理论力学习题答案

合集下载

理论力学习题册答案

理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。

()3、力偶矩就是力偶。

()二.电动机重P=500N.放在水平梁AC的中央.如图所示。

理论力学习题答案

理论力学习题答案

2-3 梁的支承及载荷如图示,梁的自重不计。

以载荷M、P、q表示支承处的约束力。

(a) (b)(c) (d)(e) (f)(a)题2-3(a)图题2-3(a)答案图解: 对象:AB杆,受力如图示:建立参考基如图示∑==niixF1=AxF∑==niiAzFm1)(22=⋅+-⋅-⋅aqaMaFaFByaMqaFFBy2412+-=∑==niiyF1=--+qaFFFByAyaMqaFFAy2452-+=(b)、题2-3(b )图 题2-3(b )答案图解: 对象AB 杆,受力如图示,建立参考基如图示∑==n i ix F 100=Ax F∑==ni i Az F m 10)( 03212=-⋅⋅-⋅+⋅M a a q a F a F ByaMF qa F By 2243+-=∑==ni iy F 10 0321=-⋅-+F a q F F By AyaM F qa F Ay 22343-+=(C )、题2-3(C )图 题2-3(C )答案图 解:以AD 梁为研究对象,画出受力图如图所示。

建立参考基如图示0)(1=∑=i n i A F m 02342=⋅-⋅-⋅b qb b qb b F N C 得qb F N C 85= 01=∑=n i iy F 04=--+qb qb F F N C Ay 得qb F Ay 85= 01=∑=n i ix F0=Ax F(d )题2-3(d )图 题2-3(d )答案图解:以AB 梁为研究对象,画受力图如图所示。

建立参考基如图示0)(1=∑=i n i A F m 0222=-⋅⋅-⋅qb b b q b F N B 得qb F N B 23=01=∑=n i iy F 02=⋅-+b q F F Ay N B 得qb F Ay21= 01=∑=n i ix F0=Ax F(e )、题2-3(e )图 题2-3(e )答案图解:以AB 梁为研究对象,画受力图如图所示。

理论力学课后习题答案

理论力学课后习题答案

理论力学(盛冬发)课后习题答案c h12(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第12章动能定理一、是非题(正确的在括号内打“√”、错误的打“×”)1.圆轮纯滚动时,与地面接触点的法向约束力和滑动摩擦力均不做功。

( √ )2.理想约束的约束反力做功之和恒等于零。

( √ )3.由于质点系中的内力成对出现,所以内力的功的代数和恒等于零。

( × )4.弹簧从原长压缩10cm和拉长10cm,弹簧力做功相等。

( √ )5.质点系动能的变化与作用在质点系上的外力有关,与内力无关。

( × )6.三个质量相同的质点,从距地相同的高度上,以相同的初速度,一个向上抛出,一个水平抛出,一个向下抛出,则三质点落地时的速度相等。

( √ )7.动能定理的方程是矢量式。

( × )8.弹簧由其自然位置拉长10cm,再拉长10cm,在这两个过程中弹力做功相等。

143144( × )二、填空题1.当质点在铅垂平面内恰好转过一周时,其重力所做的功为 0 。

2.在理想约束的条件下,约束反力所做的功的代数和为零。

3.如图所示,质量为1m 的均质杆OA ,一端铰接在质量为2m 的均质圆轮的轮心,另一端放在水平面上,圆轮在地面上做纯滚动,若轮心的速度为o v ,则系统的动能=T 222014321v m v m +。

4.圆轮的一端连接弹簧,其刚度系数为k ,另一端连接一重量为P 的重物,如图所示。

初始时弹簧为自然长,当重物下降为h 时,系统的总功=W 221kh Ph -。

图 图5.如图所示的曲柄连杆机构,滑块A 与滑道BC 之间的摩擦力是系统的内力,设已知摩擦力为F 且等于常数,则曲柄转一周摩擦力的功为Fr 4-。

1456.平行四边形机构如图所示,r B O A O ==21,B O A O 21//,曲柄A O 1以角速度ω转动。

理论力学课后习题答案

理论力学课后习题答案

第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。

(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。

(√)3. 质点系动量矩的变化与外力有关,与内力无关。

(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。

(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。

(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。

(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。

(√)8. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 2213ml mr =+,式中m 为AB 杆的质量。

