可得P (1,0). 3.答案 y =2x +1解析 易知点(-1,-1)在曲线上,且y ′=x +2-x x +2 2=2x +22,∴切线斜率k =y ′=21=2. 由点斜式得切线方程为y +1=2(x +1),即y =2x +1. 4.解析 函数的定义域为(0,+∞),又f ′(x )=2x -2x =2 x +1 x -1x由f ′(x )≤0,解得0<x ≤1. 答案 A5.解 (1)对f (x )求导,得f ′(x )=3x 2-2ax -3.由f ′(x )≥0,得a ≤32⎝⎛⎭⎫x -1x .记t (x )=32⎝⎛⎭⎫x -1x ,当x ≥1时,t (x )是增函数, ∴t (x )min =32(1-1)=0.∴a ≤0.(2)由题意,得f ′(3)=0,即27-6a -3=0, ∴a =4.∴f (x )=x 3-4x 2-3x ,f ′(x )=3x 2-8x -3. 令f ′(x )=0,得x 1=-13,x 2=3.当x 变化时,f ′(x )、f (x )的变化情况如下表:∴当x ∈⎝⎦⎤-∞,-13,[3,+∞)时,f (x )单调递增,当x ∈⎣⎦-13,3时,f (x )单调递减.。
高中数学第2章导数及其应用1平均变化率与瞬时变化率1-1平均变化率1-2瞬时变化率北师大版选择性必修
对点训练❷ 一辆汽车按规律s=2t2+3做直线运动,求这辆 汽车在t=2时的瞬时速度.(时间单位:s,位移单位:m)
[解析] 设这辆汽车在 t=2 附近的时间改变量为 Δt,则位移的改变 量 Δs=[2(2+Δt)2+3]-(2×22+3)=8Δt+2(Δt)2,则ΔΔst=8+2Δt.当 Δt 趋 于 0 时,平均变化率ΔΔst趋于 8.
第二章 导数及其应用
§1 平均变化率与瞬时变化率 1.1 平均变化率 1.2 瞬时变化率
素养目标•定方向 必备知识•探新知 关键能力•攻重难 课堂检测•固双基
素养目标•定方向
1.理解函数的平均变化率和瞬时变化率的概念. 2.会求物体运动的平均速度并估计瞬时速度. 3.会求函数在某点附近的平均变化率.
练一练: 1.如图,函数y=f(x)在A,B两点间的平均变化率是( B )
A.1 C.2
[解析]
B.-1 D.-2 ΔΔxy=f33--f11=1-2 3=-1.
2.一质点的运动方程是s=5-3t2,则在一段时间[1,1+Δt]内相应的
平均速度为( D )
A.3Δt+6
B.-3Δt+6
C.3Δt-6
[规律方法] 求函数平均变化率的步骤 (1)求自变量的改变量 Δx=x2-x1. (2)求函数值的改变量 Δy=f(x2)-f(x1). (3)求平均变化率ΔΔxy=fxx22- -fx1x1.
对点训练❶ 球的半径从1增加到2时,球的体积平均膨胀率
28π 为___3___.
[解析]
因为 Δy=43π×23-43π×13=283π,
28π 所以ΔΔyx=2-3 1=283π.
题型二
瞬时变化率(瞬时速度)的求法
典例 2 以初速度 v0(v0>0)竖直上抛的物体,t 秒时的高度 s 与 t 的 函数关系为 s=v0t-12gt2,求物体在时刻 t0 处的t)-12g(t0+Δt)2-v0t0-12gt20=(v0-gt0)Δt-
1-1导数及其应用训练题
选修1-1导数及其应用(1)1.函数()323922y x x x x =---<<有( )A.极大值5,极小值27-B.极大值5,极小值11-C.极大值5,无极小值D.极小值27-,无极大值 2.若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A.3- B.6- C.9- D.12-3.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A.(1,0) B.(2,8) C.(1,0)和(1,4)-- D.(2,8)和(1,4)--4.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A.()f x =()g xB.()f x -()g x 为常数函数C.()f x =()0g x =D.()f x +()g x 为常数函数5.函数x x y 142+=单调递增区间是( )A.),0(+∞ B.)1,(-∞ C.),21(+∞ D.),1(+∞ 6.函数x x y ln =的最大值为( )A.1-e B.1 C.2e D.310 7.若()sin cos f x x α=-,则'()f α等于( ) A sin α Bcos α C sin cos αα+D 2sin α8.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )9.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数的取值范围是( )A.),3[]3,(+∞--∞B.]3,3[-C.),3()3,(+∞--∞D.)3,3(- 10.对于上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A .(0)(2)2(1)f f f +<B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +≥D .(0)(2)2(1)f f f +>11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 象如图12.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个 B.2个 C.3个 D.4个 13.函数2cos y x x =+在区间[0,]2π上的最大值是14.函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为 ________15.函数32x x y -=的单调增区间为 ,单调减区间为___________________ 16.若32()(0)f x ax bx cx d a =+++>在增函数,则,,a b c 的关系式为是 17.已知曲线12-=x y 与31x y +=在0x x =处的切线互相垂直,求0x 的值18.如图,一矩形铁皮的长为8cm ,宽为5cm子,问小正方形的边长为多少时,盒子容积最大?19.已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =- (1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间20.平面向量13(3,1),(,2a b =-=,若存在不同时为0的实数k 和,使2(3),,x a t b y ka tb =+-=-+且x y ⊥,试确定函数()k f t =的单调区间21.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值(1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求的取值范围22 已知23()log x ax bf x x++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是,若存在,求出a b 、,若不存在,说明理由选修1-1导数及其应用(1)1.设32()34105f x x x x =-+-,则'(1)f 等于( )A.6 B.8 C.11 D.132.曲线2122y x =+在点51,2⎛⎫- ⎪⎝⎭处的切线的倾斜角为( )A.34π B.4π C.54π D.4π- 3.函数33y x x =-在[]2,3-上( )A.有最大值18,最小值2-B.有最大值2,最小值2-C.没有最大值和最小值D.有最大值18,但是没有最小值4.如果说某物体作直线运动的时间与距离满足()2()21s t t =-,则其在 1.2t =时的瞬时速度为( ) A.4 B.4- C.4.8 D.0.85.对于任意x ,有'3()4f x x =,(1)1f =-,则此函数为( )A.4()f x x =B.4()2f x x =-C.4()1f x x =+D.4()2f x x =+6..抛物线y 4x =的点处的切线方程为( )A .4180x y --=B .440x y ++=C .440x y -+=D .4180x y +-= 7.函数()1sin f x x x =+-()0,2x π∈,则函数( )A.在()0,2π内是增函数B.在()0,2π内是减函数C.在()0,π内是增函数,在(),2ππ内是减函数D.在()0,π内是减函数,在(),2ππ内是增函数 8.设函数()322()311f x kx k x k =+--+在()0,4上是减函数,则k 的取值范围是( )A.13k <B.103k <≤C.103k ≤<D.13k ≤ 9.三次函数当1x =时有极大值4,当3x =时有极小值0,且函数过原点,则此函数是( )A.3269y x x x =++ B.3269y x x x =-+ C.3269y x x x =-- D.3269y x x x =+-10.函数432111432y x x x =++在[]1,1-上的最小值为( )A.0 B.2- C.1- D.131211.点P 在曲线323y x x =-+上移动时,过点P 的切线的倾斜角的取值范围是( ) A.[]0,π B.30,,24πππ⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦C.30,,224πππ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭D.30,,24πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦12.方程5436151010x x x -++=的实解的集合中( )A.至少有2个元素B.至少有3个元素C.至多有1个元素D.恰好有5个元素 13.曲线3y x x =-与直线2y x b =+相切,则实数b = 。
一元函数的导数及其应用小结
3.导数在研究函数中的应用
追问:使用导数方法可解决哪些问题呢?
