工业大数据平台介绍v2.0PPT培训课件

合集下载

大数据培训讲义PPT(共 75张)

大数据培训讲义PPT(共 75张)
+ 软件改变世界!
大数据生态:软件是引擎
大数据技术要解决的问题
企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意 味着企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各 个细节相融合。
大数据技术被设计用于在 成本可承受的条件下,通 过非常快速(velocity) 地采集、发现和分析,从 大量(volumes)、多 类别(variety)的数据 中提取价值(value), 将是IT 领域新一代的技 术与架构。
大数据
主讲人:刘永磊
大数据的定义理解
1
大数据时代的背景
什么是大数据 2
大数据的“4V”特征
3
大数据的构成
大数据时代的背景
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到 了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其 增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物 联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银 行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
• 统计和分析:A/B test; top N排行榜;地域占比; 海量数据的查询、统计、更新等操作效率低
文本情感分析
• 非结构化数据
• 数据挖掘:关联规则分析;分类;聚类
图片、视频、word、pdf、ppt等文件存储
• 模型预测:预测模型;机器学习;建模仿真
不利于检索、查询和存储
• 半结构化数据
• 非关系数据库
(NoSQL)
• 数据仓库
• 云计算和云存储
• 实时流处理
分布式文件系统
分布式文件系统(Distributed File System)是指文件系统管理 的物理存储资源不一定直接连接在本地节点上,而是通过计算机 网络与节点相连。

工业大数据应用

工业大数据应用

工业大数据概述
工业大数据的应用场景
1.工业大数据可以应用于生产过程的优化,提高生产效率和产 品质量。 2.工业大数据可以用于预测设备故障和维护,减少生产中断和 维修成本。 3.工业大数据可以帮助企业实现供应链优化,降低库存成本和 提高响应速度。
工业大数据的发展趋势
1.随着人工智能和机器学习技术的发展,工业大数据的分析和 应用将更加智能化和自动化。 2.工业大数据将与物联网、云计算等技术相结合,实现更加高 效和智能的工业生产和运营。
工业大数据概述
▪ 工业大数据的挑战和问题
1.工业大数据的处理和分析需要专业的技能和知识,人才短缺 是一个重要的问题。 2.工业大数据的安全和隐私问题也需要得到重视和解决,保护 企业商业机密和客户隐私。
▪ 工业大数据的未来发展前景
1.随着人工智能和机器学习技术的不断发展,工业大数据的应 用前景将更加广阔。 2.工业大数据将成为工业数字化转型的重要驱动力,推动工业 生产的智能化和绿色化发展。
工业大数据应用
目录页
Contents Page
1. 工业大数据概述 2. 工业大数据采集与处理 3. 工业大数据分析技术 4. 工业大数据在智能制造中的应用 5. 工业大数据在供应链管理中的应用 6. 工业大数据在产品质量控制中的应用 7. 工业大数据安全与挑战 8. 工业大数据未来发展趋势
工业大数据应用
工业大数据在供应链需求预测中的应用
1.工业大数据可以通过对历史销售数据的分析,预测未来市场需求,帮助企业提前做好生产和库存 管理,提高运营效率。 2.工业大数据可以结合其他相关数据,如季节性、趋势性、周期性等因素,提高需求预测的准确性 和可靠性。
工业大数据在供应链管理中的应用
▪ 工业大数据在供应链库存管理中的应用

