第一章 展开与折叠(1)教学设计
北师大课标版初中数学初一上册第一章展开与折叠教案
北师大课标版初中数学初一上册第一章1一、教材分析北师大版七年级(上)《展开与折叠》第1课时,在本单元中位于“图形的变化”与“从三个方向看”之间,在知识的链条结构中起着重要的衔接作用。
教学过程中要紧包括“猜一猜”、“做一做”、“说一说”、“练一练”四个设计理念。
其中“猜一猜”目的在于将学生的独立摸索、展开想象、自主探究,交流讨论,分析判定等探究活动贯穿于课堂教学的全过程,使学生不断获得和积存数学活动体会,培养学生的学习爱好与能力。
“做一做”目的在于让学生亲身经历和充分体验立体图形与平面图形之间的相互转化过程,建立展开图中的面与正方体的面的对应关系,使学生手脑结合,提高学习效率。
“说一说”目的在于给学生提供了充分表达自我方法和意见的平台,把课堂交还给学生,而不是教师的一言堂。
“练一练”目的在于通过检测对学生所学内容进行课堂评判,及时把握学生对知识吸取明白得情形,便于后续巩固与辅导。
通过本节课“展开与折叠”的学习,让学生能够依照平面展开图来判定是否能够折叠成正方体,在自主发觉的过程中,教给学生学习的方法,比如分类经历和有序思维,使复杂的问题简单化。
通过动手实践,在折展的过程中,体验正方体的展开图和立体图形之间的联系,进展学生的空间想象能力,为解决后面立体图形的表面积和体积问题打下良好基础。
二、教学目标1、知识与技能:通过充分的实践操作和白板的辅助展现,使学生明白将一个正方体的表面沿某些棱剪开,能够得到11种平面展开图。
以此能总结归纳它们的特点及规律,培养学生的观看、动手操作、归纳、合作探究能力。
2、过程与方法:通过用多种方法对正方体展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,培养学生的动手操作能力和空间思维能力,积存数学活动体会。
3、情感态度与价值观:激发学习数学的爱好,使学生体验数学活动中探究与制造过程带来的乐趣。
渗透转化数学思想方法的学习,培养学生多角度探究问题的能力和空间思维能力,体会数学学科的价值,建立正确的数学学习观。
《第一章2展开与折叠》学历案-初中数学北师大版12七年级上册
《展开与折叠》学历案(第一课时)一、学习主题本课的学习主题是“展开与折叠”。
本节课主要学习图形的展开与折叠基本概念、理解其与几何图形的联系以及初步掌握利用展开与折叠解决几何问题的方法。
通过本课的学习,学生将能够理解立体图形与平面图形之间的相互转化关系,并能够运用这一关系解决简单的几何问题。
二、学习目标1. 知识与技能:(1)掌握立体图形和展开图的基本概念。
(2)理解立体图形与平面图形之间的相互转化关系。
(3)能够通过展开与折叠操作,识别和绘制简单的几何体展开图。
2. 过程与方法:(1)通过观察、操作、分析和归纳,培养学生的空间想象能力和几何直观能力。
(2)学会利用展开与折叠解决简单的几何问题。
3. 情感态度与价值观:(1)培养学生对几何图形的兴趣和爱好,增强学生的数学审美意识。
(2)通过合作学习,培养学生的团队合作精神和交流能力。
三、评价任务1. 课堂表现评价:观察学生在课堂上的参与度、合作能力和空间想象能力。
2. 作业评价:布置相关练习题,评价学生对展开与折叠概念的理解和运用能力。
3. 测验评价:通过阶段性测验,评价学生对本课知识的掌握情况。
四、学习过程1. 导入新课:通过展示一些常见的立体图形及其展开图,引导学生回顾已有的几何知识,为新课的学习做好铺垫。
2. 新课学习:(1)讲解立体图形和展开图的基本概念,让学生明确两者之间的关系。
(2)通过实物或模型,让学生观察并操作,感受立体图形与平面图形的相互转化过程。
(3)分析一些典型的几何体展开图,让学生理解并掌握其绘制方法。
3. 巩固练习:布置相关练习题,让学生运用所学知识解决实际问题。
4. 课堂小结:总结本课的学习内容和学习方法,强调展开与折叠在几何学习中的重要性。
五、检测与作业1. 检测:通过课堂小测验,检测学生对本课知识的掌握情况。
2. 作业:布置相关练习题,包括填空题、选择题和简答题等,让学生进一步巩固所学知识。
同时,要求学生完成一个简单的几何体展开图的绘制任务。
教学设计(展开与折叠)
教学设计(展开与折叠)1.经历正方体的展开与折叠的过程,体验长方体、正方体等图形展开与折叠之间的关系加深对长方体和正方体的认识。
2.感受立体图形与平面图形的关系,建立长方体或正方体中的面与展开图中的面的对应关系。
过程与方法1.在想象、操作等活动中,经历和体验立体图形与平面图形的相互转化过程,渗透转化和对应的数学思想,发展空间观念。
2.在展开与折叠、展示交流与汇报活动中渗透数学的转化、对应思想。
3.培养学生多角度探究问题和空间思维的能力,积累数学活动经验。
情感、态度与价值观激发学生探究知识的强烈愿望,使学生在不断体验数学的活动中获得探究过程和创造过程带来的乐趣,建立正确的研究数学的观念。
备重点难点重点:借助长方体和正方体的展开图,进一步掌握长方体和正方体的特征。
难点:判断一个展开图可否折叠成正方体或长方体。
