高考文科数学常考题型训练推理与证明
高中数学高考总复习推理与证明习题及详解
高中数学高考总复习推理与证明习题及详解一、选择题1.(2010·广东文,10)在集合{a ,b ,c ,d }上定义两种运算、⊗如下: 那么d ⊗(ac )=( )A .aB .bC .cD .d [答案] A[解析] 根据运算、⊗的定义可知,a c =c ,d ⊗c =a ,故选A.2.(文)(2010·福建莆田质检)如果将1,2,3,…,n 重新排列后,得到一个新系列a 1,a 2,a 3,…,a n ,使得k +a k (k =1,2,…,n )都是完全平方数,则称n 为“好数”.若n 分别取4,5,6,则这三个数中,“好数”的个数是( )A .3B .2C .1D .0 [答案] C[解析] 5是好数,4和6都不是,∵取a 1=3,a 2=2,a 3=1,a 4=5,a 5=4,则1+a 1=4=22,2+a 2=4=22,3+a 3=4=22,4+a 4=32,5+a 5=32.(理)(2010·寿光现代中学)若定义在区间D 上的函数f (x ),对于D 上的任意n 个值x 1,x 2,…,x n ,总满足f (x 1)+f (x 2)+…+f (x n )≥nf ⎝⎛⎭⎫x 1+x 2+…+x n n ,则称f (x )为D 上的凹函数,现已知f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,则在锐角三角形ABC 中,tan A +tan B +tan C 的最小值是( ) A .3 B.23 C .3 3 D. 3 [答案] C[解析] 根据f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,再结合凹函数定义得,tan A +tan B +tan C ≥3tan ⎝⎛⎭⎫A +B +C 3=3tan π3=3 3.故所求的最小值为3 3.3.(文)定义某种新运算“⊗”:S =a ⊗b 的运算原理为如图的程序框图所示,则式子5⊗4-3⊗6=( )A .2B .1C .3D .4 [答案] B[解析] 由题意知5⊗4=5×(4+1)=25,3⊗6=6×(3+1)=24,所以5⊗4-3⊗6=1. (理)如图所示的算法中,令a =tan θ,b =sin θ,c =cos θ,若在集合{θ|0<θ<3π2}中任取θ的一个值,输出的结果是sin θ的概率是( )A.13B.12C.23D.34 [答案] A[解析] 该程序框图的功能是比较a ,b ,c 的大小并输出最大值,因此要使输出的结果是sin θ,需sin θ>tan θ,且sin θ>cos θ,∵当θ∈⎝⎛⎭⎫0,π2时,总有tan θ>sin θ,当θ∈⎝⎛⎭⎫π2,π时,sin θ>0,tan θ<0,cos θ<0,当θ∈⎝⎛⎭⎫π,3π2时,tan θ>0,sin θ<0,故输出的结果是sin θ时,θ的范围是⎝⎛⎭⎫π2,π,结合几何概型公式得,输出sin θ的概率为π-π232π-0=13,故选A. 4.(2010·曲师大附中)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2S a +b +c ;类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为r ,四面体S -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4 [答案] C[解析] 设三棱锥的内切球球心为O ,那么由V S -ABC =V O -ABC +V O -SAB +V O -SAC +V O -SBC ,即V =13S 1r +13S 2r +13S 3r +13S 4r ,可得r =3V S 1+S 2+S 3+S 4.5.(2010·辽宁锦州)类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,S (x )=a x -a -x 2,C (x )=a x +a -x2,其中a >0,且a ≠1,下面正确的运算公式是( )①S (x +y )=S (x )C (y )+C (x )S (y ); ②S (x -y )=S (x )C (y )-C (x )S (y ); ③C (x +y )=C (x )C (y )-S (x )S (y ); ④C (x -y )=C (x )C (y )+S (x )S (y ). A .①③B.②④C.①④D.①②③④[答案] D[解析]实际代入逐个验证即可.如S(x)C(y)+C(x)S(y)=a x-a-x2·a y+a-y2+a x+a-x2·a y-a-y2=14(ax+y-a y-x+a x-y-a-x-y+a x+y+a y-x-a x-y-a-x-y)=14(2ax+y-2a-x-y)=a x+y-a-(x+y)2=S(x+y),故①成立.同理可验证②③④均成立.6.四个小动物换座位,开始是鼠、猴、兔、猫分别坐在1、2、3、4号位子上如图所示,第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2011次互换座位后,小兔的座位对应的是()第一次第二次第三次第四次A.编号1 B.编号2 C.编号3 D.编号4[答案] D[解析]根据动物换座位的规则,可得第四次、第五次、第六次、第七次换座后的结果如下图所示:第一次 第二次 第三次 第四次据此可以归纳得到:四个小动物在换座后,每经过四次换座后与原来的座位一样,即以4为周期,因此在第2011次换座后,四个小动物的位置应该是和第3次换座后的位置一样,即小兔的座位号是4,故选D.[点评] 因为问题只求小兔座位号,故可只考虑小兔座位号的变化,用1→2表示小兔从1号位换到2号位,则小兔座位的变化规律是:3→1→2→4→3→1→2→4→3…,显见变化周期为4,又2011=4×502+3,故经过2011次换座后,小兔位于4号座.7.(2010·山东文)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则f (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x ) [答案] D[解析] 观察所给例子可看出偶函数求导后都变成了奇函数,∴g (-x )=-g (x ),选D. 8.甲、乙两位同学玩游戏,对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a 1乘以2后再加上12;如果出现一个正面朝上,一个反面朝上,则把a 1除以2后再加上12,这样就可得到一个新的实数a 2.对实数a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的取值范围是( )A .[-12,24]B .(-12,24)C .(-∞,-12)∪(24,+∞)D .(-∞,-12]∪[24,+∞) [答案] D[解析] 因为甲、乙同时各掷一枚均匀的硬币,出现的可能情形有4种:(正,正)、(正,反)、(反,正)、(反,反),所以每次操作后,得到两种新数的概率是一样的.故由题意得即4a 1+36,a 1+18,a 1+36,14a 1+18出现的机会是均等的,由于当a 3>a 1时,甲胜且甲胜的概率为34,故在上面四个表达式中,有3个大于a 1,∵a 1+18>a 1,a 1+36>a 1,故在其余二数中有且仅有一个大于a 1,由4a 1+36>a 1得a 1>-12,由14a 1+18>a 1得,a 1<24,故当-12<a 1<24时,四个数全大于a 1,当a 1≤-12或a 1≥24时,有且仅有3个大于a 1,故选D.9.(2010·广州市)如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为( )11 12 12 13 16 13 14 112 112 14 15 120 130 120 15 ………………………………A.1140B.1105C.160D.142 [答案] A[解析] 第6行从左到右各数依次为16,130,160,160,130,16,第7行从左到右各数依次为17,142,1105,1140,1105,142,17,故选A. 10.(2010·山东淄博一中)如图,在梯形ABCD 中,AB ∥DC ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB 的距离之比为m n ,则可推算出:EF =ma +nb m +n ,试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD 、BC 相交于O 点,设△OAB 、△OCD 的面积分别为S 1、S 2,EF ∥AB ,且EF 到CD 与AB 的距离之比为m n ,则△OEF 的面积S 0与S 1、S 2的关系是( )A .S 0=mS 1+nS 2m +nB .S 0=nS 1+mS 2m +nC.S 0=m S 1+n S 2m +nD.S 0=n S 1+m S 2m +n[答案] C[解析] 根据面积比等于相似比的平方求解. 二、填空题11.(2010·盐城调研)请阅读下列材料:若两个正实数a 1,a 2满足a 12+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数满足a 12+a 22+…+a n 2=1时,你能得到的结论为________.(不必证明)[答案] a 1+a 2+…+a n ≤n12.(文)如图甲,在△ABC 中,AB ⊥AC ,AD ⊥BC ,D 是垂足,则AB 2=BD ·BC ,该结论称为射影定理.如图乙,在三棱锥A -BCD 中,AD ⊥平面ABC ,AO ⊥平面BCD ,O 为垂足,且O 在△BCD 中,类比射影定理,探究S △ABC 、S △BCO 、S △BCD 之间满足的关系式是________.[答案] S △ABC 2=S △BCO ·S △BCD[解析] 根据类比推理,将线段的长推广为三角形的面积,从而得到答案.(理)(2010·湖南湘潭市)现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24,类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.[答案] a 3813.(文)(2010·陕西理)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________.[答案] 13+23+33+43+53+63=212 [解析] 观察所给等式可以发现: 13+23=32=(1+2)2 13+23+33=62=(1+2+3)2 13+23+33+43=102=(1+2+3+4)2 ……推想:13+23+33+…+n 3=(1+2+3+…+n )2∴第五个等式为:13+23+33+43+53+63=(1+2+…+6)2=212. (理)(2010·广东省佛山顺德区质检)已知一系列函数有如下性质: 函数y =x +1x 在(0,1]上是减函数,在[1,+∞)上是增函数;函数y =x +2x 在(0,2]上是减函数,在[2,+∞)上是增函数;函数y =x +3x 在(0,3]上是减函数,在[3,+∞)上是增函数;…………利用上述所提供的信息解决问题:若函数y =x +3mx (x >0)的值域是[6,+∞),则实数m 的值是________.[答案] 2[解析] 由题目提供信息可知y =x +3mx (x >0)在(0,3m ]上是减函数,在[3m ,+∞)上是增函数,∴当x =3m 时,y min =6,∴m =2.14.(文)(2010·湖南衡阳八中)如图(1)有关系S △P A ′B ′S △P AB=P A ′·PB ′P A ·PB ,则如图(2)有关系V P -A ′B ′C ′V P -ABC=________.[答案]P A ′·PB ′·PC ′P A ·PB ·PC[解析] 根据类比推理,将平面上三角形的结论,推广到空间,即V P -A ′B ′C ′V P -ABC=P A ′·PB ′·PC ′P A ·PB ·PC.简证如下:设B ′、B 到平面P AC 的距离分别为h 、H ,则h H =PB ′PB .又已知S △P A ′C ′S △P AC=P A ′·PC ′P A ·PC ,∴V P -A ′B ′C ′V P -ABC=13S △P A ′C ′·h13S △P AC·H =P A ′·PC ′·PB ′P A ·PC ·PB .(理)(2010·江苏姜堰中学)如图①,数轴上A (x 1)、B (x 2),点P 分AB 成两段长度之比APPB =λ,则点P 的坐标x P =x 1+λx 21+λ成立;如图②,在梯形ABCD 中,EF ∥AD ∥BC ,且AEEB =λ,则EF =AD +λ·BC 1+λ. 根据以上结论作类比推理,如图③,在棱台A 1B 1C 1-ABC 中,平面DEF 与平面ABC 平行,且A 1DDA =λ,△A 1B 1C 1、△DEF 、△ABC 的面积依次是S 1,S ,S 2,则有结论:________________________.