绝对值不等式(绝对值三角不等式与绝对值不等式的解法)

合集下载

绝对值不等式

绝对值不等式

绝对值不等式知识总结:1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:不等式 a >0 a =0 a <0 |x |<a (-a ,a ) ∅∅ |x |>a(-∞,-a )∪(a ,+∞)(-∞,0)∪(0,+∞)R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .题型一:绝对值不等式的解法例1:不等式1≤|2x -1|<2的解集为( )A.⎝ ⎛⎭⎪⎫-12,0∪⎣⎢⎡⎭⎪⎫1,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫1,32 D .(-∞,0]∪[1,+∞)例2:若关于x 的不等式|x -1|-|x -3|>a 2-3a 的解集为非空数集,则实数a 的取值范围是( )A .1<a <2 B.3-172<a <3+172C .a <1或a >2D .a ≤1或a ≥2举一反三:变式1:设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,则a =________.变式2:不等式|x -2|+|x +2|≥5的解集为______________.题型二:利用绝对值不等式求最值例1:对于任意实数a 和b (b ≠0),不等式|a +b |+|a -b |≥|b |(|x -1|+|x -2|)恒成立,则实数x 的取值范围是________.例2:记max{p ,q }=⎩⎨⎧p ,p ≥q ,q ,p <q ,设M (x ,y )=max{|x 2+y +1|,|y 2-x +1|},其中x ,y ∈R ,则M (x ,y )的最小值是________.举一反三:变式1:若关于x 的不等式|x +t 2-2|+|x +t 2+2t -1|<3t 无解,则实数t 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-15,1 B .(-∞,0] C .(-∞,1]D .(-∞,5]变式2:(2020·浙江第二次联盟联考)定义min{x ,y }=⎩⎨⎧x ,x ≤y ,y ,x >y ,已知x 是不为2或8的实数,若S =min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2|x -2|,1|x -8|,则S 的最大值为________.题型三:绝对值不等式的综合应用例1:已知a ,b 为实数,不等式|x 2+ax +b |≤|x 2-7x +12|对一切实数x 都成立,则a +b =________.例2:已知函数f (x )=x |x -a |-1.①当a =1时,解不等式f (x )<x -1;②当x ∈(0,1]时,f (x )≤12x 2恒成立,求实数a 的取值范围.举一反三:变式1:已知函数f (x )=|x -2|,g (x )=-|x +3|+m .(1)解关于x 的不等式f (x )+a -1>0(a ∈R );(2)若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围.课后练习:1.不等式|2x -1|<3的解集是( ) A .(1,2) B .(-1,2)C .(-2,-1)D .(-∞,-2)∪(2,+∞)2.不等式|2x -1|-|x -2|<0的解集是( ) A .{x |-1<x <1} B .{x |x <-1} C .{x |x >1}D .{x |x <-1或x >1}3.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .5 B .4 C .8 D .74.已知数列{a n }为等差数列,且a 8=1,则2|a 9|+|a 10|的最小值为( ) A .3 B .2 C .1 D .05.设函数f (x )=|2x -1|,若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,则x 的取值范围是( )A .(-∞,-1]∪[3,+∞)B .(-∞,-1]∪[2,+∞)C .(-∞,-3]∪[1,+∞)D .(-∞,-2]∪[1,+∞)6.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或87.设函数f (x )=⎩⎪⎨⎪⎧2cos π2x ,|x |≤1,x 2-1,|x |>1.若|f (x )+f (x +l )-2|+|f (x )-f (x +l )|>2(l >0)对任意的实数x都成立,则正数l 的取值范围为( ) A .(0,23) B .(23,+∞) C .(0,23]D .[23,+∞)8.若a ,b ,c ∈R ,且|a |≤1,|b |≤1,|c |≤1,则下列说法正确的是( ) A.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a 2 B.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b 2 C.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b -c 2 D .以上都不正确9.若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数a =________,b =________.10.已知f (x )=⎪⎪⎪⎪⎪⎪x +1x -a +⎪⎪⎪⎪⎪⎪x -1x -a +2x -2a (x >0)的最小值为32,则实数a =________.11.当1≤x ≤3时,|3a +2b |-|a -2b |≤|a |⎝ ⎛⎭⎪⎫x +m x +1对任意的实数a ,b 都成立,则实数m 的取值范围是________.12.对任意的x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为________;若正实数x ,y ,z 满足x 2+2y 2+z 2=1,则t =433xy +2yz +xz 的最大值是________.13.已知函数f (x )=x -1,若|f (x )-1|+1|f (x -1)|-a >0对任意的x ∈R 且x ≠2恒成立,则实数a的取值范围为________;不等式|f (2x )|≤5-|f (2x -1)|的解集为__________.14.已知a >0,若集合A ={x ∈Z ||2x 2-x -a -2|+|2x 2-x +a -2|-2a =0}中的元素有且仅有2个,则实数a 的取值范围为______.15.已知a ,b ∈R ,f (x )=|2x +ax +b |,若对于任意的x ∈[0,4],f (x )≤12恒成立,则a +2b =________.。

第一节 绝对值不等式

第一节  绝对值不等式

故原不等式的解集为 {x|x< 1 ∪ } {x| 1 ≤x< 4 ∪ } ∅
={x|x< 4 . }
突 破 点 一 突 破 点 二 课时达标检测
绝对值不等式


2. 解 不 等 式 x+|2x+3|≥2.
3 3 x<- , x≥- , 2 2 为 解:原 不 等 式 可 化 或 -x-3≥2 3x+3≥2 . 1 解得 x≤-5 或 x≥-3. 所以原不等式的
绝对值不等式


选修 4-5 不等式选讲
第一节 绝对不等 式
本节主要包2 括 个知识点: 1.绝 对 值 不 等 式 的 解 法 ; 2.绝 对 值 三 角 不 等 . 式









课时达标检测
绝对值不等式


突破点(一)
基础联通
绝对值不等式的解法
抓 主 干 知 识“ 的 源” 与“ 流”








课时达标检测
绝对值不等式


考点贯通
抓 高 考 命 题“ 的 形” 与“ 神”
绝对值不等式的解法
[典例]
解下列不等式:
( 1 )x |+ 2 1- | 2x | -1 | > 0 . x (2) x+ | 3- | |2 x- 1 | < 2+1 .
[解]
2
( 1 法一: ) 原不等式可化为|2x+1 | > x 2- | 1, | 两边平方
突 破 点 一 突 破 点 二 课时达标检测
绝对值不等式

绝对值不等式(绝对值三角不等式与绝对值不等式的解法)

绝对值不等式(绝对值三角不等式与绝对值不等式的解法)

提出问题:
你能看出下面两个不等式的解集吗?
⑴ x 1
⑵ x 1
主要方法有:
法一:利用绝对值的几何意义观察; 法二:利用绝对值的定义去掉绝对值符号,需要分类讨论; 法三:两边同时平方去掉绝对值符号; 法四:利用函数图象观察.
这也是解其他含绝对值不等式的四种常用思路.
探索:不等式|x|<1的解集.
方法一:利用绝对值的几何意义观察
思考四:若变为不等式|x-1|+|x+2|<k的解集 为 ,则k的取值范围是 k 3
练习:解不等式│x+1│–│x–2│≥1
x | x 1
作出f (x) │x +1│–│x – 2│的图像, 并思考f (x)的最大和最小值
│x +1│–│x – 2│ k恒成立,k的取值范围是 │x +1│–│x – 2│ k恒成立,k的取值范围是
2x 4, x 1
例1. 解不等式|x-1|+|x+2|≥5
y
2x 6, x 2 y 2, 2 x 1
2x 4, x 1
如图,作出函数的图象,
函数的零点是-3,2.
-2 1
-3
2x
-2
由图象可知,当x 3或x 2时,y 0,
∴原不等式的解集为{x|x≤-3 或 x≥2}.
ab a b
当向量 a, 共b 线时,
同向: a b a b 反向: a b a b
y
ab b
a
O
x
ab a b
定理1 如果a,b是实数,则 a b a b
定理1的完善
绝对值三角不等式
a b ab a b
a b ab a b
定理1的推广 如果a,b,c是实数,则

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

高1数学绝对值三角不等式知识点

高1数学绝对值三角不等式知识点

高1数学绝对值三角不等式知识点数学课本中不等式这一部分包含绝对值三角不等式,同学们需要重点关注,下面是店铺给大家带来的高1数学绝对值三角不等式知识点,希望对你有帮助。

高1数学绝对值三角不等式知识点(一)绝对值三角不等式绝对值三角不等式:1、基本形式如果a,b都是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立;2、变式如果a,b都是实数,则。

三角不等式的解法利用三角函数线或正弦、余弦、正切函数的图象写出解集.高1数学绝对值三角不等式知识点(二)绝对值的三角不等式;不等式证明的基本方法二.教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法三.知识分析[绝对值的三角不等式]定理1若a,b为实数,则,当且仅当ab≥0时,等号成立。

