高中数学必修二直线与圆方面的知识点范文
高中数学必修二直线与圆方面的知识点
高中数学必修二直线与圆方面的知识点Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】高中数学必修2知识点——直线与圆整理 徐福扬一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+=其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
高二数学直线与圆知识点
高二数学直线与圆知识点直线与圆是高中数学中的基础知识,也是解析几何的重要内容之一。
掌握直线与圆的性质和关系,对于理解几何图形的性质、解题以及拓展数学思维都有重要意义。
本文将介绍高二数学中与直线与圆相关的知识点。
一、直线的基本性质1. 直线的定义:直线是由无限多个点构成,且任意两点都在这条直线上。
2. 直线的表示方式:直线可以用两个点表示,也可以用方程表示。
3. 直线的斜率:斜率是直线的重要性质之一,可以用来描述直线的倾斜程度。
直线的斜率可以通过两点的坐标计算得到。
二、圆的基本性质1. 圆的定义:圆是平面上到一个定点距离固定的点的轨迹。
定点称为圆心,距离称为半径。
2. 圆的表示方式:圆可以用圆心和半径表示。
3. 弧长和扇形面积:圆上的弧长是圆心角所对的弧段的长度,扇形面积是圆心角所对的扇形的面积。
三、直线与圆的关系1. 直线和圆的位置关系:直线可以与圆相切、相离、相交。
相切时,直线只与圆相切于一点;相离时,直线与圆没有公共点;相交时,直线与圆相交于两个点。
2. 切线的性质:切线是与圆相切于一点的直线,切线与半径垂直。
3. 弦的性质:弦是圆上任意两点之间的线段,圆心角等于弦所对的弧的一半。
4. 弦切角的性质:弦切角是弦和切线的夹角,弦切角等于所对弧的圆心角。
四、直线与圆的方程1. 直线的方程:直线可以用点斜式、一般式、截距式等多种形式表示。
2. 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程是以圆心为原点,半径为r的圆的方程。
五、直线与圆的相关定理1. 切线定理:切线与半径垂直,且切点在切线上。
2. 弦切定理:切线与弦所夹角等于所对的弧的圆心角。
3. 弧切定理:切线与弦所夹的圆心角等于所对的弧的一半。
六、直线与圆的相关应用1. 直线与圆的位置关系的应用:可以根据直线与圆的位置关系求出点的坐标、判断线段的长度等。
2. 直线与圆的方程的应用:可以通过直线和圆的方程求解交点的坐标、判断直线与圆是否相交等。
高中数学直线和圆知识点复习总结
高中数学直线和圆知识点复习总结
高中数学中的直线和圆的总结有很多知识点,本文就针对这些知识点进行一个总结,同学们可以查阅,以便加深对直线和圆的理解。
首先,在直线方面需要知道的是什么?
一、直线的定义
直线是平面上双等距平行的两条线,可以用一元二次方程来表示。
二、直线的性质
1、平等的距离及同一平面的
直线的夹角相等,距离也相等,两直线交于一点,其中一条直线经过这一点,另一条不经过,而在同一平面上的两直线是相互垂直的。
2、直线的交点
当两条直线在有限空间内相交时,这种相交是称之为直线的交点。
三、直线的位置关系
1、平行
当两条直线从同一个方向平行可以认为这两条直线平行。
接下来,要总结一下圆知识点了。
圆是位于平面中心点到圆上任一点的距离相等的一种曲线,而圆的半径则是指这种距离。
1、圆心在圆的任一点的距离是一致的
2、圆的封闭图形
圆是一种封闭的曲线,无论是确定它的定义还是它的性质,都建立在它是一种封闭图形的基础之上。
1、圆内和内接四边形外接圆
内接四边形外接圆是指圆心和任意两个顶点形成的距离都相等的圆,这圆就是内接四边形外接圆。
当一条直线与圆的关系有六种:即相切、相交、内切、外切、内含和外公切线,因此理解这一关系也是重要的。
以上就是高中数学直线和圆知识点复习总结,希望可以帮助读者们更加深入理解这些概念,提升高中数学学习的能力,顺利通过高考。
(完整版)高中数学必修二直线与圆方面的知识点,推荐文档
高中数学必修2知识点——直线与圆整理徐福扬一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即。
斜率反映直tan k α=线与轴的倾斜程度。
当时,; 当时,; 当时,[) 90,0∈α0≥k () 180,90∈α0<k 90=α不存在。
k ②过两点的直线的斜率公式: )(211212x x x x y y k ≠--=注意下面四点:(1)当时,公式右边无意义,直线的斜率不21x x =存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k ,且过点)(11x x k y y -=-()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:,直线斜率为k ,直线在y 轴上的截距为b b kx y +=③两点式:()直线两点,112121y y x x y y x x --=--1212,x x y y ≠≠()11,y x ()22,y x ④截矩式:1x y ab+=其中直线与轴交于点,与轴交于点,即与轴、轴l x (,0)a y (0,)b l x y 的截距分别为。