[答案]S =S 1+λS 21+λ[解析] 将三棱台补成棱锥P -ABC ,不妨令P A 1=m ,DA =n ,则A 1D =nλ,那么, 由S 1S =m m +nλ,得m =n S 1S -S 1, 又由S S 2=m +nλm +n (λ+1),得m +nλ=n SS 2-S, ∴nλS 1S -S 1+nλ=n SS 2-S,∴S λS -S 1=SS 2-S,由此得S =S 1+λS 21+λ.三、解答题15.(2010·瑞安中学)用分析法...证明:3-2>5- 4. [证明] 证法1:要证3-2>5-4成立, ∵3-2>0,5-4>0,∴只要证(3-2)2>(5-4)2成立. 即证5-26>9-220成立. 即证-26>4-220成立, 只须证6<-2+20成立.∵20-2>0,故只须证6<24-420成立. 即证9>220成立,即证81>80成立.最后一个不等式显然成立,以上步步可逆,故原不等式成立.证法2:要证3-2>5-4成立,只须证3+4>5+2成立,只须证7+212>7+210成立,即证12>10成立,即证12>10成立,最后一个不等式显然成立,故原结论成立.16.(文)设数列{a n }的首项a 1=a ≠14,且a n +1=⎩⎨⎧12a n,n 为偶数a n+14,n 为奇数.记b n =a 2n -1-14,n=1,2,3,….(1)求a 2,a 3;(2)判断{b n }是否为等比数列,并证明你的结论. [解析] (1)a 2=a 1+14=a +14,a 3=12a 2=12a +18.(2)∵a 4=a 3+14=12a +38.∴a 5=12a 4=14a +316. ∴b 1=a 1-14=a -14≠0, b 2=a 3-14=12⎝⎛⎭⎫a -14, b 3=a 5-14=14⎝⎛⎭⎫a -14. 猜想{b n }是公比为12的等比数列. 证明如下:∵b n +1=a 2n +1-14=12a 2n -14=12⎝⎛⎭⎫a 2n -1+14-14 =12⎝⎛⎭⎫a 2n -1-14=12b n (n ∈N *). ∴{b n }是首项为a -14,公比为12的等比数列. (理)(2010·湖南文)给出下面的数表序列:表1 表2 表3 …1 1 3 1 3 54 4 812其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(2)每个数表中最后一行都只有一个数,它们构成数列,1,4,12,…,记此数列为{b n }.求和:b 3b 1b 2+b 4b 2b 3+…+b n +2b n b n +1(n ∈N *). [解析] (1)表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.简证如下(对考生不作要求)首先,表n (n ≥3)的第1行1,3,5,…,2n -1是等差数列,其平均数为1+3+…+(2n -1)n=n ;其次,若表n 的第k (1≤k ≤n -1)行a 1,a 2,…,a n -k +1是等差数列,则它的第k +1行a 1+a 2,a 2+a 3,…,a n -k +a n -k +1也是等差数列.由等差数列的性质知,表n 的第k 行中的数的平均数与第k +1行中的数的平均数分别是a 1+a n -k +12,a 1+a 2+a n -k +a n -k +12=a 1+a n -k +1.由此可知,表n (n ≥3)各行中的数都成等差数列,且各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.(2)表n 的第1行是1,3,5,…,2n -1,其平均数是1+3+5+…+(2n -1)n=n . 由(1)知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中的数的平均数是n ·2k -1),于是,表n 中最后一行的唯一一个数为b n =n ·2n -1.因此b k +2b k b k +1=(k +2)2k +1k ·2k -1·(k +1)·2k =k +2k (k +1)·2k -2=2(k +1)-k k (k +1)·2k -2=1k ·2k -3-1(k +1)·2k -2(k =1,2,3,…,n ) 故b 3b 1b 2+b 4b 2b 3+…+b n +2b n b n +1=⎝⎛⎭⎫11×2-2-12×2-1+⎝⎛⎭⎫12×2-1-13×20+…+⎣⎡⎦⎤1n ×2n -3-1(n +1)×2n -2 =11×2-2-1(n +1)×2n -2=4-1(n +1)×2n -2. 17.(文)已知等比数列{a n }的前n 项和为S n ,若a m ,a m +2,a m +1(m ∈N *)成等差数列,试判断S m ,S m +2,S m +1是否成等差数列,并证明你的结论.[解析] 设等比数列{a n }的首项为a 1,公比为q (a 1≠0,q ≠0),若a m ,a m +2,a m +1成等差数列,则2a m +2=a m +a m +1.∴2a 1q m +1=a 1q m -1+a 1q m .∵a 1≠0,q ≠0,∴2q 2-q -1=0.解得q =1或q =-12. 当q =1时,∵S m =ma 1,S m +1=(m +1)a 1,S m +2=(m +2)a 1,∴2S m +2≠S m +S m +1.∴当q =1时,S m ,S m +2,S m +1不成等差数列.当q =-12时,S m ,S m +2,S m +1成等差数列. 证明如下:证法1:∵(S m +S m +1)-2S m +2=(S m +S m +a m +1)-2(S m +a m +1+a m +2)=-a m +1-2a m +2=-a m +1-2qa m +1=-a m +1-2a m +1⎝⎛⎭⎫-12=0, ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列. 证法2:∵2S m +2=2a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +21+12=43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, 又S m +S m +1=a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m 1+12+a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +11+12=23a 1⎣⎡⎦⎤2-⎝⎛⎭⎫-12m -⎝⎛⎭⎫-12m +1 =23a 1⎣⎡⎦⎤2-4⎝⎛⎭⎫-12m +2+2⎝⎛⎭⎫-12m +2 =43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列. (理)已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.(1)求证:函数f (x )在R 上是增函数;(2)若关于x 的不等式f (x 2-ax +5a )<2的解集为{x |-3<x <2},求f (2010)的值;(3)在(2)的条件下,设a n =|f (n )-14|(n ∈N *),若数列{a n }从第k 项开始的连续20项之和等于102,求k 的值.[解析] (1)证明:设x 1>x 2,则x 1-x 2>0,从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0. f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.(2)设f (b )=2,于是不等式化为f (x 2-ax +5a )<f (b ).则x 2-ax +5a <b ,即x 2-ax +5a -b <0.∵不等式f (x 2-ax +5a )<2的解集为{x |-3<x <2}.∴方程x 2-ax +5a -b =0的两根为-3和2,于是⎩⎪⎨⎪⎧ -3+2=a -3×2=5a -b ,解得⎩⎪⎨⎪⎧a =-1b =1,∴f (1)=2. 在已知等式中令x =n ,y =1得,f (n +1)-f (n )=1.所以{f (n )}是首项为2,公差为1的等差数列.f (n )=2+(n -1)×1=n +1,故f (2010)=2011.(3)a k =|f (k )-14|=|(k +1)-14|=|k -13|.设从第k 项开始的连续20项之和为T k ,则T k =a k +a k +1+…+a k +19.当k ≥13时,a k =|k -13|=k -13,T k ≥T 13=0+1+2+3+…+19=190>102.当k <13时,a k =|k -13|=13-k .T k =(13-k )+(12-k )+…+1+0+1+…+(k +6)=k 2-7k +112.令k 2-7k +112=102,解得k =2或k =5.[点评] 当k ≥13时,a k =|k -13|=k -13,令T k =20(k -13)+20×192×1=102,无正整数解,故k ≥13时,T k 不可能取值为102.。
2020届高考文数复习常考题型大通关(全国卷): 推理与证明
常考题型大通关:第11题 推理与证明1、现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲B .乙C .丙D .丁2、要证: 222210a b a b +--≤,只要证明( ) A.2220ab a b -≥ B.22(1)(1)0a b --≥C.222()102a b a b +--≥ D.4422102a b a b ++--≤ 3、用数学归纳法证明()()()()()*1221321N n n n n n n n +++=⨯⨯⨯⨯+∈L L 时,从n k =到1n k =+,等式左边增乘的代数式为( ).A .2(21)k +B .21k +C .211k k ++ D .231k k ++ 4、用数学归纳法证明4221232n n n +++++=L ,则当1n k =+时,左端应在n k =的基础上加上( ) A.21k +B.2(1)k +C.222(1)(2)(1)k k k ++++++LD.42(1)(1)2k k +++5、用数学归纳法证明()222222221211(21)(1)()32n n n n n ++++++=--+时,由n k =时的假设到证明1n k =+时,等式左边应添加的式子是( )A.22(1)2k k ++B. 22(1)k k ++C. 2(1)k +D.21(1)[2(1)1]3k k +++ 6、用数学归纳法证明“52n n-能被3整除”的第二步中,当1n k =+时,为了使用假设,应将1152k k ++-变形为( )A .(52)452k k k k-+⨯-B .5(52)32k k k-+⨯C .(52)(52)k k--D .2(52)35k k k--⨯7、用数学归纳法证明633123...,N 2n n n n *+++++=∈,则当1n k =+时应当在n k =时对应的等式的左边加上( ) A.31k + B.()()333(1)2...1k k k ++++++ C.()31k +D.548、用数学归纳法证明:2121n n x y --+(N n *∈)能被x y +整除.从假设n k =成立到1n k =+成立时,被整除式应为( ) A.2323k k x y +++B.2222k k x y +++C.2121k k x y +++D.22k k x y +9、用反证法证明命题:",,R,0,0,0,a b c a b c ab bc ca abc ∈++>++>>则0,0,0a b c >>>"时应假设为( ) A.a ,b ,c 均不为正数 B.a ,b ,c 至少有一个正数 C.a ,b ,c 不全为正数D.a ,b ,c 至多有一个正数10、用反证法证明命题“三角形三个内角至少有一个不大于60︒”时,应假设( ) A. 三个内角都不大于60︒ B. 三个内角都大于60︒C. 三个内角至多有一个大于60︒D. 三个内角至多有两个大于60︒11、用反证法证明命题“已知*,N a b ∈,如果ab 可被5整除,那么,a b 中至少有一个能被5整除”时,假设的内容应为( ) A.,a b 都能被5整除B.,a b 都不能被5整除C.,a b 不都能被5整除 D .a 不能被5整除12、用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( ) A.假设至少有一个钝角 B.假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角 13、用反证法证明命题 “自然数a b c 、、中恰有一个偶数”时,需假设原命题不成立,下列假设正确的是( )A .a b c 、、都是奇数B .a b c 、、都是偶数C .a b c 、、中或都是奇数或至少有两个偶数D .a b c 、、中至少有两个偶数14、用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A.三个内角中至少有一个钝角 B.三个内角中至少有两个钝角 C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角15、用反证法证明“R,20xx ∀∈>”,应假设为( )A. 0R,20xx ∀∈≤ B. 00R,20x x ∃∈≤ C. 00R,20x x ∀∈< D.00R,20x x ∃∈>答案以及解析1答案及解析: 答案:B解析:若甲是获奖的,则三句说假话,不合题意。