单调性
求单调区间
3.导数在研究函数中的应用
追问:使用导数方法可解决哪些问题呢?
单调性
零点个数
求单调区间
方程解的个数
3.导数在研究函数中的应用
追问:使用导数方法可解决哪些问题呢?
单调性
零点个数
极值
求单调区间
如:f ( x) x3,
f ( x) 3x 2 ≥ 0.
3.导数在研究函数中的应用
导数的概念
定量地刻画函
数局部变化
用导数研究
函数的性质
函数的极值
函数局部的最大
(最小)值.
3.导数在研究函数中的应用
追问:导数为0的点一定是函数的极值点吗?函数的极值点导数一定为0吗?
3.导数在研究函数中的应用
单调性 f ( x2 ) f ( x1 )
0.
(增函数)
x2 x1
最大
(小)值
导数
3.导数在研究函数中的应用
原有方法
x1 , x2 (a, b),
单调性 f ( x2 ) f ( x1 )
0.
(增函数)
x2 x1
最大
(小)值
导数
x (a, b),
f ( x) 0.
(sin x) cos x, (cos x) sin x;
1
(ex)′ = ex , (ln x) .
x
2.导数的运算
基本初等函数
加、减、乘、除
导数定义
导数定义
基本初等函
数的导数
复杂的函数
导数的性质及其应用
导数的性质及其应用性质单调性(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。
需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
根据微积分基本定理,对于可导的函数,有:如果函数的导函数在某一区间内恒大于零(或恒小于零) ,那么函数在这一区间内单调递增(或单调递减) ,这种区间也称为函数的单调区间。
导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点) 。
进一步判断则需要知道导函数在附近的符号。
对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
x变化时函数(蓝色曲线)的切线变化。
函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
凹凸性可导函数的凹凸性与其导数的单调性有关。
如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。
曲线的凹凸分界点称为曲线的拐点。
应用导数与物理、几何、代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
导数亦名纪数、微商(微分中的概念),是由速度变化问题和曲线的切线问题(矢量速度的方向)而抽象出来的数学概念,又称变化率。
如一辆汽车在10小时内走了600千米,它的平均速度是60千米/小时。
但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。
为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为:那么汽车在由时刻t0变到t1这段时间内的平均速度是:当t1无限趋近于t0时,汽车行驶的快慢变化就不会很大,平均速度就近似等于t0时刻的瞬时速度,因而就把此时的极限作为汽车在时刻t0的瞬时速度,即,这就是通常所说的速度。
部编版2020高中数学第1章导数及其应用1.1导数学案新人教B版选修2-2
1.1 导数1.理解函数在某点的平均变化率的概念,并会求此平均变化率. 2.理解运动物体在某时刻的瞬时变化率(瞬时速度).3.理解导数的几何意义,并会求曲线在某点处的切线方程.1.函数的平均变化率一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商________________称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率.Δx ,Δy 的值可正、可负,但Δx 的值不能为0,Δy 的值可以为0.若函数f (x )为常数函数,则Δy =0.【做一做1-1】已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ). A .0.40 B .0.41 C .0.43 D .0.44【做一做1-2】在x =1附近,取Δx =0.3,在四个函数:①y =x ;②y =x 2;③y =x 3;④y =1x中,平均变化率最大的是( ).A .④ B.③ C.② D.① 2.瞬时变化率与导数(1)设函数y =f (x )在x 0及其附近有定义,当自变量在x =x 0附近改变量为Δx 时,函数值相应地改变Δy =f (x 0+Δx )-f (x 0).如果当Δx 趋近于0时,平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx趋近于一个常数l ,那么常数l 称为函数f (x )在点x 0的__________.(2)“当Δx 趋近于0时,f (x 0+Δx )-f (x 0)Δx趋近于常数l ”可以用符号“→”记作“当Δx →0时,f (x 0+Δx )-f (x 0)Δx →l ”,或记作“0lim x ∆→f (x 0+Δx )-f (x 0)Δx =l ”,符号“→”读作“趋近于”.函数y =f (x )在点x 0的瞬时变化率,通常称为f (x )在点x 0处的______,并记作f′(x 0).这时又称f (x )在点x 0处是可导的.于是上述变化过程,可以记作“当Δx →0时,f (x 0+Δx )-f (x 0)Δx →________”或“0lim x ∆→f (x 0+Δx )-f (x 0)Δx =________”.(3)如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b )______.这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数f′(x ).于是,在区间(a ,b )内,f′(x )构成一个新的函数,我们把这个函数称为函数y =f (x )的______,记为f′(x )或y′(或yx′).导函数通常简称为______.