几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b 的距离等于它们到原点距离之和。

(2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。

|a-b|表示a-b与原点的距离,也表示a到b之间的距离。

定理2设a,b,c为实数,则,等号成立,即b落在a,c之间。

推论1推论2[不等式证明的基本方法]1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。

比较法有差值、比值两种形式,但比值法必须考虑正负。

比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。

如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。

2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。

所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。

绝对值方程与不等式

绝对值方程与不等式

绝对值方程与不等式一、绝对值不等式的基本性质绝对值不等式的定义与绝对值方程类似,只是将等号换成不等号。

对于任意实数a,绝对值不等式可以写成如下形式:a,≤b或,a,≥b其中b为实数。

绝对值不等式的解集可以用区间表示。

例如,对于,a,≤b,解集为闭区间[-b,b];对于,a,≥b,解集为两个开区间(负无穷,-b)和(b,正无穷)的并集。

与绝对值方程类似,可以利用绝对值的定义解绝对值不等式。

对于,a,≤b,我们可以将绝对值去掉,得到两个不等式,然后分别求解,并将解集取交集。

对于,a,≥b,我们可以将不等式拆解为两个绝对值不等式,再分别求解,并将解集取并集。

在解绝对值不等式时,需要注意以下几个性质:1.两个非负实数的绝对值相等,当且仅当这两个实数相等。

也就是说,如果,a,=,b,那么a=b或a=-b。

2.如果,a,=c,c≥0,那么a=c或a=-c。

这些基本性质对于解决绝对值不等式非常有帮助,可以帮助我们化简不等式,提取出能够直接进行计算的部分。

二、绝对值不等式的解法解绝对值不等式的方法包括图像法、分段讨论法和代数法。

1.图像法:使用数轴上的图像表示法,通过观察图像来找到解集。

例如,对于不等式,2x-1,≤3,可以先画出2x-1的图像,然后找出使得,2x-1,≤3的x的取值范围。

这种方法在直观上很直接,但对于复杂的不等式可能不太适用。

2.分段讨论法:将不等式分成几个条件,然后分别讨论每个条件下的解集,并将解集取并集。

例如,对于不等式,x-2,>3,可以将不等式分成两个条件,即x-2>3和x-2<-3,分别求解得到x>5和x<-1,最后将解集取并集得到(-∞,-1)∪(5,+∞)。

3.代数法:利用绝对值的定义和基本性质,将绝对值不等式转化为一系列等价的不等式,然后求解。

这种方法在理论上较为严谨,适用范围更广。

例如,对于不等式,3x+2,≥5,可以将不等式拆解为3x+2≥5和3x+2≤-5,分别求解得到x≥1和x≤-7/3,最后将解集取并集得到(-∞,-7/3]∪[1,+∞)。

绝对值不等式

绝对值不等式

绝对值不等式1、平均值不等式定理1:如果a,b∈R,那么a²+b²≥= 当且仅当当时,等号成立定理2:(基本不等式)如果a,b>0,那么2ba+≥,当且仅当当时,等号成立,即两个正数的算术平方根不小于(即大于或等于)它们的几何平均数。

定理3:如果a,b,c大于0,那么3cba++≥,当且仅当当时,等号成立,2、绝对值三角不等式:定理1:如果a,b是实数,则|a+b|≤ ,当且仅当当时,等号成立定理2:如果a,b,c是实数,那么 ,当且仅当当时,等号成立3.绝对值不等式的解法(2)|ax+b|≤c、|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔②|ax+b|≥c⇔(3)|x-a|+|x-b|≥c、|x-a|+|x-b|≤c(c>0)型不等式的解法:三种解法:思考感悟:1.|a-b|与|a|-|b|及|a|+|b|分别具有什么关系?【提示】||a|-|b||≤|a-b|≤|a|+|b|.2.|x-a|±|x-b|表示的几何意义是什么?【提示】|x-a|±|x-b|表示数轴上的点x到点a、b的距离之和(差).学情自测:1.(教材改编题)设ab>0,下面四个不等式中,正确的是()C①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.A.①和②B.①和③C.①和④D.②和④∵ab>0,即a,b同号,则|a+b|=|a|+|b|,∴①④正确,②③错误.2.(2012·韶关质检)不等式|x-2|>x-2的解集是()AA.(-∞,2) B.(-∞,+∞) C.(2,+∞) D.(-∞,2)∪(2,+∞)【解析】|x-2|>x-2同解于x-2<0,∴x<2.3.(2011·陕西高考)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.【解析】因为|x+1|+|x-2|≥|x+1-x+2|=3,∴|x+1|+|x-2|的最小值为3,因此要使原不等式存在实数解,只需|a|≥3,∴a≥3或a≤-3.【答案】(-∞,-3]∪[3,+∞)4、(2012广州调研)不等式:|2||1|++x x ≥1的实数解为 |2||1|++x x ≥1⇔|x+1|≥|x+2|且x+2≠0,∴x ≤-23且x ≠-2 绝对值不等式性质的应用 :例题1:(2011·江西高考)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为.【思路点拨】思路一: 将|x -2y +1|变形,设法用x -1与y -2表示,利用绝对值不等式的性质求最值; 思路二: 由|x -1|≤1,|y -2|≤1分别求x 、y 的范围,然后运用不等式的性质和绝对值的意义求解.【尝试解答】法一 |x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值5.法二 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3,从而-6≤-2y ≤-2. 由同向不等式的可加性可得-6≤x -2y ≤0,∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.规律与方法:1.(1)法一的关键是把|x -2y +1|变形为|(x -1)-2(y -2)-2|,进而利用绝对值不等式性质;(2)法二把求|x -2y +1|的最大值问题,转化为求x -2y +1的取值范围问题.2.(1)利用绝对值不等式性质定理求最值时,要指明取到等号的条件.(2)注意绝对值不等式性质在不等式证明中的放缩应用.变式训练:若f (x )=x 2-x +c (c 为常数),|x -a |<1,求证:|f (x )-f (a )|<2(1+|a |).【证明】 |f (x )-f (a )|=|(x 2-x +c )-(a 2-a +c )|=|x 2-x -a 2+a |=|(x -a )(x +a -1)|=|x -a ||x +a -1|=|x -a ||(x -a )+(2a -1)|,∵|x -a |<1.∴|x -a ||(x -a )+(2a -1)|<|(x -a )+(2a -1)|≤|x -a |+|2a -1|<1+|2a |+1=2(1+|a |). ∴不等式|f (x )-f (a )|<2(1+|a |)成立含绝对值不等式的解法 :例题2:(1)(2011·江苏高考)解不等式:x +|2x -1|<3.(2)不等式|x +3|-|x -2|≥3的解集为________.【思路点拨】 (1)将不等式x +|2x -1|<3化成|2x -1|<3-x 的形式,然后用公式求解.(2)去|x +3|与|x -2|的绝对值,按零点分区间讨论.