高考文科数学试题分类汇编—推理与证明
高考文科试题解析分类汇编:推理和证明1.【高考全国文12】正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,13AE BF ==。
动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )8 (B )6 (C )4 (D )3【答案】B【命题意图】本试题主要考查了反射原理与三角形相似知识的运用。
通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可。
【解析】解:结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞8次即可。
2.【高考上海文18】若2sin sin...sin 777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A 、16B 、72C 、86D 、100 【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题需要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.3.【高考江西文5】观察下列事实|x|+|y|=1的不同整数解(x,y )的个数为4 , |x|+|y|=2的不同整数解(x,y )的个数为8, |x|+|y|=3的不同整数解(x,y )的个数为12 ….则|x|+|y|=20的不同整数解(x ,y )的个数为 A.76 B.80 C.86 D.92 【答案】B【解析】本题主要为数列的应用题,观察可得不同整数解的个数可以构成一个首先为4,公差为4的等差数列,则所求为第20项,可计算得结果. 4.【高考陕西文12】观察下列不等式213122+< 231151233++<,222111512343+++<……照此规律,第五个...不等式为 . 【答案】6116151413121122222<+++++. 【解析】观察不等式的左边发现,第n 个不等式的左边=()2221111231n +++++,右边=()1112+-+n n ,所以第五个不等式为6116151413121122222<+++++.5.【高考湖南文16】对于N n *∈,将n 表示为1101102222k k k k n a a a a --=⨯+⨯++⨯+⨯,当i k =时1i a =,当01i k ≤≤-时i a 为0或1,定义n b 如下:在n 的上述表示中,当01,a a ,a 2,…,a k 中等于1的个数为奇数时,b n =1;否则b n =0.(1)b 2+b 4+b 6+b 8=__;(2)记c m 为数列{b n }中第m 个为0的项与第m +1个为0的项之间的项数,则c m 的最大值是___. 【答案】(1)3;(2)2. 【解析】(1)观察知000112,1,1a a b =⨯==;1010221202,1,0,1a a b =⨯+⨯===; 一次类推10331212,0b =⨯+⨯=;21044120202,1b =⨯+⨯+⨯=;21055120212,0b =⨯+⨯+⨯=;2106121202=⨯+⨯+⨯,60b =,781,1b b ==,b 2+b 4+b 6+b 8=3;(2)由(1)知c m 的最大值为2.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题. 6.【高考湖北文17】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。
2017-2018-2019年三年高考数学文科真题分类汇编(解析版) 专题12 推理与证明
专题十二 推理与证明(2019·全国Ⅱ文科)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A. 甲、乙、丙 B. 乙、甲、丙 C. 丙、乙、甲 D. 甲、丙、乙【答案】A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. (2019·全国Ⅲ文科)记不等式组表示的平面区域为,命题;命题.给出了四个命题:①;②;③;④,这四个命题中,所有真命题的编号是( ) A. ①③ B. ①②C. ②③D. ③④【答案】A【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由得即A (2,4),直线与直线均过区域D ,则p 真q 假,有假真,所以①③真②④假.故选A .620x y x y +⎧⎨-≥⎩…D :(,),29p x y D x y ∃∈+…:(,),212q x y D x y ∀∈+…p q ∨p q ⌝∨p q ∧⌝p q ⌝∧⌝2,6y x x y =⎧⎨+=⎩2,4x y =⎧⎨=⎩29x y +=212x y +=p ⌝q ⌝【点睛】本题考点为线性规划和命题的真假,侧重不等式的判断,有一定难度.不能准确画出平面区域导致不等式误判,根据直线的斜率和截距判断直线的位置,通过直线方程的联立求出它们的交点,可采用特殊值判断命题的真假.(2019·北京文科)已知l ,m 是平面外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥;③l ⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m . 正确;(2)如果l ⊥α,l ⊥m ,则m ∥α.不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力. (2017山东)已知命题p :;命题q :若,则.下列命题为真命题的是A .B .C .D .【答案】B【解析】取,知成立;若,得,为假,所以为真,选B .ααα,x ∃∈R 210x x -+≥22a b <a b <p q ∧p q ⌝∧p q ⌝∧p q ⌝⌝∧0x =1p 22a b <||||a b =q p q ⌝∧(2018浙江)已知,,,成等比数列,且.若,则A .,B .,C .,D .,【答案】B【解析】解法一 因为(),所以,所以,又,所以等比数列的公比.若,则, 而,所以, 与矛盾,所以,所以,, 所以,,故选B .解法二 因为,, 所以,则,又,所以等比数列的公比.若,则, 而,所以 与矛盾,所以,所以,, 所以,,故选B .(2018北京)设集合则 A .对任意实数,B .对任意实数,1a 2a 3a 4a 1234123ln()a a a a a a a +++=++11a >13a a <24a a <13a a >24a a <13a a <24a a >13a a >24a a >ln 1x x -≤0x >1234123ln()a a a a a a a +++=++1231a a a ++-≤41a -≤11a >0q <1q -≤212341(1)(10a a a a a q q +++=++)≤12311a a a a ++>≥123ln()0a a a ++>1231234ln()0a a a a a a a ++=+++≤10q -<<2131(1)0a a a q -=->2241(1)0a a a q q -=-<13a a >24a a <1xe x +≥1234123ln()a a a a a a a +++=++123412312341a a a a ea a a a a a a +++=++++++≥41a -≤11a >0q <1q -≤212341(1)(10a a a a a q q +++=++)≤12311a a a a ++>≥123ln()0a a a ++>1231234ln()0a a a a a a a ++=+++≤10q -<<2131(1)0a a a q -=->2241(1)0a a a q q -=-<13a a >24a a <{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤a (2,1)A ∈a (2,1)A ∉C .当且仅当时,D .当且仅当时, 【答案】D【解析】解法一 点在直线上,表示过定点,斜率为的直线,当时,表示过定点,斜率为的直线,不等式表示的区域包含原点,不等式表示的区域不包含原点.直线与直线互相垂直,显然当直线的斜率时,不等式表示的区域不包含点,故排除A ;点与点连线的斜率为,当,即时,表示的区域包含点,此时表示的区域也包含点,故排除B ;当直线的斜率,即时,表示的区域不包含点,故排除C ,故选D .解法二 若,则,解得,所以当且仅当时,.故选D .(2018江苏)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前项和,则使得成立的的最小值为 . 【答案】27【解析】所有的正奇数和()按照从小到大的顺序排列构成,在数列 中,前面有16个正奇数,即,.当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;……;当时,0a <(2,1)A ∉32a ≤(2,1)A ∉(2,1)1x y -=4ax y +=(0,4)a -0a ≠2x ay -=(2,0)1a2x ay -≤4ax y +>4ax y +=2x ay -=4ax y +=0a ->4ax y +>(2,1)(2,1)(0,4)32-32a -<-32a >4ax y +>(2,1)2x ay -<(2,1)4ax y +=32a -=-32a =4ax y +>(2,1)(2,1)A ∈21422a a +>⎧⎨-⎩≤32a >32a ≤(2,1)A ∉*{|21,}A x x n n ==-∈N *{|2,}n B x x n ==∈N A B {}n a n S {}n a n 112n n S a +>n 2n*n ∈N {}n a {}n a 525212a =6382a =1n =1211224S a =<=2n =2331236S a =<=3n =3461248S a =<=4n =45101260S a =<=26n == 441 +62= 503<,不符合题意;当时,=484 +62=546>=540,符合题意.故使得成立的的最小值为27.(2018江苏)设,对1,2,···,n 的一个排列,如果当时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n 的所有排列中逆序数为的全部排列的个数. (1)求的值;(2)求的表达式(用表示).【解析】(1)记为排列的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,.(2)对一般的的情形,逆序数为0的排列只有一个:,所以. 逆序数为1的排列只能是将排列中的任意相邻两个数字调换位置得到的排列,所以.为计算,当1,2,…,n 的排列及其逆序数确定后,将添加进原排列,在新排列中的位置只能是最后三个位置. 因此,. 当时,52621(141)2(12)212S ⨯+⨯-=+-2712516a =27n =52722(143)2(12)212S ⨯+⨯-=+-2812a 112n n S a +>n *n ∈N 12n i i i s t <s t i i >(,)s t i i 12n i i i 12n i i i ()n f k k 34(2),(2)f f (2)(5)n f n ≥n ()abc τabc (123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,333(0)1(1)(2)2f f f ===,4333(2)(2)(1)(0)5f f f f =++=n (4)n ≥12n ⋅⋅⋅(0)1n f =12n ⋅⋅⋅(1)1n f n =-1(2)n f +1n +1n +1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+5n ≥112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…, 因此,时,.