,a b ⑤一般式:(A ,B 不全为0)0=++C By Ax注意:各式的适用范围 特殊的方程如:○1○2平行于x 轴的直线:(b 为常数); 平行于y 轴的直线:b y =(a 为常数);a x =(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)0000=++C y B x A 00,B A 的直线系:(C 为常数)000=++C y B x A (二)过定点的直线系(ⅰ)斜率为k 的直线系:,直线过定点()00x x k y y -=-;()00,y x (ⅱ)过两条直线,的0:1111=++C y B x A l 0:2222=++C y B x A l 交点的直线系方程为(为参数),其中直线不在直线()()0222111=+++++C y B x A C y B x A λλ2l 系中。
学生版 高中数学必修2直线与圆的位置关系知识点总结经典例题与习题
高中数学必修2 直线与圆的位置关系【一】、圆的定义及其方程.(1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定长就是半径;(圆心是定位条件,半径是定型条件) (2)圆的标准方程: ;圆心),(b a圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ;圆心 ,半径为 ;【二】、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理)设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ; ①P 在在圆C 外 ; ②P 在在圆C 内 ; ③P 在在圆C 上 ; 【三】、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,圆心C 到直线l 之距为d ,由直线l 和圆C 联立方程组消去x (或y )后,所得一元二次方程的判别式为∆,则它们的位置关系如下:相离 ;相切 ;相交 ; 注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法;利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。
【四】、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。
(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离 ; ②两圆外切 ; ③两圆相交 ; ④两圆内切 ⑤两圆内含 ;(五)已知圆C :(x-a)2+(y-b)2=r 2(r>0),直线L :Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。
判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。
高中数学直线和圆知识点总结
高中数学直线和圆知识点总结高中数学是许多学生感到头疼的科目之一,其中直线和圆的知识点又是必考内容。
本文将为大家总结一下高中数学中直线和圆的知识点,帮助大家更好地掌握这一部分内容。
一、直线1、定义:直线是不弯曲的线,它没有宽度,可以无限延伸。
2、性质:直线是平行的,没有交点,可以通过两点确定一条直线。
3、画法:在纸上绘制直线时,要确保线条平直,没有弯曲,且与坐标轴平行。
二、圆1、定义:圆是一个平面内到定点(F)的距离等于定长r的点的集合。
2、性质:圆具有旋转对称性,可以绕圆心旋转任意角度而不改变形状和大小。
圆的直径是最长的弦,直径所在的直线穿过圆心。
3、画法:在纸上绘制圆时,可以使用圆规来绘制,确保圆规的两只脚相等,并在画圆的过程中保持圆规稳定。
三、直线和圆的重要知识点1、点到直线的距离公式:假设点P(x0,y0)到直线Ax+By+C=0的距离为d,则d=|Ax0+By0+C|/√(A^2+B^2)。
2、圆的方程:假设圆心为(x0,y0),半径为r,则圆的方程为(x-x0)^2+(y-y0)^2=r^2。
3、圆的标准方程:假设圆心为(a,b),半径为r,则圆的标准方程为(x-a)^2+(y-b)^2=r^2。
四、总结高中数学中的直线和圆知识点是必考内容,需要大家熟练掌握。
在解决相关问题时,要注意直线的性质和点到直线的距离公式,以及圆的方程和标准方程的求解方法。
此外,还要注意圆和直线的位置关系,如相交、相切、内切等。
在学习过程中,可以通过多做练习题来加深对知识点的理解和掌握。
总之,直线和圆是高中数学中重要的知识点之一,需要大家认真学习和掌握。
希望本文的总结能够帮助大家更好地应对相关问题,提高数学成绩。
高二《直线与圆》知识点总结
高二《直线与圆》知识点总结直线与圆是高中数学中的重要内容,它们在几何学和代数学中具有广泛的应用。
掌握了直线与圆的相关知识,对于理解和解决几何和代数问题都有很大的帮助。