工业互联网平台工业大数据应用解决方案

工业互联网平台工业大数据应用解决方案

工业互联网平台工业大数据应用解决方案第一章工业互联网平台概述 (2)1.1 工业互联网平台简介 (2)1.2 工业大数据概述 (2)第二章工业大数据采集与存储 (3)2.1 数据采集技术 (3)2.2 数据存储与管理 (4)2.3 数据清洗与预处理 (4)第三章工业大数据分析与挖掘 (5)3.1 数据分析方法 (5)3.1.1 描述性分析 (5)3.1.2 摸索性分析 (5)3.1.3 预测性分析 (5)3.1.4 诊断性分析 (5)3.2 数据挖掘算法 (5)3.2.1 决策树算法 (5)3.2.2 支持向量机算法 (5)3.2.3 神经网络算法 (6)3.2.4 关联规则算法 (6)3.3 数据可视化 (6)3.3.1 直方图 (6)3.3.2 折线图 (6)3.3.3 散点图 (6)3.3.4 箱型图 (6)第四章工业大数据在设备管理中的应用 (6)4.1 设备状态监测 (6)4.2 预测性维护 (7)4.3 故障诊断与优化 (7)第五章工业大数据在生产优化中的应用 (8)5.1 生产流程优化 (8)5.2 能源管理 (8)5.3 质量控制 (8)第六章工业大数据在供应链管理中的应用 (9)6.1 供应链协同 (9)6.2 库存优化 (9)6.3 采购与销售预测 (9)第七章工业大数据在产品研发中的应用 (10)7.1 设计优化 (10)7.2 产品功能分析 (10)7.3 市场需求预测 (11)第八章工业大数据在企业管理中的应用 (11)8.1 生产调度 (11)8.1.1 引言 (11)8.1.2 应用策略 (11)8.2 人力资源管理 (12)8.2.1 引言 (12)8.2.2 应用策略 (12)8.3 财务管理 (12)8.3.1 引言 (12)8.3.2 应用策略 (12)第九章工业大数据在行业解决方案中的应用 (13)9.1 制造业 (13)9.2 能源行业 (13)9.3 交通物流 (14)第十章工业大数据安全与隐私保护 (14)10.1 数据安全策略 (14)10.2 隐私保护技术 (15)10.3 法律法规与合规 (15)第一章工业互联网平台概述1.1 工业互联网平台简介工业互联网平台是指以云计算、大数据、物联网等新一代信息技术为基础,融合工业生产全要素、全流程、全生命周期数据的综合性服务平台。

大数据培训课件

大数据培训课件
强化学习
智能体在与环境交互中学习策略, 以最大化累积奖励。
03
02
无监督学习
对无标签数据进行学习,发现数据 中的结构和模式。
实践案例
图像识别、语音识别、自然语言处 理等。
04
深度学习在大数据分析中的应用
神经网络基础
了解神经元、激活函数、网络结构等基本概念。
卷积神经网络(CNN)
用于图像识别和处理,具有局部连接和权值共享特性。
个性化教学
通过分析学生的学习习惯、能力水平、兴趣爱好等信息,教育机构可以为学生提 供个性化的学习资源和教学方案,提高教学效果和学生学习成绩。
智能评估
利用大数据分析技术,教育机构可以对学生的学习成果进行全面、客观的评估, 为教师提供更准确的教学反馈,促进教学质量的不断提升。
其他行业:智慧城市、智能制造等
提供Java API编程示例,展示如何在应用程 序中访问HDFS。
探讨HDFS性能优化的方法,如选择合适的 块大小、副本数等,并分享一些使用HDFS 的最佳实践。
分布式数据库HBase
基本操作
演示HBase Shell的基本操作,包括表的 创建、数据的增删改查等。
A 数据模型与架构
解释HBase的数据模型、表结构、 RegionServer等关键组件及其工作
分布式数据库
通过案例分析和实践操作,让学 员深入了解分布式存储的实际应 用,如搭建Hadoop集群、使用 HDFS进行数据存储等。
NoSQL数据库介绍及应用
NoSQL数据库概述
介绍NoSQL数据库的概念、特点及分类,包括键值存储、 列式存储、文档存储和图形存储等。
主流NoSQL数据库介绍
详细讲解主流NoSQL数据库的原理、架构及实现,如 Redis、MongoDB、Neo4j等,以及它们各自的优势和应 用场景。