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】6 12【解析】设男生数,女生数,教师数为,则 ①,所以,②当时,,,,,不存在,不符合题意; 当时,,,,,不存在,不符合题意; 当时,,此时,,满足题意. 所以.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D (2017江苏)对于给定的正整数,若数列满足对任意正整数总成立,则称数列是“数列”.242(1)(2)4(2)2n n n n f --=-+-+⋯++=5n ≥(2)n f =222n n --,,a b c 2,,,c a b c a b c >>>∈N 84a b >>>max 6b =min 1c =21a b >>>a b ∈N a b min 2c =42a b >>>a b ∈N a b min 3c =63a b >>>5a =4b =12a b c ++=k {}n a 11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=n ()n k >{}n a ()P k(1)证明:等差数列是“数列”;(2)若数列既是“数列”,又是“数列”,证明:是等差数列. 【解析】证明:(1)因为是等差数列,设其公差为,则, 从而,当时,,所以, 因此等差数列是“数列”.(2)数列既是“数列”,又是“数列”,因此, 当时,,①当时,.② 由①知,,③,④将③④代入②,得,其中, 所以是等差数列,设其公差为.在①中,取,则,所以, 在①中,取,则,所以, 所以数列是等差数列.(2017浙江)已知数列满足:,. 证明:当时 (Ⅰ); (Ⅱ); {}n a (3)P {}n a (2)P (3)P {}n a {}n a d 1(1)n a a n d =+-n 4≥n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=1,2,3,k =n n n n n n n a a a a a a a ---+++++=321123+++6{}n a (3)P {}n a (2)P (3)P 3n ≥n n n n n a a a a a --+++++=211244n ≥n n n n n n n a a a a a a a ---++++++++=3211236n n n a a a ---+=-32141()n n a a ++n n n a a a ++++=-23141()n n a a -+n n n a a a -++=1124n ≥345,,,a a a d'4n =235644a a a a a +++=23a a d'=-3n =124534a a a a a +++=122a a d'=-{}n a {}n x 11x =11ln(1)n n n x x x ++=++()n ∈*N n ∈*N 10n n x x +<<1122n n n n x x x x ++-≤(Ⅲ). *根据亲们所在地区选作,新课标地区(文科)不要求. 【解析】(Ⅰ)用数学归纳法证明: 当时, 假设时,,那么时,若,则,矛盾,故. 因此所以 因此(Ⅱ)由得记函数函数在上单调递增,所以=0, 因此 故 (Ⅲ)因为所以得 由得 121122n n n x --≤≤0n x >1n =110x =>n k =0k x >1n k =+10k x +≤110ln(1)0k k k x x x ++<=++≤10k x +>0n x >()n ∈*N 111ln(1)n n n n x x x x +++=++>10n n x x +<<()n ∈*N 111ln(1)n n n n x x x x +++=++>2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++2()2(2)ln(1)(0)f x x x x x x =-+++≥()f x [0,)+∞()(0)f x f ≥2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥112(N )2n n n n x x x x n *++-∈≤11111ln(1)2n n n n n n x x x x x x +++++=+++=≤112n n x -≥1122n n n n x x x x ++-≥111112()022n n x x +-->≥所以故综上, .12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥212n n x -≤1211(N )22n n n x n *--∈≤≤。
高考数学推理与证明
1.合情推理与演绎推理(1)归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.(2)演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.2.直接证明与间接证明直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.思考反证法通常适用于哪些问题?答案反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,它所反映出的“正难则反”的解决问题的思想方法更为重要.反证法主要证明:否定性、唯一性命题;至多、至少型问题;几何问题.3.数学归纳法数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立.思考何为探索性命题?其解题思路是什么?答案探索性命题是试题中经常出现的一种题型,此类问题未给出问题结论,需要由特殊情况入手,猜想、证明一般结论的问题称为探求规律性问题,它的解题思想是:从给出的条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.题型一合情推理及应用例1观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199答案 C解析记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.反思与感悟归纳推理和类比推理是常用的合情推理,两种推理的结论“合情”但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用.运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方法进行探索、猜想,最后用逻辑推理方法进行验证.跟踪训练1自然数按下表的规律排列则上起第2 014行,左起第2 015列的数为()A.2 0142B.2 0152C.2 013×2 014D.2 014×2 015答案 D解析 经观察可得这个自然数表的排列特点:①第一列的每个数都是完全平方数,并且恰好等于它所在行数的平方,即第n 行的第1个数为n 2;②第一行第n 个数为(n -1)2+1;③第n 行从第1个数至第n 个数依次递减1; ④第n 列从第1个数至第n 个数依次递增1.故上起第2 014行,左起第2 015列的数,应是第2 015列的第2 014个数,即为[(2 015-1)2+1]+2 013=2 014×2 015. 题型二 直接证明与间接证明例2 已知a >b >0,求证(a -b )28a <a +b 2-ab <(a -b )28b .证明 欲证(a -b )28a <a +b 2-ab <(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b ,∵a >b >0,∴只需证a -b 22a <a -b 2<a -b22b ,即a +b 2a <1<a +b2b, 欲证a +b 2a <1,只需证a +b <2a ,即b <a ,该式显然成立.欲证1<a +b2b,只需证2b <a +b ,即b <a ,该式显然成立. ∴a +b 2a <1<a +b2b成立. ∴(a -b )28a <a +b 2-ab <(a -b )28b成立.反思与感悟 直接证明方法可具体分为比较法、代换法、放缩法、判别式法、构造函数法等,应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法结合起来使用. 跟踪训练2 已知等差数列{a n }中,首项a 1>0,公差d >0. (1)若a 1=1,d =2,且1a 21,1a 24,1a 2m 成等比数列,求正整数m 的值;(2)求证对任意正整数n ,1a 2n ,1a 2n +1,1a 2n +2都不成等差数列.(1)解 ∵{a n }是等差数列,a 1=1,d =2, ∴a 4=7,a m =2m -1.∵1a 21,1a 24,1a 2m 成等比数列, ∴1492=1(2m -1)2, 即2m -1=49.∴m =25.(2)证明 假设存在n ∈N *,使1a 2n ,1a 2n +1,1a 2n +2成等差数列,即2a 2n +1=1a 2n +1a 2n +2, ∴2a 2n +1=1(a n +1-d )2+1(a n +1+d )2=2a 2n +1+2d2(a 2n +1-d 2)2, 化简得d 2=3a 2n +1.(*)又∵a 1>0,d >0,∴a n +1=a 1+nd >d ,∴3a 2n +1>3d 2>d 2,与(*)式矛盾,因此假设不成立,故命题得证. 题型三 数学归纳法及应用例3 已知a i >0(i =1,2,…,n ),考察: ①a 1·1a 1≥1;②(a 1+a 2)⎝⎛⎭⎫1a 1+1a 2≥4;③(a 1+a 2+a 3)⎝⎛⎭⎫1a 1+1a 2+1a 3≥9.归纳出对a 1,a 2,…,a n 都成立的类似不等式,并用数学归纳法加以证明.解 结论:(a 1+a 2+…+a n )·⎝⎛⎭⎫1a 1+1a2+…+1a n≥n 2(n ∈N *). 证明:①当n =1时,显然成立. ②假设当n =k 时,不等式成立,即(a 1+a 2+…+a k )·⎝⎛⎭⎫1a 1+1a2+…+1a k≥k 2. 当n =k +1时,(a 1+a 2+…+a k +a k +1)·⎝⎛⎭⎫1a 1+1a 2+…+1a k+1ak +1=(a 1+a 2+…+a k )⎝⎛⎭⎫1a 1+1a 2+…+1a k +a k +1·⎝⎛⎭⎫1a 1+1a 2+…+1a k +1a k +1(a 1+a 2+…+a k )+1 ≥k 2+⎝ ⎛⎭⎪⎫a k +1a 1+a 1a k +1+⎝ ⎛⎭⎪⎫a k +1a 2+a 2a k +1+…+⎝ ⎛⎭⎪⎫a k +1a k +a k a k +1+1 ≥k 2+2k +1=(k +1)2.由①②可知,不等式对任意正整数n 都成立.反思与感悟 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当n =k +1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的. 跟踪训练3 数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)证明(1)中的猜想.(1)解 当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74;当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n -12n 1(n ∈N *).(2)证明 ①当n =1时,a 1=1,结论成立. ②假设n =k (k ≥1且k ∈N *)时,结论成立, 即a k =2k -12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, ∴2a k +1=2+a k .∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k .所以当n =k +1时,结论成立. 由①②知猜想a n =2n -12n -1(n ∈N *)成立.应用反证法证明问题时,因对结论否定不正确致误例4 已知x ,y ∈R ,且x 2+y 2=0,求证x ,y 全为0. 错解 假设结论不成立,则x ,y 全不为0,即x ≠0且y ≠0,∴x 2+y 2>0,与x 2+y 2=0矛盾,故x ,y 全为0.错因分析 x ,y 全为0的否定应为x ,y 不全为0,即至少有一个不是0,得x 2+y 2>0与已知矛盾.正解 假设x ,y 不全为0,则有以下三种可能: ①x =0,y ≠0,得x 2+y 2>0,与x 2+y 2=0矛盾; ②x ≠0,y =0,得x 2+y 2>0, 与x 2+y 2=0矛盾; ③x ≠0,y ≠0,得x 2+y 2>0,与x 2+y 2=0矛盾. ∴假设是错误的, ∴x ,y 全为0.防范措施 应用反证法证明问题时,首先要否定结论,假设结论的反面成立,当结论的反面呈现多样性时,需罗列出各种可能情形,否定一定要彻底.1.下列推理正确的是( )A.把a (b +c )与log a (x +y )类比,则log a (x +y )=log a x +log a yB.