(1)Δx 是自变量x 在x 0处的改变量,Δx ≠0,而Δy 是函数值的改变量,可以是零. (2)对于导函数的定义的几种形式表示如下:y′=0lim x ∆→f (x +Δx )-f (x )Δx ;y′=0limx ∆→f (x )-f (x +Δx )-Δx ;y′=0lim x ∆→f (x -Δx )-f (x )-Δx ;y′=0lim x ∆→f (x )-f (x 0)x -x 0.【做一做2-1】若质点按规律s =3t 2运动,则在t =3时的瞬时速度为( ). A .6 B .18 C .54 D .81【做一做2-2】已知函数f (x )在x =x 0处可导,则lim Δx →0f (x 0+Δx )-f (x 0)Δx( ).A .与Δx ,x 0都有关B .仅与x 0有关而与Δx 无关C .仅与Δx 有关而与x 0无关D .与x 0,Δx 均无关 3.导数的几何意义设函数y =f (x )的图象如图所示.AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线.由此割线的斜率是()()00f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线在点A 的切线.于是,当Δx →0时,割线AB 的斜率趋近于在点A的切线AD 的斜率,即0lim x ∆→f (x 0+Δx )-f (x 0)Δx =切线AD 的斜率.由导数意义可知,曲线y =f (x )在点(x 0,f (x 0))的切线的斜率等于________.【做一做3-1】曲线y =-3x 2+2在点(0,2)处的切线的斜率为( ). A .-6 B .6 C .0 D .不存在 【做一做3-2】下面说法正确的是( ).A .若f′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f′(x 0)必存在C .若f′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f′(x 0)有可能存在1.“函数f (x )在点x =x 0处的导数”“导函数”“导数”三者有何关系? 剖析:(1)函数在点x =x 0处的导数f′(x 0)是一个数值,不是变量. (2)导函数也简称导数,所以(3)函数y =f (x )在点x =x 0处的导数f′(x 0)就是导函数f′(x )在点x =x 0处的函数值.所以求函数在一点处的导数,一般是先求出函数的导函数,再计算导函数在这点的函数值.2.曲线的切线与曲线只有一个公共点吗?剖析:回答是否定的.这就是我们为什么要用割线的极值位置来定义切线,而不说与曲线只有一个公共点的直线叫切线,其理由如下:在初中我们学习过圆的切线:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的定义推广为一般曲线的切线的定义:直线和曲线有唯一公共点时,该直线叫做曲线在该点的切线,显然这种推广是不妥当的.观察图中的曲线C ,直线l 1虽然与曲线C 有唯一的公共点M ,但我们不能说直线l 1与曲线C 相切;而直线l 2尽管与曲线C 有不止一个公共点,我们还是说直线l 2是曲线C 在点N 处的切线.因此,对于一般的曲线,必须重新寻求曲线切线的定义.一般地,过曲线y =f (x )上一点P (x 0,y 0)作曲线的割线PQ ,当点Q 沿着曲线无限趋近于点P 时,若割线PQ 趋近于某一确定的位置,则称这一确定位置的直线为曲线y =f (x )在点P 处的切线.在这里,要注意,曲线y =f (x )在点P 处的切线:(1)与点P 的位置有关;(2)要依据割线PQ 是否存在极限位置来判定与求解.如有极限,则在此点处有切线,且切线是唯一的;如不存在,则在此点处无切线.题型一 求瞬时速度【例题1】已知物体的运动方程如下:()223 1 (1<3),233 (3)t t s t t ⎧+≤⎪=⎨+-≥⎪⎩求此物体在t =1和t =3时的瞬时速度.(位移的单位:m ,时间的单位:s )分析:先求平均变化率,即平均速度,再取极限(注意定义域的限制).反思:质点运动的瞬时速度不同于质点在某段时间内运动的平均速度. 题型二 导数定义的应用【例题2】过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率.分析:割线PQ 的斜率即为函数f (x )在x =1到x =1+Δx 之间的平均变化率ΔyΔx.反思:一般地,设曲线C 是函数y =f (x )的图象,P (x 0,y 0)是曲线上的定点,点Q (x 0+Δx ,y 0+Δy )是C 上与点P 邻近的点,有y 0=f (x 0),y 0+Δy =f (x 0+Δx ), Δy =f (x 0+Δx )-f (x 0), 割线PQ 的斜率为tan β=Δy Δx =f (x 0+Δx )-f (x 0)Δx,曲线C 在点P 处的斜率为tan α=0limx yx ∆→∆∆=000()()lim x f x x f x x∆→+∆-∆.题型三 求切线方程【例题3】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)第(1)问中的切线与曲线C 是否还有其他公共点?分析:求切线方程可先求出切线的斜率,再应用点斜式写出切线方程;判断直线与曲线的交点个数,可联立方程组求其解的个数.反思:(1)求曲线的切线的斜率的步骤:①求函数值的增量Δy =f (x 0+Δx )-f (x 0);②求割线的斜率tan β=ΔyΔx;③求极限0limx ∆→yx ∆∆=0lim x ∆→00()()f x x f x x+∆-∆;④若极限存在,则切线的斜率0lim x yk x∆→∆=∆.(2)由导数的几何意义得出求切线方程的步骤: ①先求出函数y =f (x )在点x 0处的导数f′(x 0); ②根据点斜式得切线方程为y -y 0=f′(x 0)(x -x 0). 题型四 易错辨析易错点:在求曲线过某点的切线方程时,不注意判断该点是否在曲线上,而直接把点当成在曲线上求切线方程,导致方程求错,避免错误的方法是看到此类题目先判断该点是否在曲线上,然后根据不同情况求解.【例题4】试求过点M (1,1)且与曲线y =x 3+1相切的直线方程.错解:Δy Δx =(x +Δx )3+1-x 3-1Δx =3x (Δx )2+3x 2Δx +(Δx )3Δx =3x Δx +3x 2+(Δx )2,0lim x ∆→Δy Δx=3x 2,因此y ′=3x 2,所以切线在x =1处的斜率k =3.故切线方程为y -1=3(x -1),即3x -y -2=0.1一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内的平均速度为( ). A .3Δt +6 B .