【尝试解答】1) 由x+|2x-1|<3,得|2x-1|<3-x,∴原不等式化为:⎩⎨⎧-<-≥-x x x 312012或⎩⎨⎧-<-<-x x x 321012, 解得:21≤x<34或-2<x<21,∴原不等式的解集是:{x|-2<x<34} 2) ①当x ≥2时,原不等式化为:x+3-(x-2)≥3,此时恒成立,∴x ≥2,②当x ≤-3时,原不等式化为-x-3-(2-x)≥3,无解,③当-3<x<2时,原不等式化为x+3-(2-x)≥3,解得:x ≥1,因此1≤x<2综合①②③可知,原不等式的解集为:{x|x ≥1}1.第(1)问利用绝对值定义,将其转化为与之等价的不等式组是求解的关键;也可利用|f (x )|<g (x )⇔-g (x )<f (x )<g (x )进行转化;第(2)问易错点:(1)分区间去绝对值时忽视零点的值;(2)误求不等式的解集为交集.2.含有两个或两个以上绝对值号的不等式,常用零点分段法脱去绝对值号,将其转化为与之等价的不含绝对值符号的不等式(组).但一定注意,最终的不等式的解集是各类情形的并集.其操作程序是:找零点、分区间、分段讨论.变式训练:(2011·山东高考)求不等式|x -5|+|x +3|≥10的解集.【解】法一:当x ≥5时,原不等式为x -5+x +3≥10,∴x ≥6.不等式的解集为{x |x ≥6}. 当-3<x <5时,原不等式化为-x +5+x +3≥10,8≥10,此时原不等式无解;当x ≤-3时,原不等式化为-x +5-x -3≥10,x ≤-4.∴原不等式的解集为{x |x ≤-4}. 综上所述,原不等式的解集为(-∞,-4]∪[6,+∞).法二 由绝对值的几何意义,|x -5|+|x +3|≥10表示数轴上的点到两点-3,5的距离之和大于等于10的所有的点集.易知点-4和6到两点-3,5的距离之和都等于10,结合数轴知原不等式的解集为{x |x ≥6或x ≤-4}.利用平均值不等式求最值 :1)若x>0,求函数f(x)=x+24x的最小值; 2)已知x>0,y>0,且x+y=1,求x 4+y 9的最小值 【思路点拨】:1)将f(x)变形为2x +2x +24x,然后用定理3求解 2)注意x+y=1的应用,运用a+b ≥2ab 求最小值【尝试解答】1)∵x>0,∴f(x)= x+24x =2x +2x +24x ≥332422x x x ∙∙=3,当且仅当2x =24x ,即x=2时取等号,∴x=2时,f(x)min =32)∵x>0,y>0,x+y=1,∴x 4+y 9= (x+y)( x 4+y 9)=13+x y 4+y x 9≥13+2yx x y 94∙=25 当且仅当x y 4=yx 9时等号成立 由⎪⎩⎪⎨⎧==+y x x y y x 941且x>0,y>0,得⎪⎩⎪⎨⎧==5352y x ∴当x=52,y=53时取等号,所以x 4+y 9的最小值为25.1.利用平均值不等式求最值,应明确基本不等式成立的条件,“一正、二定、三相等”缺一不可.2.利用不等式求最值时,常利用添项、拆项、配系数,并注意“1”的代换,创造使用均值不等式的条件.变式训练:若0<x <1,则函数f (x )=x 2(1-x )的最大值是________.【解】∵0<x<1,∴0<1-x<1,f(x)=x ²(1-x)=4•2x •2x •(1-x)≤4•[3)1(22x x x -++]³=274 当且仅当2x =1-x,即x=32时,等号成立,因此f(x)的最大值f(x)max = 274绝对值不等式的综合问题 :例题4:(2012·佛山质检)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】 (1)由|x -a |≤3求不等式的解集,与已知比较,求参数a 的值;(2)利用绝对值不等式的性质或函数的单调性,求y =f (x )+f (x +5)的最小值,得参数不等式求解.1)由f(x)≤3,得|x-a|≤3,解得a-3≤x ≤a+3,又已知不等式f(x)≤3的解集为{x|-1≤x ≤5} 所以5313=+-=-⎩⎨⎧a a 解得a=2.2)法一:由1)知a=2,此时f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,于是g(x)=⎪⎩⎪⎨⎧>+≤≤--<-2,1223,53,12-x x x x x 利用g (x )的单调性,易知g (x )的最小值为5.因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5].法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5. 因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 应有实数m 的取值范围是(-∞,5]., 规律方法4:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法1是运用分类讨论思想,利用函数的单调性;法2是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向,解题时强化函数、数形结合与转化化归思想方法的灵活应用.变式训练:已知函数f (x )=|x -3|-2,g (x )=-|x +1|+4.(1)若函数f (x )的值不大于1,求x 的取值范围;(2)若不等式f (x )-g (x )≥m +1的解集为R ,求m 的取值范围.【解】 (1)依题意,f (x )≤1,即|x -3|≤3.∴-3≤x -3≤3,∴0≤x ≤6,因此实数x 的取值范围是[0,6].(2)f (x )-g (x )=|x -3|+|x +1|-6≥|(x -3)-(x +1)|-6=-2,∴f (x )-g (x )的最小值为-2, 要使f (x )-g (x )≥m +1的解集为R. 应有m +1≤-2,∴m ≤-3,故实数m 的取值范围是(-∞,-3].命题透视:从近两年新课标命题看,含绝对值不等式的解法是选考内容4-5考查的热点,难度为中等,2011年高考命题的突出特点是以函数为载体考查绝对值不等式的解法与证明,预计2013年高考将延续这一命题方向.规范解答之二十二 绝对值不等式中逆向问题的正向求解策略例题:(10分)(2011·新课标卷)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集.(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.规范解答:1) 当a=1时,f(x)≥3x+2,可化为|x-1|≥2,由此可得x ≥3或x ≤-1,故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}因为a>0,所以不等式组的解集为{x|x ≤-2a },由题设可得-2a =-1,故a=2 【解题程序】 第一步:代入a ,求绝对值不等式|x -1|≥2的解集;第二步:化|x -a |+3x ≤0为不含绝对值的不等式组,并求解集;第三步:与题设比较,得含a 的方程,求出a 值;第四步:检验,查易错点,规范结论.阅卷心悟:易错提示:(1)不知逆向问题求解方法是思维受阻的主要原因.(2)未注意条件a >0,造成两解.防范措施:(1)逆向问题可正向求解,以本题为例,求出不等式的解集后.与已知不等式的解集作比较,便可建立关于a 的方程;(2)本题不等式f (x )≤0解集的端点-1是方程f (x )=0的解,利用这一点可得一种巧妙解法. 自主体验:1.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是________.【解析】 由|x +1|-|x -3|≥0,得|x +1|≥|x -3|,平方得(x +1)2≥(x -3)2,解之得x ≥1, ∴不等式的解集为{x |x ≥1}.2.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.1)证明:f(x)=|x-2|-|x-5|=⎪⎩⎪⎨⎧≥<<-≤5352722,3-x x x x ,当2<x<5时,-3<2x-7<3,所以-3≤f(x)≤3 2)由1)可知:当x ≤2时,f(x)≥x ²-8x+15的解集为空集;当2<x<5时,f(x)≥x ²-8x+15的解集为{x|5-3≤x<5}当X ≥5时,f(x)≥x ²-8x+15的解集为{x|5≤x ≤6}综上所述:不等式f(x)≥x ²-8x+15的解集为{x|5-3≤x ≤6}。