(×)9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。

(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。

(×)图二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。

2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。

3. 质点系的质量与质心速度的乘积称为质点系的动量。

4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。

5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。

理论力学习题及答案(全)

理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

理论力学课后习题及答案解析

理论力学课后习题及答案解析

理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。

解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。

习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。

解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。

其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。

(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。

其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。

习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。

理论力学习题及解答1

理论力学习题及解答1

理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。

1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。

1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。

(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。

转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。

当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。

2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。

2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。

各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。

2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。

2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。

2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。

图2-6 图2-72-7 求图示多跨静定梁的支座反力。

2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。

图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。

理论力学习题答案

理论力学习题答案

第一章静力学公理和物体的受力分析一、是非判断题1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。

( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。

( × )1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。

( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。

( ∨ ) 1.1.5 两点受力的构件都是二力杆。

( × ) 1.1.6只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。

( × ) 1.1.7力的平行四边形法则只适用于刚体。

( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。

( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。

( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。

( × ) 1.1.11 合力总是比分力大。

( × ) 1.1.12只要两个力大小相等,方向相同,则它们对物体的作用效果相同。

( × ) 1.1.13若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。

( ∨ ) 1.1.14当软绳受两个等值反向的压力时,可以平衡。

( × ) 1.1.15静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。

( ∨ ) 1.1.16静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。

( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。

( × ) 1.1.18 如图所示三铰拱,受力F ,F1作用,其中F作用于铰C的销子上,则AC、BC构件都不是二力构件。

( × )二、填空题1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。

1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。

理论,力学,答案,理论力学习题答案

理论,力学,答案,理论力学习题答案

·36·第4章 空间力系一、是非题(正确的在括号内打“√”、错误的打“×”)1.力在坐标轴上的投影是代数量,而在坐标面上的投影为矢量。

( √ )2.力对轴之矩是力使刚体绕轴转动效应的度量,它等于力在垂直于该轴的平面上的分力对轴与平面的交点之矩。

( √ )3.在平面问题中,力对点之矩为代数量;在空间问题中,力对点之矩也是代数量。

( × )4.合力对任一轴之矩,等于各分力对同一轴之矩的代数和。

( √ )5.空间任意力系平衡的必要与充分条件是力系的主矢和对任一点的主矩都等于零。

( √ ) 6.物体重力的合力所通过的点称为重心,物体几何形状的中心称为形心,重心与形心一定重合。

( × ) 7.计算一物体的重心,选择不同的坐标系,计算结果不同,因而说明物体的重心位置是变化的。

( × ) 8.物体的重心一定在物体上。

( × )二、填空题1.空间汇交力系共有三个独立的平衡方程,它们分别表示为0=∑xF、0=∑yF和0=∑zF 。

空间力偶系共有三个独立的平衡方程,它们分别表示为0=∑xM、0=∑yM和0=∑zM。

而空间任意力系共有六个独立的平衡方程,一般可表示为0=∑xF、0=∑yF、0=∑zF 、0)(=∑F xM 、 0)(=∑F yM 和0)(=∑F zM 。

2.由n 个力组成的空间平衡力系,如果其中的(n -1)个力相交于A 点,那么另一个力也必定通过点A 。

3.作用在同一刚体上的两个空间力偶彼此等效的条件是力偶矩矢相等。

4.空间力对一点的矩是一个矢量,而空间力对某轴的矩是一个代数量。

5.空间力F 对任一点O 之矩)(F M O 可用矢量积来表示,即F r F M ⨯=)(O 。

写成解析表达式为k j i F M )()()()(x y z x y z O yF xF xF zF zF yF -+-+-=。

6.当空间力与轴相交时,力对该轴的矩等于零。

理论力学课后习题及答案

理论力学课后习题及答案

应按下列要求进行设计(D )A.地震作用和抗震措施均按8度考虑B.地震作用和抗震措施均按7度考虑C.地震作用按8度确定,抗震措施按7度采用答题(共38分)1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分)震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分)地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。