-3Δt +6 C .3Δt -6 D .-3Δt -62设函数f (x )=ax 3+2,若f′(-1)=3,则a =( ).A .-1B .12C .1D .133设f(x)为可导函数且满足0(1)(12)lim=12x f f x x→---,则过曲线y =f (x )上的点(1,f (1))的切线的斜率为( ).A .2B .-1C .1D .-24一木块沿某一斜面自由下滑,测得下滑的水平距离s (m)与时间t (s)之间的函数关系为s =18t 2,则t =2 s 时,此木块在水平方向的瞬时速度为______ m/s.5已知函数f (x )=x -1x,则它与x 轴交点处的切线方程为____________________.答案:基础知识·梳理【做一做1-1】B ∵x =2,Δx =0.1,∴Δy =f (x +Δx )-f (x )=f (2.1)-f (2)=0.41.【做一做1-2】B 根据平均变化率的定义可求得四个函数的平均变化率依次为1,2.3,3.99,-1013.2.(1)瞬时变化率 (2)导数 f′(x 0) f′(x 0) (3)可导 导函数 导数【做一做2-1】B 瞬时速度v =lim Δt →0Δs Δt =lim Δt →0s 3+Δt -s 3Δt =lim Δt →0(3Δt +18)=18.【做一做2-2】B 由导数的定义,对给定的可导函数f (x )有limx ∆→∞f x 0+Δx -f x 0Δx =f′(x 0).显然,f′(x 0)仅与x 0有关而与Δx 无关.3.f′(x 0)【做一做3-1】C f′(0)=0lim x ∆→∞-30+Δx2+2-0+2Δx=0lim x ∆→∞(-3Δx )=0.【做一做3-2】C 函数f (x )在一点x =x 0处的导数f′(x 0)的几何意义是y =f (x )在这一点处切线的斜率,但f′(x 0)不存在,并不能说明这一点处不存在切线,而是说明在这一点处的切线的斜率不存在,即若在这一点处的切线的斜率不存在,曲线在该点处也可能有切线.所以函数f (x )在某点可导,是相应曲线上过该点存在切线的充分不必要条件.典型例题·领悟【例题1】解:当t =1时,s =3t 2+1,v =0limt ∆→∞Δs Δt =0limt ∆→∞s t +Δt -s tΔt=0limt ∆→∞31+Δt2+1-3×12-1Δt=0limt ∆→∞6Δt +3Δt2Δt =6(m/s).当t =3时,s =2+3(t -3)2,v =0lim t ∆→∞s t +Δt -s t Δt =0limt ∆→∞2+33+Δt -32-2-33-32Δt=0limt ∆→∞3Δt 2Δt=0lim t ∆→∞3Δt =0 (m/s).∴物体在t =1和t =3时的瞬时速度分别为6 m/s 和0 m/s.【例题2】解:∵Δy =f (1+Δx )-f (1)=(1+Δx )3-1=3Δx +3(Δx )2+(Δx )3. ∴割线PQ 的斜率 Δy Δx=Δx3+3Δx 2+3ΔxΔx=(Δx )2+3Δx +3.当Δx =0.1时,设割线PQ 的斜率为k , 则k =Δy Δx =(0.1)2+3×0.1+3=3.31.【例题3】解:(1)将x =1代入曲线C 的方程, 得y =1,所以切点为P (1,1). 因为y′=0lim x ∆→∞ΔyΔx =0limx ∆→∞x +Δx 3-x 3Δx =0limx ∆→∞3x 2Δx +3x Δx2+Δx3Δx =lim x ∆→∞[3x 2+3x Δx +(Δx )2]=3x 2,所以1'|3x y ==.所以过点P 的切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧y -1=3x -1,y =x 3,可得(x -1)2(x +2)=0,解得x 1=x 2=1,x 3=-2.从而求得公共点为P (1,1)或P (-2,-8),说明切线与曲线C有除切点外的公共点.【例题4】错因分析:错解中将点M (1,1)当成了曲线y =x 3+1上的点.因此在求过某点的切线时,一定要先判断点是否在曲线上,再根据不同情况求解.正解:由错解可知y′=3x 2,因为点M (1,1)不在曲线y =x 2+1上,所以设过点M (1,1)的切线与y =x 3+1相切于点P (x 0,x 30+1),依据导数的几何意义,函数在点P 处的切线的斜率为k =3x 2①,过点M (1,1)的切线的斜率k =x 30+1-1x 0-1②,由①=②得,3x 20=x 30x 0-1,解之得x 0=0或x 0=32,所以k =0或k =274,因此曲线y =x 3+1过点M (1,1)的切线方程有两条,分别为y -1=274(x -1)和y =1,即27x -4y -23=0和y =1.随堂练习·巩固 1.D v =5-31+Δt2-5-3×12Δt=-3Δt -6.2.C ∵f′(-1)=0lim x ∆→∞f -1+Δx -f -1Δx =0lim x ∆→∞[a (Δx )2-3a Δx +3a ]=3a =3,∴a =1.3.Blimx ∆→∞f 1-f 1-2x 2x=limx ∆→∞f 1-2x -f 1-2x=20limx -→f [1+-2x ]-f 1-2x =f′(1)=-1.4.12 t =2 s 时瞬时速度为lim Δt →0182+Δt 2-18×22Δt =lim Δt →018(4+Δt )=12. 5.2x -y +2=0和2x -y -2=0 令x -1x=0,得x =±1,∴曲线与x 轴的交点坐标为(±1,0),又f′(x )=1+1x2,∴f′(±1)=2,∴所求切线方程为y =2(x ±1),即2x -y ±2=0.。
高数-导数概念及应用
核心导语
3 个必知条件——导数应用中的三个重要结论
(1) f (x)>0 在(a,b)上成立是 f(x)在(a,b)上单调递增的充
导数
知识网络
导数概念 导数运算
导数应用
函数的瞬时变化率
运动的瞬时速度 曲线的切线斜率 基本初等函数求导 导数的四则运算法则 简单复合函数的导数
函数单调性研究 函数的极值、最值
曲线的切线 变速运动的速度
最优化问题
核心导语
一、导数概念及运算
1个重要区别——“过某点”与“在某点”的区别
求曲线的切线要注意“过点P的切线”与“在点P处的切线” 的差异:过点P的切线中,点P不一定是切点,点P也不一定 在已知曲线上,而在点P处的切线,必以点P为切点.