教案设计设计说明1.教材的意图不仅仅是要求学生掌握本节课的基本知识和基本技能,更重要的是要教给学生探索知识的方法和策略,鼓励学生在教师的引导下自主探索和研究数学知识,这样做的意义就在于将学生的独立思考、展开想象、自主探索,交流讨论,分析判断等探索活动贯穿于课堂教学的全过程,使学生不断获得和积累数学活动经验,培养学生的研究兴趣和研究能力。
2.在教学中要通过操作和想象,让学生亲身经历和充分体验立体图形与平面图形之间的相互转化过程,建立展开图中的面与长方体、正方体的面的对应关系。
课前准备教具准备PPT课件、长方体和正方体模型学具准备长方体和正方体纸盒教学过程一.激趣引入明确目标师交待研究目标:1.通过动手剪一剪、折一折,体验正方体展开与折叠之间的对应关系,加深对长方体、正方体的认识。
2.会根据长方体、正方体的特点或动手操作等办法判断某一图形折叠后可否围成长方体或正方体。
设计意图:师交代研究目标的作用:让学生明确这节课要做什么,学会什么。
二.合作交流探究新知活动一展开提出活动要求:把一个正方体沿着棱剪开,取得一个展开图。
北师大版七年级数学上册教学设计:第一章丰富的图形世界1.2.1展开与折叠
(6)查阅相关资料,了解展开图和折叠图在古代建筑、现代设计等方面的应用案例,并撰写一篇简短的阅读心得。
作业要求:
1.学生需认真完成作业,确保作业质量,养成良好的学习习惯。
2.鼓励学生在完成作业过程中,积极思考、交流,提高问题解决能力。
3.教师在批改作业时,要关注学生的解题思路和方法,给予针对性的指导和鼓励。
4.设计有针对性的练习题,巩固所学知识,提高学生运用展开图和折叠图解决问题的能力。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,培养积极主动、认真负责的学习态度。
2.通过展开图和折叠图的学习,让学生感受到几何图形的美,提高审美素养。
3.培养学生的空间观念,使其认识到数学与生活的紧密联系,增强应用数学的意识。
3.采用分组合作学习,鼓励学生相互交流、讨论,共同解决实际问题,培养学生的团队协作能力和问题解决能力。
教师可以设计一些具有挑战性的任务,让学生在小组内共同完成,提高他们的合作意识和沟通能力。
4.创设探究式学习环境,引导学生自主探究、发现展开图和折叠图的规律,培养学生的创新思维和探究能力。
教师可以提供一些典型例子,让学生通过观察、实践,总结展开图和折叠图的特点和规律。
5.设计梯度性练习题,针对不同层次的学生,巩固所学知识,提高他们的空间想象力和几何直观能力。
练习题可以分为基础题、提高题和拓展题,以满足不同学生的学习需求。
6.注重教学评价,采用多元化的评价方式,关注学生在知识、技能、情感态度等方面的全面发展。
评价可以包括课堂表现、作业完成情况、小组合作成果展示等,全面评估学生的学习效果。
4.掌握展开图和折叠图在生活中的应用,激发学生学习数学的兴趣,提高数学素养。
展开与折叠教案
展开与折叠教案标题:展开与折叠教案【教案目标】1. 通过多种交互方式,帮助学生理解展开与折叠的概念。
2. 培养学生观察、比较和分析的能力。
3. 培养学生的创造力和解决问题的能力。
【教案导入】1. 通过展示一张已经折好的纸,向学生介绍展开与折叠的概念。
问学生他们知道怎样将纸展开吗?再问他们如何将纸折叠起来。
2. 让学生互相展示自己带来的一张纸,并鼓励他们在纸上进行展开与折叠的实践。
【教学主体】1. 呈现材料:给每个学生一个小方块纸,让他们折叠成一个长方形,然后展开,引导学生观察并探究折叠前后的差异。
2. 让学生用两块不同形状的纸进行折叠实践,然后比较他们的展开形状和折叠形状之间的关系。
3. 引导学生思考一张纸能否有多种不同的展开方法,并让他们尝试找到这样的例子。
鼓励学生彼此交流,分享他们的观察和发现。
4. 提供一些折纸模型的图纸,让学生按照图纸上的指示进行折叠,并展示他们最后得到的形状。
学生可以互相分享他们的模型,并比较展开时的形状是否与图纸上的一致。
【教学延伸】1. 引导学生思考,如果一张纸上有很多折痕,展开后会是什么样子?让学生进行实践验证,并记录他们的观察结果。
2. 提供更复杂的折纸图案,让学生按照步骤进行折叠并展开,培养他们的解决问题的能力和耐心。
3. 分组活动:让学生分成小组,每个小组设计一个折纸模型,包括折叠步骤和最终展开形状的描绘。
然后,小组之间展示并解释他们的设计。
其他小组成员可以尝试按照描绘重新折叠并展开,验证设计的可行性。
【教学总结】1. 结合教学过程,复述本课学习的重点内容:展开与折叠的概念,不同形状纸的展开和折叠形状之间的关系。
2. 让学生总结他们在本课学到的知识,以及通过展开与折叠实践中的观察和发现。
3. 鼓励学生提出问题,思考进一步探究展开与折叠的可能性。
【课堂作业】设计一个展开与折叠的小实验,要求列出实验步骤并记录观察结果。
可以自由选择纸的形状和折叠方式。
【评估与反馈】教师通过观察学生在课堂上的表现和评估他们提交的课堂作业,来评价学生对展开与折叠的理解程度。
七年级数学教案 展开与折叠9篇