绝对值型不等式和三角不等式类型

绝对值型不等式和三角不等式类型

绝对值型不等式和三角不等式定理1 如果a, b 是实数,则 |a+b|≤|a|+|b|(当且仅当ab ≥0时,等号成立)。

绝对值三角不等式.a b a b a b a b -≤-≤±≤+(a,b 为实数)定理2 如果a, b, c 是实数,那么 |a-c|≤|a-b|+|b-c|(当且仅当(a-b)(b-c)≥0时,等号成立)。

证明:根据绝对值三角不等式有|a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c|(当且仅当(a-b)(b-c)≥0时,等号成立)。

绝对值三角不等式能应用定理解决一些证明和求最值问题。

题型一 解绝对值不等式【例1】设函数f (x )=|x -1|+|x -2|.(1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【解析】(1)所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1).【变式训练1】设函数f (x )=|x +1|+|x -2|+a .(1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3,所以-a ≤3,即a ≥-3.题型二 绝对值三角不等式的应用[例2] (1)求函数y =|x -3|-|x +1|的最大值和最小值.(2)设a ∈R ,函数f (x )=ax 2+x -a (-1≤x ≤1).若|a |≤1,求|f (x )|的最大值.[思路点拨] 利用绝对值三角不等式或函数思想方法可求解.[解] (1)法一:||x -3|-|x +1||≤|(x -3)-(x +1)|=4,∴-4≤|x -3|-|x +1|≤4.∴y max =4,y min =-4.法二:把函数看作分段函数.y =|x -3|-|x +1|=⎩⎪⎨⎪⎧ 4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.∴-4≤y ≤4.∴y max =4,y min =-4.(2)|x |≤1,|a |≤1, ∴|f (x )|=|a (x 2-1)+x |≤|a (x 2-1)|+|x |=|a ||x 2-1|+|x |≤|x 2-1|+|x |=1-|x 2|+|x |=-|x |2+|x |+1=-(|x |-12)2+54≤54. ∴|x |=12时,|f (x )|取得最大值54. 规律:(1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.3.若a ,b ∈R ,且|a |≤3,|b |≤2则|a +b |的最大值是________,最小值是________. 解析:|a |-|b |≤|a +b |≤|a |+|b |,∴1=3-2≤|a +b |≤3+2=5.答案:5 14.求函数f (x )=|x -1|+|x +1|的最小值.解:∵|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2,当且仅当(1-x )(1+x )≥0,即-1≤x ≤1时取等号.∴当-1≤x ≤1时,函数f (x )=|x -1|+|x +1| 取得最小值2.5.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围.解:a <|x +1|-|x -2|对任意实数恒成立,∴a <[|x +1|-|x -2|]min.∵||x +1|-|x -2||≤|(x +1)-(x -2)|=3,∴-3≤|x +1|-|x -2|≤3.∴[|x +1|-|x -2|]min =-3.∴a <-3.即a 的取值范围为(-∞,-3).题型三 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ). 又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ). 解不等式|x -1|+|x -2|≤2得12≤x ≤52. 【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型四 利用绝对值不等式求参数范围【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|.由f (x )≥3得|x -1|+|x +1|≥3,综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞). (2)综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2, 解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1}, 因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3; ②当3a +1<2,即a <13时, B ={x |3a +1≤x ≤2}, 因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1. 综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.类型一:含一个绝对值符号的不等式的解法含一个绝对值符号的不等式的一般形式为()()f x g x > 或 ()()f x g x <,解这种不等式我们最常用的方法是等价转化法,有时也可用分类讨论法.例1.解不等式2|55|1x x -+<.[分析]利用|f(x)|<a(a>0) ⇔-a<f(x)<a 去掉绝对值后转化为我们熟悉的一元二次不等式组.解:原不等式等价于21551x x -<-+<,即22551(1)551(2)x x x x ⎧-+<⎪⎨-+>-⎪⎩由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<.[注]本题也可用数形结合法来求解.在同一坐标系中画出函数2551y x x y =-+=与的图象,解方程2551x x -+=,再对照图形写出此不等式的解集.例2. 解不等式4321x x ->+.[分析]利用|f(x)|<g(x) ⇔-g(x)<f(x)<g(x)和|f(x)|>g(x) ⇔f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理或用分类讨论法解之.方法一:原不等式转化为4321x x ->+或43(21)x x -<-+,解之得原不等式的解集为123x x x ⎧⎫><⎨⎬⎩⎭或. 方法二:原不等式等价于4304321x x x -≥⎧⎨->+⎩或430(43)21x x x -<⎧⎨-->+⎩.解之得342x x ⎧≥⎪⎨⎪>⎩ 或3413x x ⎧<⎪⎪⎨⎪<⎪⎩,即2x >或13x <.所以原不等式的解集为123x x x ⎧⎫><⎨⎬⎩⎭或. [注]⑴.通过例2可以发现:形如)()(x g x f <,)()(x g x f >型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,用同解变形法则更为简洁.⑵.分类讨论法也可讨论()0()0g x g x ≤或而解之,这实际上是同解变形法的推导依据. 类型二:含两个绝对值符号的不等式的解法含两个绝对值符号的不等式,我们常见的形式为:1122a x b a x b c +±+> 或 1122a x b a x b c +±+<()0c ≥,我们解这种不等式常用的方法有零点分段法和构造函数的方法,有时候也可利用绝对值的几何意义和平方法.例3.解不等式||||x x +<+123[分析]两边都含绝对值符号,所以都是非负,故可两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:|()f x |<|()g x |⇔22()()f x g x <⇔[()()][()()]f x g x f x g x +-<0解:原不等式0)1()32()32()1(|32||1|222222>+-+⇔+<+⇔+<+⇔x x x x x x 解得x x <->-243或,故原不等式的解集为{|}x x x <->-243或 例4.解不等式127x x ++-≥.[分析]解法一 利用绝对值的几何意义(体现了数形结合的思想). 不等式127x x ++-≥的几何意义是表示数轴上与()1A -、()2B 两点距离之和大于等于7的点,而A 、B 的距离之和为3,因此线段AB 上每一点到A 、B 的距离之和都等于3,A 左侧的点到A 、B 的距离之和等于这点到A 点距离的2倍加3,B 右侧的点到A 、B 的距离之和等于这点到B 点距离的2倍加3.图1由图1可知:原不等式的解集为{}34x x x ≤-≥或.解法二 利用1020x x +=-=,的零点,把数轴分为三段,然后分段考虑.把原不等式化为不含绝对值符号的不等式求解(零点分段讨论法).(1)当1x <-时,原不等式同解于13127x x x x <-⎧⇒≤-⎨---+≥⎩,,;(2)当12x -≤≤时,原不等式同解于12127x x x -≤≤⎧⇒⎨+-+≥⎩,,无解;(3)当2x >时,原不等式同解于24127x x x x >⎧⇒≥⎨++-≥⎩,,. 综上知,原不等式的解集为{}34x x x ≤-≥或.解法三 通过构造函数,利用函数图像(体现了函数与方程的思想). 原不等式可化为1270x x ++--≥.令()127f x x x =++--,则(1)(2)7(1)()(1)(2)7(12)(1)(2)7(2)x x x f x x x x x x x -+---<-⎧⎪=+----≤≤⎨⎪++-->⎩⇔26(1)()4(12)28(2)x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩,,, 可解得原不等式的解集为{}34x x x ≤-≥或.例5 解关于x 的不等式|log ||log |a a ax x 22<+[分析]原不等式可化为|log ||log |122+<+a a x x ,一般会分类讨论去绝对值号解题,即:通常分log log a a x x <--≤<12120,,log a x ≥0三种情况去绝对值符号,再分a a ><<101或进行讨论,这样做过程冗长,极易出错根据此题特点,不妨改变一下操作程序,即原不等式两边平方,再由定义去绝对值号,则分析将十分清晰,过程也简洁得多.解:原不等式可化为|log ||log |122+<+a a x x ,将两边平方可得:4414422(log )log (log )|log |a a a a x x x x ++<++,则有:(1)log ,(log )log a a a x x x ≥<⎧⎨⎩⇒≤<01012;(2)log ,log log log a a a a x x x x <+-<⎧⎨⎩⇒-<<03830302. 综上知-<<31log a x ,故当a >1时,解为a x a -<<3;当01<<a 时,解为a x a <<-3 [注]形如()120ax b ax b c c +-+>>和()120ax b ax b c c +++<>的含两个绝对值符号的不等式用平方法并不是很麻烦,可以通过两次平方去掉绝对值化为一般的不等式,所以我们在解题的过程中要选择一个合适的方法进行求解. 例6解不等式 2331x x --≤[分析]解含有双层绝对值符号的不等式的基本思想就是一层一层的去掉绝对值,使不等式化为不含绝对值的一般不等式.常用的方法有等价转化法、零点分段法和平方法,当然利用绝对值不等式的性质求解不等式是一种比较简单的方法,但这种方法比较抽象,一般不容易想到.但本题不可以采用零点分段法,也不能采用平方法,因为平方后既含有x 的项,又含有x 的项,所以我们先把不等式进行等价转化,然后把它看成有关x 的一元二次不等式组进行求解.解: 2331x x --≤ ⇔ 21331x x -≤--≤ ⇔ 22320340x x x x ⎧--≥⎪⎨--≤⎪⎩,,⇔ 22320340x x x x ⎧--≥⎪⎨--≤⎪⎩,,⇔4x x ⎧≥⎪⎨⎪≤⎩, ⇔44x x x ⎧≤≥⎪⎨⎪-≤≤⎩或, ∴原不等式的解集为33174422⎡⎡⎤++--⎢⎢⎥⎣⎦⎣⎦,. 类型三:含参数的绝对值不等式的解法解含参数的绝对值不等式的思想就是首先要对参数的情况进行分情况讨论,然后分别在各种情况下对不等式进行求解,最后把各种结果综合在一起就可以得到原不等式的解.另外,有一些题也可通过转化,不进行讨论就可以轻松的解答出来.例7 解关于x 的不等式 34422+>+-m m mx x[分析]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大.若化简成3|2|+>-m m x ,则解题过程更简单.在解题过程中需根据绝对值定义对3m +的正负进行讨论.