2项必须防范——导数运算中应注意的问题 (1)利用公式求导时要特别注意,除法公式中分子符号,防 止与乘法公式混淆. (2)含有字母参数的函数求导时,要分清哪是变量哪是参 数,参数是常量,其导数为零.
核心导语
3种必会方法——求导数的基本方法 (1)连乘积的形式:先展开化为多项式形式,再求导. (2)根式形式:先化为分数指数幂、再求导. (3)复杂分式:通过分子上凑分母,化为简单分式的和、差, 再求导.
内的图象如图所示,则函数 f(x)在开区间(a,b)内有极小值点的
个数为 1 .
第1讲 导数及其应用
考向一 导数的基本运算
例1 求下列函数的导数.
热 点
(1)y=exlnx;
考 向
(2)y=(x+1)(x+2)(x+3);
导数及其应用(1)
导数及其应用(1)一、基础训练:1.曲线(3ln 1)y x x =+在点()1,1处的切线方程为 430x y --= . 2.已知)1(3)1()(23-'+'+=f x f x x x f ,则)1()1(-'+'f f 的值为 43- . 3.函数x e x x f )3()(-=的单调递增区间是 ),2(+∞ . 4.函数21ln 2y x x =-的单调递减区间为 ()0,1 . 5.函数32()31f x x x =-+在x = 2 处取得极小值.6.若0,0a b >>,且函数()32422f x x ax bx =--+在1x =处有极值,则a b += 6 . 二、例题分析:例1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,,a b 为常数,已知曲线()y f x =与()y g x =在点()2,0处有相同的切线l . 求,a b 的值,并写出切线l 的方程.解:因为()23g x x '=-,所以直线l 的斜率(2)1k g '==,所以切线l 的方程为:2y x =-.由(2)1281(2)8820f a b f a b a '=++=⎧⎨=+++=⎩,得25a b =-⎧⎨=⎩所以a 的值为-2,b 的值为5,切线l 的方程为2y x =-.例2.已知,a b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点.解:(1)因为()232f x x ax b '=++,所以()()13201320f a b f a b '=++=⎧⎪⎨'-=-+=⎪⎩,解得30a b =-⎧⎨=⎩经检验:3,0a b =-=符合题意.(2)由题意知:()()()233212g x x x x x '=-+=-+令()0g x '=,解得122,1x x =-='(),()f x f x 随x 的变化情况如下表:所以,()g x 的极小值点为2x =-,()g x 无极大值.例3.函数31()3f x x kx =-,其中实数k 为常数. (I) 当4k =时,求函数的单调区间;(II) 若曲线()y f x =与直线y k =只有一个交点,求实数k 的取值范围. 解:(I)因为2'()f x x k =-当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-'(),()f x f x 随x 的变化情况如下表:所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)- (II)令()()g x f x k =-,所以()g x 只有一个零点 ;因为2'()'()g x f x x k ==- 当0k =时,3()g x x =,所以()g x 只有一个零点0当0k <时,2'()0g x x k =->对R x ∈成立, 所以()g x 单调递增,所以()g x 只有一个零点当0k >时,令2'()'()0g x f x x k ==-=,解得1x =2x =所以'(),()g x g x 随x 的变化情况如下表:()g x 有且仅有一个零点等价于(0g <即2(03g k =<,解得904k << 综上所述,k 的取值范围是94k <备用题:已知函数()ln (1)f x m x m x =+- ()m ∈R .(Ⅰ)当2m =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性;(III)若()f x 存在最大值M ,且0M >,求m 的取值范围. 解:(Ⅰ)当2m =时,()2ln f x x x =+.22()1x f x x x+'=+=. 所以(1)3f '=. 又(1)1f =, 所以曲线()y f x =在点(1,(1))f 处的切线方程是13(1)y x -=-, 即320x y --=. (Ⅱ)函数()f x 的定义域为(0,)+∞, (1)()1m m x mf x m x x-+'=+-=. ①当0m ≤时,由0x >知()10mf x m x'=+-<恒成立, 此时()f x 在区间(0,)+∞上单调递减. ②当m ≥1时,由0x >知()10mf x m x'=+->恒成立, 此时()f x 在区间(0,)+∞上单调递增.③当01m <<时,由()0f x '>,得1m x m <-,由()0f x '<,得1mx m>-, 此时()f x 在区间(0,)1m m -内单调递增,在区间(,)1m m+∞-内单调递减.(III)由(Ⅱ)知函数()f x 的定义域为(0,)+∞,①当0m ≤或m ≥1时,()f x 在区间(0,)+∞上单调,此时函数()f x 无最大值.②当01m <<时,()f x 在区间(0,)1m m -内单调递增,在区间(,)1m m+∞-内单调递减, 所以当01m <<时函数()f x 有最大值. 最大值()ln 11m m M f m m m m==---. 因为0M >,所以有ln 01m m m m ->-,解之得e1e m >+. 所以m 的取值范围是e(,1)1e+.三、巩固练习:1.在平面直角坐标系xOy 中,点P 在曲线C :3103y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 ()2,15- .2.已知曲线()ln f x x =在点00(,())x f x 处的切线经过点(0,1)-,则0x 的值为 1 . 3.函数32()15336f x x x x =--+的单调减区间为 ()1,11- .4.函数x x y ln =的单调减区间为 ⎪⎭⎫ ⎝⎛e 1,0 .5.函数()3226f x x x m =-+(m 为常数)在[]2,2-上有最大值3,则此函数在[]2,2-上的最小值是 37- .6.若函数()3231f x x a x =-+的图象与直线3y =只有一个公共点,则实数a 的取值范围是()1,1-.7.已知()3f x ax bx c =++在2x =处取得极值16c -.(1)求实数,a b 的值;(2)若()f x 有极大值28,求()f x 在[]3,3-上的最小值. 解:(1)()23f x ax b '=+;因为()f x 在2x =处取得极值16c -所以()()282212f a b c f a b=++⎧⎪⎨'=+⎪⎩,解得1,12a b ==-经检验:1,12a b ==-符合题意.(2)由(1)知: ()312f x x x c =-+,令()23120f x x '=-=,解得122,2x x =-='(),()f x f x 随x 的变化情况如下表:所以,()f x 的极大值为()282428f c -=-++=,所以12c =.所以()31212f x x x =-+,又()()321,24f f -==-,所以()min 4f x =-.8.已知函数1331(223+-+=x m mx x x f ),m ∈R . (Ⅰ)当1=m 时,求曲线)(x f y =在点))2(,2(f 处的切线方程; (Ⅱ)若)(x f 在区间(2,3)-上是减函数,求m 的取值范围. 