(2分)震级的大小一般用里氏震级表达(1分)地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。

(1分)D.地震作用按7度确定,抗震措施按8度采用4.关于地基土的液化,下列哪句话是错误的(A)A.饱和的砂土比饱和的粉土更不容易液化B.地震持续时间长,即使烈度低,也可能出现液化C.土的相对密度越大,越不容易液化D.地下水位越深,越不容易液化5.考虑内力塑性重分布,可对框架结构的梁端负弯矩进行调幅(B )A.梁端塑性调幅应对水平地震作用产生的负弯矩进行B.梁端塑性调幅应对竖向荷载作用产生的负弯矩进行C.梁端塑性调幅应对内力组合后的负弯矩进行D.梁端塑性调幅应只对竖向恒荷载作用产生的负弯矩进行6.钢筋混凝土丙类建筑房屋的抗震等级应根据那些因素查表确定( B )A.抗震设防烈度、结构类型和房屋层数B.抗震设防烈度、结构类型和房屋高度C.抗震设防烈度、场地类型和房屋层数D.抗震设防烈度、场地类型和房屋高度7.地震系数k与下列何种因素有关( A )A.地震基本烈度B.场地卓越周期一、 C.场地土类1.震源到震中的垂直距离称为震源距(×)2.建筑场地类别主要是根据场地土的等效剪切波速和覆盖厚度来确定的(√)3.地震基本烈度是指一般场地条件下可能遭遇的超越概率为10%的地震烈度值(×)4.结构的刚心就是地震惯性力合力作用点的位置(×)5.设防烈度为8度和9度的高层建筑应考虑竖向地震作用(×)6.受压构件的位移延性将随轴压比的增加而减小C.地震作用按8度确定,抗震措施按7度采用答题(共38分)1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分)震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分)地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。

理论力学课后习题答案

理论力学课后习题答案

第7章 点的合成运动一、是非题(正确的在括号内打“√”、错误的打“×”)1.点的速度和加速度合成定理建立了两个不同物体上两点之间的速度和加速度之间的 关系。

( √ ) 2.根据速度合成定理,动点的绝对速度一定大于其相对速度。

( × )3.应用速度合成定理,在选取动点和动系时,若动点是某刚体上的一点,则动系不可以固结在这个刚体上。

( √ )4.从地球上观察到的太阳轨迹与同时在月球上观察到的轨迹相同。

( × ) 5.在合成运动中,当牵连运动为转动时,科氏加速度一定不为零。

( × ) 6.科氏加速度是由于牵连运动改变了相对速度的方向而产生的加速度。

( √ ) 7.在图中,动点M 以常速度r v 相对圆盘在圆盘直径上运动,圆盘以匀角速度ω绕定轴O 转动,则无论动点运动到圆盘上的什么位置,其科氏加速度都相等。

( √ )二、填空题1.已知r 234=++v i j k ,e 63=-ωi k ,则k =a 18 i + -60 j + 36 k 。

2.在图中,两个机构的斜杆绕O 2的角速度均为2ω,O 1O 2的距离为l ,斜杆与竖直方向的夹角为θ,则图(a)中直杆的角速度=1ωθθωcos sin 2,图(b)中直杆的角速度=1ω2ω。

图 图3.科氏加速度为零的条件有:动参考系作平动、0=r v 和r e v ω//。

4.绝对运动和相对运动是指动点分别相对于定系和动系的运动,而牵连运动是指牵连点相对于定系的运动。

牵连点是指某瞬时动系上和动点相重合的点,相应的牵连速度和加速度是指牵连点相对于定系的速度和加速度。

5.如图所示的系统,以''Ax y 为动参考系,Ax'总在水平轴上运动,AB l =。

则点B 的相对轨迹是圆周,若kt ϕ= (k 为常量),点B 的相对速度为lk ,相对加速度为2lk 。

图6.当点的绝对运动轨迹和相对运动轨迹都是曲线时,牵连运动是直线平动时的加速度合成定理表达式是a e r =+a a a ;牵连运动是曲线平动时的加速度合成定理表达式是 a e r =+a a a ;牵连运动是转动时的加速度合成定理表达式是a e r k =++a a a a 。

《理论力学》课后习题解答(赫桐生_高教版)

《理论力学》课后习题解答(赫桐生_高教版)

第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

胡汉才编著《理论力学》课后习题答案 第1章静力学基本概念

胡汉才编著《理论力学》课后习题答案  第1章静力学基本概念

第一章 静力学基本概念
1-1 考虑力对物体作用的运动效应,力是( A )。

A.滑动矢量
B.自由矢量
C.定位矢量
1-2 如图1-18所示,作用在物体A 上的两个大小不等的力1F 和2F ,沿同一直线但方向相
反,则其合力可表为( C )。