大数据技术培训课件

大数据技术培训课件
法进行异常值检测和处理。
数据集成与融合技术
数据集成方法
数据融合技术
将来自不同数据源的数据进行整合,形成 一个统一的数据视图,如数据联邦、数据 仓库等。
将多个数据源的数据进行融合,提取出更 有价值的信息,如基于规则的数据融合、 基于统计的数据融合等。
数据质量评估
数据可视化
对数据集成和融合后的数据进行质量评估 ,确保数据的准确性、完整性和一致性。
企业如何保障大数据安全与用户隐私
制定完善的数据安全管理 制度
明确数据安全责任、规范数据 处理流程、建立数据分类分级 保护机制。
加强网络安全防护
采用先进的网络安全技术和设 备,提高网络防御能力,防范 网络攻击和数据泄露。
实施隐私保护措施
采用匿名化、去标识化等技术 手段处理用户数据,确保用户 隐私不被泄露。同时,建立用 户隐私投诉处理机制,及时响 应用户投诉并采取措施予以解 决。
培养大数据人才
加强大数据人才的培养和引进,打造一支具 备专业技能和创新能力的大数据团队。
构建大数据平台
选择合适的大数据技术和工具,构建高效、 稳定、安全的大数据平台。
推动数据驱动决策
将大数据分析结果应用于企业决策,提高决 策的科学性和准确性。
未来大数据产业前景展望
大数据产业规模持续扩大
随着大数据技术的不断发展和应用,大数据产业规模将持续扩大,成 为经济增长的重要引擎。
等。
数据清洗与转换技术
数据去重
消除数据集中的重复记录,保 证数据的唯一性。
数据填充
对缺失值进行填充,如使用均 值、中位数、众数等统计量进 行填充。
数据转换
将数据从一种格式或结构转换 为另一种格式或结构,如数据 归一化、标准化等。

大数据培训课件(PPT2)精编版

大数据培训课件(PPT2)精编版

医药研发
运用大数据技术对海量的医药研 发数据进行分析和挖掘,加速新 药研发进程,提高研发效率和成
功率。
教育行业:个性化教育与智能辅导
个性化教育
通过大数据分析,对学生的学习历史、能力水平、兴趣爱 好等信息进行深入挖掘和分析,为教师提供更加准确、个 性化的教学方案和建议,提高教学效果。
智能辅导
利用大数据技术,对学生的学习数据进行实时监测和分析 ,发现学生的学习问题和薄弱环节,提供针对性的智能辅 导和练习建议。
聚类分析
将数据分成不同的组或簇 ,使得同一组内的数据尽 可能相似,不同组间的数 据尽可能不同。
关联规则挖掘
寻找数据项之间的有趣联 系或规则。
序列模式挖掘
发现数据序列中的频繁模 式。
机器学习算法原理及应用
监督学习
利用已知输入和输出数据进行训练,得到一 个模型,用于预测新数据的输出。
强化学习
智能体通过与环境交互,学习如何采取最佳 行动以最大化累积奖励。
行为,及时预警和防范金融欺诈行为。
医疗行业:精准医疗与健康管理
精准医疗
通过大数据分析,对患者的基因 信息、生活习惯、病史等进行深 度挖掘和分析,为医生提供更加 准确、个性化的诊疗方案,提高
治疗效果。
健康管理
利用大数据技术,对个人的健康 数据进行实时监测和分析,提供 个性化的健康管理计划和建议, 帮助人们更好地管理自己的健康
无监督学习
在没有已知输出的情况下,从输入数据中学 习数据的内在结构和特征。
深度学习
利用神经网络模型,学习数据的复杂和抽象 特征表示。
深度学习在大数据分析中的应用
图像识别
通过训练深度神经网络,实现对图像内容的 自动识别和分类。

工业大数据介绍

工业大数据介绍

一、工业大数据的定义工业大数据是指在工业领域,主要通过传感器等物联网技术进行数据采集、传输得来的数据,由于数据量巨大,传统的信息技术已无法对相应的数据进行处理、分析、展示,而在传统工业信息化技术的基础上借鉴了互联网大数据的技术,提出新型的基于数据驱动的工业信息化技术及其应用。

二、工业大数据特点工业大数据主要有以下几个特点:1、数据来源主要是企业内部,而非互联网个人用户;2、数据采集方式更多依赖传感器而非用户录入数据;3、数据服务对象是企业,而不是个人;4、在技术上,传统的企业架构技术已无法提供相应的分析应用,更多的采用了互联网大数据领域成熟的技术;5、改变了企业原先对数据的看法,使得原先看似无用的、直接丢弃的数据重新得到了重视,并且切实改进了企业的生产、销售、服务等过程;三、大数据在工业领域的作用1、实现数据的全面采集并持久化在前大数据时代,很多工业现场采集到的数据的生命周期仅仅是在显示屏上一闪而过,大量的数据由于种种原因被丢弃了,丢弃的一个很重要的原因就是无法有效存储,全部存储成本过高且数据量过大导致无法使用。