解:(Ⅰ)当1=m 时,321()313f x x x x =+-+, 又2'()23f x x x =+-,所以'(2)5f =. 又5(2)3f =, 所以所求切线方程为 55(2)3y x -=-,即153250x y --=. 所以曲线)(x f y =在点))2(,2(f 处的切线方程为025315=--y x .(Ⅱ)因为2232('m mx x x f -+=), 令'(0f x =),得3x m =-或x m =. ①当0m =时,2'(0f x x =≥)恒成立,不符合题意. ②当0m >时,()f x 的单调递减区间是(3,)m m -,若()f x 在区间(2,3)-上是减函数,则32,3.m m -≤-⎧⎨≥⎩解得3m ≥.③当0m <时,()f x 的单调递减区间是(,3)m m -,若()f x 在区间(2,3)-上是减函数,则2,3 3.m m ≤-⎧⎨-≥⎩,解得2m ≤-.综上所述,实数m 的取值范围是3m ≥或2m ≤-.9.已知函数2()()(0)x f x ax bx c e a =++>的导函数'()y f x =的两个零点为3-和0.(Ⅰ)求()f x 的单调区间;(Ⅱ)若()f x 的极小值为1-,求()f x 的极大值.解:(Ⅰ)22()(2)()[(2)]x x x f x ax b e ax bx c e ax a b x b c e '=++++=++++.令2()(2)g x ax a b x b c =++++, ∵0xe >,∴'()y f x =的零点就是2()(2)g x ax a b x b c =++++的零点,且()f x '与()g x 符号相同.又∵0a >,∴当3,0x x <->或时,()g x >0,即()0f x '>,当30x -<<时,()g x <0,即()0f x '<, ∴()f x 的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0).(Ⅱ)由(Ⅰ)知,x =0是()f x 的极小值点,所以有1,0,93(2)0,c b c a a b b c =-⎧⎪+=⎨⎪-+++=⎩解得1,1,1a b c ===-.所以函数的解析式为2()(1)xf x x x e =+-.又由(Ⅰ)知,()f x 的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0). 所以,函数()f x 的极大值为335(3)(931)f e e --=--=.10.已知函数211()ln (,0)22f x x a x a a =--∈≠R . (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.(Ⅰ)2a =时,211()2ln ,(1)022f x x x f =--= 2'(),'(1)1f x x f x=-=-曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=(Ⅱ)2'()(0)a x af x x x x x-=-=>①当0a <时, 2'()0x af x x-=>恒成立,函数()f x 的递增区间为()0,+∞②当0a >时,令'()0f x =,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为(Ⅲ)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥①当0a <时,()f x 在∞[1,+)上是增函数, 所以只需(1)0f ≥ ,而11(1)ln1022f a =--= ,所以0a <满足题意;②当01a <≤时,01<≤,()f x 在∞[1,+)上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= ,所以01a <≤满足题意;③当1a >时1>,()f x 在上是减函数,∞)上是增函数,所以只需0f ≥即可, 而(1)0f f <= ,从而1a >不满足题意; 综合①②③实数a 的取值范围为(,0)(0,1]-∞ .。
第1讲 导数及其应用(知识点串讲)(解析版)
第1讲 导数及其应用(知识点串讲)知识整合考点1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆. (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数:称函数f ′(x )=lim Δx →0()()f x x f x x+∆-∆为f (x )的导函数. 例1、(2018·山东东营期中)曲线f (x )=x 2-3x +2ln x 在x =1处的切线方程为____________.【答案】x -y -3=0 [f ′(x )=2x -3+2x ,f (1)=-2,f ′(1)=1,故切线方程为y +2=x -1,即x -y -3=0.][跟踪训练]1、(2019·山东济南联考)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2【答案】B [设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ). 又y ′=1x +a ,所以y ′|x =x 0=1x 0+a =1,即x 0+a =1. 又y 0=ln(x 0+a ), 所以y 0=0,则x 0=-1,所以a =2.]考点2.基本初等函数的导数公式考点3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)()()()()()()()2'''f x f xg x f x g xg x g x⎡⎤-=⎢⎥⎡⎤⎣⎦⎣⎦(g(x)≠0).考点4.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y 对u的导数与u对x的导数的乘积.例2、(2019·山东菏泽模拟)已知函数f(x)=f′(1)x2+2x+2f(1),则f′(2)的值为()A.-2B.0C.-4D.-6【答案】D[由题意f(1)=f′(1)+2+2f(1),化简得f(1)=-f′(1)-2,而f′(x)=2f′(1)x+2,所以f′(1)=2f′(1)+2,得f′(1)=-2,f(x)=-2·x2+2x+2f(1).所以f′(x)=-4·x+2.所以f′(2)=-4×2+2=-6.] [跟踪训练]2、(2019·山东临沂期中)设函数f(x)在(0,+∞)可导,其导函数为f′(x),若f(ln x)=x2-ln x,则f′(1)=________.【答案】2e2-1[设ln x=t,则x=e t,∵f(ln x)=x2-ln x,∴f(t)=e2t-t,∴f(x)=e2x-x,∴f′(x)=2e2x -1,∴f′(1)=2e2-1.]考点5.与导数相关的重要结论(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x).(3)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.考点6.函数的单调性(1)在(a ,b )内函数f (x )可导,f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x ) ≥0⇔f (x )在(a ,b )上为增函数. f ′(x ) ≤0⇔f (x )在(a ,b )上为减函数.(2)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(3)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x ) ≥0(f ′(x ) ≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.