A.1F –2F
B.2F - 1F
C.1F +2F
图1-18 图1-19 1-3 F =100N ,方向如图1-19所示。

若将F 沿图示x ,y 方向分解,则x 方向分力的大小 x F = C N ,y 方向分力的大小y F = ___B __ N 。

A. 86.6
B. 70.0
C. 136.6
D.25.9
1-4 力的可传性只适用于 A 。

A. 刚体
B. 变形体
1-5 加减平衡力系公理适用于 C 。

A. 刚体;
B. 变形体;
C. 刚体和变形体。

1-6 如图1-20所示,已知一正方体,各边长a ,沿对角线BH 作用一个力F ,则该力在x 1轴上的投影为 A 。

A. 0
B. F/2
C. F/6
D.-F/3
1-7如图1-20所示,已知F=100N ,则其在三个坐标轴上的投影分别为: Fx = -402N ,Fy = 302N ,Fz = 502 N 。

图1-20 图1-21。

理论力学课后习题包括答案解析.

理论力学课后习题包括答案解析.

第一章偶,大小是260Nm,转向是逆时针。

习题 4- 1.求图示平面力系的合成结果,长度单位为m。

习题 4- 3.求以下各图中平行分布力的合力和对于 A 点之矩。

解: (1) 平行力系对 A 点的矩是:解: (1) 取 O 点为简化中心,求平面力系的主矢:取 B 点为简化中心,平行力系的主矢是:求平面力系对O 点的主矩:平行力系对 B 点的主矩是:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力向B点简化的结果是一个力R B和一个力偶MB,且:以下列图;向 A 点简化的结果是一个力R A和一个力偶M A,且:以下列图;将 R B向下平移一段距离 d ,使满足:最后简化为一个力R ,大小等于R B。

其几何意义是:R 的大小等于载荷分布的将 R A向右平移一段距离d,使满足:矩形面积,作用点经过矩形的形心。

(2)取 A 点为简化中心,平行力系的主矢是:最后简化为一个力R,大小等于R A。

其几何意义是:R 的大小等于载荷分布的三角形面积,作用点经过三角形的形心。

平行力系对 A 点的主矩是:列平衡方程:习题 4-4 .求以下各梁和刚架的支座反力,长度单位为m。

解方程组:反力的本质方向如图示。

校核:解: (1) 研究 AB 杆,受力解析,画受力求:结果正确。

(2) 研究 AB 杆,受力解析,将线性分布的载荷简化成一个集中力,画受力求:(3) 研究 ABC ,受力解析,将均布的载荷简化成一个集中力,画受力求:列平衡方程:解方程组:列平衡方程:反力的本质方向如图示。

校核:解方程组:结果正确。

反力的本质方向如图示。

校核:结果正确。

习题 4-5 .重物悬挂如图,已知G=1.8kN ,其他重量不计;求铰链 A 的拘束反力和杆 BC 所受的力。

列平衡方程:解方程组:解: (1) 研究整体,受力解析(BC 是二力杆),画受力求:反力的本质方向如图示。

列平衡方程:习题 4-8 .图示钻井架,G=177kN ,铅垂荷载P=1350kN ,风荷载,水平力 F=50kN ;求支座 A 的拘束反力和撑杆CD 所受的力。

理论力学第三版(周衍柏)全部习题答案

理论力学第三版(周衍柏)全部习题答案
由加速度的微分形式我们可知
代入得
对等式两边同时积分
可得 :
( 为常数)
代入初始条件: 时, ,故

又因为
所以
对等式两边同时积分 ,可得:
1.6 解 由题可知质点的位矢速度

沿垂直于位矢速度
又因为 , 即

(取位矢方向 ,垂直位矢方向 )
所以

即 沿位矢方向加速度
垂直位矢方向加速度
对③求导
对④求导
把③④⑦⑧代入⑤⑥式中可得
时, 得 ,故

同理,把⑦代入⑤可以解出
把⑦代入⑤
代入初条件 时, ,得 .所以

1.23证 (a)在1.22题中, 时,则电子运动受力 电子的运动微分方程
①-②-③
对②积分

对④再积分


( 为一常数)
此即为抛物线方程.
当 时
则电子受力
则电子的运动微分方程为
①-②-③
同1.22题的解法,联立①-②解之,得
理论力学第三版周衍柏全部习题答案理论力学第三版周衍柏周衍柏理论力学答案理论力学周衍柏理论力学教程周衍柏理论力学周衍柏pdf理论力学第三版答案理论力学课后习题答案理论力学复习题及答案理论力学习题答案
第一章 质点力学
第一章习题解答
1.1 由题可知示意图如题1.1.1图:
设开始计时的时刻速度为 ,由题可知枪弹作匀减速运动设减速度大小为 .