大数据时代之后,新型的数据处理技术及云计算带来的低成本,使得数据的全面采集并且持久化成为可能,即采集到的数据可以实现长时间的存储,且海量的数据可处理、可分析,工业用户就有了存储数据的意愿。

而这一切又反过来为大数据分析提供了坚实的数据基础,使得分析的结果更准确,成为一种正向循环。

2、实现全生产过程的信息透明化随着现代生产技术的飞速提高,生产过程已经呈现高度复杂性和动态性,逐渐出现了不可控性。

生产过程信息呈现碎片化倾向,只有专业部门、专业人员才掌握本部门、本专业的数据,企业无法全面有效了解全生产流程。

随着大数据处理和可视化技术的不断发展,目前,通过全生产过程的信息高度集成化和数据可视化,从而达到了生产过程的信息透明化,企业总调度中心不仅可以清晰地识别产品,定位产品,而且还可全面掌握产品的生产经过、实际状态以及至目标状态的可选路径。

工业互联网平台工业大数据应用实践案例分享

工业互联网平台工业大数据应用实践案例分享

工业互联网平台工业大数据应用实践案例分享第一章工业互联网平台概述 (3)1.1 工业互联网平台简介 (3)1.2 工业大数据应用价值 (3)第二章平台架构与关键技术 (4)2.1 平台架构设计 (4)2.1.1 总体架构 (4)2.1.2 关键模块设计 (4)2.2 关键技术解析 (4)2.2.1 数据采集技术 (5)2.2.2 数据存储技术 (5)2.2.3 数据处理技术 (5)2.2.4 数据安全技术 (5)2.3 技术应用实例 (5)第三章数据采集与接入 (5)3.1 数据采集方法 (5)3.1.1 传感器数据采集 (6)3.1.2 工控系统数据采集 (6)3.1.3 网络数据采集 (6)3.1.4 人工录入数据采集 (6)3.2 数据接入流程 (6)3.2.1 数据源识别与接入协议制定 (6)3.2.2 数据传输与存储 (6)3.2.3 数据清洗与转换 (6)3.2.4 数据索引与查询 (6)3.3 数据预处理 (7)3.3.1 数据完整性检查 (7)3.3.2 数据一致性检查 (7)3.3.3 数据归一化处理 (7)3.3.4 数据降维处理 (7)3.3.5 数据加密与安全 (7)第四章数据存储与管理 (7)4.1 数据存储策略 (7)4.2 数据管理技术 (7)4.3 数据安全性保障 (8)第五章数据分析与挖掘 (8)5.1 数据分析流程 (8)5.2 数据挖掘算法 (9)5.3 应用案例分享 (9)第六章智能制造与应用 (9)6.1 智能制造概述 (9)6.2 智能制造应用场景 (10)6.2.1 生产线智能化改造 (10)6.2.2 供应链管理 (10)6.3 应用案例分享 (10)第七章个性化定制与优化 (11)7.1 个性化定制方法 (11)7.1.1 定制需求分析 (11)7.1.2 定制方案设计 (11)7.1.3 定制流程实施 (11)7.2 优化策略与应用 (11)7.2.1 生产过程优化 (11)7.2.2 资源配置优化 (11)7.2.3 供应链协同优化 (11)7.3 应用案例分享 (12)第八章预测性维护与故障诊断 (12)8.1 预测性维护技术 (12)8.1.1 传感器监测技术 (12)8.1.2 数据挖掘与分析技术 (12)8.1.3 机器学习与人工智能技术 (13)8.2 故障诊断方法 (13)8.2.1 信号处理方法 (13)8.2.2 机理分析方法 (13)8.2.3 数据驱动方法 (13)8.3 应用案例分享 (13)第九章能源管理与优化 (13)9.1 能源管理策略 (13)9.1.1 引言 (14)9.1.2 能源管理策略制定 (14)9.1.3 能源管理策略实施 (14)9.2 能源优化技术 (14)9.2.1 引言 (14)9.2.2 能源优化技术概述 (14)9.2.3 能源优化技术应用 (14)9.3 应用案例分享 (15)9.3.1 某钢铁企业能源管理案例 (15)9.3.2 某化工企业能源优化案例 (15)9.3.3 某家电企业能源管理案例 (15)第十章工业互联网平台发展趋势与展望 (15)10.1 发展趋势分析 (15)10.2 面临的挑战与机遇 (16)10.3 未来发展展望 (16)第一章工业互联网平台概述1.1 工业互联网平台简介工业互联网平台是指基于云计算、大数据、物联网等现代信息技术,集成工业生产、管理、服务等各个环节的数据资源,实现设备、系统、人三者之间的互联互通,提供数据采集、存储、处理、分析、应用等全流程服务的平台。