例3、(2019·山东青岛模拟)已知函数f (x )=x 2+ax ,若函数f (x )在x ∈[2,+∞)上是单调递增的,则实数a的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)【答案】B[f (x )=x 2+a x 在x ∈[2,+∞)上单调递增,则f ′(x )=2x -a x 2=2x 3-ax2 ≥0在x ∈[2,+∞)上恒成立. 则a ≤2x 3在x ∈[2,+∞)上恒成立. 所以a ≤16.][跟踪训练]3、(2019·山东临沂阶段检测)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x )对任意的x ∈R 恒成立,则下列不等式均成立的是( )A .f (ln 2)<2f (0),f (2)<e 2f (0)B .f (ln 2)>2f (0),f (2)>e 2f (0)C .f (ln 2)<2f (0),f (2)>e 2f (0)D .f (ln 2)>2f (0),f (2)<e 2f (0)【答案】A [令()()xf xg x e =,则()()()2''x x x e f x e f x g x e -==()()'x f x f x e -.∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )是减函数,则有g (ln 2)<g (0),g (2)<g (0),即()ln 2ln 2f e <()00f e,()()2020f f e e <,所以f (ln 2)<2f (0),f (2)<e 2f (0).]考点7.函数的极值 (1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.(3)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 例4、(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3 C .5e -3D .1【答案】A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1. 所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0. 所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.] [跟踪训练]4、(2019·山东淄博模拟)若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( ) A .⎣⎡⎭⎫32,+∞ B .⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞C .⎝⎛⎭⎫32,+∞D .⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 【答案】D [因为f (x )=x 3-2cx 2+x 有极值点,f ′(x )值有正有负,所以f ′(x )=3x 2-4cx +1=0有两个不同的根,Δ=(4c )2-12>0,解得c <-32或c >32.]考点8.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.例5、已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.【答案】-13 [f ′(x )=-3x 2+2ax ,根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13.]。
高中数学第一章导数及其应用1定积分的简单应用定积分和不定积分的历史联系素材
学必求其心得,业必贵于专精
定积分和不定积分的历史联系
这两个东西在概念上的联系我困扰了我好一阵子,因为他们在高数书上的反映这两个部分完全是两个概念,不定积分只是一种运算方式,而定积分是微分的逆向思维。
后来,看到这么一个帖子内容才有所明白其中的缘由~~
定积分和不定积分在几何意义上没有任何关系,但有牛顿莱布尼茨公式中所表示的代数关系。
为什么?难道是一种巧合吗?
历史的发展应该是这个样子的,先是黎曼提出了黎曼积分,也就是定积分的概念。
然后牛顿和莱布尼茨发现了那个公式,揭示了定积分和原函数之间的关系。
下面的问题是怎么计算原函数,牛顿和莱布尼茨又根据原函数提出了不定积分的概念。
之所以命名为不定积分就是根据那个公式。
所以定积分和不定积分并不是共同出生的一对孪生兄弟,只是后人根据牛莱公式给原函数族起了一个和定积分相似的名字.
微分思想是无限分割,积分思想是无限累加。
但这指的应该是定积分,不定积分体现不出来这种思想,因为它根本就不是积出来的.从数学思想上,微分和定积分才是互逆的。
不定积分和导数是互逆运算,不表示它和微分也是互逆运算。
微分用导数来表示,只是一个计算得出的结果,从定义中推不出来.所以说微分是不定积分的逆运算并不准确,它们形似而神非。
1。
高中数学第一章导数及其应用1导数的计算函数的导数公式的推导过程素材
基本初等函数的导数公式推导过程一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程()f x '()()()()()()000112220011222011222011220lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x xx x x xx x x x x x x xx x x x x x x xx x x x x xx x x ααααααααααααααααααααααααααααααααα∆→∆→--∆→--∆→--∆→--∆→+∆-=∆+∆-=∆+∆+∆++∆-=∆-+∆+∆++∆=∆∆+∆++∆=∆=+∆++()1111C x xx ααααααα---∆==二、正弦函数()sin f x x =的导数公式推导过程 命题若()sin f x x =,则()cos f x x '=.推导过程()f x '()()()()()()0000020lim sin sinlim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x xx x x xx x x x x xx x x x x xx x x x xx x x x x ∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆∆+∆-=∆∆+∆-=∆∆+∆-=∆∆∆⎡∆⎤⎛⎫⎛⎫⋅+⋅-- ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦=200002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x xx x x x x xxx x x x xx x x xxx x x ∆→∆→∆→∆→⎥∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆⎛⎫+ ⎪⎝⎭=∆∆⎡⎤⎢⎥∆⎛⎫=+⋅⎢⎥⎪∆⎝⎭⎢⎥⎣⎦当0x ∆→时,sin 22xx∆∆=,所以此时sin 212xx ∆=∆.所以()0lim cos cos 2x x f x x x ∆→∆⎛⎫'=+= ⎪⎝⎭,所以原命题得证.三、余弦函数()cos f x x =的导数公式推导过程命题若()cos f x x =,则()sin f x x '=-. 