所以 ,代入 的表达式中可得:
此即为子弹击中斜面的地方和发射点的距离 的最大值
1.21 解 阻力一直与速度方向相反,即阻力与速度方向时刻在变化,但都在轨道上没点切线所在的直线方向上,故用自然坐标比用直角坐标好.

理论力学课后习题解答附答案

理论力学课后习题解答附答案

5.27证取广义坐标
因为
又因为
所以
5.28解 如题5.28.1图
(1)小环的位置可以由角 唯一确定,因此体系的自由度 ,取广义坐标 ,广义速度 。小球的动能:
以 为势能零点,则小环势能
所以拉氏函数
(2)由哈密顿原理

所以
又由于
所以
因为 是任意的,所以有被积式为0,即
化简得
5.29解 参考5.23题,设 ,体系的拉氏函数
⑶小球动能
又由
①式得
设小球势能为V,取固定圆球中心O为零势点,则
小球拉氏函数
= ①
根据定义

根据正则方程


对式两边求时间得:
故小球球心切向加速度
5.25解根据第二章§2.3的公式有:

根据泊松括号的定义:

所以
同理可知:
,
由②得:
同理可得:
,
5.26解 由题5.25可知 的表达式
因为

同理可求得:
势能:
根据定义式

因为
所以 为第一积分.又

得 为第二个第一积分.
同理

得 为第三个第一积分.
5.23解如题5.23.1图,
由5.6题解得小球的动能

根据定义



根据哈密顿函数的定义
代入③式后可求得:

由正则方程得:


代入⑤得
整理得
5.24如题5.24.1图,
⑴小球的位置可由 确定,故自由度
⑵选广义坐标 ,广义速度 .

根据哈密顿原理

(完整版)理论力学答案(谢传峰版)

(完整版)理论力学答案(谢传峰版)

静力学1-3 试画出图示各结构中构件AB 的受力图F AxF A yF B(a)(a)F AF BF BF DF D F BxF ByF BxF CF BF CF By1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5a1-5bF AxF A y F DF ByF A F BxF B F AF Ax F A y F DxF Dy WT EF CxF C yWF AxF A yF BxF B yF CxF C yF DxF DyF Bx F ByT EN’F BF DF A N F AF BF D1-8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。

试求二力F 1和F 2之间的关系。

解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。

解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F 对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。

对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =F ABF BC F CD 60o F 130o F 2 F BC45o F 2F BC F ABB45oy xF CD C60o F 130o F BC x y450302-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 静力学公理和物体的受力分析一、是非判断题1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。

( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。

( × ) 1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。

( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。

( ∨ ) 1.1.5 两点受力的构件都是二力杆。

( × ) 1.1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。

( × ) 1.1.7 力的平行四边形法则只适用于刚体。

( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。

( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。

( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。

( × ) 1.1.11 合力总是比分力大。

( × ) 1.1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。

( × ) 1.1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。

( ∨ ) 1.1.14 当软绳受两个等值反向的压力时,可以平衡。

( × ) 1.1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。

( ∨ ) 1.1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。

( ∨ )1.1.17 凡是两端用铰链连接的直杆都是二力杆。

( × ) 1.1.18 如图1.1所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。

( × )二、填空题1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。

1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。

1.2.3 如图1.2所示三铰拱架中,若将作用于构件AC 上的力偶M 搬移到构件BC 上,则A 、B 、C 各处的约束力 C 。

A. 都不变;B. 只有C 处的不改变;C. 都改变;D. 只有C 处的改变。

—2三、受力图1.3.1 画出各物体的受力图。

下列各图中所有接触均处于光滑面,各物体的自重除图中已标出的外,其余均略去不计。

1.3.2 画出下列各物体系中各指定研究对象的受力图。

接触面为光滑,各物自重除图中已画出的外均不计。

q(c) AP 2(a)A(b)B设B 处不q—3(e)B(f)—4第二章 平面力系(汇交力系与平面偶系)一、 是非判断题2.1.1当刚体受三个不平行的力作用时,只要这三个力的作用线汇交于同一点,则刚体一定处于平衡状态。