解:原不等式等价于 3|2|+>-m m x当03>+m 即3->m 时,)3(232+-<-+>-m m x m m x 或∴333-<+>m x m x 或当03=+m 即3-=m 时, 0|6|>+x ∴x6当03<+m 即3-<m 时, x R [注]形如|()f x |<a ,|()f x |>a (a R ∈)型不等式,简捷解法是等价命题法,即: ()f x a > ()f x a ≥ ()f x a < ()f x a ≤ 0a > ()()f x a f x a ><-或()()f x a f x a ≥≤-或 ()a f x a -<< ()a f x a -≤≤ 0a = ()0f x ≠ ()f x R ∈ ∅()0f x = 0a < R R ∅ ∅例8 (2004年海南卷)解关于x 的不等式a x x a x x +-->+--1111 [分析]利用)()(x f x f <,无解或0)()()(<⇔>x f x f x f ,即利用绝对值的定义法求解.解:0111111<+--⇔+-->+--a x x a x x a x x a x a x -<-⇔<+-⇔11011 (1) 当0=a 时,原不等式等价于:1011<⇔<-x x(2) 当0>a 时,原不等式等价于:111011<<-⇔<-<-x ax a (3) 当0<a 时,原不等式等价于:01<-x 或ax 11->-1<⇔x 或a x 11-> 综上所述:(1) 当0=a 时,原不等式的解集为:{}1<x x(2) 当0>a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧<<-111x a x (3) 当0<a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧-><a x x x 111或 类型四:含参绝对值不等式有解、解集为空与恒成立问题例9 (2010高考安徽卷)不等式a a x x 3132-≤--+对任意的实数恒成立,则实数a 的取值范围是( )A .(][)+∞-∞-,41, B.(][)+∞-∞-,52,C.[]2,1D.(][)+∞-∞-,21,[分析]要使a a x x 3132-≤--+对任意实数x 恒成立,只要|x +3|-|x -1|的最大值小于或等于23a a -. 方法一:形如使,x m x n c x m x n c ---≤-+-≤恒成立型不等式.可利用绝对值三角不等式:b a b a b a +≤±≤-,结合极端性原理即可解得,即:()()()max c x m x n c x m x n x m x n n m ≥---⇔≥---=---=-;()()()m n n x m x n x m x c n x m x c -=---=---≤⇔-+-≤min ; 解:设函数()()41313)(=--+≤--+=x x x x x f ,所以4)(max =x f 而不等式a a x x 3132-≤--+对任意的实数x 恒成立.故41432≥-≤⇒≥-a a a a 或,故选择A方法二:因|x +3|的几何意义为数轴上点x 到-3的距离,|x -1|的几何意义为数轴上点x 到1的距离,|x +3|-|x -1|的几何意义为数轴上点x 到-3与1的距离的差,其最大值可求.解:根据绝对值的几何意义,设数x ,-3,1在数轴上对应的点分别为P 、A 、B ,则原不等式即求|PA|-|PB|≤23a a -成立 ∵|AB|=4,即|x +3|-|x -1|≤4故当23a a -≥4时,即41432≥-≤⇒≥-a a a a 或原不等式恒成立 [注]⑴. 此题也可把不等式的左边用零点分段的方法改写成分段函数,通过画出图象,观察k 的取值范围,但过程较繁.⑵. 转化思想在解中有很重要的作用,比如:恒成立问题、定义域为R 、有解或解集为空等问题都可转化为求最大、最小值问题.[变式] (2012陕西文理)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是___________.[解析]:1|||1|3a x a x -≤-+-≤,解得:24a -≤≤ 例10(2012课标文理)已知函数()f x =|||2|x a x ++-.(Ⅰ)当3a =-时,求不等式 ()f x ≥3的解集;(Ⅱ) 若()f x ≤|4|x -的解集包含[1,2],求a 的取值范围.[分析]本题(Ⅱ)有些同学可能会去解()f x ≤|4|x -这个不等式,再分析该不等式的解集与[1,2]的集合关系,结果将问题复杂化.这个问题实际上可转化为不等式()f x ≤|4|x -在[1,2]恒成立的问题而解之.解:(1)当3a =-时,()3323f x x x ≥⇔-+-≥2323x x x ≤⎧⇔⎨-+-≥⎩或23323x x x <<⎧⇔⎨-+-≥⎩或3323x x x ≥⎧⇔⎨-+-≥⎩ 1x ⇔≤或4x ≥(2)原命题()4f x x ⇔≤-在[1,2]上恒成立 24x a x x ⇔++-≤-在[1,2]上恒成立22x a x ⇔--≤≤-在[1,2]上恒成立 30a ⇔-≤≤例11(2010全国卷)设函数)(x f =24x - + 1. (Ⅰ)画出函数y=)(x f 的图像:(Ⅱ)若不等式)(x f ≤ax 的解集非空,求a 的取值范围解:(Ⅰ)由于25,2()23,2x x f x x x -+⎧=⎨-≥⎩则函数()y f x =的图像如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图像可知,当且仅当12a ≥或2a -时,函数()y f x =与函数y ax =的图像有交点.故不等式)(x f ≤a 的解集非空时,a 的取值范围为()1,2,2⎡⎫-∞-⋃∞⎪⎢⎣⎭[注]㈠.此题巧用构造函数法利用数形结合法解第二问,比参变分离法转化为最值问题求解更为简洁,避免了分类讨论的麻烦.㈡.含参绝对值不等式有解、解集为空与恒成立问题的等价转换(函数法): ⑴.()f x a ≤有解()min a f x ⇒≥;()f x a ≤解集为空集()min a f x ⇒<;这两者互补.()f x a ≤恒成立()max a f x ⇒≥.⑵.()f x a <有解()min a f x ⇒>;()f x a <解集为空集()min a f x ⇒≤;这两者互补.()f x a <恒成立()max a f x ⇒>.⑶.()f x a ≥有解()max a f x ⇒≤;()f x a ≥解集为空集()max a f x ⇒>;这两者互补.()f x a ≥恒成立()min a f x ⇒≤.⑷.()f x a >有解()max a f x ⇒<;()f x a >解集为空集()max a f x ⇒≤;这两者互补.()f x a >恒成立()min a f x ⇒≤.类型五 绝对值三角不等式问题例12 已知13)(2+-=x x x f ,1<-a x ,求证:)1(2)()(+<-a a f x f[分析]本题中给定函数)(x f 和条件1<-a x ,注意到要证的式子右边不含x ,因此对条件1<-a x 的使用可有几种选择:(1)直接用;(2)打开绝对值用11+<<-a x a ,替出x ;(3)用绝对值的性质11+<⇒<-≤-a x a x a x 进行替换. 证明:∵13)(2+-=x x x f ,∴13)(2+-=a a a f , ∵1<-a x ,∴1<-≤-a x a x .∴1+<a x , ∴x a a x a f x f -+-=-22)()()())((a x a x a x --+-=)1)((-+-=a x a x 1-+⋅-=a x a x)1(21111+=+++<++<-+<a a a a x a x ,即)1(2)()(+<-a a f x f .[注]这是绝对值和函数的综合题,这类题通常要涉及绝对值及绝对值不等式的性质等综合知识的运用.分析中对条件1<-a x 使用时出现的三种可能是经常碰到的,要结合求证,灵活选用.例13 已知函数f(x)=21x +,a,b ∈R ,且b a ≠,求证|f(a)-f(b)|<|a-b|.[分析]要证|||11|22b a b a -<+-+,考察左边,是否能产生|a-b|. 证明:|f(a)-f(b)|=||||||||11|||11|222222b a b a b a b a b a b a +-⋅+<+++-=+-+||||||||||||b a b a b a b a -=-⋅++≤(其中||122a a a =>+,同理|,|12b b >+∴||||111122b a b a +<+++)[注]⑴.证题时,应注意式子两边代数式的联系,找出它们的共同点是证题成功的第一步.此外,综合运用不等式的性质是证题成功的关键.如在本例中,用到了不等式的传递性,倒数性质,以及“三角形不等式”等等.⑵.本题的背景知识与解析几何有关.函数21x y +=是双曲线,122=-x y 的上支,而||2121x x y y --(即|)()(|ba b f a f --),则表示该图象上任意两点连线的斜率的绝对值,很显然这一斜率的范围是在(-1,1)之间.类型六 含有绝对值的不等式的应用含绝对值的不等式常用来解决一些有关集合、函数、数列、平面向量、解析几何的问题,也用来解决一些实际问题,通常解决这些问题就是根据题意列出含有绝对值符号的不等式,然后解出这个不等式就可以得到问题的答案,解这些不等式的常用的方法就是我们上面所总结的方法.例14 (2004届湖北省黄冈中学综合测试题)已知条件a x p >-|15:|和条件01321:2>+-x x q ,请选取适当的实数a 的值,分别利用所给的两个条件作为A 、B 构造命题:“若A 则B ”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么并说明为什么这一命题是符合要求的命题.[分析]本题为一开放性命题,由于能得到的答案不唯一,使得本题的求解没有固定的模式,考生既能在一般性的推导中找到一个满足条件的a ,也能先猜后证,所找到的实数a 只需满足2151≤-a ,且≥+51a1即可.这种新颖的命题形式有较强的综合性,同时也是对于四个命题考查的一种新尝试,如此命题可以考查学生探究问题、解决问题的能力,符合当今倡导研究性学习的教学方向.解:已知条件p 即a x -<-15,或a x >-15,∴51a x -<,或51ax +>, 已知条件q 即01322>+-x x ,∴21<x ,或1>x ;令4=a ,则p 即53-<x ,或1>x ,此时必有q p ⇒成立,反之不然. 故可以选取的一个实数是4=a ,A 为p ,B 为q ,对应的命题是若p 则q , 由以上过程可知这一命题的原命题为真命题,但它的逆命题为假命题. 例15 已知数列通项公式n n naa a a a 2sin 23sin 22sin 2sin 32++++=对于正整数m 、n ,当n m >时,求证:n n m a a 21<-. [分析]已知数列的通项公式是数列的前n 项和,它的任意两项差还是某个数列的和,再利用不等式n n a a a a a a +++≤+++ 2121,问题便可解决.证明:∵n m > ∴mn n n m maa n a n a a 2sin 2)2sin(2)1sin(21+++++=-++ mn n maa n a n 2sin 2)2sin(2)1sin(21+++++≤++ 211)211(21212121121--=+++≤-+++n m n m n n )12110(21)211(21<-<<-=--n m n n m n . [注]⑴.以121+n 为首项,以21为公比,共有n m -项的等比数列的和,误认为共有1--n m 项是常见错误.⑵.弦函数的值域,即1sin ≤α,1cos ≤α,是解本题的关键.⑶.把不等式、三角函数、数列、n 个变量的绝对值不等式问题连在一起,是一个较为典型的综合题目.如果将本题中的正弦改为余弦,不等式同样成立.[高考试题精选] 2011年试题: 一、选择题:1. (2011年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[] (B )[-4,6](C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞ 【答案】D 【解析】由不等式的几何意义知,式子|3||5|++-x x 表示数轴的点)(x 与点(5)的距离和与点(-3)的距离之和,其距离之和的最小值为8,结合数轴,选项D 正确 二、填空题1. (2011年高考天津卷理科13)已知集合{}1|349,|4,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.【答案】{}52|≤≤-∈x R x【解析】∵{}{}54|9|4||3||≤≤-∈=≤-++∈=x R x x x R x A ,()()⎭⎬⎫⎩⎨⎧+∞∈-⨯≥∈=⎭⎬⎫⎩⎨⎧+∞∈-+=∈=,0,6142|,0,614|t t t x R x t t t x R x B {}2|-≥∈=x R x ,∴{}{}{}52|2|54|≤≤-∈=-≥∈≤≤-∈=x R x x R x x R x B A .对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为 .【答案】53. (2011年高考广东卷理科9)不等式130x x +--≥的解集是______. 【解析】}1|{≥x x 。