七年级数学教案展开与折叠9篇展开与折叠 1教学目标:1. 通过,感受立体图形与平面图形的关系;2. 学生通过动手动脚实验,发挥想象,开展讨论等方式,认识立体图形与它们的平面展开图的关系;3. 能正确判断平面展开图是哪个几何体的展开图.教学重点:将立体图形展成平面展开图;教学难点:按规定形状把正方体展成平面图形;教学过程:一、引入:出示生活中的立体图形,提出问题:如果把正方体沿某些棱剪开,平面展开图会是什么样子的?二.教学过程动手做一做活动1:把圆柱,圆锥的侧面沿虚线剪开,观察:它的侧面展开图是什么几何图形?请画出它的侧面展开图结论:圆柱的侧面展开图是长方形; 圆锥的侧面展开图是扇形。
活动2:把无盖的的正方体纸盒按图中的红线剪开,并画出展开后的平面图形,把你的展开图与同学交流,你发现了什么?结论:同一正方体按沿棱按同一方式剪开可以得到相同的平面展开图.活动3: 自由发挥,尽显风采将正方体图形沿某些棱按你喜欢的方式剪开成一个平面图形.在与同学交流对比,你有什么发现?结论:同一个正方体沿不同的棱剪开可以得到不同的图形.活动4:将正方体沿棱剪开成平面展开图,你能的到以下图形吗?请你试一试.想一想:要将一个正方体展开成平面展开图要剪开多少条棱?观察: 正方体的平面展开图有什么特点?活动4:将长方体沿棱剪开成平面展开图,与正方体的平面展开图比较,你发现他们有何异同?三.练一练四.小结: 畅所欲言1. 你学会了什么?2. 你最喜欢的一个环节是什么?3. 你收获了什么?五:布置作业小组合作探讨:将正方体沿棱展开成平面图形,到底回出现多少种不同的图形,剪一剪,试一试,把所得的图形在纸上画出展开与折叠 2展开与折叠教学目标:1. 通过展开与折叠,感受立体图形与平面图形的关系;2. 学生通过动手动脚实验,发挥想象,开展讨论等方式,认识立体图形与它们的平面展开图的关系;3. 能正确判断平面展开图是哪个几何体的展开图.教学重点:将立体图形展成平面展开图;教学难点:按规定形状把正方体展成平面图形;教学过程:一、引入:出示生活中的立体图形,提出问题:如果把正方体沿某些棱剪开,平面展开图会是什么样子的?二.教学过程动手做一做活动1:把圆柱,圆锥的侧面沿虚线剪开,观察:它的侧面展开图是什么几何图形?请画出它的侧面展开图结论:圆柱的侧面展开图是长方形; 圆锥的侧面展开图是扇形。
展开与折叠教学设计多篇
展开与折叠教学设计多篇展开与折叠教学设计4 篇展开与折叠教学设计1教材分析:“展开与折叠”是七年级《数学》 (上)中继“生活中的立体图形”之后的一个学习内容,在本章教材的编排顺序中起着承上起下的作用。
本节是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解多面体可由平面图形围成,而立体图形可按不同方式展开成平面图形,更重要的是让学生通过观察、思量和自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,养成研究性学习的良好习惯,为后续章节的学习打下基础。
教学重点:通过观察、比较及小组的讨论、合作,根据展开图判断和制作简单的立体模型教学难点:准确判断出可有效展开或者折叠的图形并能合理制作。
学生分析:学生在小学学过简单立体图形及其侧面展开图,上节又学习了生活中的立体图形的有关知识,对立体图形已有一定的认识。
七年级学生具有好奇心、求知欲较强的特点,学生间相互评价、相互提问的积极性高。
对展开与折叠的实践及探索活动参预热情应该是比较高的。
教学目标:知识与技能目标:通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;操作实践活动,能认识棱柱的某些特性;能根据展开图判断和制作简单的立体模型。
过程与方法目标:经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;在动手实践实验制作的过程中学会与人合作,学会交流自己的思维与方法.情感与态度目标:初步获得动手制作的乐趣及制作成功后的成就感;在制作实验的过程中感受生活中立体图形的美,增强美感。
教辅工具:多媒体、、三角板、圆规学生课前准备:绘图的基本工具、纸板、剪刀、粘胶教学流程:教学活动1 教师提出问题:你能将下面的纸板,为一厂家折叠出如图所示的产品包装盒吗?(学生运用实物模型,尝试动手操作。
可以小组形式探讨、交流有效、合理的操作方案。
)教学活动2 请学生提问:通过动手制作及观察后,你能对这个包装盒的外观提出几个问题吗?(引导学生学会提出问题,也让思维发散开来。
展开与折叠(一)教案
第一章丰富的图形世界展开与折叠(一)一、学生知识状况分析“展开与折叠”是《丰富的图形世界》中继“生活中的立体图形”之后的一个学习内容,学生已经学习了生活中的立体图形的有关知识,对立体图形已有一定的认识,学生在小学学过简单立体图形及其侧面展开图。
本节主要研究正方体的展开图,研究过程中充满着大量的操作实践活动,同时,七年级学生具有好奇心、求知欲较强的特点,学生间相互评价、相互提问的积极性高,因此,参与有关展开与折叠的实践探究活动的热情应该是比较高的。
二、教学任务分析本节是从正方体纸盒的展开体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解正方体的十一种平面展开图,更重要的是让学生通过观察、思考找出正方体十一种展开图的特征。