本文将对高二学生需要掌握的直线与圆的知识点进行总结。
一、直线与圆的基本概念和性质:1. 直线的定义和性质:直线是一条无限延伸的连续直线,具有无宽度和无端点的特点。
直线的特征是经过其中任意两点的直线上的所有点。
2. 圆的定义和性质:圆是由平面上到一个固定点的距离相等的所有点组成的集合。
圆由圆心和半径唯一确定,其中半径是圆心到圆上任意一点的距离。
3. 直线与圆的位置关系:直线与圆的位置关系有三种情况:相离、相切和相交。
相离表示直线与圆没有任何交点;相切表示直线与圆有且仅有一个交点;相交表示直线与圆有两个交点。
4. 切线的定义和性质:切线是与圆相切且与圆的切点相同的直线,切线与半径垂直。
二、直线与圆的方程和解析几何:1. 直线的一般方程:直线的一般方程可以写为Ax + By + C = 0,其中A、B、C为常数。
2. 直线的斜截式方程:直线的斜截式方程可以写为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
3. 圆的方程:圆的方程可以写为(x-a)² + (y-b)² = r²,其中(a,b)为圆心坐标,r为半径。
4. 直线与圆的位置关系的方程:要判断直线和圆的位置关系,可以将直线的方程代入圆的方程,并解方程得到判别式。
判别式小于0时,直线和圆相离;判别式等于0时,直线和圆相切;判别式大于0时,直线和圆相交。
三、直线与圆的交点和切线:1. 直线与圆的交点:若要求直线与圆的交点,可以将直线的方程代入圆的方程,并解方程得到交点的坐标。
2. 切线的判定和方程:若要确定直线是否为圆的切线,可以计算直线的斜率,然后计算圆心到直线的距离。
若斜率与圆心到直线的距离相等,则直线为圆的切线。
切线方程可以使用直线方程得出。
直线与圆知识点归纳总结
直线与圆知识点归纳总结嘿,咱今儿就来唠唠直线与圆的那些事儿哈!直线,那就是直直的一条线呗,没啥弯弯绕绕的。
它可以向两端无限延伸,就像咱那无穷无尽的想象力一样。
圆呢,圆圆的,多可爱呀!它可是有个固定的中心点,所有的点到这中心点的距离都相等呢,这就叫公平公正,哈哈!直线的方程有好多种呢,什么点斜式啦、斜截式啦,就好像人有不同的性格特点一样。
点斜式就像是有了一个点和一个方向,就能确定这条直线啦;斜截式呢,就像是知道了直线在 y 轴上的截距和斜率,也就了解它了。
圆呢,它的方程也有自己的门道。
标准方程就像是给圆穿上了一件合身的衣服,一下子就把它的样子清晰地展现出来了。
直线和圆碰到一起,那故事可就多啦!它们可能会相交,就像是两个好朋友见面握个手;也可能相切,就好像轻轻地碰了一下,点到为止;还有可能相离,那就是各走各的路咯。
咱想想啊,如果要判断直线和圆的位置关系,那咱就得算算距离呀。
圆心到直线的距离和圆的半径比一比,不就知道它们是咋个关系啦。
还有啊,圆的切线,那可是很特别的呢!切线和半径垂直,这就像是一种默契,不用多说都知道。
直线和圆的综合问题那也是常考的呢。
比如说求最值,哎呀,这就像是在玩游戏,要找到最厉害的那个解法。
咱再说说圆的弦长,这就像是圆上的一段小插曲。
通过一些公式和方法,就能算出这弦长有多长啦。
你说直线和圆的知识是不是很有趣呀?就像生活中的各种小细节,看似简单,却蕴含着大大的道理。
咱得好好琢磨琢磨,把这些知识都装进咱的脑袋里,以后遇到问题就能轻松应对啦!这直线和圆啊,就像是数学世界里的一对好伙伴,给我们带来了好多挑战和乐趣,难道不是吗?咱可得把它们研究透咯,让它们为咱的学习和生活增添光彩呀!。
高三直线和圆知识点
高三直线和圆知识点直线和圆是高中数学中的重要知识点,对于理解几何图形的性质和解题能力起着至关重要的作用。
本文将为大家详细介绍高三直线和圆的相关知识。
一、直线的定义和性质直线是由无数个点按照同一方向延伸而成的图形。
直线的特点是无限延伸,并且上面的任意两点都可以用直线段相连接。
直线的性质有以下几点:1. 直线上的任意两点可以确定一条直线。
2. 直线上的任意一点,都在直线上。
二、圆的定义和性质圆是由平面上与某一点的距离相等的所有点组成的图形。
这个距离称为圆的半径,通常用字母r表示。
圆心是与所有这些点距离相等的点。
直径是通过圆心的两个点,并且是圆的最长的一条线段,长度等于半径的两倍。
圆的性质有以下几点:1. 圆上所有点到圆心的距离都相等。
2. 圆的直径是圆的最长直线段,且等于半径的两倍。
3. 圆的周长公式为C=2πr,其中C表示周长,r表示半径。
4. 圆的面积公式为A=πr²,其中A表示面积,r表示半径。
三、直线和圆的关系直线和圆是几何图形中经常会出现的组合。
它们之间的关系有以下几种情况:1. 直线与圆的位置关系:a) 直线与圆相切:直线与圆只有一个交点,此时交点为切点。
b) 直线与圆相离:直线与圆没有交点。
c) 直线与圆相交:直线与圆有两个交点。
2. 圆上的点到直线的距离:a) 圆心到直线的距离:圆心到直线的距离等于直线的垂直距离,即圆心到直线的距离是最短的。
b) 圆上任意一点到直线的距离:圆上的任意一点到直线的距离都等于它到直线的垂直距离。
3. 直线和圆的方程:a) 直线的方程:直线的方程可以用斜截式、一般式、点斜式等形式表示,根据题目给定的条件来确定具体的方程形式。