不等式总结

不等式总结

不等式总结不等式在数学中占据着重要的地位,是解决许多实际问题的有力工具。

不等式可以帮助我们描述数值之间的关系,刻画数学问题的特点,以及分析解决问题的方法。

接下来,我将对不等式进行总结,深入探讨其性质、解法和应用。

一、不等式的基本性质1. 不等式的传递性:对于任意实数a、b、c,如果a<b且b<c,那么a<c。

2. 不等式的加法性质:对于任意实数a、b、c,如果a<b,那么a+c<b+c。

3. 不等式的乘法性质:对于任意实数a、b、c,如果a<b且c>0(或c<0),那么ac<bc(或ac>bc);如果a<b且c<0(或c>0),那么ac>bc(或ac<bc)。

二、不等式的解法1. 图解法:将不等式转化为区间的表示形式,然后用图形表示出来,通过观察和推理找到解的范围。

2. 试值法:将不等式中的未知数取一些特殊的值,代入不等式中,判断不等式是否成立,从而确定解的范围。

3. 分类讨论法:将不等式中的未知数分类讨论,找出每一类的解的范围,最后合并得到总的解的范围。

4. 推导法:通过变换不等式的形式,重写成更简单的形式,最终得到解的范围。

三、基本不等式1. 三角不等式:对于任意实数a、b,有|a+b|≤|a|+|b|。

2. 平凡不等式:对于任意实数a,有a≤a。

3. 同侧不等式:对于任意实数a、b、c,如果a<b且c<0(或c>0),那么ac>bc(或ac<bc)。

4. 反侧不等式:对于任意实数a、b、c,如果a<b且c>0(或c<0),那么ac<bc(或ac>bc)。

四、常见不等式1. 一元一次不等式:ax+b>0,ax+b≤0,ax+b≥0,ax+b<0。

2. 二次不等式:ax^2+bx+c>0,ax^2+bx+c≤0,ax^2+bx+c≥0,ax^2+bx+c<0。

【高中数学】秒杀秘诀MS01绝对值不等式

【高中数学】秒杀秘诀MS01绝对值不等式

绝对值不等式一、绝对值三角不等式1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.2.定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a-a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤a x +b ≤c ;(2)|a x +b|≥c ⇔a x +b ≥c 或a x +b ≤-c .3.|x -a |+|x -b|≥c(c>0)和|x -a |+|x -b |≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a -a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤ax +b ≤c ;(2)|a x +b|≥c ⇔ax +b ≥c 或ax +b ≤-c .3.|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.解:原不等式可化为2x -1≥0,x +(2x -1)<3或2x -1<0,x -(2x -1)<3.解得12≤x <43或-2<x <12.解:(1)证明:f (x )=|x -2|-|x -5|=-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.解:由题知,|x -1|+|x -2|≤|a -b |+|a +b ||a |恒成立,故|x -1|+|x -2|不大于|a -b |+|a +b ||a |的最小值.∵|a +b |+|a -b |≥|a +b +a -b |=2|a |,当且仅当(a +b )(a -b )≥0时取等号,∴|a -b |+|a +b ||a |的最小值等于2.∴x 的取值范围即为不等式|x -1|+|x -2|≤2的解.解不等式得12≤x ≤52.式|a|-|b|≤|a -b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x -a|+|x -b|≥c 表示到数轴上点A(a),B(b)距离之和大于或等于c 的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a≤3.例5:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________.解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log3(|x -4|+|x +5|)≥2所以要使不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x ,y)(其中x ,y ∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x +2|+|y -2|+(|x -3|+|y -1|)+(|x -3|+|y -4|)+(|x +2|+|y -3|)+(|x -4|+|y -5|)+(|x -6|+|y -6|)=[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]+[|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|]取得最小值的格点(x ,y)(其中x ,y ∈Z).注意到[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]≥|(x +2)-(x -6)|+|(x +2)-(x -4)|+0=14,当且仅当x =3取等号;|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|=(|y -1|+|y -6|)+(|y -2|+|y -5|+(|y -3|+|y -4|)≥|(y -1)-(y -6)|+|(y -2)-(y -5)|+|(y -3)-(y -4)|=9,当且仅当y =3或y =4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y =|x -a|+|x -b|或y =|x +a|-|x -b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x -a|+3x ,其中a>0.(1)当a =1时,求不等式f(x)≥3x +2的解集;(2)若不等式f(x)≤0的解:(1)当a =1时f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1.故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2)由f(x)≤0得|x -a|+3x≤0.此不等式化为不等式组x ≥a ,x -a +3x ≤0,或x ≤a ,a -x +3x ≤0,即x ≥a ,x ≤a 4,或x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a 2}.由题设可得-a 2=-1,故a =2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。

绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎨⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5.[题组训练]1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎪⎨⎪⎧ x ≥a ,4x -a ≤0或⎩⎪⎨⎪⎧x <a ,2x +a ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤a 4. 由a4=-1,得a =-4. 综上,a =2或a =-4.考点二 绝对值不等式性质的应用[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,即⎩⎪⎨⎪⎧ x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法] 绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三 绝对值不等式的综合应用[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. [解] (1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧ -12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1, 当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且⎣⎡⎦⎤34,2⊆A ,求实数m 的取值范围.解:∵⎣⎡⎦⎤34,2⊆A ,∴当x ∈⎣⎡⎦⎤34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈⎣⎡⎦⎤34,2上恒成立, ∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是⎣⎡⎦⎤-114,0. [课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:原不等式可化为⎩⎪⎨⎪⎧ x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6. 解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立; 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >12.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f (x )≤4的解集为⎣⎡⎦⎤0,12. (2)因为f (x )=⎩⎨⎧(3+a )x +2,x ≥13,(a -3)x +4,x <13,所以f (x )有最小值的充要条件为⎩⎪⎨⎪⎧a +3≥0,a -3≤0,解得-3≤a ≤3,即实数a 的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1; 当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,综上所述,不等式f (x )+x >0的解集为{x |-3<x <1或x >3}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.(1)若a =2,求不等式f (x )>x +2的解集;(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=⎩⎪⎨⎪⎧-2x +1,x <-1,3,-1≤x <2,2x -1,x ≥2,不等式f (x )>x +2等价于⎩⎪⎨⎪⎧ x <-1,-2x +1>x +2或⎩⎪⎨⎪⎧ -1≤x <2,3>x +2或⎩⎪⎨⎪⎧x ≥2,2x -1>x +2,解得x <1或x >3,故原不等式的解集为{x |x <1或x >3}.(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧x <1,3-2x ≤3或⎩⎨⎧1≤x ≤2,1≤3或⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)因为⎝⎛⎭⎫1,32⊆M , 所以当x ∈⎝⎛⎭⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立, 而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x ∈⎝⎛⎭⎫1,32,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立, 所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.。

绝对值与绝对值不等式

绝对值与绝对值不等式

绝对值与绝对值不等式绝对值是数学中常见的一个概念,它用来表示一个数离0点的距离。

在数学中,绝对值的定义通常如下:若a是一个实数,那么(|a|)的值满足以下两个条件之一:当a≥0时,|a|=a;当a<0时,|a|= -a。

绝对值不等式则是对含有绝对值的不等式进行推导和求解。

关于绝对值不等式,我们可以分为以下几个方面进行讨论。

一、绝对值不等式的基本性质在研究绝对值不等式时,我们首先需要了解绝对值不等式的一些基本性质,以便于后续的推导和求解。

1. 非负性:对于任意实数a,有|a|≥0。

2. 正定性:对于任意实数a,有当且仅当a=0时,|a|=0。

3. 反对称性:对于任意实数a,有当且仅当a=0时,|-a|=|a|。

4. 三角不等式:对于任意实数a和b,有|a+b|≤|a|+|b|。

二、绝对值与绝对值不等式的运算接下来,我们来研究绝对值与绝对值不等式的运算规则。

在推导和求解绝对值不等式时,我们经常需要运用到以下两个常用的运算法则:1. 绝对值的开放性质:对于任意实数a和b,有|ab|=|a||b|。

2. 绝对值的分割性质:对于任意实数a和b,如果|a|<b,那么-a<b<a。

三、绝对值不等式的求解方法在实际求解绝对值不等式的过程中,我们可以根据不等式的形式进行分类讨论与推导。

下面,我们举例介绍两种常见的绝对值不等式及其求解方法。

1. 不等式形式:|x-a|<b,其中a和b为已知实数,x为未知数。

解法:根据绝对值不等式的定义,我们可以得到两个方程组。

当a≥0时,得到 -b<x-a<b;当a<0时,得到 -b<a-x<b。

综合以上两种情况,我们可以得到 -b<x-a<b,即|x-a|<b。

所以,不等式|x-a|<b的解集为(a-b,a+b)。

2. 不等式形式:|ax+b|≥c,其中a、b和c为已知实数,x为未知数。

解法:根据绝对值不等式的定义,我们可以分别得到两个方程组。

高中不等式公式大全及范围

高中不等式公式大全及范围

高中不等式公式大全及范围
高中不等式的公式和范围较多,以下是一些常见的不等式公式和范围:1. 一元二次不等式的解:一般地,用不等式的基本性质将一个一元二
次不等式化成形如ax^2+bx+c>0(a>0)或ax^2+bx+c<0(a<0)的形式,即
求出二次函数图像的交点,然后根据二次函数的开口方向确定不等式
的解集。

2. 均值不等式:对于任意实数a、b,都有(a+b)/2≥√ab(当且仅当
a=b时取“=”),即当且仅当a=b时,等号成立。

3. 基本不等式:一元二次不等式的解集可以转化为相应的一元二次方
程的根的分布问题。

4. 一元二次不等式有唯一解时,其对应的二次函数的图像与x轴的交
点就是解集中的唯一解。

5. 含绝对值的不等式有四种解法:去绝对值号转化为不含绝对值的不
等式求解;零点分区间法;数轴标根法;三角换元法。

6. 大于号小与号的证明即反证法在数学中的广泛应用,比如柯西不等式、排序不等式、切线不等式等都是反证法的成功应用。

至于不等式的范围,一般而言,一元一次不等式的解集为数轴上的点
表示的范围;一元二次不等式的解集为对应的一元二次方程的实数根
的分布范围;对于多元不等式,应结合数轴标根法、数轴穿头法、数
轴穿心法等灵活求解不等式的范围。

以上内容仅供参考,建议到相关网站查询或请教他人。

绝对值三角不等式的解法技巧和注意事项

绝对值三角不等式的解法技巧和注意事项

绝对值三角不等式的解法技巧和注意事项
绝对值三角不等式是高中数学中常见的一类不等式,它的解法技巧和注意事项如下。

解法技巧:
1. 分析绝对值的取值范围:对于绝对值不等式|f(x)| < a,首先需要确定f(x)的取值范围。

根据绝对值的定义,当f(x)的取值在-a 和a之间时,不等式成立。

2. 分类讨论:根据f(x)的取值范围进行分类讨论,将不等式分为多个情况进行分析。

例如,当f(x) > 0时,|f(x)| = f(x);当f(x) < 0时,|f(x)| = -f(x)。

根据不同情况,构建等式或不等式进行求解。

3. 利用绝对值性质简化不等式:绝对值有一些基本的性质,如|a+b| ≤ |a| + |b|和|a-b| ≥ ||a| - |b||。

在解决绝对值三角不等式时,可以通过利用这些性质将复杂的不等式简化为更简单的形式。

注意事项:
1. 确定变量的定义域:在解决绝对值三角不等式时,需要考虑变量的取值范围,即定义域。

根据函数的定义域,确定绝对值的取值范围,从而确定不等式的解集。

2. 注意绝对值的符号:绝对值的结果总是非负数,即|a| ≥ 0。

在解决绝对值三角不等式时,需要根据不等式的符号确定绝对值的符号,避免出现不符合实际情况的解。

3. 将不等式化为关于绝对值的形式:有时候,需要将不等式转化为关于绝对值的形式,例如将|x+a| -b。

通过求解这两个不等式得到更精确的解集。

绝对值三角不等式的解法技巧和注意事项上述所述,可以帮助我们更好地理解和解决这类不等式问题。

绝对值三角不等式

绝对值三角不等式

a ,a>0 1.绝对值的定义: |a|= 0 ,a=0
-a ,a<0 2.绝对值的几何意义:
|a|
A
0
a
实数a绝对值|a|表示 数轴上坐标为A的点 到原点的距离.
|a-b|
A
B
a
b
实数a,b之差的绝对值 |a-b|,表示它们在数轴上 对应的A,B之间的距离.
3.绝对值的运算性质:
a |a|
a2 a , ab a b , | b | | b |
探究
设a, b为实数, 你能比较 a b 与之a 间 的b 大
小关系吗?
当ab>0时,a b a b 当ab<0时,a b a b 当ab=0时,a b a b
ab a b
定理1 如果a,b是实数,则 a b a b
当且仅当 ab 时0,等号成立。
你能解释它的几何意义吗?
绝对值不等式
1、绝对值三角不等式 2、绝对值不等式的解法
1、绝对值三角不等式
在数轴上,
a 的几何意义 表示点A到原点的距离 a b 的几何意义 表示数轴上A,B两点之间的距离
a b 的几何意义 表示数轴上A,B’( B与B’关
于原点对称)两点之间的距离
a A
0
a
x
ab
ab
B’
A
B
-b
a
O
bx
当向量 a, 不b 共线时,
ab a b
探究:当向量 a, b共线
时,又怎样的结论?
同向: a b a b 反向: a b a b
ห้องสมุดไป่ตู้
y
ab b
Oa
x
ab a b