把a (b +c )与sin(x +y )类比,则sin(x +y )=sin x +sin yC.把(ab )n 与(x +y )n 类比,则(x +y )n =x n +y nD.把(a +b )+c 与(xy )z 类比,则(xy )z =x (yz ) 答案 D2.在△ABC 中,若sin A sin C >cos A cos C ,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定答案 D解析 由sin A sin C >cos A cos C ,得cos(A +C )<0,即cos B >0, 所以B 为锐角,但并不能确定角A 和C 的情况,故选D.3.猜想数列12×4,14×6,16×8,18×10,…的通项公式是____________________.答案 a n =12n (2n +2)(n ∈N *)解析 分析式子12×4,14×6,16×8,18×10,…的规律,可得分子均为1,分母为连续相邻的两个偶数的乘积.4.如图是由花盆摆成的图案,根据图中花盆摆放的规律,第n 个图形中的花盆数a n =__________.答案 3n 2-3n +1解析 观察知每一个图案中间一行的花盆数为1,3,5,…,其中第n 个图案中间一行的花盆数为2n -1,往上一侧花盆数依次是2n -2,2n -3,…,它们的和为n (2n -1+n )2=n (3n -1)2,往下一侧(含中间一行)花盆数为n (3n -1)2,所以a n =2·n (3n -1)2-(2n -1)=3n 2-3n +1.5.函数列{f n (x )}满足f 1(x )=x1+x 2(x >0),f n +1(x )=f 1(f n (x )). (1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解 (1)f 1(x )=x1+x 2(x >0), f 2(x )=x 1+x 21+x 21+x 2=x1+2x 2, f 3(x )=x 1+2x 21+x 21+2x 2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x 1+nx 2(n ∈N *), 下面用数学归纳法证明: ①当n =1时,命题显然成立; ②假设当n =k (k ∈N *)时,f k (x )=x1+kx 2, 那么f k +1(x )=x 1+kx 21+x 21+kx 2=x 1+kx 2+x 2=x1+(k +1)x 2.这就是说当n =k +1时命题也成立. 由①②可知,f n (x )=x 1+nx2对所有n ∈N *均成立.故f n (x )=x 1+nx2(n ∈N *).转化与化归的思想方法是数学最基本的思想方法,数学中一切问题的解决都离不开转化与化归,转化与化归是数学思想方法的灵魂.在本章中,合情推理与演绎推理体现的是一般与特殊的转化,数学归纳法体现的是一般与特殊、有限与无限的转化,反证法体现的是对立与统一的转化.从特殊到一般的思想方法即由特殊情况入手,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.与正整数n 有关的命题,经常要用到归纳猜想,然后用数学归纳法证明,这体现了从特殊到一般的探求规律的思想.一、选择题1.古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数(除1外)对应的点可以排成一个正三角形,如图所示,则第n 个三角形数为( )A.nB.n (n +1)2C.n 2-1D.n (n -1)2答案 B解析 观察图形可知,这些三角形数的特点是第n 个三角形数是在前一个三角形数的基础上加上n ,于是第n 个三角形数为1+2+…+n =n (n +1)2.2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 答案 C解析 演绎推理的一般模式是三段论,大前提是已知的一般性原理,小前提是研究的特殊情况,结论是得出的判断.本题中并非所有的有理数都是真分数,所以推理形式错误.3.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (c,0),当AB →⊥FB →时,由b 2=ac 得其离心率为5-12,此类椭圆称为“黄金椭圆”.类比“黄金椭圆”,在“黄金双曲线”x 2a 21-y 2b 21=1中,由b 21=a 1c 1(c 1为黄金双曲线的半焦距)可推出“黄金双曲线”的离心率为( )A.5+12 B.3+12 C.5+13D.7-12答案 A 解析 b 21=a 1c 1,c 21-a 21=b 21=a 1c 1,∴c 21a 21-1=c 1a 1,∴e 2-e -1=0,∴e =5+12(∵e >1).故选A.4.设函数f (x )=2x +1x -1(x <0),则f (x )( )A.有最大值B.有最小值C.为增函数D.为减函数答案 A解析 ∵x <0,∴-x >0,则 (-2x )+⎝⎛⎭⎫-1x ≥2(-2x )⎝⎛⎭⎫-1x =22, ∴-⎣⎡⎦⎤(-2x )+⎝⎛⎭⎫-1x ≤-2 2. ∴f (x )=-⎣⎡⎦⎤(-2x )+⎝⎛⎭⎫-1x -1≤-22-1. 当且仅当-2x =-1x ,即x =-22时取最大值.故选A.5.设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算为:A i A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则满足关系式(x x A 2=A 0的x (x ∈S )的个数为( )A.1B.2C.3D.4 答案 B解析 当x =A 0时,(x xA 2=A 2≠A 0,当x =A 1时,(x xA 2=A 2A 2=A 0,成立;当x =A 2时,(x xA 2=A 0A 2=A 2≠A 0;当x =A 3时,(x xA 2=A 2A 2=A 0,成立.故选B.6.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心 D.垂心 答案 B解析 如图,AB →|AB →|为AB →上的单位向量,AC →|AC →|为AC →上的单位向量,则AB →|AB →|+AC→|AC →|的方向为∠BAC的角平分线AD 的方向.又λ∈[0,+∞),∴λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|的方向与AB →|AB →|+AC →|AC →|的方向相同.而OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,∴点P 在AD 上移动,∴P 的轨迹一定通过△ABC 的内心. 二、填空题7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p ,q 的大小关系为______.答案 p >q解析 p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p .8.α,β是两个不同的平面,m ,n 是平面α及平面β外两条不同的直线,给出下列四个论断: ①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出一个你认为正确的命题__________. 答案 ②③④⇒①(或①③④⇒②)9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是__________. 答案 ⎝⎛⎭⎫-3,32 解析 方法一(补集法):令⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0即⎩⎪⎨⎪⎧ -2p 2+p +1≤0,-2p 2-3p +9≤0即⎩⎨⎧ p ≤-12或p ≥1,p ≤-3或p ≥32.∴p ≤-3或p ≥32,符合题意的解是-3<p <32. 方法二(直接法):依题意,有f (-1)>0或f (1)>0,即2p 2-p -1<0或2p 2+3p -9<0,∴-12<p <1或-3<p <32,∴-3<p <32. 10.设函数y =f (x )在(0,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K ,若函数f (x )=ln x +1e x,且恒有f K (x )=f (x ),则K 的最小值为______________. 答案 1e解析 由于f (x )=ln x +1e x ,所以f ′(x )=1x -ln x -1e x ,令g (x )=1x-ln x -1,则g ′(x )=-x -2-1x<0,所以g (x )在(0,+∞)上单调递减,而g (1)=0,所以当x ∈(0,1)时,g (x )>0,此时,f ′(x )>0,当x ∈(1,+∞)时,g (x )<0,此时f ′(x )<0,所以f (x )在(0,1)上单调递增,f (x )在(1,+∞)上单调递减,故f (x )max =f (1)=1e ,又函数f (x )=ln x +1e x,且恒有f K (x )=f (x ),结合新定义可知,K 的最小值为1e. 三、解答题11.如图所示,设在四面体P ABC 中,∠ABC =90°,P A =PB =PC ,D 是AC 的中点,求证:PD ⊥平面ABC .证明 要证明PD ⊥平面ABC ,只需证明PD 与平面ABC 内的两条相交直线垂直即可,由于已知△ACP 为等腰三角形,AP =PC ,D 为AC 的中点,故PD ⊥AC ,从而有△P AD 为直角三角形,且AD =BD ,PD =PD ,AP =PB ,于是△APD ≌△BPD .因此∠PDA =∠PDB =90°,∴PD ⊥BD .又知AC 交BD 于D ,可知PD ⊥平面ABC .12.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y总不成立.证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y成立. 于是有y (x +y )+x (x +y )=xy ,即x 2+y 2+xy =0,即⎝⎛⎭⎫x +y 22+34y 2=0. 由y ≠0,得34y 2>0. 又⎝⎛⎭⎫x +y 22≥0, 所以⎝⎛⎭⎫x +y 22+34y 2>0. 与x 2+y 2+xy =0矛盾,故原命题成立.13.在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)求证1a 1+b 1+1a 2+b 2+…+1a n +b n <512. (1)解 由条件得2b n =a n +a n +1,a 2n +1=b n b n +1,a 1=2,b 1=4.由此可得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25.猜测a n =n (n +1),b n =(n +1)2.用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k (k ≥1,k ∈N *)时,结论成立,即a k =k (k +1),b k =(k +1)2,那么,当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2),b k +1=a 2k +1b k=(k +2)2. ∴当n =k +1时,结论也成立.由①②可知a n =n (n +1),b n =(n +1)2对一切正整数n 都成立.(2)证明 当n =1时,1a 1+b 1=16<512. n ≥2时,由(1)知a n +b n =(n +1)(2n +1)>2(n +1)n .∴1a n +b n <12⎝⎛⎭⎫1n -1n +1, ∴1a 1+b 1+1a 2+b 2+…+1a n +b n<16+12⎝⎛⎭⎫12-13+13-14+…+1n -1n +1 =16+12⎝⎛⎭⎫12-1n +1<16+14=512.综上,对n ∈N *,1a 1+b 1+1a 2+b 2+…+1a n +b n <512成立.。
推理与证明高考常考题型及解析
一
一
ቤተ መጻሕፍቲ ባይዱ
一
: 三 二 二 一
2 ”
2
.6
2
化
自然界 没 有 风 风 雨 雨 . 大地 就 不 会 春 华 秋 实
2 v
— — —
・
一 — —
,b ¨+ 2 r
‘
、
一
T 一
所 以 刈 ‘ 于 一 切 正 褴 数 ” ・ ≤ 爹 + 1 .
高 考展 望与 预 测 类 比推 理 并 不 是 每 年 常 考 题 型. 仃的间隔 几 年 考 ・ 次, 常 常 考 查 不 等 式 或 分 式 及 根式 、 函数 问题 , 只要掌握 规律 和 方 法 , 不 是 什 么难 的 题 日, 属 于 巾档范 畴. 间隔 几 年或 者 多 年 , 应 该 引起 备
j
、
、
芝 l
:
3
,
l + 1 + 1 _ 5
。
,
1 + - + + < 子 , … , 照
.