大数据平台简介 ppt课件

大数据平台简介  ppt课件
Blockreport:当一个DataNode启动时,它会扫描本地文件系统,生成 所有HDFS数据块的一个列表,然后向NameNode发送一个报告。
HDFS的基本结构之 DataNode 39
Datanode一般是一个节点一 个,负责所在物理节点的存储 管理,是文件系统中真正存储 数据的地方 一个文件被分成一个或多个数 据块,这些块存储在一组 Datanode上 Datanode负责处理文件系统 客户端的读写请求。 在Namenode的指挥下进行 block的创建、删除和复制 周期性的向Namenode汇报 其存储的数据块信息
14zookeeper分布式协调服务15sqoophadoop与关系数据库间的数据同步工具16flume分布式日志采集工具17amarihadoop集群安装部署监控工具1819大数据领域的三驾马车clouderahortonworksmapr20clouderadistributionhadoopcdh21hortonworksdataplatformhdp22maprconvergeddataplatform23hadoop主流厂商比较开源开源架构创新完全开源收取服务费工具不开源收取license费用重构了底层内核收取license费用24云服务集团软件集团浪潮大数据平台产品hdp云海insighthdindatahd2526相关背景资料hadoop
并发写入、文 件随机修改
不支持多用户对同一文件进行操作,而且写操作只 能在文件末尾完成,即追加操作。
HDFS现在遇到的主要问题 33
分布后的文件系统有个无法回避的 问题,因为文件不在一个磁盘导致 读取访问操作的延时,这个是 HDFS现在遇到的主要问题
HDFS 调优是使用时最 应该注意的。
现阶段,HDFS的配置是按照高数据吞吐量优化的,可能会以高时 间延时为代价。但万幸的是,HDFS是具有很高弹性,可以针对具 体应用再优化。

《大数据平台简介》课件

《大数据平台简介》课件

B
C
D
可扩展性强
大数据平台采用分布式架构,可以根据业 务需求进行横向和纵向的扩展,满足企业 不断增长的数据处理需求。
数据整合能力强
大数据平台能够整合不同来源、不同格式 的数据,实现数据的统一管理和分析。
挑战分析
数据安全风险高
随着数据量的增长,数据安 全问题也日益突出,如何保 障数据的安全和隐私成为大 数据平台面临的重要挑战。
定义
大数据平台是一个集数据存储、处理、分 析和管理于一体的综合性系统,旨在高效 处理大规模数据集,挖掘其潜在价值。
高效性
具备高性能的数据处理能力,能够快速处 理和分析大规模数据。
可靠性
提供数据备份、恢复和容错机制,确保数 据安全可靠。
扩展性
具备水平扩展和垂直扩展能力,可根据业 务需求灵活增加计算和存储资源。

大数据平台的应用场景
数据分析与挖掘
对海量数据进行深入分析和挖掘,发现 潜在规律和趋势,为企业决策提供支持

数据科学与机器学习
利用大数据平台进行数据建模、特征 工程、模型训练和评估等,支持机器
学习和人工智能应用。
数据仓库与报表
构建企业级数据仓库,提供标准化的 报表和查询服务,满足企业日常运营 和管理的需求。
05
CATALOGUE
大数据平台案例分析
案例一:某电商的大数据平台建设
总结词
该电商企业通过大数据平台建设,实现 了精准营销、个性化推荐和供应链优化 。
VS
详细描述
该电商企业利用大数据技术,收集并分析 用户行为、购买历史、浏览记录等数据, 实现了个性化推荐和精准营销。同时,通 过大数据分析,优化了供应链管理,降低 了库存成本,提高了运营效率。