绝对值不等式复习

绝对值不等式复习


.
(2)|ax+b|≥c⇔ ax+b≥c或ax+b≤-c
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解
法:
方法一:利用绝对值不等式的几何意义求解,体现了数形结 合的思想;
方法二:利用“零点分段法”求解,体现了分类讨论的思想;
方法三:通过构造函数,利用函数的图象求解,体现了函数 与方程的思想.
1.已知函数 f(x)=|x-8|-|x-4|.
(1)作出函数y=f(x)的图象;
(2)解不等式|x-8|-|x-4|>2.
x≤4, 4, 解:(1)f(x)=-2x+12, 4<x≤8, -4, x>8, 图象如下:
(2)不等式|x-8|-|x-4|>2,即 f(x)>2. 由-2x+12=2,得 x=5. 由函数 f(x)图象可知,原不等式的解集为(-∞,5).
3.设函数 f(x)=x2-2x,实数 a 满足|x-a|<1. 求证:|f(x)-f(a)|<2|a|+3.
证明:法一:∵f(x)=x2-2x, ∴|f(x)-f(a)|=|x2-2x-a2+2a| =|(x-a)· (x+a-2)| =|x-a||x+a-2|<|x+a-2| =|(x-a)+2a-2|
法二:因为|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4. 所以 f(x)min=4+a, 要使 f(x)≥3a2 对一切实数 x 恒成立,只要 4+a≥3a2,
4 4 解得-1≤a≤ .所以 a 的取值范围为-1,3. 3
对于求 y=|x-a|+|x-b|或 y=|x+a|-|x-b|型的最 值问题,利用绝对值不等式的性质更方便.形如 y=|x -a|+|x-b|的函数只有最小值,形如 y=|x-a|-|x-b| 的函数既有最大值又有最小值.

绝对值不等式

绝对值不等式

2.两个等价关系 (1)|x|<a⇔-a<x<a(a >0). (2)|x|>a⇔x<-a或x>a(a >0). 3.一个关键 解绝对值不等式的关键是去掉绝对值符号.
4.一个口诀 解含绝对值的不等式的基本思路可概括为十二字口诀 “找零点,分区间,逐个解,并起来”.
【教材母题变式】
1.已知x,y∈R,且|x+y|≤
当x∈(-∞,-1)时,g(x)单调递减,f(x)单调递增,
且g(-1)=f(-1)=2. 综上所述,f(x)≥g(x)的解集为 [1, 17 1].
2
②依题意得:-x2+ax+4≥2在[-1,1]恒成立.
即x2-ax-2≤0在[-1,1]恒成立.
则只需
12 a
12
•1 2
a 1
解0,得-1≤a≤1.
≤|x-a|+|2a-1|<1+|2a-1|≤1+|2a|+1 =2(|a|+1), 即|f(x)-f(a)|<2(|a|+1).
【技法点拨】 绝对值不等式性质的应用 利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|ac|+|c-b|(a,b∈R),通过确定适当的a,b,利用整体思 想或使函数、不等式中不含变量,可以(1)求最值. (2)证明不等式.
解得x<3,
又因为x<-2,所以x<-2;
(ⅱ)当-2≤x≤ 时1 ,f(x)=1-2x-x-2=-3x-1,
2
令-3x-1>0,解得x<-1 ,
3
又因为-2≤x≤ 1,所以-2≤x<- ; 1

绝对值不等式总结

绝对值不等式总结

1设函数f(x)中含有绝对值,则(1)绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|(2)|a+b+c|≤|a|+|b|+|c|.2.f(x)>a有解⇔f(x)max>a.(2)f(x)>a恒成立⇔f(x)min>a.(3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.3.不等式恰成立问题(1)不等式f(x)>A在区间D上恰成立,等价于不等式f(x)>A的解集为D;(2)不等式f(x)<B在区间D上恰成立,等价于不等式f(x)<B的解集为D.定理1:如果a,b是实数,则|a+b| ≤|a|+|b|,当且仅当ab≥0时,等号成立;定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法1.若关于x的不等式|a|≥|x+1|+|x-2|,存在实数解,则实数a的取值范围是________.2.不等式3≤|5-2x|<9的解集为()A.[-2,1)∪[4,7)B.(-2,1]∪(4,7]C.(-2,-1]∪[4,7)D.(-2,1]∪[4,7)3.不等式|x-5|+|x+3|≥1的解集是()A.[-5,7]B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,+∞)4.已知不等式|2x-5|+|2x+1|>ax-1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的取值范围.5.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.6.设函数f(x)=5-|x+a|-|x-2|.①当a=1时,求不等式f(x)≥0的解集;②若f(x)≤1,求a的取值范围.7. (1)若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.(2)若a≥2,x∈R,证明:|x-1+a|+|x-a|≥3.8.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.9.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.10(1)已知函数f (x )=|x -a |+|x -3a |.①若f (x )的最小值为2,求a 的值;②若对∀x ∈R ,∃a ∈[-1,1],使得不等式m 2-|m |-f (x )<0成立,求实数m 的取值范围.11.已知函数f (x )=|x +1|+|x -3|-m 的定义域为R . (1)求实数m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.12.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范13. 已知函数f (x )=|x -a |+|2x -a |(a ∈R ).(1)若f (1)<11,求a 的取值范围;(2)若∀a ∈R ,f (x )≥x 2-x -3恒成立,求x 的取值范围.14.设函数f (x )=|2x +3|+|x -1|.(1)解不等式f (x )>4;(2)若存在x ∈⎣⎡⎦⎤-32,1使不等式a +1>f (x )成立,求实数a 的取值范围. 14.已知函数f (x )=|x -a |+12a(a ≠0).(1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值; (2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围. 15..已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.16.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值.17..已知函数f (x )=|2x -a |+|x -1|,a ∈R .(1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;(2)当a <2时,函数f (x )的最小值为3,求实数a 的值.18.设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围. 19.设函数f (x )=⎪⎪⎪⎪x +8m +|x -2m |(m >0).(1)求证:f (x )≥8恒成立; (2)求使得不等式f (1)>10成立的实数m 的取值范围.20.设a ,b 为满足ab <0的实数,那么( )A.|a +b |>|a -b |B.|a +b |<|a -b |C.|a -b |<||a |-|b || D .|a -b |<|a |+|b |21..不等式|2x -a |<b 的解集为{x |-1<x <4},则a +b 的值为( )A.-2B.2C.8D.-822.设函数f (x )=x 2-x -15,且|x -a |<1.(1)解不等式|f (x )|>5.(2)求证:|f (x )-f (a )|<2(|a |+1).23.已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围24.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.25.设函数f(x)=|x-3|,g(x)=|x-2|.(1)解不等式f(x)+g(x)<2;(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.。

第一节 绝对值不等式、柯西不等式、排序不等式

第一节 绝对值不等式、柯西不等式、排序不等式

2
2
∴f(x)=
-3x x-a
a 1,x a , 2
1, a x 1, 2
3x-a-1,x 1,
易知f(x)在
-
,
a 2
上单调递减,

a 2
,
上单调递增,
∴f(x)min=f
a 2
=-
a 2
+1=a-1,
解得a= 4 ,又 4 <2,∴a= 4 .
33
3
考点突破 栏目索引
方法技巧 与绝对值不等式有关的参数范围问题及解法 设函数f(x)中含有绝对值,则 (1)f(x)>a有解⇔f(x)max>a. (2)f(x)>a恒成立⇔f(x)min>a. (3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.
解析 (1)不等式|2x-3|≤1可化为 -1≤2x-3≤1, 解得 1≤x≤2,所以m=1,n=2, 所以m+n=3. (2)证明:由(1)知|x-a|<1,则|x|=|x-a+a|≤|x-a|+|a|<|a|+1,即|x|<|a|+1.
栏目索引
考点突破 栏目索引
考点三 绝对值不等式的综合应用
典例3 已知函数f(x)=|2x-a|+|x-1|,a∈R. (1)若不等式f(x)+|x-1|≥2对任意的x∈R恒成立,求实数a的取值范围; (2)当a<2时,函数f(x)的最小值为a-1,求实数a的值.
教材研读 栏目索引
4.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是 .
答案 (-∞,-3]∪[3,+∞) 解析 ∵|x+1|+|x-2| ≥|(x+1)-(x-2)|=3, ∴|x+1|+|x-2|的最小值为3,要使原不等式有解,只需|a|≥3,即a≥3或a≤-3.