通过自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。
本节分为两个课时,第一课时通过正方体的展开图,了解正方体展开图的基本特征。
同时让学生经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验。
而第二课时的教学任务旨在进一步认识棱柱的展开图;了解一些特殊几何体的展开图,能根据展开图判断立体模型。
根据以上分析,确定第一课时的教学目标如下:1、知识与技能目标:通过充分的实践,使学生能将一个正方体的表面沿某些棱剪开,展开成一个平面图形;2、过程与方法目标:通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉,积累数学活动经验。
3、情感与态度目标:体验数学与生活的密切联系。
让学生在充分经历实践、探索、交流,获得成功的体验,培养科学探索精神。
4、教学重难点:重点:将一个正方体的表面沿某些棱展开,展成平面图形;难点:鼓励学生尽可能多地将一个正方体展成平面图形,并用语言描述其过程。
三、教学过程分析本节课设计了五个教学环节:第一环节:创设情景,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。
《展开与折叠》教案设计
《展开与折叠》教案设计一、教学目标1. 知识与技能:让学生了解并掌握展开与折叠的基本概念及方法。
培养学生运用展开与折叠知识解决实际问题的能力。
2. 过程与方法:通过观察、实践、交流等方式,让学生掌握展开与折叠的技巧。
培养学生团队协作、创新思维的能力。
3. 情感态度与价值观:激发学生对展开与折叠的兴趣,培养学生的审美观念。
引导学生运用数学知识解决生活中的问题,提高学生的综合素质。
二、教学内容1. 展开与折叠的概念及分类介绍什么是展开与折叠,展开与折叠的分类及应用。
2. 平面图形的展开与折叠学习如何将平面图形进行展开与折叠,如正方形、长方形、三角形等。
3. 立体图形的展开与折叠学习如何将立体图形进行展开与折叠,如立方体、圆柱体、锥体等。
4. 展开与折叠在实际中的应用探讨展开与折叠在生活中的应用,如包装设计、建筑设计等。
5. 展开与折叠的创新实践引导学生进行展开与折叠的创新实践,培养学生的创新能力。
三、教学重点与难点1. 教学重点:让学生掌握展开与折叠的基本概念、方法及应用。
培养学生运用展开与折叠知识解决实际问题的能力。
2. 教学难点:让学生熟练进行平面图形和立体图形的展开与折叠。
引导学生进行展开与折叠的创新实践。
四、教学方法1. 采用问题驱动法,引导学生主动探究展开与折叠的知识。
2. 运用案例分析法,让学生了解展开与折叠在实际中的应用。
3. 采用小组讨论法,培养学生团队协作、创新思维的能力。
4. 利用信息技术辅助教学,提高教学效果。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对知识的掌握程度。
3. 实践作品:评价学生在实践环节的创新成果,考查学生的应用能力。
4. 小组讨论:评估学生在团队协作中的表现,包括沟通交流、协作解决问题等。
六、教学准备1. 教学资源:准备相关的图片、模型、教具等教学资源。
制作PPT,展示展开与折叠的相关知识。
教学设计 《展开与折叠》 北师大
《展开与折叠(一)》一、[创设情景,导入新课]教师拿出一个制作漂亮的正方体纸盒展示给学生看,又拿出另外一个同样制作的正方体纸盒的平面展开图给学生看并用手慢慢地折叠成正方体纸盒。
教师:人们是如何将平面纸做成如此漂亮的纸盒的呢?导入新课:展开与折叠(二)目的:感受正方体的侧面可以展开为平面图形,创设真实的问题情景,使学生产生了求知的好奇心和欲望,激起了学生探究活动的兴趣。
二、[动手操作,探究知]教师:请同学们将准备好的小正方体纸盒沿某条棱任意剪开,看看能得到哪些平面图形?注意剪开正方体棱的过程中,正方体的6个面中每个面至少有一条棱与其它面相连。
学生进行裁剪,教师巡视。
把学生剪好的平面图形贴在黑板上(重复的不再贴),可以得出11种不同的展开图:教师:能否将得到的平面图形分类?你是按什么规律来分类的?学生讨论得出分为4类:第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
教师:既然都是正方体,为什么剪出的平面图形会不一样呢?学生观察手中图形,小组讨论得出同一立体图形,按不同方式展开得到的平面展开图是不一样的。
当然,也有的表面上看似不同,但通过转动、翻转可得相同。
教师:一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?学生:由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱。
三、[当堂检测,巩固新知]1、将一个正方体的表面沿某些棱剪开,展成以下平面图形。
先想一想,再动手剪,剪错了不要紧,再粘上,重剪。
(1)(2)学生思考,再动手剪,然后与同伴交流。