b) 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0,其中a、b为圆心的坐标,r为半径。
高二数学直线与圆的知识点及公式
高二数学直线与圆的知识点及公式直线和圆是高二数学中的重要内容,它们在几何学和代数学中都有广泛的应用。
本文将介绍直线和圆的基本概念、性质以及相关的公式。
一、直线的知识点直线是由无数个点连成的轨迹,没有起点和终点。
在直线上可以确定无数个点,其中有一些特殊的点和直线的性质需要我们了解。
1. 直线的斜率直线的斜率是直线的重要性质之一,它表示了直线上各个点的变化率。
直线的斜率可以用以下公式表示:斜率k = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)是直线上两个不同的点的坐标。
2. 直线的截距直线的截距也是直线的一个重要性质,它表示了直线与坐标轴的交点位置。
设直线与x轴的交点为A,与y轴的交点为B,直线的截距可以用以下公式表示:x轴截距a = -y轴截距b = -c / b其中,c是直线的常数项。
3. 直线的方程直线可以由点斜式、一般式和截距式等不同的方程表示。
根据直线上已知的条件,我们可以选择适当的方程形式来表示直线。
下面是直线方程的一般形式:Ax + By + C = 0其中,A、B和C是常数,代表直线的斜率和截距。
二、圆的知识点圆是由平面内到一个固定点距离相等的所有点的轨迹,其中固定点称为圆心,距离称为半径。
圆的性质和相关公式如下:1. 圆的方程圆的方程可以表示为:(x - h)² + (y - k)² = r²其中,(h, k)是圆心的坐标,r是半径的长度。
2. 圆的直径圆的直径是通过圆心并且两端点处于圆上的一条线段。
圆的直径长度等于半径的2倍。
3. 圆的弦圆上任意两点之间所形成的线段称为圆的弦。
圆的直径是圆的一个特殊的弦,它同时也是最长的弦。
4. 圆的切线圆上的切线是与圆只有一个交点的直线。
切线和圆的半径垂直。
5. 圆的弧长和扇形面积圆的弧长可以用下面的公式计算:弧长 = 弧度 ×半径而圆的扇形面积则可以用以下公式计算:扇形面积 = 弧度 ×半径² / 2三、综合运用直线和圆在几何学和代数学中的运用非常广泛。
直线与圆知识点总结
直线与圆知识点总结1. 直线与圆的位置关系:- 直线与圆可能相交于两个点,这种情况称为相交。
- 直线与圆可能与圆外部割线相切于一点,这种情况称为相切。
- 直线可能与圆没有交点,这种情况称为相离。
2. 判断直线与圆的位置关系:- 使用勾股定理可以判断直线与圆是否相交。
设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
- 使用两点式可以判断直线与圆的位置关系。
设直线上两点为(x₁, y₁)和(x₂, y₂),圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
计算直线的斜率m = (y₂ - y₁) / (x₂ - x₁),若直线的斜率存在且非零,则直线与圆相交或相离;若直线的斜率不存在或为0,则直线可能与圆相切或相离。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
3. 求直线与圆的交点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,得到一个关于x的二次方程。
解这个方程即可得到直线与圆的交点的x坐标。
将得到的x坐标代入直线的方程,可以求得对应的y坐标。
4. 求直线与圆的切点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
直线与圆知识点归纳高三
直线与圆知识点归纳高三直线与圆知识点归纳直线和圆是解析几何中常见的两种几何图形,它们有着丰富的性质和联系。
本文将对直线和圆的相关知识点进行归纳总结,帮助高三学生复习和掌握这一部分内容。
一、直线的定义和性质1. 直线的定义:直线是由无数个点连成的路径,它没有宽度和长度,可以无限延伸。
2. 直线的性质:(1) 直线上的任意两点可以确定一条直线;(2) 任意一条直线可以通过两个点确定;(3) 直线可以延伸到无穷远,也可以延伸到无穷近。
二、圆的定义和性质1. 圆的定义:圆是由平面上距离某一点固定距离的所有点构成的图形。
2. 圆的性质:(1) 圆上任意两点都在圆周上;(2) 圆心到圆周上的任一点的距离都相等,称为半径;(3) 圆的直径是通过圆心,并且两端点都在圆上的线段,长度为半径的两倍;(4) 圆的周长是圆周的长度,记作C,公式为C = 2πr,其中r 为半径;(5) 圆的面积是圆内部的所有点构成的区域,记作S,公式为S = πr²。
三、直线与圆的关系1. 直线与圆的位置关系:(1) 直线可与圆相交,相切或不相交;(2) 如果直线与圆相交,可能有两个交点,一个交点或没有交点;(3) 如果直线与圆相切,有且只有一个切点;(4) 如果直线不与圆相交或切,那么直线与圆之间的距离等于直线到圆心的距离。