大数据培训专题培训课件

大数据培训专题培训课件

市场营销
金融学
生活娱乐
总统选举
17
二.大数据的应用领域——政治领域
大数据帮助奥巴马 成功实现连任
奥巴马的数据团队对数以 千万计的选民邮件进行了大数 据挖掘,精确预测出了更可能 拥护奥巴马的选民类型,并进 行了有针对性的宣传,从而帮 助奥巴马成为了美国历史上唯 一一位在竞选经费处于劣势下 实现连任的总统。
2013年世界范围内狭义的大数据产业产值只有186亿美元 ,但广义的大数据应用几乎覆盖所有产业。据麦肯锡公司预 测,开放数据仅在教育、保健等7个行业便可释放3.2万亿~
5.4万亿美元的经济价值。
16
二.大数据的应用领域
教育学 情报学 公共服务
天文学
电子政务
传媒业
生物医学
商业智能 图书馆学
气候学
企业管理
全球网民平均每月 使用流量(MB)
12000 10000
10240
8000
6000
4000
2000
1024
1 0
10 100
1998 2000 2003 2008 2014
全球网民平均每月使用流量: 1M(1998) 10M(2000) 100M(2003) 1G(2008) 10G(2014)
全球流量累计达到1EB(即10亿GB) 的时间 一年(2001) 一个月(2004) 一周(2007) 一天(2013) 一天产生的信息量可刻满1.88亿张DVD光盘
18:00,你回到了家,你的可穿戴设备告诉你,今天你在室内和室外的时间分别 都是多少,你一天内吸入了多少雾霾。
22:00,晚上睡觉的时候,你家的孩子哭闹起来。你把孩子的哭声录入一个大 数据软件中。软件能告诉你孩子为什么哭。是饿了,还是哪里不舒服,还是说 只是想撒撒娇……

《大数据平台介绍》课件

《大数据平台介绍》课件

THANKS
大数据平台的应用场景
总结词:大数据平台广泛应用于商业智能、智慧城市 、金融风控等领域。
详细描述:大数据平台在许多领域都有广泛的应用。在 商业智能领域,企业利用大数据平台进行市场分析、用 户行为分析、销售预测等,以提升业务决策的准确性和 效率。在智慧城市领域,大数据平台用于城市管理、交 通监控、公共安全等方面,提高城市运行效率和公共服 务水平。在金融风控领域,大数据平台用于风险评估、 信贷审批、欺诈检测等,以提升金融业务的安全性和可 靠性。此外,大数据平台还在医疗健康、科学研究、智 能制造等领域得到广泛应用。
恢复策略
制定详细的数据恢复流程和预案,以便在数据丢失或损 坏时能够迅速恢复数据。
性能优化与升级方案
性能优化
根据大数据平台的运行情况,对系统性能进行优化,提高数据处理速度和系统稳定性。
升级方案
根据技术发展和业务需求,制定升级方案,确保大数据平台能够持续满足业务发展需求 。
06 大数据平台的发展趋势与展望
总结词
随着数据量的快速增长和数据处理需求的日益复杂,传统数据处理方式无法满足需求,因此大数据平台应运而生 。
详细描述
随着互联网、物联网、社交媒体等领域的快速发展,数据量呈爆炸式增长,同时数据处理需求也变得日益复杂。 传统数据处理方式在处理速度、效率、规模等方面存在局限性,无法满足大数据时代的需求。因此,大数据平台 作为一种新型的数据处理框架和工具,应运而生。
详细描述
大数据通常是指数据量巨大、难以用传统数据处理工具和方法处理的数据集合。它具有4V特性,即体 量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的规模庞大,速 度指数据处理速度快,多样指数据类型多样,价值指大数据具有很高的潜在价值。