请剪好的学生介绍自己的剪法。
2、把一个正方体剪成如图所示的平面图形,你能剪成吗?(3)(4)学生先想,再剪,同伴之间互相交流剪的方法相互指正,教师巡视,对有困难的学生适时指导,学生说明(3)的剪法。
《展开与折叠》问题数学教案设计
《展开与折叠》问题數學教案設計主题:《展开与折叠》问题数学教案设计一、教学目标:1. 学生能够理解并掌握图形的展开和折叠的基本概念,包括正方形、长方形、圆形等基本图形的展开与折叠。
2. 通过实际操作,学生能够培养空间观念和动手能力。
3. 培养学生的观察力、想象力和创新能力。
二、教学重点与难点:重点:理解和掌握各种基本图形的展开与折叠的方法。
难点:理解和掌握三维图形的展开与折叠。
三、教学过程:1. 导入新课:教师可以通过展示一些实物模型(如纸盒、书本等),让学生观察并思考这些物体是如何由平面的纸张折叠而成的。
然后引导学生思考如何将这些立体的物体再次展平,引出今天的主题——《展开与折叠》。
2. 新课讲解:(1) 教师首先介绍什么是“展开”和“折叠”,并通过演示使学生直观地理解这两个概念。
(2) 接着,教师分别讲解正方形、长方形、圆形等基本图形的展开与折叠方法,并让学生进行实践操作。
(3) 最后,教师讲解三维图形的展开与折叠,引导学生通过想象和推理来理解和掌握这一部分内容。
3. 练习巩固:教师可以设计一些练习题,如画出某个立体图形的展开图,或者根据给定的展开图折叠成相应的立体图形,以帮助学生巩固所学知识。
4. 总结反馈:在课程结束时,教师可以让学生分享他们的学习体会,或者提出他们对这个主题的一些疑问或困惑,以便教师及时调整教学策略。
四、教学评价:教师可以通过观察学生在课堂上的参与度、完成练习的情况以及他们在总结反馈中的表现,来评价他们的学习效果。
五、教学反思:在课程结束后,教师应对自己的教学进行反思,思考哪些地方做得好,哪些地方需要改进,以便更好地提高教学效果。
以上就是《展开与折叠》问题数学教案的设计,希望对你有所帮助。
北师大版七年级数学上册 展开与折叠(一)教案
相关资料第一章丰富的图形世界展开与折叠(一)一、学生知识状况分析“展开与折叠”是《丰富的图形世界》中继“生活中的立体图形”之后的一个学习内容,学生已经学习了生活中的立体图形的有关知识,对立体图形已有一定的认识,学生在小学学过简单立体图形及其侧面展开图。
本节主要研究正方体的展开图,研究过程中充满着大量的操作实践活动,同时,七年级学生具有好奇心、求知欲较强的特点,学生间相互评价、相互提问的积极性高,因此,参与有关展开与折叠的实践探究活动的热情应该是比较高的。
二、教学任务分析本节是从正方体纸盒的展开体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解正方体的十一种平面展开图,更重要的是让学生通过观察、思考找出正方体十一种展开图的特征。
通过自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。
本节分为两个课时,第一课时通过正方体的展开图,了解正方体展开图的基本特征。
同时让学生经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验。
而第二课时的教学任务旨在进一步认识棱柱的展开图;了解一些特殊几何体的展开图,能根据展开图判断立体模型。
根据以上分析,确定第一课时的教学目标如下:1、知识与技能目标:通过充分的实践,使学生能将一个正方体的表面沿某些棱剪开,展开成一个平面图形;2、过程与方法目标:通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉,积累数学活动经验。
3、情感与态度目标:体验数学与生活的密切联系。
让学生在充分经历实践、探索、交流,获得成功的体验,培养科学探索精神。
4、教学重难点:重点:将一个正方体的表面沿某些棱展开,展成平面图形;难点:鼓励学生尽可能多地将一个正方体展成平面图形,并用语言描述其过程。
三、教学过程分析本节课设计了五个教学环节:第一环节:创设情景,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。
展开与折叠教学设计
展开和折叠(一)一、教学目标:1、知识与技能目标:(1)、认识到立体图形与平面图形的关系,了解一些立体图形可由平面图形围成,一些立体图形可展开成平面图形,发展空间观念;(2)、由观察、折叠等数学活动认识棱柱的某些特征;(3)、了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。
2、过程与方法:通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
3、情感态度与价值观:让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
二、教学重点、难点:重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。
难点:正确判断哪些图形可以折叠成棱柱。