此规 律 , 第 5个 不 等 式 为
,
高考改革 在 如 火如荣 地 进行 中 , 随着 高考 改 革 的 不但 深 入 . 对新 增 部 分新 课标 知 识 的考 查 有 所加 深 , 赞求 学 能 灵活 运 用 课 本 知 识 解 决 现 实 生 活 中 的 一
方法 2 ( 分析 法 ) i 【 F 明: ① 当b - - 2时 ,
“, 一 一
:
~ 卜 r I 一 一 2; ;
~
②
6 > 0且 b @ 2时 . 要 证 ≤
2 ”
一
+l 只 需 证
◇ 山 东 孙 论 山
高中数学《推理与证明》练习题(附答案解析)
高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。
高中数学教研会高三数学文科《推理与证明练习题》
推理与证明训练题(文)一、选择题1、下列说法正确的是( ) (A )合情推理有前提有结论; (B )由合情推理得出来的结论一定是正确的; (C )合情推理不能猜想; (D )合情推理得出的结论无法判断正误2、ABC ∆能剖分为两个与自身相似的三角形,那么这个三角形的形状为( ) (A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )不能确定3、已知函数(01)xy a a a =>≠且在[0,1]上最大值与最小值的和为3,则a 的值为( ) (A )21(B )2 (C )3 (D )5 4、下面说法正确的有( )(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关(A )1个 (B )2个 (C )3个 (D )4个5、如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( )A .5481a a a a >B .5481a a a a =C .5481a a a a +>+D .5481a a a a < 6、在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( )(A )n (B )12-n (C ))1(21+n n (D ))1(21-n n 7、命题:“有些有理数是分数,整数是有理数,则整数是分数”结论是错误的,其原因是( )(A )大前提错误 (B )小前提错误 (C )推理形式错误 (D )以上都不是 8、若函数x x f sin )(是π为周期的奇函数,则)(x f 可以是( ) (A )x 2sin (B )x 2cos (C )x sin (D )x cos9、已知)(x f 是R 上的偶函数,对任意的R x ∈都有)3()()6(f x f x f +=+成立,若2)1(=f ,则=)2007(f ( )(A ) (B )2 (C )1 (D )010、已知函数xxx f +-=11lg)(,若b a f =)(,则=-)(a f ( ) (A )b (B )b - (C )b 1 (D )b1-二、填空题 11、在德国不来梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形展品,其中第一堆只有一层,就一个球,第2、3、4、…堆最底层(第一层)分别按下图方式固定摆放,从第二层开始每层小球的小球自然垒放在下一层之上,第n 堆的第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则)3(f ___________;)(n f __________(用n 表示)12、如图(1)有面积关系PBPA PB PA S S PAB B PA ⋅⋅=∆∆1111,则图(2)有体积关系_______________图1 图213、设函数)(x f 是定义在R 上的奇函数,且)(x f y =的图像关于直线21=x 对称,则 .______________)5()4()3()2()1(=++++f f f f f14、若244)(+=x x x f ,则)10011000()10012()10011(f f f +++ ______________。
不等式、推理与证明-高考真题文科数学分项汇编(原卷版)
专题 13 不等式、推理与证明1.【2020年新高考全国Ⅰ卷】已知a>0,b>0,且a+b=1,则B.2a b 1A. a b2122 2C.log2 a log2 b2D. a b2x 3y 12.【2020年高考浙江】若实数x,y满足约束条件x y 3 0,则z x 2y的取值范围是A.( ,4]C.[5,)B.[4,)D.(,)3.【2020年高考全国Ⅱ卷文数】如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3 且j–i=4,则称a i,a j,a k为原位大三和弦;若k–j=4且j–i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5 B.8 C.10N N,T* *,S,T中至少有2个元素,且S,T满足:①对于任D.154.【2020年高考浙江】设集合S,T,S意的x,y S,若x≠y,则xy T;②对于任意的x,y T,若x<y,则y S.下列命题正确的是xA.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素5.【2019年高考全国I卷文数】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度5 1( 5 1≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的之比是2 2头顶至咽喉的长度与咽喉至肚脐的长度之比也是5 1.若某人满足上述两个黄金分割比例,且腿长为2105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是A .165 cm C .185 cmB .175 cm D .190 cmxy 6,表示的平面区域为D .命题 p :(x, y)D,2x y 96.【2019年高考全国III 卷文数】记不等式组2x y 0命题q :(x, y)D,2x y 12.下面给出了四个命题 ① pq②pq③ pq④p q这四个命题中,所有真命题的编号是 A .①③ C .②③B .①② D .③④7.【2019年高考北京卷文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮5 E 1度满足 m 2−m 1= 2 lg E ,其中星等为 m k 的星的亮度为 E k (k=1,2).已知太阳的星等是−26.7,天狼星2的星等是−1.45,则太阳与天狼星的亮度的比值为A . 1010.1 B . 10.1 D . 10–C . lg10.110.1 x y 20, x y 2 0, 8.【2019年高考天津卷文数】设变量 x, y ,则目标函数 z 4x y 的最大值满足约束条件x1,y 1,为 A .2 C .5B .3 D .69.【2019年高考天津卷文数】设 x R ,则“0 x 5”是“| x 1|1”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件x 3y 4 010.【2019年高考浙江卷】若实数 x, y 满足约束条件3x y 4 0,则 z 3x2y 的最大值是x y 0A . 1C . 10B . 1 D . 1211.【2019年高考浙江卷】若 a0,b 0,则“a b 4”是 “ab 4 ”的A .充分不必要条件 C .充分必要条件B .必要不充分条件 D .既不充分也不必要条件12.【2018年高考北京卷文数】设集合 A {(x, y)| x y 1,ax y 4,xay 2},则A .对任意实数 a ,(2,1) AB .对任意实数 a ,(2,1) A 3C .当且仅当 a<0时,(2,1) AD .当且仅当 a 时,(2,1) A213.【2018年高考天津卷文数】设 x R ,则“ x 38”是“|x | 2”的A .充分而不必要条件 C .充要条件B .必要而不充分条件 D .既不充分也不必要条件xy 5,2x y 4, 14.【2018年高考天津卷文数】设变量 x, y 满足约束条件x y 1, 则目标函数 z 3x 5y 的最大值为y 0,A .6B .19C .21D .4515.【2020年高考江苏】已知5x 2 y2y421(x, y R),则 x y2的最小值是 ▲.1 1 8的最小值为_________. 16.【2020年高考天津】已知 a 0, b 0,且ab1,则 2a 2b a b2x y 20, 17.【2020年高考全国Ⅰ卷文数】若 x ,y 满足约束条件 x y 1 0,则 z=x+7y 的最大值为 .y 1 0,x y 1,18.【2020年高考全国Ⅱ卷文数】若x,y满足约束条件x y 1,则z x 2y的最大值是__________.2x y 1,x y0,19.【2020年高考全国Ⅲ卷文数】若x,y满足约束条件2x y 0,,则z=3x+2y的最大值为_________.x 1,2x 3y 6 0,20.【2019年高考全国II卷文数】若变量x,y满足约束条件x y 3 0,则z=3x–y的最大值是y 2 0,____________.21.【2019年高考全国II卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)x 2,则y x的最小值为__________,最大值为22.【2019年高考北京卷文数】若x,y满足y 1,4x 3y 10,__________.(x 1)(2y 1)23.【2019年高考天津卷文数】设x 0, y 0, x 2y 4,则的最小值为__________.xy24.【2019年高考北京卷文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.x y0,25.【2018年高考浙江卷】若x, y满足约束条件2x y 6,则z x 3y的最小值是___________,最大值x y 2,是___________.26.【2018年高考北京卷文数】若,y满足x 1 y 2x,则2y−的最小值是_________.x 2y 2x,y满足约束条件x y 1 0,则z 3x 2y的最大值27.【2018年高考全国I卷文数】若为y 0_____________.2x y 3 0,则z x 1 y的最大值是28.【2018年高考全国III卷文数】若变量x,y满足约束条件x 2y 4 0,3x 2 0.________.x 2y 5 0,29.【2018年高考全国II卷文数】若x, y 满足约束条件x 2y 3 0,则z x y的最大值为__________x 5 0,130.【2018年高考天津卷文数】已知a ,b R,且a 3b 6 0,则2a b的最小值为.831.【2018年高考江苏卷】在△ABC中,角A,B,C所对的边分别为a,b,c ,ABC 120,ABC的平分线交AC于点D,且BD 1,则4a c的最小值为___________.。
2021年高考文科数学《推理与证明》题型归纳与训练参照模板
2020年高考文科数学《推理与证明》题型归纳与训练【题型归纳】题型一 归纳推理 例1 已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为_____. 【答案】12014xx+【解析】由1()1x f x x =+,得2()()112x x f x f x x==++, 可得32()(())13x f x f f x x ==+,故可归纳得2014()12014xf x x=+.例2 观察下列等式:211=22123-=- 2221263+-= 2222124310-+-=-…照此规律, 第n 个等式可为 .【答案】12-22+32-42+…+(-1)n +1n 2=(-1)n +1·(1)2n n +(n ∈*N ) 【解析】 观察上式等号左边的规律发现,左边的项数一次加1,故第n 个等式左边有n 项,每项所含的底数的绝对值也增加1,一次为1,2,3,…n ,指数都是2,符号成正负交替出现可以用1(1)n +-表示,等式的右边数的绝对值是左边项的底数的和,故等式的右边可以表示为(1)n-·(1)2n n +,所以第n 个式子可为12-22+32-42+…+12(1)n n +-=(-1)n+1·(1)2n n +(n ∈*N ).例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为 (),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n =五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N = . 【答案】1000【解析】观察2n 和n 前面的系数,可知一个成递增的等差数列另一个成递减的等差数列,故()2,241110N n n n =-,()10,241000N ∴=题型二 类比推理例1 若数列{}n a 是等差数列,则数列na a ab nn ++=21也为等差数列.类比这一性质可知,若正项数列{}n c 是等比数列,且{}n d 也是等比数列,则n d 的表达式应为( ) A .n c c c d n n ++=21 B .nc c c cd nn ⋅⋅⋅=321C .n nnnnn nc c cd +++= 21 D .n n n c c c d 21=【答案】D例2 若直角三角形的两条直角边长度分别为b a ,,则此三角形的外接圆半径222b a r +=,运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径=R .【答案】2222c b a R ++=例3 已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则2=GDAG”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若BCD ∆的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则=OMAO. 【答案】3例4 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按下图所标边长,由勾股定理有:222b ac +=.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥LMN O -,如果用1S ,2S ,3S 表示三个侧面面积,4S 表示截面面积,那么类比得到的结论是__________.【答案】24232221S S S S =++【解析】将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得24232221S S S S =++.故填24232221S S S S =++.【易错点】类比推理所涉及高中的知识点存在漏洞。