(× )2.1.2已知力F 的大小及其与x在x 轴方向上的分力。

(方向未知)( × )(g)(h)有销钉C ;1学时—52.1.3凡是力偶都不能用一个力来平衡。

( ∨ ) 2.1.4只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应。

( ∨ )二、 计算题2.2.1 铆接薄板在孔心A 、B 和C 处受三力作用,如图所示。

F 1=100N ,沿铅直方向;F 2=50N ,沿水平方向,并通过点A ;F 3=50N ,力的作用线也通过点A ,尺寸如图。

求此力系的合力。

(答案:F R =161.2kN,与x 轴的夹角为300)2.2.2 图示结构中各杆的重量不计,AB 和CD 两杆铅垂,力F 1和F 2的作用线水平。

已知 F 1=2kN ,F 2=l kN ,CE 、BC 杆与水平线的夹角为300,求杆件CE 所受的力。

(答案:F CE =1.16kN )2.2.3 在水平梁上作用着两个力偶,其中一个力偶矩M 1=60kN.m ,另一个力偶矩M 2=40kN.m ,已知AB =3.5m ,求A 、B 两支座处的约束反力。

(答案:F A =5.7kN ) A BCE DF 2F 1M 1 A B C3.5mM 2F 1 F 2 F 3N F F X F Rx 8032=+==∑αcos 4960.),cos(==∑RR F X i F 解:由(2-6)式: N Y X F R 2516122.)()(=+=∑∑α mmAB 100608022=+= NF F Y F Ry 14021=+==∑αsin 由(2-7)式: x y 8680.,cos('==∑RR F Y j F 02660.,(=⇒i F R 07429.,(=⇒j F R x y αα 0=∑X 解:1)取销钉B 为研究对象,设各杆均受拉力 B 1F ABF BC F α01=+-αcos BC F F kNF F BC 3341==⇒αC 2F CDF CE F α2)取销钉C 为研究对象,设各杆均受拉力BC F '0=∑X 02=++-ααcos cos CE BC F F F kN F F F BC CE 3322=-=⇒αcos α CE 杆受拉力 A F 解:取梁为研究对象 B F ∵力偶只能用力偶平衡,∴F A = F B ∑=0M kN M M F F B A 7155340605321...=-=-==⇒05321=+M M F A -.62.2.4 压榨机构如图所示,杆AB 、BC 的自重不计,A 、B 、C 处均为铰链连接。

油泵压力F =3kN ,方向水平,h =20mm ,l =150mm ,试求滑块C 施于工件的压力。

(答案:F C =11.25kN )2.2.5 重为P 的均质圆球放在板AB 与墙壁AC 之间,D 、E 两处均为光滑接触,尺寸如图示,设板AB 的重量不计,求A 处的约束反力及绳BC 的拉力。

(答案:F C = F T = 23 P/3;)锻锤工作时,如受工件给它的反作用力有偏心,则会使锻锤C 发生偏斜,这将在导轨F =100kN ,偏心距e =20mm ,锻锤高度h =200mm 试求锻锤给导轨两侧的压力。

(答案:F N =10kN )方向如图。

1)取销钉B 为研究对象,设AB 、BC 杆均受拉力0=-ααsin sin BC AB F F αcos 2F F BC -=⇒0=∑X 0=---F F F BC AB ααcos cos ∑=0Y AB BC F F =⇒2)取滑块C 为研究对象: 0=+C BC F F αsin '∑=0Y kN h Fl tg F F F BC C 251122.sin '==⋅=-=ααC 施于工件的压力为: )(.'↓=kN F C 2511EF DF y 解:1)取均质圆球为研究对象:0300=+sin -D F P P F D 2=⇒∑=0Y 2)取板AB 为研究对象: 0306000=-sin 'sin D A F F 332600P P F A ==⇒sin ∑=0Y 0306000=-+-T D A F F F cos 'cos =0方向如图03060cos 'cos D A T F F F +-=⇒P P P 33223221332=+-=方向如图 ∑=0M 解:取锻锤为研究对象∵力偶只能用力偶平衡,∴F A = F B 0=⋅-⋅h F e F A—7第二章 平面力系(任意力系)一、 是非判断题2.1.1一个任意力系的合力矢是主矢。