三、教学方法:引导发现法四、教具准备:圆锥冰淇淋筒、长方形纸、供折叠用平面图形若干棱柱实物、胶纸。
五、教学过程Ⅰ.创设现实情景,引入新课演示:⑴将圆锥形的冰淇淋筒沿一虚线剪开展成一平面的扇形。
⑵将长方形纸折叠数次围成棱柱的侧面。
Ⅱ.探究新课问题:如何分别用一个词概括以上活动?能否用语言归纳以上活动中你的感受?学生观察教师的演示活动,并能主动说出“展开”和“折叠”。
同座交流感受并能大胆表达。
其他同学进行补充。
Ⅲ.做一做1、图示的平面图形经过折叠能否围成一个棱柱?学生动手操作。
图一图二2、由学生展示自己制作的模型。
3、演示平面图形经过折叠可以围成棱柱。
4、观察理解归纳。
(1)、棱柱的有关概念:在棱柱中,任何相邻的两个面的交线都叫棱,其中相邻两个侧面的交线叫侧棱。
(2)、棱柱的特征:①棱柱的所有侧棱长相等;②棱柱的上、下底面是完全相同的图形,且都是多边形;③棱柱的侧面都是长方形。
(3)、棱柱的分类:根据底面多边形的边数,将棱柱分为三棱柱、四棱柱、五棱柱等,它们的底面分别是三角形、四边形、五边形等。
正方形和长方形都是四棱柱。
(4)、棱柱中各元素之间的数量关系:一个n棱柱(n≥3且n为正整数)有2n个顶点,3n条棱,(n+2)个面(两个底面和n个侧面),且顶点数+面数-棱数=2.5、学生在自己的模型上标上各部分的名称。
《展开与折叠》教案设计
《展开与折叠》教案设计一、教学目标:知识与技能目标:让学生掌握展开与折叠的基本概念和方法,能够运用展开与折叠的原理解决实际问题。
过程与方法目标:通过观察、实践、交流等环节,培养学生的空间想象能力、动手操作能力和团队协作能力。
情感态度与价值观目标:激发学生对几何图形的兴趣,培养学生的创新意识和解决问题的能力。
二、教学内容:1. 展开与折叠的概念及基本方法。
2. 常见几何图形的展开与折叠。
3. 展开与折叠在实际问题中的应用。
三、教学重点与难点:重点:展开与折叠的基本概念和方法,常见几何图形的展开与折叠。
难点:展开与折叠在实际问题中的应用。
四、教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、合作交流,培养学生的空间想象能力和解决问题的能力。
五、教学过程:1. 导入:通过展示生活中的展开与折叠现象,引发学生对展开与折叠的兴趣,导入新课。
2. 展开与折叠的概念及基本方法:引导学生观察、分析展开与折叠的定义及特点,讲解基本方法。
3. 常见几何图形的展开与折叠:让学生通过实物操作,观察、分析常见几何图形的展开与折叠过程。
4. 展开与折叠在实际问题中的应用:通过案例分析,引导学生运用展开与折叠的原理解决实际问题。
6. 课后作业:巩固所学内容,提高学生的实际应用能力。
六、教学评价:本节课采用过程性评价与终结性评价相结合的方式,对学生的知识与技能、过程与方法、情感态度与价值观进行综合评价。
具体包括:1. 学生对展开与折叠概念的理解程度。
2. 学生对常见几何图形展开与折叠方法的掌握情况。
3. 学生在实际问题中运用展开与折叠原理解决问题的能力。
4. 学生在小组讨论中的参与程度及团队协作能力。
5. 学生对展开与折叠相关知识的兴趣和好奇心。
七、教学资源:1. 实物模型:正方体、长方体等。
2. 教学课件:展开与折叠的动画演示、案例分析等。
3. 练习题库:针对不同层次学生的练习题。
4. 讨论素材:生活中展开与折叠的图片或视频。
展开与折叠教学设计
《展开与折叠》教学设计[教学目标](一)知识目标:1.通过充分的时间,使学生能将一个正方体的表面沿某些棱剪开,展成一个平面图形。
2.了解圆柱,圆锥的侧面展开图。
(二)能力目标:经历展开与折叠活动,模型制作等活动,发展空间观念,积累数学活动经验. 培养学生的动手能力和语言表达能力。
(三)情感、态度价值观:1.在一系列有趣且富有挑战性的问题过程中,培养学生敢于面对挑战和勇于克服困难的意志。
鼓励学生大胆尝试,从中获得成功的经验,激发学生的热情。
2.进一步丰富数学学习的成功体验,激发对空间与图形的好奇心,初步形成积极参与数学活动,主动与他人合作交流的意识。
[教学重、难点]重点:1.将一个正方体的表面沿某些棱展开,展成平面图形。
2.圆住、圆锥的侧面展开图。
难点: 鼓励学生尽可能地将一个正方体展成平面图形,并用语言描述其过程。
突破重难点策略:通过小组讨论、合作交流,取长补短,增强学生的感性认识;教师再适当加以点拨,便可突出重点、化解难点;使学生因成功的尝试树立起学习几何的自信心。
[教学准备]若干个硬纸板做成的正方体、剪刀、微机。
教学环节一、创设情景温故引新教师课前准备好一些硬纸片,如图所示,让学生思考经过折叠能变成几何体吗?学生先思考、猜想、回答。
引出课题——《展开与折叠(二)》(板书课题)让学生感受图形由平面到空间变化的过程。
二、设疑激趣自主合作接着设计了一个游戏情境:今天老师将要送给同学们一个礼物(拿出一个正方体的小盒子).有谁愿意接受呢?选择一名学生上来把它打开.(生):空的示意再用剪刀把它沿棱剪开来看.学生剪开后得到一个平面图形上面写着“祝你学习进步”兴趣是最好的老师,合理的情境,能激发学生学习的兴趣。