2. 判断直线与圆的位置关系的方法:(1) 利用勾股定理:如果直线与圆的距离小于半径,那么直线与圆相交;如果直线与圆的距离等于半径,那么直线与圆相切;如果直线与圆的距离大于半径,那么直线与圆不相交也不相切。
(2) 利用方程求解:已知直线和圆的方程,将直线方程代入圆的方程中,求解得到交点或切点。
四、直线和圆的相关定理1. 直径定理:如果一条直线通过圆的圆心,并且两个端点都在圆上,那么这条直线的长度等于圆的直径。
2. 切线定理:过圆外一点引一条直线与圆相交,那么这条直线与圆的切点到圆心的线段垂直于直线。
3. 弦切角定理:相交弦所夹的圆心角等于它们所对的弧所夹的圆心角的一半。
高中数学高二的直线与圆知识点
高中数学高二的直线与圆知识点第1篇:高中数学高二的直线与圆知识点直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行a1/a2=b1/b2注意检验(2)垂直a1a2+b1b2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何*质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦未完,继续阅读 >第2篇:高二数学直线与圆的知识点直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、,,①∥,;②.直线与直线的位置关系:(1)平行a1/a2=b1/b2注意检验(2)垂直a1a2+b1b2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何*质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦未完,继续阅读 >第3篇:新高二数学直线与圆的知识点1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
直线与圆的知识点总结
直线与圆的知识点总结1. 直线的基本性质直线是没有宽度和厚度的,只有长度的几何图形。
直线上的任意两点可以确定一条直线,直线也可以延伸到无穷远。
直线有无穷多条平行直线。
直线和直线之间可以相交,也可以平行。
2. 圆的基本性质圆是由平面上与一个固定点的距离恒定的所有点组成的集合。
这个固定点叫做圆心,恒定的距离叫做半径。
圆的直径是通过圆心并且两端点在圆上的线段。
圆有无穷多条切线,切线与半径的夹角是直角。
圆周上的任意两点与圆心的连线组成的角叫做圆心角,这个角的弧长等于圆周上它所对的圆弧的长度的角叫做圆心角。
3. 直线与圆的关系直线与圆之间有着丰富的关系,包括直线和圆的相交,直线和圆的切线,以及圆的切线定理等。
3.1 直线和圆的相交直线和圆有三种可能的相交关系:相离、相切和相交。
相离是指直线和圆不相交,相切是指直线和圆只有一个公共的切点,相交是指直线和圆有两个公共的交点。
这些相交关系在解决一些几何问题的时候非常重要。
3.2 直线与圆的切线直线与圆的切线是指直线与圆只有一个公共的切点,并且这个切点是切线与圆的切点,切线与半径的夹角是直角。
切线的存在定理指出,直线与圆相交于两点,在这两点中可以找到一条切线。
切线与圆的切点处的切线定理为切线与圆的切点处切线的性质提供了重要的条件。
3.3 圆的切线定理圆的切线定理是指直线与圆相交于两点,则切线与直线的两切点连线的对角线相交于圆心。
这个定理在解决一些几何问题的时候有着重要的作用,它是几何学中重要的基本定理之一。
除了以上提到的基本性质和关系以外,直线与圆的知识还涉及到诸如圆心角、圆锥曲线、圆锥曲线的性质、圆锥曲线的方程、圆锥曲线的应用等方面的内容。
因此,掌握直线与圆的知识是极为重要的,它不仅可以帮助我们更好地理解和应用数学知识,还可以为我们解决实际问题提供有力的工具和方法。
高中数学直线与圆知识点总结
高中数学直线与圆知识点总结1. 直线直线是数学中最基本的几何概念之一。
在高中数学中,直线是研究的重点之一,我们先来总结一下与直线相关的知识点。
1.1 直线的斜率直线的斜率是直线特征的一个重要指标。
对于直线上的两个点(x1,y1)和(x2,y2),直线的斜率可以用以下公式来计算:$$k = \\frac{y_2 - y_1}{x_2 - x_1}$$其中,k表示直线的斜率。
斜率可以告诉我们直线的倾斜程度,斜率为正表示直线向上倾斜,斜率为负表示直线向下倾斜,斜率为零表示直线是水平的。
1.2 直线的方程直线的方程通常可以用斜截式、点斜式和一般式来表示。
•斜截式:斜截式方程形如y=kx+b,其中k表示斜率,b表示截距。
斜截式方程直观地表示了直线的斜率和与y轴的截距。
•点斜式:点斜式方程形如y−y1=k(x−x1),其中(x1,y1)是直线上的一点,k是斜率。
点斜式方程通过直线上的一个点和直线的斜率来表示直线。
•一般式:一般式方程形如Ax+By+C=0,其中A、B和C是常数,且A和B不同时为零。
一般式方程是直线方程的标准形式,可以很方便地得到直线的斜率和截距。
1.3 直线的性质直线具有许多重要的性质:•平行和垂直:两条直线平行,意味着它们的斜率相等;两条直线垂直,意味着它们的斜率的乘积为-1。
•距离:从一点到直线的距离是从点到直线上的垂直线段的长度。