工业大数据分析-工业大数据分析教学课件

工业大数据分析-工业大数据分析教学课件

THANKS
工业大数据存储与管理
第一类是多源异构数据高效管理技术 第二类是多模态数据集成技术
工业大数据分析
工业大数据具有实时性高、数据量大、密度低、数据源异构性强等特点, 这导致工业大数据的分析不同于其他领域的大数据分析,通用的数据分析技 术往往不能解决特定工业场景的业务问题。工业过程要求工业分析模型的精 度高、可靠性高、因果关系强,这样才能满足日常工业生产需要,而纯数据 驱动的数据分析手段往往不能达到工业场景的要求。工业数据的分析需要融 合工业机理模型,以“数据驱动+机理驱动”的双驱动模式来进行工业大数 据的分析,从而建立高精度、高可靠性的模型来真正解决实际的工业问题。
工业大数据分析概述——工业大数 据分析
主要内容
01 工业大数据分析处理流程 02 工业大数据的应用价值 03 与工业互联网的关系
工业大数据技术
工业大数据技术是使工业大数据中所蕴含的价值得 以挖掘和展现的一系列技术与方法,包括数据规划、 采集、预处理、存储、分析挖掘、可视化和智能控 制等。工业大数据应用,则是对特定的工业大数据 集,集成应用工业大数据系列技术与方法,获得有 价值信息的过程。工业大数据技术的研究与突破, 其本质目标就是从复杂的数据集中发现新的模式与 知识,挖掘得到有价值的新信息,从而促进制造型 企业的产品创新、提升经营水平和生产运作效率以 及拓展新型商业模式。
0 3
与工业互联网的关系
工业大数据的应用价值
智能产品中的传感器得到工业企业的充分应用,将 用户在使用产品过程中的使用习惯和偏好等相关数 据进行实时采集、存储和传输,通过对这些数据深 入的分析和挖掘为企业提供改进产品功能、提升产 品性能的参考信息,这种预先诊断产品故障的方式 直接让客户参与到了产品设计和使用需求的活动中, 同时让众多用户的个性化需求得到满足,对此智能 制造在工业大数据的应用下还可以通过规模化定制 构建一个全新的商业模式,从而创造更大的商业价 值。

大数据知识普及(PPT 35页)

大数据知识普及(PPT 35页)

大数据 VS 物联网
物联网是大数据的流程中的第一层
采集层
物联网网关以上就进入了大数据工作范畴。 局部域内的物联网应用解决方案等同于这个域内的大数据系统
Big Data
什么是大数据
大数据原理和构成
大数据的核心工作思路
Big Data
大数据原理和 构成
大数据系统颠覆了传统数据中心的工作逻辑
传统数据系统工作逻辑:
数据
Big Data
张辉 2013 12月 西安
大数据
什么是大数据 大数据原理和构成 大数据应用 大数据价值
Big Data 目录
什么是大数据
机器学习 可视化
数据流
AMD
数据
预测
Big Data
什么是大数据
数据库
运算节点
Big Data
什么是大数据
一个执行体系 不是一个行业,而是一种新的数据处理方法
可以完美运行内存计算数据库
2.6万
换算成10U的空间 80核心
SeaMicro SM15000
64颗处理器、每颗处理器8核 = 512核 心 4TB的内存 5PB本地存储 10U的空间 万兆以太网
大数据的软件
数据存储管理 数据处理 数据分析
大数据的核心价值
Big Data
大数据原理和 构成
Hadoop 数据库软件
44%
35 ZB
商业数据现状
Big Data
什么是大数据
Twitte r
2007年 2008年 2009年 2010年 2011年 2013年
5000条微博更新/天 30万条微博更新/天 250万条微博更新/天 3500万条微博更新/天 2亿条微博更新/天 4亿条微博更新/天
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