云南省高考数学备考复习(文科)专题十四:推理与证明
云南省高考数学备考复习(文科)专题十四:推理与证明姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)根据右边给出的数塔猜测1234569+8=()A . 1111110B . 1111111C . 1111112D . 11111132. (2分) (2018高二下·大连期末) 用反证法证明“若则或”时,应假设()A . 或B . 且C .D .3. (2分) (2019高二下·安徽期中) 古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.如图,可以发现,任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,下列等式中,符合这一规律的表达式是()①13=3+10;②25=9+16;③36=15+21;④49=18+31;⑤64=28+36.A . ①④B . ②⑤C . ③⑤D . ②③4. (2分) (2020高二下·芮城月考) 下列表述正确的是()①归纳推理是由特殊到一般的推理;②演绎推理是由一般到特殊的推理;③类比推理是由特殊到一般的推理;④分析法是一种间接证明法;A . ②④B . ①③C . ①④D . ①②5. (2分) (2015高二下·登封期中) 小赵、小钱、小孙、小李四位同学被问到谁去过长城时,小赵说:我没去过;小钱说:小李去过;小孙说;小钱去过;小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过长城的是()A . 小赵B . 小李C . 小孙D . 小钱6. (2分)已知△ABC中,∠A=30°,∠B=60°,求证:a<b.证明:因为∠A=30°,∠B=60°,所以∠A<∠B.所以a<b.其中,划线部分是演绎推理的()A . 大前提B . 小前提C . 结论D . 三段论7. (2分) (2017高三·三元月考) 一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A . 甲B . 乙C . 丙D . 丁8. (2分) (2015高二下·沈丘期中) 用数学归纳法证明“当n 为正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是()A . 假设n=k(k∈N*),证明n=k+1命题成立B . 假设n=k(k为正奇数),证明n=k+1命题成立C . 假设n=2k+1(k∈N*),证明n=k+1命题成立D . 假设n=k(k为正奇数),证明n=k+2命题成立9. (2分) (2018高二下·河南月考) 用数学归纳法证明“ ”时,由不等式成立,推证时,左边应增加的项数是()A .B .C .D .10. (2分)“因对数函数y=logax是增函数(大前提),而是对数函数(小前提),所以是增函数(结论).”上面推理错误的是()A . 大前提错导致结论错B . 小前提错导致结论错C . 推理形式错导致结论错D . 大前提和小前提都错导致结论错11. (2分) (2019高二下·上海期末) 某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A . 8种B . 10种C . 12种D . 14种12. (2分)用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为()A . 假设至少有一个钝角B . 假设至少有两个钝角C . 假设没有一个钝角D . 假设没有一个钝角或至少有两个钝角13. (2分) (2017高二下·淄川期末) 用三段论推理:“指数函数y=ax是增函数,因为y=()x是指数函数,所以y=()x是增函数”,你认为这个推理()A . 大前提错误B . 小前提错误C . 推理形式错误D . 是正确的14. (2分) (2016高三下·习水期中) 老师带甲乙丙丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考的好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中()两人说对了.A . 甲丙B . 乙丁C . 丙丁D . 乙丙15. (2分)用数学归纳法证明1+++…+<n(n∈N* , n>1)时,第一步应验证不等式()A . 1+B . 1++C . 1++D . 1+++16. (2分)已知x∈(0,+∞)有下列各式:x+≥2,x+≥3,x+=≥4成立,观察上面各式,按此规律若x+≥5,则正数a=()A . 4B . 5C . 44D . 55二、填空题 (共5题;共9分)17. (1分) (2016高二下·金沙期中) 观察下列等式:32=52﹣42 , 52=132﹣122 , 72=252﹣242 , 92=412﹣402 ,…照此规律,第n个等式为________.18. (3分)分析法是从要证的不等式出发,寻求使它成立的________ (填序号)①充分条件;②必要条件;③充要条件.19. (2分)据某报《自然健康状况》的调查报道,所测血压结果与相应年龄的统计数据如下表,观察表中数据规律,并将最适当的数据填入表中括号内.年龄(岁)3035404550556065…收缩压110115120125130135________145…(水银柱/毫米)舒张压70737578807385________…(水银柱/毫米)20. (1分)用演绎推理证明“y=tanx是周期函数”时,大前提为________21. (2分)已知θ∈(0,),由不等式tanθ+≥2,tanθ+=++≥3,tanθ+=+++≥4,归纳得到推广结论:ta nθ+≥n+1(n∈N*),则实数m=________三、综合题 (共5题;共50分)22. (10分) (2016高一上·厦门期中) 求值:(1);(2)设3x=4y=36,求的值.23. (10分) (2018高二下·河南月考) 若,观察下列不等式:,,请你猜测将满足的不等式,并用数学归纳法加以证明.24. (10分) (2016高二下·南城期中) 数列{an}满足Sn=2n﹣an(n∈N*).(1)计算a1 , a2 , a3 , a4 ,并由此猜想通项公式an;(2)用数学归纳法证明(Ⅰ)中的猜想.25. (10分) (2019高二上·新蔡月考) 已知数列中,,。
高考文科数学专题十二 推理与证明第三十二讲 推理与证明
专题十二 推理与证明第三十二讲 推理与证明一、选择题1.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >2.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 3.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A .乙可以知道两人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 4.(2016年浙江)如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N . (P ≠Q 表示点P 与Q 不重合),若n n n d A B =,n S 为1n n n A B B +△的面积,则A.{}n S 是等差数列B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2n d 是等差数列5.(2014北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”三种.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”,如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两个学生,那么这组学生最多有A .2人B .3人C .4人D .5人6.(2014山东)用反证法证明命题“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是A .方程30x ax b ++=没有实根 B .方程30x ax b ++=至多有一个实根 C .方程30x ax b ++=至多有两个实根 D .方程30x ax b ++=恰好有两个实根 7.(2011江西)观察下列各式: 553125=,6515625=,7578125=,⋅⋅⋅,则20115的末四位数字为A .3125B .5625C .0625D .81258.(2010山东)观察2()2x x '=,43()4x x '=,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=A .()f xB .()f x -C .()g xD .()g x - 二、填空题9.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 . 10.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________.11.(2016年山东)观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;……照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_______. 12.(2016年四川)在平面直角坐标系中,当(,)P x y 不是原点时,定义P 的“伴随点”为2222(,)y xP x y x y-'++,当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: ①若点A 的“伴随点”是点A ',则点A '的“伴随点”是点A ; ②单元圆上的点的“伴随点”仍在单位圆上;③若两点关于x 轴对称,则它们的“伴随点”关于y 轴对称; ④若三点在同一条直线上,则它们的“伴随点”一定共线; 其中的真命题是 .13.(2016年全国II 卷)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 14.(2015陕西)观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++……据此规律,第n 个等式可为______________________.15.(2014安徽)如图,在等腰直角三角形ABC 中,斜边22BC =A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A;…,依此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =_____.A1A 23A 416.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是____.17.(2014北京)顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序 时间 原料粗加工精加工原料A 9 15 原料B621则最短交货期为 个工作日. 18.(2014陕西)已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.19.(2014陕西)观察分析下表中的数据:多面体 面数(F )顶点数(V )棱数(E )三棱锥 5 6 9 五棱锥 6 6 10 立方体6812猜想一般凸多面体中,E V F ,,所满足的等式是_________. 20.(2013陕西)观察下列等式:211= 22123-=- 2221263+-=2222124310-+-=-…照此规律, 第n 个等式可为 .21.(2013湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数。
高考文数二轮复习常考题型(全国卷):第11题 推理与证明
常考题型大通关:第11题 推理与证明1、现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲B .乙C .丙D .丁2、要证: 222210a b a b +--≤,只要证明( ) A.2220ab a b -≥ B.22(1)(1)0a b --≥C.222()102a b a b +--≥ D.4422102a b a b ++--≤ 3、用数学归纳法证明()()()()()*1221321N n n n n n n n +++=⨯⨯⨯⨯+∈时,从n k =到1n k =+,等式左边增乘的代数式为( ).A .2(21)k +B .21k +C .211k k ++ D .231k k ++ 4、用数学归纳法证明4221232n n n +++++=,则当1n k =+时,左端应在n k =的基础上加上( ) A.21k +B.2(1)k +C.222(1)(2)(1)k k k ++++++D.42(1)(1)2k k +++5、用数学归纳法证明()222222221211(21)(1)()32n n n n n ++++++=--+时,由n k =时的假设到证明1n k =+时,等式左边应添加的式子是( )A.22(1)2k k ++B. 22(1)k k ++C. 2(1)k +D.21(1)[2(1)1]3k k +++ 6、用数学归纳法证明“52n n-能被3整除”的第二步中,当1n k =+时,为了使用假设,应将1152k k ++-变形为( )A .(52)452k k k k-+⨯-B .5(52)32k k k-+⨯C .(52)(52)k k--D .2(52)35k k k--⨯7、用数学归纳法证明633123...,N 2n n n n *+++++=∈,则当1n k =+时应当在n k =时对应的等式的左边加上( ) A.31k + B.()()333(1)2...1k k k ++++++ C.()31k +D.548、用数学归纳法证明:2121n n x y --+(N n *∈)能被x y +整除.从假设n k =成立到1n k =+成立时,被整除式应为( ) A.2323k k x y +++B.2222k k x y +++C.2121k k x y +++D.22k k x y +9、用反证法证明命题:",,R,0,0,0,a b c a b c ab bc ca abc ∈++>++>>则0,0,0a b c >>>"时应假设为( ) A.a ,b ,c 均不为正数 B.a ,b ,c 至少有一个正数 C.a ,b ,c 不全为正数D.a ,b ,c 至多有一个正数10、用反证法证明命题“三角形三个内角至少有一个不大于60︒”时,应假设( ) A. 三个内角都不大于60︒ B. 三个内角都大于60︒C. 三个内角至多有一个大于60︒D. 三个内角至多有两个大于60︒11、用反证法证明命题“已知*,N a b ∈,如果ab 可被5整除,那么,a b 中至少有一个能被5整除”时,假设的内容应为( ) A.,a b 都能被5整除B.,a b 都不能被5整除C.,a b 不都能被5整除 D .a 不能被5整除12、用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( ) A.假设至少有一个钝角 B.假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角 13、用反证法证明命题 “自然数a b c 、、中恰有一个偶数”时,需假设原命题不成立,下列假设正确的是( )A .a b c 、、都是奇数B .a b c 、、都是偶数C .a b c 、、中或都是奇数或至少有两个偶数D .a b c 、、中至少有两个偶数14、用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A.三个内角中至少有一个钝角 B.三个内角中至少有两个钝角 C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角15、用反证法证明“R,20xx ∀∈>”,应假设为( )A. 0R,20xx ∀∈≤ B. 00R,20x x ∃∈≤ C. 00R,20x x ∀∈< D.00R,20x x ∃∈>答案以及解析1答案及解析: 答案:B解析:若甲是获奖的,则三句说假话,不合题意。