•截距:直线与y轴的交点称为截距。
直线的斜截式方程中,截距即为b。
2. 圆圆是另一个重要的几何概念。
在高中数学中,圆的性质和相关定理也是数学教学的重点。
2.1 圆的定义圆是指平面上到一个固定点距离等于一个固定长度的所有点的集合。
固定点称为圆心,固定长度称为半径。
2.2 圆的方程圆的方程通常可以用标准方程和一般方程来表示。
•标准方程:标准方程形如(x−a)2+(y−b)2=r2,其中(a,b)是圆心的坐标,r是半径的长度。
•一般方程:一般方程形如x2+y2+Dx+Ey+F=0,其中D、E和F 是常数,且D和E不同时为零。
高中数学必修二直线与圆方面的知识点(K12教育文档)
高中数学必修二直线与圆方面的知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修二直线与圆方面的知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修二直线与圆方面的知识点(word版可编辑修改)的全部内容。
高中数学必修2知识点-—直线与圆整理 徐福扬一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在. ②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1.②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x--=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y ab+=其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
高中数学必修二直线与圆方面的知识点
高中数学必修 2 知识点——直线与圆整理徐福扬一、直线与方程(1)直线的倾斜角定义: x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与 x 轴平行或重合时 ,我们规定它的倾斜角为 0 度。
因此,倾斜角的取值范围是 0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即k tan。
斜率反映直线与轴的倾斜程度。
当0,90时, k0;当90 ,180时, k0 ;当90 时,k 不存在。
②过两点的直线的斜率公式:k y2y1( x1x2 )x2x1注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为 90°;(2)k 与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式: y y1 k(x x1 ) 直线斜率k,且过点x1, y1注意:当直线的斜率为0°时,k=0 ,直线的方程是 y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于 x ,所以它的1方程是 x=x 。
1②斜截式:③两点式:y kx b ,直线斜率为k ,直线在 y 轴上的截距为 b y y1xx1( x1 x2 , y1y2)直线两点x1, y1, x2 , y2y2y1x2x1④截矩式:x y1 a b其中直线 l 与x轴交于点( a,0),与y轴交于点(0,b),即 l 与x轴、y轴的截距分别为 a,b 。
⑤一般式:Ax By C 0 (A,B不全为0)注意:○1 各式的适用范围○2特殊的方程如:平行于 x 轴的直线:y b(b为常数);平行于y轴的直线:x a (a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 A0 x B0 y0C00( A0,B0是不全为 0 的常数)的直线系:00C( C 为常数)A xB y(二)过定点的直线系(ⅰ)斜率为 k 的直线系:y y0k x x0,直线过定点 x0 , y0;(ⅱ)过两条直线 l: A x B y C10l: A x B y C20的交111,222点的直线系方程为A1x B1 y C1A2 x B2 y C20 (为参数),其中直线l2不在直线系中。
高中数学必修二直线与圆方面的知识点
高中数学必修2知识点——直线与圆整理 徐福扬一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y ab+=其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二直线与
圆方面的知识点范文 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】
高中数学必修2知识点——直线与圆
整理 徐福扬
一、直线与方程 (1)直线的倾斜角
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211
21
2x x x x y y k ≠--=
注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x