……
结构化数据
数据采集 1、负责源数据采集、清洗、转换、把 原始数据加载到Hadoop平台 2、把加工后的数据加载分布式数据库 和主数据库
主数据仓库 存储指标数据、KPI数 据和度度汇总数据
分布式数据库 存储加工、关联、汇总 后的业务数据,并提供 分布式计算,支撑数据 深度分析和数据挖掘能 力,向主数据仓库输出 KPI和高度汇总数据
工业大数据平台介绍 v2.0
什么是大数据及发展趋势 平台简介
2
1 什么是大数据及发展趋势
3
什么是大数据
大数据
指的是所涉及的数据量及数 据范围规模巨大到无法通过 目前主流软件工具,在合理 时间内达到截取、管理、处 理、并整理成为帮助企业经 营决策更积极目的的信息。
4
什么是大数据
大数据
处理技术代表了新一代的技 架构,这种架构通过高速获 取数据并进行分析和挖掘, 从海量形式各异的数据源中 更有效地抽取出富含价值的 信息。
数据模型
数据Adaptor
统一数据中心 二维业务事件分析
实时多维分析引擎
展现终端
告警渠道
通知模板
数据集成
CPCE
实时数据ETL集成
企业A系统
企业B系统
XXX系统
业务规则引擎
告警监控 13
生产数据来源
商务
HR
ERP FIN
SC M 供应侧
CR M
客户侧
CA
企业设施
D
运行设施
TM
S
ME CA
MP S M
Hadoop 平台
提供并行的计 算和结构化数 据的处理能力, 实现低成本的 存储和低时延、 高并发的查询 能力
数据开放接口 向大数据应用方提供数据接口,给社会 进行使用(实现众创)
9
Hadoop Ecosystem
Zookeeper
Pig
Hive
MapReduce
Hbase
HDFS
Sqoop
......
2006
2008
2010 2011
பைடு நூலகம்
2012华为集成Hadoop、 流处理、MPP DB、并推 出大数据平台解决方案
EMC收购Greenplnum、 与MapR合作、推出 Greenplnum HD
7
2 平台简介
8
平台的目标构架及定位
应用层 能力层 数据层 数据源
精细化管理 指标应用
市场营销 报表应用
深度挖掘 数据加工
分析:形 处成理决:策数 据抽取与 加载集:成导入 海量数据
结构化数据 半结构化数据 非结构化数据
信息交易数据 融合数据 行为记录数据 物联网 互联网 通信网 移动互联网
大数据 云计算
智能终端
5
什么是大数据
数据可以广泛获取,所稀缺的是如何从中挖掘出有价值的信息, 为社会提供智慧和观点
获取数据的方式和手段,直接影响到平台的商业模式 所以,政府最好通过第三方购买数据的方式来获得平台应用
而政府建设平台,永远要面对: 企业为什么要提供数据?
企业提供的数据真实性如何? 如何分析企业提供数据的质量? 企业通过平台能够获得哪些利益?
……
Avro
10
Hadoop 并行计算模式
HDFS-Hadoop Distributed File System
HDFS-为了做到可靠性(reliability)创建了多份数据块(data blocks)的复制(replicas),并将它们放置在服务器群 的计算节点中(compute nodes),MapReduce.
有价值的数据主要被用于分析和决策,企业用以分析的数据越全面,分 析的结果也就越接近于真实,意思着企业能够从这些新的数据中获取新 的洞察力,并将其与已知业务的各个细节相融合,对企业产生新的价值。
6
大数据发展历史
2003
2005
原型创建
完成初形建立
HP收购Vertica
IBM推出大数据系列产品InfoSphere BigInsights、Streams
MapReduce
Input HDFS Split 0 Split 1 Split 2 Split 3 Split 4
map map map
copy
Sort/merge
reduce reduce
Output HDFS
Part 0
Part 1
11
工业大数据平台
大数据 管理平台
建模、算法 (Noah:Lifelong Machine Learning/Human Computation etc)
Native Api / SQL / App Engine服务封装
流处理
非、半结构化处理
结构化处理
存储密集类: MVX集中存储与归档
计算密集类: 服务器带本地硬盘
12
工业大数据平台-整体技术架构
UI
A.Html B.Html
展示组件 (图表|图库|仪表盘|交叉表)
Widget UI框架
Web服务器
供应链 主题分析
物联网应用 专题分析
基础分 析报表
多维度
立方体
数据 挖掘
实时 分析
自助 分析
数据 共享
数据统一的服务和开发SQL、FTP、WS、MDX、API..
主数据仓库
分布式数据库
明细数据
汇总数据
M/R
HBase
Hive
分布式文件系统HDFS Hadoop平台
CPCE
企业A系统 企业B系统 企业C系统
M
WM
EA MI M
E&
S
……
A
产品
从企业生产管理系统中获取数据
14
大数据分析
企业能效目标
差异化性能/质量/ 成本
大数据分类
产品多维度标签
数据采集
传感器/RFID
现场 客户端
大数据分析模型
实验模型/算法/迭代
模型价值变现
模型优化/迭代
生产管理数据 企业私有云数据
社会公有云大数据
15
谢谢!
工业大数据平台的核心是大数据, 如果没有行之有效的数据获取方式,那么平台永远都没有价值
相关文档
最新文档