使学生主动的投入到学习中来。
提出问题:你能将正方体沿某一棱剪开后得出几种不同的展开图?以小组为单位,教师将事先准备好的正方体盒子,分配给各小组,请学生在正方体盒子的表面沿某些棱剪开,展开成一个平面图形.提示学生发挥自己的聪明才智,随意的剪,并把剪好的同学把作品贴到黑板上,给予积极评价. 如果学生没有出现十一种不同的图形,教师可有意识地将剩下图形补充演示给学生(把不同形状的图形留在黑板上,多媒体演示)提出问题让学生思考,也让每个学生动手,初步建立学生的空间观念,唤起他们的学习欲望。
《展开与折叠》问题数学教案设计
《展开与折叠》问题數學教案設計教案设计:《展开与折叠》一、教学目标:1. 知识技能:使学生掌握长方体、正方体和圆柱的平面展开图,理解立体图形和平面图形的关系。
2. 过程方法:通过观察、操作、思考,培养学生的空间观念和抽象思维能力。
3. 情感态度:激发学生对数学的兴趣,体验解决问题的成功喜悦。
二、教学重点难点:1. 重点:掌握长方体、正方体和圆柱的平面展开图,理解立体图形和平面图形的关系。
2. 难点:从平面图形想象出立体图形,以及通过折叠制作立体图形。
三、教学过程:1. 导入新课:教师展示一些常见的包装盒,让学生思考这些盒子是如何由一张纸折成的。
引出本节课的主题——《展开与折叠》。
2. 新授环节:(1)引导学生观察并思考:长方体、正方体和圆柱的平面展开图分别是什么形状?可以怎样折叠成原来的立体图形?(2)小组活动:分发相应的剪纸材料,让学生动手尝试制作长方体、正方体和圆柱的平面展开图,并尝试折叠成立体图形。
(3)教师讲解:在学生操作过程中进行指导,解释平面展开图和立体图形的关系,强调关键步骤和注意事项。
3. 巩固练习:设计一系列题目,包括识别平面展开图对应的立体图形,以及根据平面展开图折叠成立体图形等。
4. 小结:总结本节课的学习内容,强调重要知识点。
四、作业布置:1. 完成教材中的相关习题。
2. 利用家里的废纸,尝试制作其他的立体图形,如锥体、球体等。
五、教学反思:在教学过程中,要注重学生的参与度和实践性,鼓励他们主动思考和动手操作。
对于学生的疑问和困难,要及时解答和指导,帮助他们理解和掌握知识。
同时,也要关注学生的个体差异,提供适合他们的学习资源和方式。
展开与折叠教学设计(五篇材料)
展开与折叠教学设计(五篇材料)第一篇:展开与折叠教学设计《展开与折叠》教学设计一、教材简介《义务教育教科书(五·四学制)·数学》六年级上册第一章《丰富的图形世界》的第二节《展开与折叠》第1课时.二、教学目标(一)最近目标让学生进一步认识几何体,发展空间想象能力,逐步树立起空间观念.具有很好的空间观念是新课标的一个重要目标,图形的展开与折叠在各实验教材中占有很重要的地位,中考所占的分值也逐年增大。
(二)教材分析《丰富的图形世界》一章是从学生身边丰富多彩的实物开始认识立体图形和平面图形,它通过“生活中的立体图形”、“展开与折叠”、“截一个几何体”、“从三个不同方向看物体的形状图”四小节内容,初步让学生从几何直观的角度建立起立体图形与平面图形之间的联系.图形直观是人们理解自然界和社会现象的绝妙工具,它在空间与图形的学习中将给学生带来无穷无尽的直觉源泉,这种直觉将有效地增进学生对空间的理解.“展开与折叠”以及后面即将学习的“截一个几何体”、“从不同方向看”都是采用了化归的方法,将几何体转化为学生比较熟悉的平面图形,从平面的角度去研究几何体.本节共分为两课时,第1课时主要是研究直棱柱与它的平面展开图之间的关系,第2课时主要是研究正方体和平面展开图之间的关系.本节课从直观图形入手,通过学生动手剪、展、折叠等操作积累经验,建立起正方体与平面展开图之间的联系.本节首先遵循从立体到平面的方向,将几何体展开,得到平面上的展开图形,然后又将平面图形折叠,还原得到几何体,进行平面到立体的转化.(三)学情分析在小学的学习过程中,学生已有的更多的是关于平面图形的认识,缺少的是对立体图形的认识.对刚刚升入初中的七年级的学生来说,动手能力还显得很弱,学生的认知条件也有差异,尤其是初次从立体图形到平面图形,再从平面图形到立体图形两个角度研究几何图形,会给学生带来一定的困难.因此确定本节课的教学难点是:能准确识别正方体的表面展开图.解决难点的关键是通过观察、操作、想象、推理、交流等大量的数学活动,逐步使学生形成对正方体与平面展开图之间关系的认识.(四)经验剖析新课程标准中的“基本理念”中指出:“教师应帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的经验.”为了使学生能生动活泼地学习,能充分地展示自己,能在思辨中探求新知,小组合作学习便成为教学中实现这一理念的主要方法之一.小组合作学习将班级授课制条件下学生个体间的学习竞争关系变为“组内合作,组间竞争”的关系;将传统教学师生之间的单向交流变为师生、生生之间的多向交流.这不仅提高了学生学习的主动性、教学效率,也促进了学生间良好的人际合作关系.(五)课时目标本节是从学生周围熟悉的物体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解多面体可由平面图形围成,而且立体图形可按不同方式展开成平面图形,更重要的是让学生通过观察、思考和自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。