( × ) 2.1.2某平面任意力系向A 、B 两点简化的主矩皆为零,即M A =M B =0,此力系简化的最终结果为:A 、可能简化为一个力。

( ∨ )B 、可能简化为一个力偶。

( × )C 、可能平衡。

( ∨ )kN h e F F F B A 1020020100=⨯=⋅==⇒方向如图 锻锤给导轨两侧的压力分别是F A 和F B 的反作用力82.1.3若平面平行力系平衡,可以列出三个独立的平衡方程。

(1个) ( × ) 2.1.4平面任意力系的三个独立平衡方程不能全部采用投影方程。

( ∨ ) 2.1.5平面力系中,若其力多边形自行闭合,则力系平衡。

( × )对一空间任意力系,若其力多边形自行封闭,则该力系的主矢为零。

( √ )2.1.6 静不定问题的主要特点是其未知量的个数多于系统独立平衡方程的个数,所以未知量不能由平衡方程式全部求出。

( ∨ )二、 填空题2.2.1在边长为d 的正方形ABCD 所在平面内,作用一平面任意力系,该力系向A 点简化:∑M A =0,向B 点简化:∑M D =Fd (逆时针转向)。

标出)。

2.2.2如图所示各结构,属静不定的结构是 (a), (c), (d) 。

(a ) (b) (c) (d)三、计算题2.3.1 把作用在平板上的各力向点O 简化,已知F 1=300kN ,F 2=200kN ,F 3=350kN ,F 4 =250kN ,试求力系的主矢和对点O 的主矩以及力系的最后合成结果。

图中长度单位为cm 。

(答案:F R =678.86k N ,M O =4600 k N.cm ,d=6.78㎝,α=600)A DB d F d F M R D ⋅=⨯=∑22 F F F R 222==∴kNF F F X 98340304540301.cos cos -=++=∑kNF F F Y 13587304503201.sin sin =++=∑5020.cos '==∑R F Xα8650.cos '==∑R F Y β解: kN Y X F R 9667822.)()('=+=∑∑注意:不能用m=2n-3判别。

2学时—92.3.2 露天厂房立柱的底部是杯形基础,立柱底部用混凝土砂浆与杯形基础固连在一起,已知吊车梁传来的铅直载荷F =60kN ,风荷q =2kN/m ,又立柱自身重P =40kN ,a =0.5m ,h =10m ,试求立柱底部的约束反力。

(答案:F Ax =20k N ,F Ay =100k N ,M A =130 k N.m )2.3.3 试求下列各梁的支座反力。

[答案:(a )F Ay =2qa ,M A =5qa 2/2;(b)F Ax =0,F Ay =3k N ,F B =24.6k N ]2.3.4 悬臂式吊车的结构简图如图所示,由DE 、AC 二杆组成,A 、B 、C 为铰链连接。

已知D 03201003025104525cos cos )(F F F F M M i -+==∑kNF F R R 96678.'==cm F M d R 7860.==cm kN ⋅=584600.40353035F F -+sin 力系的最后合成结果为: 0=∑X 解:取立柱为研究对象:0=+qh X A )(←-=-=⇒kN qh X A 200=∑Y 0=--F P Y A )(↑=+=⇒kN F P Y A 1000=∑A M 022=--Fa qh M A kNm Fa qh M A 1303010022=+=+=⇒0=∑X 解:取梁为研究对象:0=A X 0=∑Y 0=--qa qa Y A )(↑=⇒qa Y A 20=∑A M 02222=--qa qa M A 2222522qa qa qh M A =+=⇒ 0=∑X 解:取梁为研究对象: 0=A X 0=∑Y 080=-+-F Y q Y B A .)(-↓=⇒kN Y A 30=∑A M 042612802=-++F Y M q B ...)(.).(.↑=+--=⇒kN Y B 62448880611210P 1=5kN ,P 2=1kN ,不计杆重,试求杆AC 杆所受的力和B 点的支反力。

相关文档
最新文档