注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能
用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:
11
2121
y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a
b
+=
其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)
注意:○
1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:
a x =(a 为常数);
(5)直线系方程:即具有某一共同性质的直线 (一)平行直线系
平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系
(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为
()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(6)两直线平行与垂直
当111:b x k y l +=,222:b x k y l +=时,
212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
0:1111=++C y B x A l 0:2222=++C y B x A l 相交
交点坐标即方程组⎩⎨⎧=++=++00
222
111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合
(8)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的
两个点,
则||AB =
(9)点到直线距离公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离2
2
00B
A C
By Ax d +++=
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆与方程
圆的标准方程
1、圆的标准方程:222()()x a y b r -+-=
圆心为A(a,b),半径为r 的圆的方程
2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:
(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上
(3)2200()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程
1、圆的一般方程:022=++++F Ey Dx y x
2、圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.
(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系
1、用点到直线的距离来判断直线与圆的位置关系.
设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2
,
2
(E
D -
-到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:
(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;
(3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系
两圆的位置关系.
设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:
(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆
2C 外切;
(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;
(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;
4.2.3 直线与圆的方程的应用
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论. 4.3.1空间直角坐标系
1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分
y
别是P 、Q 、R 在x 、y 、z 轴上的坐标
2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点
3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。
4.3.2空间两点间的距离公式
1、空间中任意一点),,(1111z y x P 到点),,(2222z y x P 之间的距离公式
y。