高考数学分类练习 M单元 推理与证明(文科)含答案3
M 单元 推理与证明M1 合情推理与演绎推理图1-317.M1 在平面直角坐标系中,若点P(x ,y)的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L.例如图1-3中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数,若某格点多边形对应的N =71,L =18,则S =________(用数值作答).17.(1)3,1,6 (2)79 (1)把四边形面积分割,其中四个面积为12的三角形,一个面积为1的正方形,故其面积为S =3;四边形内部只有一个格点;边界上有6个格点,故答案为3,6,1.(2)根据图中的格点三角形和四边形可得1=4b +c ,3=a +6b +c ,再选顶点为(0,0),(2,0),(2,2),(0,2)的格点正方形可得4=a +8b +c ,由上述三个方程组解得a =1,b =12,c =-1,所以S =N +12L -1,将已知数据代入得S =71+9-1=79. 16.B7,M1 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x≥1.现有四个命题: ①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln a +ln +b ;③若a>0,b>0,则ln +a b≥ln +a -ln +b ; ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2.其中的真命题有________.(写出所有真命题的编号)16.①③④ ①中,当a b ≥1时,∵b>0,∴a≥1,ln +a b =ln a b =bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +a b =bln +a =0,∴①正确.②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立.③中,当a b ≤1,即a≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边,成立;当a b>1时,左边=ln a b=ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln a b=ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确.④中,若0<a +b<1,左边=ln +(a +b)=0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b≥1,ln +(a +b)-ln 2=ln(a +b)-ln 2=ln ⎝⎛⎭⎪⎫a +b 2. 又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1, ∴ln ⎝⎛⎭⎪⎫a +b 2≤ln a 或ln ⎝ ⎛⎭⎪⎫a +b 2≤ln b ,即有ln +(a +b)-ln 2=ln (a +b)-ln 2=ln ⎝ ⎛⎭⎪⎫a +b 2≤ln +a +ln +b ,∴④正确. 13.M1 观察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此规律,第n 个等式可为______________.13.(n +1)(n +2)…(n+n)=2n ×1×3×…×(2n -1)结合已知所给定的几项的特点,可知式子左边共n 项,且从(n +1)一直到(n +n),右侧第一项为2n,连乘的第一项为1,最后一项为(2n -1),故所求表达式为:(n +1)(n +2)…(n +n)=2n ×1×3×…×(2n -1).M2 直接证明与间接证明20.M2,D2,D3,D5 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6.(2)证明:因为a 1>0,公比q>1,所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1.于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q)q i -1.因此d i ≠0且d i +1d i=q(i =1,2,…,n -2), 即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i≤n-2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1).又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1.因此a n =B 1.所以B 1=B 2=…=B n -1=a n .所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d ,即a 1,a 2,…,a n -1是等差数列.19.M2,H5,H10 直线y =kx +m(m≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,即t =± 3. 所以|AC|=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC⊥OB,所以k≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0.设A(x 1,y 1),C(x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km1+4k 2,m1+4k 2. 因为M 为AC 和OB 的交点,且m≠0,k≠0,所以直线OB 的斜率为-14k. 因为k·⎝ ⎛⎭⎪⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.10.M2 设a ,b∈R ,定义运算“∧”和“∨”如下:a ∧b =⎩⎪⎨⎪⎧a ,a≤b,b ,a>b , a∨b=⎩⎪⎨⎪⎧b ,a≤b,a ,a>b.若正数a ,b ,c ,d 满足ab≥4,c +d≤4,则( )A .a ∧b≥2,c∧d≤2B .a ∧b ≥2,c∨d≥2C .a ∨b ≥2,c∧d≤2D .a ∨b ≥2,c∨d≥210.C 从定义知,a∧b=min(a ,b),即求a ,b 中的最小值;a∨b=max(a ,b),即求a ,b 中的最大值;假设0<a<2,0<b<2,则ab<4,与已知ab≥4相矛盾,则假设不成立,故max(a ,b)≥2,即a∨b≥2;假设c>2,d>2,则c +d>4,与已知c +d≤4相矛盾,则假设不成立,故min(a ,b)≤2,即c∧d≤2.故选择C.M3数学归纳法M4单元综合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考题型大通关:第11题 推理与证明
1、现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲
B .乙
C .丙
D .丁
2、要证: 2
2
22
10a b a b +--≤,只要证明( ) A.22
20ab a b -≥ B.2
2
(1)(1)0a b --≥
C.
2
22()102a b a b +--≥ D.44
2
2
102
a b a b ++--≤ 3、用数学归纳法证明()()()()()*1221321N n n n n n n n +++=⨯⨯⨯
⨯+∈时,从n k =到
1n k =+,等式左边增乘的代数式为( ).
A .2(21)k +
B .21k +
C .
21
1
k k ++ D .
23
1
k k ++ 4、用数学归纳法证明42
2
1232
n n n +++++=,则当1n k =+时,左端应在n k =的基础上加上( ) A.21k +
B.2(1)k +
C.2
2
2
(1)(2)(1)k k k ++++
++
D.42(1)(1)2
k k +++
5、用数学归纳法证明()2
2
2
2
2
2
2
21211(21)
(1)()3
2n n n n n ++++++=--+时,由n k =时的假
设到证明1n k =+时,等式左边应添加的式子是( )
A.22(1)2k k ++
B. 22(1)k k ++
C. 2(1)k +
D.
21
(1)[2(1)1]3
k k +++ 6、用数学归纳法证明“52n n
-能被3整除”的第二步中,当1n k =+时,为了使用假设,应
将1
15
2k k ++-变形为( )
A .(52)452k k k k
-+⨯-
B .5(52)32k k k
-+⨯
C .(52)(52)k k
--
D .2(52)35k k k
--⨯
7、用数学归纳法证明63
3
123...,N 2n n n n *+++++=∈,则当1n k =+时应当在n k =时对应的
等式的左边加上( ) A.31k + B.()
()333(1)2...1k k k ++++++ C.()31k +
D.54
8、用数学归纳法证明:2121n n x y --+(N n *∈)能被x y +整除.从假设n k =成立到1n k =+成立时,被整除式应为( ) A.2323k k x y +++
B.2222k k x y +++
C.2121k k x y +++
D.22k k x y +
9、用反证法证明命题:",,R,0,0,0,a b c a b c ab bc ca abc ∈++>++>>则0,0,0a b c >>>"时应假设为( ) A.a ,b ,c 均不为正数 B.a ,b ,c 至少有一个正数 C.a ,b ,c 不全为正数
D.a ,b ,c 至多有一个正数
10、用反证法证明命题“三角形三个内角至少有一个不大于60︒”时,应假设( ) A. 三个内角都不大于60︒ B. 三个内角都大于60︒
C. 三个内角至多有一个大于60︒
D. 三个内角至多有两个大于60︒
11、用反证法证明命题“已知*,N a b ∈,如果ab 可被5整除,那么,a b 中至少有一个能被5整除”时,假设的内容应为( ) A.,a b 都能被5整除
B.,a b 都不能被5整除
C.,a b 不都能被5整除 D .a 不能被5整除
12、用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( ) A.假设至少有一个钝角 B.假设至少有两个钝角
C.假设没有一个钝角
D.假设没有一个钝角或至少有两个钝角 13、用反证法证明命题 “自然数a b c 、、中恰有一个偶数”时,需假设原命题不成立,下列假设正确的是( )
A .a b c 、、都是奇数
B .a b c 、、都是偶数
C .a b c 、、中或都是奇数或至少有两个偶数
D .a b c 、、中至少有两个偶数
14、用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A.三个内角中至少有一个钝角 B.三个内角中至少有两个钝角 C.三个内角都不是钝角
D.三个内角都不是钝角或至少有两个钝角
15、用反证法证明“R,20x
x ∀∈>”,应假设为( )
A. 0R,20x
x ∀∈≤ B. 00R,20x x ∃∈≤ C. 00R,20x x ∀∈< D.
00R,20x x ∃∈>
答案以及解析
1答案及解析: 答案:B
解析:若甲是获奖的,则三句说假话,不合题意。
若丙是获奖的,则丁、乙、丙都说真话,甲 说假话,不符合题意。
若丁是获奖的,则都说假话,不符合题意。
故答案为:乙
2答案及解析: 答案:B
解析:要证:2222
10a b a b +--≤,只要证明2
2
(1)(1)0a b --≤,
只要证明22(1)(1)0a b --≥. 故选:B
3答案及解析: 答案:A 解析:
4答案及解析: 答案:C
解析:当n k =时,等式左端212k =+++,
当1n k =+时,等式左端22221212(1)k k k k =++++++++
++,增加了项
2222(1)(2)(3)(1)k k k k ++++++
++.
故选:C .
5答案及解析:
答案:B 解析:
6答案及解析: 答案:B
解析:115255225(52)52225(52)32k k k k k k k k k k k ++-=⋅-⋅=-+⨯-⨯=-+⨯
7答案及解析:
答案:B
解析:
8答案及解析:
答案:C
解析:
9答案及解析:
答案:C
解析:用反证法证明某命题时,应先假设命题的否定成立,而000
,,的否定为
>>>
a b c
a,b,c不全为正数,故选C
10答案及解析:
答案:A
解析:
11答案及解析:
答案:B
解析:
12答案及解析:
答案:B
解析:试题分析:反证明法的证明步骤:1.假设命题不成立
2.由假设出发,经过推理论证,得出矛盾
3.由矛盾得出假设不成立,从而证明原命题正确
本题中至多有一个钝角的反面是至少有两个是钝角。
13答案及解析:
答案:C
解析:
14答案及解析:
答案:B
解析:
15答案及解析:答案:B
解析:。