推导过程()f x '()()()()()()0000020lim cos cos lim cos cos sin sin cos lim cos cos cos sin sin lim cos cos 1sin sin lim cos 12sin 1sin 2sin cos 222lim x x x x x x f x x f x xx x x xx x x x x x x x x x x x x x x x xx x x x x ∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆∆-∆-=∆∆--∆=∆∆--∆=∆⎡∆⎤∆∆⎛⎫⎛⎫⋅---⋅ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦=()2000002sin cos 2sin sin cos 222lim 2sin sin cos cos sin 222lim 2sin sin 22lim sin 2lim sin 22lim sin 2sin si x x x x x xx x x x x xx x x x x xx x x xx x x x x x x ∆→∆→∆→∆→∆→⎪∆∆∆∆⎛⎫-⋅ ⎪⎝⎭=∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆⎛⎫- ⎪⎝⎭=∆∆⎡⎤⎢⎥∆⎛⎫=-⋅⎢⎥⎪∆⎝⎭⎢⎥⎣⎦∆⎛⎫=- ⎪⎝⎭=-=-n x所以原命题得证.四、指数函数()x f x a =(a >0,且1a ≠)的导数公式推导过程命题若()x f x a =(a >0,且1a ≠),则()ln x f x a a '=. 推导过程()f x '()()0000lim lim lim 1lim x x x xx x x xx x x x f x x f x xa a x a a a xa a x ∆→+∆∆→∆∆→∆∆→+∆-=∆-=∆⋅-=∆⎛⎫-=⋅ ⎪∆⎝⎭令1x t a ∆=-,则1x a t ∆=+,即()log 1a x t ∆=+.且当0x ∆→时,1x a ∆→,10x a ∆-→,即0t →.所以原极限可以表示为: ()f x '()()()0010lim log 11lim 1log 11lim log 1x t a x t a x t t a t a t a t t a t →→→⎡⎤=⋅⎢⎥+⎣⎦⎡⎤⎢⎥=⋅⎢⎥⎢⎥+⎣⎦⎡⎤⎢⎥=⋅⎢⎥+⎢⎥⎣⎦又因为()10lim 1e t t t →+=,所以()f x '1log e ln lneln x a x x a a a a a=⋅=⋅= 所以原命题得证.五、对数函数()log a f x x =(a >0,且1a ≠,x >0)的导数公式推导过程 命题若()log a f x x =(a >0,且1a ≠,x >0),则()1ln f x x a '=. 推导过程()f x '()()()000000lim log log lim 1lim log 11lim log 1lim log 1lim log lim x a a x a x a x a x a x x f x x f x xx x x xx x x x x x x x x x xx x x x x x x x x x x ∆→∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆⎡+∆⎤⎛⎫= ⎪⎢⎥∆⎝⎭⎣⎦⎡+∆⎤⎛⎫⎛⎫=⋅⋅ ⎪ ⎪⎢⎥∆⎝⎭⎝⎭⎣⎦⎡+∆⎤⎛⎫=⋅ ⎪⎢⎥∆⎝⎭⎣⎦⎧⎫⎡+∆⎤⎛⎫=⋅⎨⎬ ⎪⎢⎥∆⎝⎭⎣⎦⎩⎭=001log 1lim log 1xx a xx a x x x x x x x x ∆∆∆→⎡⎤+∆⎛⎫⎢⎥⋅ ⎪⎢⎥⎝⎭⎣⎦⎡⎤∆⎛⎫⎢⎥=⋅+ ⎪⎢⎥⎝⎭⎣⎦ 令xt x ∆=.且当0x ∆→时,0t →.所以原极限可以表示为: ()f x '()101lim log 1t a t t x →⎡⎤=⋅+⎢⎥⎣⎦ 又因为()10lim 1e tt t →+=,所以()f x '11lne1log e ln ln a x x a x a =⋅=⋅=所以原命题得证.。
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2010届高三数学专题过关测试
导数及其应用(1)
班级姓名学号成绩
一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
题号12345678
答案
1. 函数y=x2cos x的导数为
A.y′=x2cos x-2x sin x B.y′=2x cos x+x2sin x C.y′=2x cos x-x2sin x D.y ′=x cos x-x2sin x
2. 若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x-y-1=0,则 A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在
3. 函数
在区间
上的最大值是( )
A.
B.
C.
D.
4.函数y=x3-3x的极大值为m,极小值为n,则m+n为
A.0 B.1 C.2 D.4
5.已知函数
在
时取得极值,则实数
的值是( )
A.
B.
C.
D.
6.在函数
的图象上,其切线的倾斜角小于
的点中,坐标为整数的点的个数是()
A.
B.
C.
D.
7.三次函数y=f(x)=ax3+x在x∈(-∞,+∞)内是增函数,则
A.a>0 B.a<0 C.a=1 D.a=
8.函数
的定义域为开区间
,导函数
在
内的图象如图所示,则函数
在开区间
内有极小值点( )
A.1个
B.2个
C.3个
D. 4个
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
9.曲线
在点
处的切线方程是 .
10.与直线2x-6y+1=0垂直,且与曲线y=x3+3x2-1相切的直线方程是
___________.
11.将正数a分成两部分,使其平方和为最小,这两部分应分成
__________和_________.
12.已知函数
在
处可导,且
,则
.
三、解答题:(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)
13.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3
时,取得极小值.求这个极小值及a、b、c的值.14. 已知函数
.
(Ⅰ)求
的单调递减区间;
(Ⅱ)求
在区间
上的最大值和最小值
15.已知曲线
上一点
,求:
(Ⅰ)点
处的切线方程;
(Ⅱ)点
处的切线与
轴、
轴所围成的平面图形的面积.
16. 有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?
参考答案
一、选择题
题号12345678
答案C A A A D A A A
9.4x-y-1=0 10. 3x+y+2=0 11.
12.
三、解答题
13.解:f′(x)=3x2+2ax+b.据题意,-1,3是方程3x2+2ax+b=0的两个根,由韦达定理得
∴a=-3,b=-9
∴f(x)=x3-3x2-9x+c
∵f(-1)=7,∴c=2
极小值f(3)=33-3×32-9×3+2=-25
∴极小值为-25,a=-3,b=-9,c=2.
14.解:(Ⅰ)
令
(Ⅱ)令
f(x)的最大值为23,最小值为-4.
15.解:(Ⅰ)
(Ⅱ)对x+y+2=0;令x=0,y=-2令y=0,x=-2
16.解:正方形边长为x,则V=(8-2x)·(5-2x)x=2(2x3-13x2+20x)(0<x<
)
V′=4(3x2-13x+10)(0<x<
).V′=0得x=1
根据实际情况,小盒容积最大是存在的,
∴当x=1时,容积V取最大值为18.。