不等式选讲绝对值不等式

不等式选讲绝对值不等式

6、设函数f(x)=|x-a|+3x,其中a>0. (1)当a=1时,求不等式f(x)≥3x+2的解集; (2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.
解 (1)当a=1时,f(x)≥3x+2可化为|x-1|≥2. 由此可得x≥3或x≤-1. 故不等式f(x)≥3x+2的解集为{x|x≥3,或x≤-1}.
1.绝对值三角不等式 (1)定理1:如果a,b是实数,则|a+b| ≤ |a|+|b|,当且仅当 ab≥0 时,等号成立; (2)定理2:如果a,b,c是实数,则|a-c|≤ |a-b|+|b-c,| 当且 仅当 (a-b)(b-c)≥时0 ,等号成立. (3)性质:_|_a_|-__|_b_| _≤|a±b|≤____|a_|_+__|b;|
考点二 含参数的绝对值不等式问题
[典例] 2、已知不等式|x+1|-|x-3|>a.分别求出下列情形中 a的取值范围:
(1)不等式有解; (2)不等式的解集为R; (3)不等式的解集为∅.
解:法一:因为|x+1|-|x-3|表示数轴上的点P(x)与两定点 A(-1),B(3)距离的差,即|x+1|-|x-3|=PA-PB.
【针对训练】:
1.不等式|x-5|+|x+3|≥10 的解集是( )
A.[-5,7]
B.[-4,6]
C.(-∞,-5]∪[7,+∞)
D.(-∞,-4]∪[6,+∞)
2、资料选修 4 系列 P16[练一练]:1
解析:解法一:当 x≤-3 时,5-x+(-x-3)≥10,∴x≤-4; 当-3<x<5 时,5-x+x+3≥10,8≥10 无解,舍去; 当 x≥5 时,x-5+x+3≥10,∴x≥6. 综上 x∈(-∞,-4]∪[6,+∞). 选 D. 解法二:用特殊值检验,取 x=5 不符合题意,排除 A、B,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考四:若变为不等式|x-1|+|x+2|<k的解集 为 ,则k的取值范围是 k 3
练习:解不等式│x+1│–│x–2│≥1
x | x 1
作出f (x) │x +1│–│x – 2│的图像, 并思考f (x)的最大和最小值
│x +1│–│x – 2│ k恒成立,k的取值范围是 │x +1│–│x – 2│ k恒成立,k的取值范围是
例1.解不等式 | 3 2x | 7. 解:原不等式 2x 3 7
2x 3 7或2x 3 7
x 2或x 5
原不等式的解集为{x | x 2或x 5}.
变式练习: 解不等式 | 3x 2 | 1.
答案: (, 0) (1, )
例2.解不等式 | x2 5x | 6.
解:原不等式
例2.已知函数
.
(I)画出
(II)求不等式
的图像; 的解集。
x 4 ,x ≤ 1
f
x
3x
2

1
x
3 2
4
x
,x

3 2
,1 3
1,3
5,
课堂练习
1.对任意实数x,若不等式|x+1|-|x-2|>k
恒成立,则k的取值范围是 ( B)
(A)k<3 (B)k<-3 (C)k≤3 (D)k≤-3 2.若不等式|x-1|+|x-3|<a的解集为空集,则a的
解绝对值不等式的思路是转化为等价的不含 绝对值符号的不等式(组),常见的类型有:
(1) f x a(a 0) f x a或f x a
(2) f x a(a 0) a f x a
(3) f x g(x) f x g(x)或f x g(x) (4) f x g(x) g(x) f x g(x) (5) f x g x f x2 g x2
(1) f x a(a 0) f x a或f x a
(2) f x a(a 0) a f x a
(3) f x g(x) f x g(x)或f x g(x) (4) f x g(x) g(x) f x g(x) (5) f x g x f x2 g x2
(1). a b c a b c (2). a c a b b c
定理2
1、求证:(1)a b a b 2 a
(2) a b a b 2 b
2、求证:(1) x a x b a b
(2) x a x b a b
1.求 x 3 的x最大9 值 2.求 x 3 的x最 9小值
2x 4, x 1
例1. 解不等式|x-1|+|x+2|≥5
y
2x 6, x 2 y 2, 2 x 1
2x 4, x 1
如图,作出函数的图象,
函数的零点是-3,2.
-2 1
-3
2x
-2
由图象可知,当x 3或x 2时,y 0,
∴原不等式的解集为{x|x≤-3 或 x≥2}.
绝对值不等式
1、绝对值三角不等式 2、绝对值不等式的解法
1、绝对值三角不等式
在数轴上,
a 的几何意义 表示点A到原点的距离
a b 的几何意义 表示数轴上A,B两点之间的距离
a b 的几何意义 表示数轴上A,-B两点之间的距

a A
0
a
x
ab
ab
-B
A
B
-b
a
O
b
x
探究
设a, b为实数, 你能比较 a b 与之a 间 的b 大
例3.解不等式 | x2 3x 4 | x 1.
解2:原不等式 x2 3x 4 (x 1)或x2 3x 4 x 1 x2 2x 3 0或 x2 4x 5 0 (x 1)(x 3) 0,或(x 1)(x 5) 0
1 x 3,或x 1,或x 5, 原不等式的解集为{x | x 1,或 1 x 3,或x 5}.
探索:不等式|x|<1的解集.
方法三:两边同时平方去掉绝对值符号.
对原不等式两边平方得x2<1, 即(x+1)(x-1)<0
∴-1<x<1
∴不等式|x|<1的解集为{x|-1<x<1}.
方法四:利用函数图象观察
从函数观点看,不等式|x|<1的解集,是函
数y=|x|的图象位于函数y=1的图象下方的部
6
x2
5x
6
x 2
x2
5x 5x
6 6
x2 x2
5x 5x
6 6
0 0
x 2或x 1 x 6
3
1 x 2或3 x 6,
原不等式的解集为(1, 2) (3,6).
变式练习: 解不等式1 | 3x 4 | 6.
答案: [10 , 5) (1, 2]
33
3
解绝对值不等式的思路是转化为等价的不含 绝对值符号的不等式(组),常见的类型有:
1.绝对值的定义: |a|= 0 ,a=0
-a ,a<0
2.绝对值的几何意义:
|a|
A
0
a
实数a绝对值|a|表示 数轴上坐标为A的点 到原点的距离.
|a-b|
A
B
a
b
实数a,b之差的绝对值 |a-b|,表示它们在数轴上 对应的A,B之间的距离.
3.绝对值的运算性质:
a |a|
a2 a , ab a b , | b | | b |
不等式|x|<1的解集表示到原点的距离小于1的点的集合.
-1
0
1
∴不等式|x|<1的解集为{x|-1<x<1}
方法二:利用绝对值的定义去掉绝对值符号,需要分类讨论
①当x≥0时,原不等式可化为x<1, ∴ 0≤x<1
②当x<0时,原不等式可化为-x<1,即x>-1
∴ -1<x<0 综合①②得,原不等式的解集为{x|-1<x<1}
提出问题:
你能看出下面两个不等式的解集吗?
⑴ x 1
⑵ x 1
主要方法有:
法一:利用绝对值的几何意义观察; 法二:利用绝对值的定义去掉绝对值符号,需要分类讨论; 法三:两边同时平方去掉绝对值符号; 法四:利用函数图象观察.
这也是解其他含绝对值不等式的四种常用思路.
探索:不等式|x|<1的解集.
方法一:利用绝对值的几何意义观察
方法三:通过构造函数,利用函数的图象求解.
解:原不等式化为| x 1| | x 2 | 5 0,
构造函数 y | x 1| | x 2 |, 化简得
(1 x) (x 2),x 2 y (1 x) (x 2), 2 x 1
(x 1) (x 2),x 1
2x 6, x 2 即 y 2, 2 x 1
例3.解不等式 | x2 3x 4 | x 1.

1:原不等式
x x
2 2
3x 3x
4 4
0 x
或 1
x2 3x 4 0
(
x2
3x
4)
x
1
x x
4或x 5或x
1或 1
1 1
x x
4 3
x 1,或x 5,或 1 x 3,
原不等式的解集为{x | x 1,或 1 x 3,或x 5}.
原不等式
x (1
2 x)
(x
2)
5
x x
2 3
x
3.
(2)当 2 x 1时,
原不等式
2 x 1 (1 x) (x
2)
5
2 3 5
x
1
x
.
(3)当x 1时,
原不等式
x 1 (x 1)
(x
2)
5
x x
1 2
x
2
∴原不等式的解集为{x|x≤-3 或 x≥2}.
例1. 解不等式|x-1|+|x+2|≥5
这种方法体现了函数与方程的思想.
例1. 解不等式|x-1|+|x+2|≥5
思考一:由以上解法可知,|x-1|+|x+2|有最 小
值 3 此时,x的取值范围是 x 2,1
思考二:若变为|x-1|+|x+2|≥k恒成立,则k的
取值范围是
k 3
Hale Waihona Puke 思考三:若变为存在x,使|x-1|+|x+2|<k成立, 则k的取值范围是 k 3
ab a b
当向量 a, 共b 线时,
同向: a b a b 反向: a b a b
y
ab b
a
O
x
ab a b
定理1 如果a,b是实数,则 a b a b
定理1的完善
绝对值三角不等式
a b ab a b
a b ab a b
定理1的推广 如果a,b,c是实数,则
绝对值不等式的解法(二)
2020年8月6日星期四
例1. 解不等式|x-1|+|x+2|≥5
方法一:利用绝对值的几何意义.
解:如图,数轴上-2,1对应的点分别为A,B,
-3,2对应的点分别为A1,B1,
A1 A
B B1
这种方法体现了 数形结合的思想
-3 -2 -1 0 1 2
∵|A1A|+|A1B|=5, |B1A|+|B1B|=5,
分对应的x的取值范围.
y
∴不等式|x|<1的解集为
1 y=1
{x|-1<x<1}
-1 o 1 x
一般结论: 形如|x|<a和|x|>a (a>0)的不等式的解集:
相关文档
最新文档