5.3展开与折叠教学设计
3.运用比较、分析、综合等方法,对不同几何体的展开与折叠进行分类和归纳,形成系统的认识。
4.设计具有挑战性的问题情境,引导学生运用已学知识,进行推理和论证,培养逻辑思维和数学表达的能力。
5.通过反馈和评价,帮助学生反思学习过程,调整学习策略,实现自我提升。
-实施形成性评价,关注学生的成长过程,及时给予反馈,帮助学生明确自身优势与不足,不断进步。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将采用以下方法激发学生的兴趣和好奇心:
1.以生活实例引入:向学生展示一些常见的日常物品,如纸箱、礼物盒、折叠椅等,让学生观察它们的共同特点,即都可以通过展开和折叠来转换形态。
2.学生反思:鼓励学生反思学习过程中的收获和遇到的困难,分享学习心得。
3.教师点评:教师对学生的学习情况进行点评,强调重点,指出常见错误。
4.布置作业:布置Байду номын сангаас关的课后作业,巩固课堂所学,同时为下一节课的学习做好铺垫。
五、作业布置
为了使学生能够更好地巩固本章节“展开与折叠”的知识,我设计了以下作业:
1.基础练习:完成课本中与展开与折叠相关的练习题,以加深对基本概念的理解和掌握。
2.提出问题:询问学生是否曾经尝试过折叠这些物品,并思考折叠前后的变化。引导学生思考如何从一个平面图形得到一个立体图形,反之亦然。
3.利用多媒体:通过播放动画或视频,直观展示几何体的展开与折叠过程,激发学生对空间变换的好奇心。
4.设定学习目标:明确告诉学生本节课的学习目标是掌握展开与折叠的基本方法,并能运用这些方法解决实际问题。
4.理论联系实际:将所学的理论知识与实际问题相结合,如计算几何体的表面积和体积,让学生理解学习的实用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:展开与折叠(1) 教学目标:
1、通过充分的实践,学生能将一个正方体的表面沿某些棱剪开,展开成一个平面图形; 2、在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉,积累数学活动经验。
主备人:_邹新凤_
授课时间:_______
教学重.难点:
重点:将一个正方体的表面沿某些棱展开,展成平面图形; 难点:鼓励学生尽可能多地将一个正方体展成平面图形,并用语言描述其过程。
3、教师用电脑演示剪开的方法,设问:能否将得到的平面图形分类?你是按什么规律来 分类的? 学生讨论得出分为 4 类: 第一类,分三排,有三种情形:中间为四个,两侧各一个,共六种;中间为三个正方形 , 上为两正方形,下为一正方形.此时下一正方形可以在任何位置,共三种;中间为两个正方 形,上为两正方形,下为两正方形,此时只有一种情况;第二类,分两排,此时只有一种情 况。从而引导学生得出一个重要结论:任何正方形组合不能是田字形。 4、教师再次设问:既然都是正方体,为什么剪出的平面图形会不一样呢? 学生观察手中图形,小组讨论得出同一立体图形,按不同方式展开得到的平面展开图是不 一样的。当然,也有的表面上看似不同,但通过转动、翻转可得相同。 5、一个正方体要将其展开成一个平面图形,必须沿几条棱剪开? 学生讨论,由于正方体有 12 条棱,6 个面,将其表面展成一个平面图形,面 与面之间相连的棱有 5 条(即未剪开的棱) ,因此需要剪开 7 条棱。
课时安排:
2 课时 教学过程
第 1 课时
个人视角
第一环节:创设情景,导入课题
在生活中,我们经常见到正方体形状的盒子.将纸盒完全展开后形状是怎样的?
第二环节:动手操作、探求新知
将一个正方体的表面沿某些棱剪开 , 能展成一个平面图形吗?你能得到哪些平面图 形?与同伴进行交流. 1、教师布置活动任务:请同学们将准备好的小正方体纸盒沿某条棱任意剪开,看看能得 到哪些平面图形?注意强调在剪开正方体棱的过程中,正方体的 6 个面中每个面至少有一 条棱与其它面相连。 2、学生分组进行裁剪,教师巡视。并把学生剪好的平面图形贴在黑板上(重复的不再贴), 可以得出 11 种不同的展开图:
第三环节:先猜想再实践,发展几何直觉
1、把一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到下面的些平面 图形吗?
2、下面哪一个图形经过折叠可以得到正方体?
第四环节:巩固基础,检测自我
1、下列图形可以折成一个正方体形的子.折好以后,与 1 相邻的数是什么?相对的 数是么?先想一想,再具体折一折,看看你的想法是否正确。
4 5 1 2 3 6
2、如果将正方体的表面分别标上数字 1,2,3,4,5,6,使它的任意两个相对面的 数字之和为 7,将它沿某些棱剪开,能展开成下列的平面图形吗?
5
5 3
2
4(2)
1
1 2 3 4 6
(3)
5
第五环节:课堂小结,布置作业
习题 1.3 第 1、2、4 题
教有所得: