直拉硅单晶工艺简介PPT演示课件

合集下载

硅加工工艺PPT课件

硅加工工艺PPT课件
升起来,在籽晶的周围逐渐生长出单晶硅,最后 形成圆柱形的单晶棒。
生成的单晶硅经过物理性能测试和电气参数测 试后对其进行切割,形成硅单晶片,然后再对硅 单晶片进行研磨、倒角、抛光,最后得到需要的
单晶生长设备
生长硅单晶
单晶生长设备
2.2 掺杂
ⅢA族受主掺质(P型)
元素
原子量

5

13

离子注入的基本原理
离子注入设备
2.3 生长外延层
• 外延生长用来生长薄层单晶材料,即薄膜 • 外延生长:按照原来的晶向在单晶衬底上,
生长另一层合乎要求的单晶层的方法。 • 生长的这层单晶叫外延层。(厚度为几微米)
化学气相沉积
将晶圆放在一个特制的炉内,炉是一个能够承受非常高温 度的石英炉管。
正胶和负胶的性质
• 正胶:曝光前不可溶,曝光后可溶 • 负胶:曝光前可溶,曝光后不可溶
正胶:分辨率高,在超大规模集成电路工艺中 ,一般只采用正胶
负胶:分辨率差,适于加工线宽≥3m的线条
下凹图形的加工(正胶)
暗场掩膜板:掩膜板上除了透光的地方全都覆 盖着一层铬层,被铬覆盖了大部分区域的掩膜 板被称为暗场掩膜板。
另一种CVD技术是等离子增强化学气相沉积-PECVD,跟CVD非常相像,所不 同的是利用等离子体代替高温启动化学反应。
等离子体提供了气体间化学反应的能量而不用提高晶圆的温度,低温将有助于 维持原先的杂志分布,避免杂质的进一步扩散。
2.4 氧化层生长
硅表面上总是覆盖一层二氧化硅(SiO2),即使 是刚刚解理的硅,在室温下,只要在空气中,一暴 露就会在表面上形成几个原子层的氧化膜。氧化膜 相当致密,能阻止更多的氧原子通过它继续氧化。

硅单晶的制备课件PPT

硅单晶的制备课件PPT
详细描述
真空电弧熔炼法是一种利用高温电弧产生的高能量将硅原料熔化,并在真空条件下结晶 成单晶硅的方法。该方法可以在较低的温度和压力下进行,因此可以减少杂质的挥发和 引入。同时,真空电弧熔炼法还可以通过控制熔炼参数和结晶条件,提高单晶硅的纯度
和质量。
04
单晶硅的缺陷与杂质
单晶硅的缺陷
微缺陷
微缺陷是指晶体中微小的局部结构缺 陷,如空位、间隙原子等。这些缺陷 可能会影响单晶硅的电学和光学性能 。
05
单晶硅的应用领域
微电子领域
01
02
03
集成电路
硅单晶是集成电路的主要 材料,用于制造各种电子 器件,如微处理器、存储 器、逻辑门等。
微电子机械系统
硅单晶在微电子机械系统 (MEMS)中也有广泛应 用,如传感器、执行器等。
集成电路封装
硅单晶还可以用于集成电 路的封装,以提高其可靠 性和稳定性。
技术进步推动发展
单晶硅制备技术的不断进步和创 新,将为行业发展提供有力支撑, 推动单晶硅行业持续发展。
环保要求促进绿色
发展
随着环保要求的提高,绿色生产 成为单晶硅行业的发展趋势,将 促进企业加强环保投入和技术创 新,推动行业可持续发展。
THANKS FOR WATCHING
感谢您的观看
其他领域
医学领域
硅单晶可以用于制造医疗设备,如医学成像设备、手 术器械等。
航空航天领域
硅单晶具有高强度、高硬度和耐高温等特点,因此可用 于制造航空航天器零部件。
06
单晶硅的未来发展与挑 战
单晶硅的发展趋势
高效能化
随着光伏、半导体等领域的快速 发展,对单晶硅材料性能要求越 来越高,高效能化成为发展趋势。

直拉单晶硅

直拉单晶硅

方式称为“自然对流”。自然对流的
程度大小可由格拉斯霍夫常数来判定:
熔体
Gr agT d 3
Vk 2
对于硅而言,α=1.43×10-4℃-1,vk=3 ×10-3cm2/sec,
因此,Gr=1.56 ×104△Td3。此外,Gr的临界值为105,
而根据估计实际的Gr值高达108。除非靠其它的对流方式
籽晶
单晶硅棒
石英坩埚 水冷炉壁 绝热石墨 加热器 石墨坩埚 石墨底盘 石墨轴承 电极
在熔体结晶过程中, 温度下降时,将产生由液态 转变成固态的相变化。为什 么温度下降,会导致相变化 的产生呢?这个问题的答案 可由热力学观点来解释。
一个平衡系统将有最低的自由能,假如一个系统的自由能 G高于最低值,它将设法降低G(即△G < 0)以达到平衡 状态。因此我们可以将△G < 0视为结晶的驱动力。
判断 Bo Ra d 2g
Ma
所以在表面上较大的长晶系统
主要受自然对流控制。而表面张力对流在低重力状态(例
如太空中)及小的长晶系统,才会凸现其重要性。
思考题
1、直拉单晶炉由几大部分组成? 2、什么叫直拉单晶炉的热场 ? 3、直拉单晶炉的合理热场条件是什么? 4、直拉单晶硅的工艺步骤? 5、直拉单晶硅通常选择那些晶体生长方向,为什么? 6、直拉单晶硅中如何实现无位错生长? 7、直拉单晶硅中熔体的对流分哪几种情况,分别用什么 常数来判断其对流的程度?
自然对流、晶轴旋转和坩埚旋转三种方式相互作用对熔体 流动的影响。
表面张力引起的对流
由液体的温度梯度,所造成的
表面张力的差异,而引起的对流形
态,称为表面张力对流。其对流程
度大小可由Marangoni常数来判断

硅加工工艺PPT课件

硅加工工艺PPT课件
43
硅加工工艺
3.曝光
• 曝光就是对涂有光刻胶且进行了前烘之后 的硅片进行选择性的光照,曝光部分的光 刻胶将改变其在显影液中的溶解性,经显 影后在光刻胶膜上得到和“掩膜”相对应 的图形。
44
硅加工工艺
4.显影
• 显影是把曝光后的硅片放在显影液里,将应去 除的光刻胶膜溶除干净,以获得腐蚀时所需要 的抗蚀剂膜保护图形。
多晶

SiO2
SiO2
Si P-
58
硅加工工艺
6)离子注入,栅条、裸露的衬底以及厚氧化层都被 注入
多晶

SiO2
SiO2
Si P-
7)栅和厚氧化层屏蔽了各自下面的硅,只有栅条两
边裸露的硅被注入,这就确保了栅条与源-漏区的对
准。
多晶 硅
SiO2
SiO2
Si P-
59
硅加工工艺
由于栅的屏蔽作用,N型杂质不能进入栅的下面, 在栅的两边形成了独立的两块N型区域,这被称为硅 栅自对准。
13
硅加工工艺
离子注入的基本原理
14
硅加工工艺
离子注入设备
15
硅加工工艺
16
硅加工工艺
17
硅加工工艺
2.3 生长外延层
• 外延生长用来生长薄层单晶材料,即薄膜 • 外延生长:按照原来的晶向在单晶衬底上,
生长另一层合乎要求的单晶层的方法。 • 生长的这层单晶叫外延层。(厚度为几微米)
18
硅加工工艺
8)在退火的时候,源-漏区会由于扩散而稍稍进入到 栅下一点点,重叠很小。在退火的同时,还可以在表 面生长另一层二氧化硅。
SiO2
多晶 硅
Si P-
SiO2

直拉单晶硅工艺技术PPT课件

直拉单晶硅工艺技术PPT课件

这种周期性规律是晶体结构中最基本的特征。有固定熔点, 各向异性。
Intensity/a.u.
◆ :CuAlO2 ▲:CuO ◆ 1200℃
◆ ▲
◆ ▲◆
1190℃

◆ ▲
◆ ▲◆
1180℃

◆ ▲
◆ ▲◆
1170℃

◆ ▲
◆ ▲◆
1160℃

◆◆ ▲ ▲◆
◆ 1150℃ ◆ ▲◆ ▲◆
20 30 40
◆◆◆
◆ ◆◆ ◆ ◆
◆◆ ◆
◆ ◆◆
◆◆
◆ ◆◆ ◆
◆◆
◆ ◆◆ ◆◆ ◆
◆◆ ◆◆
◆ ◆◆
◆◆ ◆
◆◆
◆ ◆◆
◆◆ ◆ ◆ ◆
50 60 70 80
2()
图1.5 食盐的空间点阵结构图
图1.6 不同烧结温度下通过陶瓷 的XRD图谱
紫锂辉石(Kunzite)
常林钻石 重158.786克拉 图1.7 常见的晶体
1.12晶体的几种晶面
同一个格点可以形成方向不同的晶列,每一个晶列定义了 一个方向,称为晶向。
图1.13 立方晶系中的几个晶面及晶向
1.5晶体的熔化和凝固
晶体的分类: 1.离子晶体 2.分子晶体 3.原子晶体 4.金属晶体
图1.14晶体加热或冷却的理想曲线
1.6结晶过程的宏观特征
1.15冷却曲线
1.7晶核的形成
熔体里存在晶胚,晶胚长到一定的尺寸时,形成晶核。 过冷度越大,临界半径越小。非自发成核要容易多了。
1.8二维晶核的形成
一定数量的液体原子同时落在平滑界面上的临近位置,形 成一个具有单原子厚度并有一定宽度的平面原子集团。

直拉法生产单晶硅

直拉法生产单晶硅

直拉法生产单晶硅
设备:直拉单晶炉
直拉单晶炉
直拉单晶炉
直拉单晶炉
直拉单晶炉主要由炉体、电气部分、加热系统、水冷 系统、真空系统和氩气装置六大部分组成。 一、炉体
炉体包括主架、主炉室、副炉室等部件 。
主架由底座、立柱组成,是炉子的支撑机构。
主炉室是炉体的心脏,有炉底 盘、下炉筒、上炉筒以及炉盖组 成,他们均为不锈钢焊接而成的 双层水冷结构,用于安装生长单 晶的热系统、石英坩埚及原料等。
直拉法的特点
设备和工艺简单,生产效率高,易于制造大直径 单晶硅。 易于控制单晶中的杂质浓度,可以制备低阻单晶。
生产温度高,硅料易被坩埚污染,使晶体的纯度 下降。
直拉法生产单晶硅
1、清 炉
冷却停加热6-8 小时后,打开炉 膛清理挥发物。
2、装料
3、抽空、通氩气 4、加热、熔硅
5、种晶 籽晶相当于在硅熔体中加入了一个定向晶核,使晶体按 晶核的晶向定向生长,制得所需晶向单晶。
先将籽晶降至液面数毫米处暂停片刻,使籽晶温度尽量 接近熔硅温度,然后将籽晶浸入熔硅,使头部熔解,接 着籽晶上升,生长单晶硅。
6、缩颈(引晶) 将籽晶快速提升,缩小结晶直径 目的:抑制位错从籽晶向晶体延伸
7、放肩 放慢生长速度,晶体硅直径增大
8、等径
等直径生长
9、收尾 单晶拉完时,由于热应力作用,尾部会产生大量位错,并 沿着单晶向上延伸,延伸的长度约等于一个直径。
三、加热系统
四、水冷系统
水冷系统包括总进水管道、分水器、各路冷却水管 道以及回水管道。由循环水系统来保证水循环正常运 行。 水冷系统的正常运行非常重要,必须随时保持各部 位冷却水路畅通,不得堵塞或停水,轻者会影响成晶 率,严重会烧坏炉体部件,造成巨大损失。

单晶硅制备 直拉法84页PPT

单晶硅制备 直拉法84页PPT
单晶硅制备 直拉法
51、没有哪个社会可以制订Fra bibliotek部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

硅单晶的原理和成长工序(课堂PPT)

硅单晶的原理和成长工序(课堂PPT)

.
ห้องสมุดไป่ตู้
2
装料、熔料
▪ 装料、熔料阶段是CZ生长过程的第一个阶 段,这一阶段看起来似乎很简单,但是这一 阶段操作正确与否往往关系到生长过程的成 败。大多数造成重大损失的事故(如坩埚破裂) 都发生在或起源于这一阶段。
.
3
籽晶与熔硅的接触
▪ 当硅料全部熔化后,调整加热功率以控制熔体的温度。一般情况下, 有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热 场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定 引晶温度。按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。 硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动 的稳定。装料量越大,则所需时间越长。待熔体稳定后,降下籽晶至离 液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减 少籽晶与熔硅接触时在籽晶中产生的热应力。预热后,下降籽晶至熔体 的表面,让它们充分接触,这一过程称为熔接。在熔接过程中要注意观 察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔 接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通 常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过 高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。 熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温 度是否合适。
.
10
谢谢
.
11
CZ生长原理及工艺流程
小莫
.
1
单晶生长原理
▪ CZ法的基本原理,多晶体硅料经加热熔化,待温度 合适后,经过将籽晶浸入、熔接、引晶、放肩、转 肩、等径、收尾等步骤,完成一根单晶锭的拉制。 炉内的传热、传质、流体力学、化学反应等过程都 直接影响到单晶的生长与生长成的单晶的质量,拉 晶过程中可直接控制的参数有温度场、籽晶的晶向、 坩埚和生长成的单晶的旋转与升降速率,炉内保护 气体的种类、流向、流速、压力等。CZ法生长的具 体工艺过程包括装料与熔料、熔接、细颈、放肩、 转肩、等径生长和收尾这样几个阶段。

直拉单晶培训PPT学习教案

直拉单晶培训PPT学习教案

单晶炉控制系统主要包括速度控制单元、加热控制 单元、等径生长控制单元、水温和设备运行巡检及状 态报警、继电控制单元等部分。
1)速度控制单元对晶升、埚升、晶转、埚转的速度进 行控制。
2)温度传感器从加热器上取得的信号与等径控制器的 温度控制信号叠加后进入欧陆控制器,经分析调整控 制加热器电压,达到控制加热温度与直径的目的。
第4页/共31页
零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐
渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可
使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。 单晶硅片取自于等径部分。 (6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那 么热应力将使得晶棒出现位错与滑移线。于是为了避免此问题的发生,必 须将晶棒的直径慢慢缩小,直到成一尖点而与液面分开。这一过程称之为 尾部生长。长完的晶棒被升至上炉室冷却一段时间后取出,即完成一次生 长周期。
第3页/共31页
加工工艺
加料—→熔化—→缩颈生长—→放肩生长—→等径生长—→尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂
质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使
之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上, 将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体 场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。缩颈生长 是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与 生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生

直拉单晶硅的制备工艺

直拉单晶硅的制备工艺

直拉单晶硅的制备工艺内容提要:单晶硅根据硅生长方向的不同分为区熔单晶硅,外延单晶硅和直拉单晶硅。

直拉单晶硅的制备工艺一般包括多晶硅的装料和熔化,种晶,缩颈,放肩,等径和收尾。

目前,单晶硅的直拉生长法已经是单晶硅制备的主要技术,也是太阳电池用单晶硅的主要制备方法。

关键词:直拉单晶硅,制备工艺一,直拉单晶硅的相关知识硅单晶是一种半导体材料。

直拉单晶硅工艺学是研究用直拉方法获得硅单晶的一门科学,它研究的主要内容:硅单晶生长的一般原理,直拉硅单晶生长工艺过程,改善直拉硅单晶性能的工艺方法。

直拉单晶硅工艺学象其他科学一样,随着社会的需要和生产的发展逐渐发展起来。

十九世纪,人们发现某些矿物,如硫化锌、氧化铜具有单向导电性能,并用它做成整流器件,显示出独特的优点,使半导体材料得到初步应用。

后来,人们经过深入研究,制造出多种半导体材料。

1918年,切克劳斯基(J Czochralski)发表了用直拉法从熔体中生长单晶的论文,为用直拉法生长半导体材料奠定了理论基础,从此,直拉法飞速发展,成为从熔体中获得单晶一种常用的重要方法。

目前一些重要的半导体材料,如硅单晶,锗单晶,红宝石等大部分是用直拉法生长的。

直拉锗单晶首先登上大规模工业生产的舞台,它工艺简单,生产效率高,成本低,发展迅速;但是,锗单晶有不可克服的缺点:热稳定性差,电学性能较低,原料来源少,应用和生产都受到一定限制。

六十年代,人们发展了半导体材料硅单晶,它一登上半导体材料舞台,就显示了独特优点:硬度大,电学热稳定性好,能在较高和较低温度下稳定工作,原料来源丰富。

地球上25.8%是硅,是地球上锗的四万倍,真是取之不尽,用之不竭。

因此,硅单晶制备工艺发展非常迅速,产量成倍增加,1964 年所有资本主义国家生产的单为晶硅50-60 吨,70年为300-350 吨,76年就达到1200吨。

其中60%以上是用直拉法生产的。

随着单晶硅生长技术的发展,单晶硅生长设备也相应发展起来,以直拉单晶硅为例,最初的直拉炉只能装百十克多晶硅,石英坩埚直径为40毫米到60毫米,拉制单晶长度只有几厘米,十几厘米,现在直拉单晶炉装多晶硅达40 斤,石英坩埚直径达350毫米,单晶直径可达150毫米,单晶长度近2米,单晶炉籽晶轴由硬构件发展成软构件,由手工操作发展成自动操作,并进一步发展成计算机操作,单晶炉几乎每三年更新一次。

直拉硅单晶工艺学

直拉硅单晶工艺学
属针尖压在云母片和玻璃片上,就会发现,触点周围的石腊逐渐熔化;玻璃片上
的形状是圆形,云母片上却是椭圆形的。
这说明玻璃的导热性与方向无关,云母片的导热性与方向有关。
晶体在不同的方向上力学性质,电学性质和光学性质是不同的,抗腐蚀、抗
4
氧化的性质随着晶体方向不同也不同。非晶体则不然,它们在各个方向上性质相
几乎没有一样不和大规模集成电路有关。因此,掌握大规模集成电路基础材料直
拉单晶硅的生产技术和工艺理论是非常重要的。 通过本课程学习, 要求掌握: 一、
直拉单晶硅生长的基本理论; 二、 直拉单晶炉结构和直拉单晶硅生产的基本流程;
三、在生产中控制直拉单晶硅的几个基本参数一些基本方法;四、本课程是工艺
各晶面。
为了标出晶向,通过坐标原点作一直线平行于晶面的法线方向,根据晶胞
的棱长决定此直线的坐标,把坐标化成简单的整数比。用[ ]括起来,称为晶
向指数。例如某一组坐标 x=a,y=-2,z=1/3,则晶向是[36 1] 。对立方晶系,
晶向具有与它垂直的平面相同的指数,如:X 轴垂直于(100)面所以其晶向是
晶向(生长方
向)
[100]
[110]
[111]
[211]
与(111)晶面夹
好的电阻率均匀性,完美的晶体结构,良好的电学性能。因此,硅单晶生长技术
要更成熟、更精细、更完善,才能满足集成电路的要求。直拉单晶硅工艺理论应
不断地向前发展。
目前世界已跨入电子时代感。可以这样说,四十年代是电子管时代,五十年
代是晶体管时代,六十年代是集成电路时代,七十年代是大规模集成电路时代,
料硅单晶,它一登上半导体材料舞台,就显示了独特优点:硬度大,电学热稳定

直拉硅单晶工艺简介PPT.

直拉硅单晶工艺简介PPT.
直拉硅单晶工艺简介
化料
• 在一定的功率(在规定的时间内从低到高慢慢提升,直到化料要求功率) 和一定的埚位下使硅料熔化
-
中心位置
加热器温度最高点
中心位置
加热器温度最高点
• 在表面硅料全部熔化后,不可将坩埚的位置升的太高,须保证液面至导流 筒的距离有2- 3cm,防止石英坩埚底部硅料翻出时碰到导流筒使导流筒粘 硅。
异常处理
掉棒
产生原因 一、籽晶断
二、籽晶绳
1、籽晶熔接 2、籽晶氧化 3、籽晶夹具 1、籽晶绳氧化 2、籽晶绳毛刺
异常处理
该情况可能会直接导致石英埚破裂引发漏硅事件。 该情况发现应注意以下几点:
一、晶棒过长,停炉处理
角度放大。 • 当放肩直径接近加工要求的直径时,须多次测量,如放肩速度过快,
在直径比预定直径小10mm左右进入转肩状态。如放肩较慢,可在直径 比预定直径小5mm左右进入转肩状目标直径后提高拉速使之纵向生长 • 根据单晶炉性能,转肩可自动或手动,自动单晶炉将晶体生长控制程
等径
1、等径时,晶转、埚转、氩气流量、炉内压及 平均拉速值。 2、等径时,埚跟比随剩余重量变化而变化。
收尾
1、自动收尾时,晶升变化根据收率表来变化 还是根据指数表变化。
2、收尾时,启时拉速是当时的平均拉速还是 设定个拉速。
收尾斜率表,内设定了收尾时的晶升、埚转 、晶转、氩气流量及炉内压力。 2、温度变化根据长度
序启动到“转肩”状态即可。手动单晶炉将晶升速度开到2-3mm/min。 测量并观察晶体生长情况。 • 转肩时根据实际情况可适当提高或降低拉速,同时也可降 低或上升温 度设定点。但拉速不宜调整太快或太高,否则可能会造成转肩掉棱。
直拉硅单晶工艺简介

直拉硅单晶生长工艺流程与原理PPT课件

直拉硅单晶生长工艺流程与原理PPT课件

直拉单晶炉下轴(坩埚轴)对环境的要求
1、坩埚通过一根约1m长的硬轴(石墨)支撑并 旋转上升,熔液盛在石英坩埚内;
2、石墨埚杆通过螺丝固定在单晶炉下轴上; (硬轴固定在坩埚提升机构上) 3、坩埚提升机构导轨和丝杠要平顺; 4、带动的硬轴旋转要平稳; 5、冷炉时硬轴上端放一盆水,坩埚提升机构运
行时水面无明显波纹(机械调试时的一个方 法);
单晶炉底座及地基和震源的隔离
外界震源包含: 1、真空泵运行振动 (措施:真空泵下用弹簧座主动隔震真空泵远离炉子) 2、基础所处土壤表层振动 (措施:基础四周挖减震槽隔离) 3、基础所处土壤深层振动 (措施:1、混凝土基础座在实土层2、混凝土基础不宜过高)
二、直拉单晶炉的基本结构
副炉室
隔离阀室 (翻板阀
低压大电流流过加热器产生高温,热量通过辐射加 热石墨坩埚,由石墨坩埚加热石英坩埚和多晶硅料, 达到熔化和结晶所需的温度。调节加热器功率以控 制熔体温度;
直拉单晶炉主炉室及内部热系统概图
单晶炉热场不同系统温度分布对比
直拉单晶炉在气氛下拉晶
1、真空泵不断的对炉子抽气,形成真空; 2、炉子各部件之间都有密封件,其中旋转部件之间 采用磁流体密封; 3、每炉生长之前通过用真空泵对炉子抽极限真空, (抽真空)关闭抽空阀门,测量炉内压力升高速度来 判定炉子是否达到密闭要求;(检漏)
室)
主炉室 坩埚提升 旋转机构
晶体提升 旋转机构
炉盖
控制柜
单晶炉的主要组成部分
1、炉体(基座、炉室、炉盖、液压系统) 2、晶体升降及旋转机构 3、坩埚升降及旋转机构 4、氩气和真空系统 5、加热系统(加热电源、热场) 6、冷却系统 7、控制系统
炉体
炉体(炉体由基座、炉室、炉盖及液压系统组成)

单晶材料图片以及工艺图片展示4PPT课件

单晶材料图片以及工艺图片展示4PPT课件
4、把籽晶装在夹头上,装好钼销;用力向下拽一下籽晶 使其牢固,稳定好籽晶后,按晶快升使其上至适当位置;
5、用沾有酒精的无尘布认真擦拭籽晶; 6、用沾有酒精的纸巾擦拭副封密圈和接合部; 7、确保以上无问题后关上副室,抽空;
17
抽空及熔料
抽空:合完炉后打开主室泵(多点几下开关,让其预热 下),待主室泵打开运转正常3分钟左右后,打开APC待 角度为20以上后打开主阀。倒氩气时开旁路氩气,不要开 炉盖氩气,抽到3PA以下极限后,检漏,5 min内<1.0Pa为 合格,如不正常进行查漏.
13
装炉-生产的保障
组装加热系统和保温系统是和取出的顺序相反,后取的先装,先取的 后装,是从下而上,按取出的相反顺序逐渐完成的。注意:装炉时要 操作熟练,精力集中,避免中途发现漏装或错装。特别是大清更要多 加注意。
炉底部件:要确保下保、防漏底盘、防漏底板、反射板、反射板支座 及其碳毡、电极柱等位置准确,防止加热后发生打火等现象。
2
加热器
3
底盘及配件
4
石墨件附属
5
热场正确安装顺序
安装电极→炉底碳毡→反射底板→下保温罩 →石墨环、石英环→加热器→中保温罩→石 墨托杆→石墨托盘→装三瓣埚→下降主炉室 →上保温罩→导气孔→保温盖板→装导流筒 →压环
6
热场煅烧工艺
煅烧 新的热场需要在真空下煅烧,煅烧时间约 10小时左右,煅烧3~5次,方能投入使用。 使用后,每拉晶4~8炉后也要煅烧一次。 煅烧功率,不同的热场不一样,一般要比 引晶温度高,CZ1#炉子煅烧最高功率一 般在110KW。
7
直拉单晶硅工艺流程
拆炉→清炉→装炉/装料→抽 空→检漏→熔料→引晶→放 肩→转肩→等径→收尾→停 炉
8

直拉单晶工艺流程简介2011.3

直拉单晶工艺流程简介2011.3

稳温
• 籽晶与液面充分熔接 • 高温熔接低温引;拉速提起缓升温 • 稳温最高原则就是:温度一定要在相当长的时间内相当稳 定。可以通过液面温度图像来确定是否可以进入下一阶段 。 • 熔接的时候需要熔透,光圈要收进去,稍微降温开始引晶 ; • 因热场大,温度反应慢,当拉速提到较高值时,就要开始 升温, 为放肩做准备。细颈长度达到要求,且直径均匀拉速已降 下,可开始降拉速放肩
控制理念:通过控制测量值与设定值的差,控制输出
KAYEX加热器温度渐变
加热器温度渐变说明 在RAMP RATE中我们输入加热器温度增加/ 减少的速度。然后程序会自动增加或减少我 们在加热器温度控制环中的设定值。主要用 于扩肩时的降温处理。 (我们不能通过降低加热器功率来达到降温 的目的)
热场温升控制界面
最后切换到“MANUAL”进行控制。
KAYEX直径控制环
直径控制环说明
A DIAMETER 显示实际直径
B SET POINT 当直径控制环开启时可以输入设定值
C SEED LIFT 当直径控制环开启时显示实际晶升速 度,关闭后可以输入数值 D TUNE 选择后就会显示 PID参数
LIMITS
E ON/OFF
缩颈排除位错示意图 接触液面时产 生的位错线
晶种
放肩
放肩:适当降低温度与拉速,使晶体慢慢 放大至目标直径大小。
分析影响肩部生长的因素:
温度的影响 拉速的影响
转肩、等径
转肩:在扩肩直径快要达到目标直径时提高拉速,随着拉速的 提高,扩肩速度越来越慢。当扩肩速度为零时,即转肩过程完成. 合适的转肩直径和拉速的合理调节是转肩成功的关键. 等径:放肩到目标直径大小后,通过拉速、温度的控 制,将晶体直径控制在目标直径范围内。 等径时要看什么: 1、是否断苞 2、直径确认 3、拉速,加热温度是否变化异常
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序启动到“转肩”状态即可。手动单晶炉将晶升速度开到2-3mm/min。 测量并观察晶体生长情况。 • 转肩时根据实际情况可适当提高或降低拉速,同时也可降 低或上升温 度设定点。但拉速不宜调整太快或太高,否则可能会造成转肩掉棱。
6
直拉硅单晶工艺简介
等径
目的:保持设定的直径尺寸拉晶 • 转肩完成直径控制稳定后可进入等径状态,进入等径状态时,将
14
放肩
1、进入放肩阶段时,温度的变化 2、进入下步工序时直径大小
1、自动放肩时,拉速、晶转、埚转及氩气 大小和炉内压力情况 2、温度变化根据肩部和长度来变化
15
转肩
进入自动转肩时拉速、时间及温度减少值
16
等径
1、等径时,晶转、埚转、氩气流量、炉内压及 平均拉速值。 2、等径时,埚跟比随剩余重量变化而变化。
• 为确保缩颈质量,可根据实际情况上升或下降温度设定点,以保证籽晶的直 径控制在规定范围内。
4
直拉硅单晶工艺简介
放肩
目的:结晶直径扩大到指定尺寸 • 完成缩颈后,将拉速缓慢下降到一定的拉速(一般控制在0.3-0.6mm/
min之间),同时温 度设定点下降一定数值, 观察晶体生长情况。 • 控制放肩时的速度及角度,防止过快或过慢,放肩的角度应以平滑的
1
直拉硅单晶工艺简介
化料
• 在一定的功率(在规定的时间内从低到高慢慢提升,直到化料要求功率) 和一定的埚位下使硅料熔化
-
中心位置
加热器温度最高点
中心位置
加热器温度最高点
• 在表面硅料全部熔化后,不可将坩埚的位置升的太高,须保证液面至导流 筒的距离有2- 3cm,防止石英坩埚底部硅料翻出时碰到导流筒使导流筒粘 硅。
• 必须时刻注意观察炉内的情况,以防导流筒粘硅、挂边、搭桥、漏硅、石 英埚变形和塌料时溅硅、跳硅,化完后的液面有杂质漂浮等一些异常情况 的出现,应有效及时的处理并记录。
• 时刻注意加热电流、电压是否正常。
2
直拉硅单晶工艺简介 稳定
• 设定引晶所需温度及坩埚转速并进行稳定 • 根据光环情况确定温度稳定情况 • 反复几次试温找到最佳引颈温度并记录下来引颈功率等参数。
隔离阀再打开炉体,缓慢向左移动副室至90度。 • 下降晶体至盛放晶体专用车中,确认单晶完全放入小车内后,戴
上手套,左手抓紧重锤,右手用钢丝钳将籽晶从细径处剪断,然 后稳定重锤,将籽晶从重锤上取下,放在指定场所,再将重锤升 至副室内适当位置。将晶棒推置通风处冷却。 • 单晶取出后,必须及时、准确的记录炉号、晶棒编号、出炉时间 并贴好标识。
19
异常处理
主要内容
1.等径过程中晶棒掉入石英埚 2.晶体扭曲处理 3.运行中出现“打火” 4.液晃 5.晶晃 6.漏料 7.断电处理 8.断水处理 9.整个炉区断水断电处理 10.注意事项
20
异常处理
掉棒
产生原因 一、籽晶断
二、籽晶绳
Hale Waihona Puke 1、籽晶熔接 2、籽晶氧化 3、籽晶夹具 1、籽晶绳氧化 2、籽晶绳毛刺
10
工艺参数
1、进入自动抽空,有2次进行抽真空。 2、检漏时间及极限压力 3、最大泄漏率
11
压力化/熔料
1、压力化 达到熔料时气氛状态 压力上限及压力下限
2、进入熔料所花时间 3、提醒熔料慢的时间
12
稳定化/熔接
13
引晶
1、进入自动引晶时,温度变化及初始拉 速和时间。 2、进入缩颈时的拉速,细颈直径上、下 限及长度 3、设定细颈的安全直径值
角度放大。 • 当放肩直径接近加工要求的直径时,须多次测量,如放肩速度过快,
在直径比预定直径小10mm左右进入转肩状态。如放肩较慢,可在直径 比预定直径小5mm左右进入转肩状态。
5
直拉硅单晶工艺简介
转肩
目的:达到目标直径后提高拉速使之纵向生长 • 根据单晶炉性能,转肩可自动或手动,自动单晶炉将晶体生长控制程
直拉硅单晶工艺简介
检漏
• 目的:确认炉体漏气量 • 当炉子的真空度达到极限值时,关闭真空管道上的
主泵球阀。(目前单晶一号车间晶盛单晶炉的极限 真空可达10mt以下) • 观察真空计上的压力数值,测定压力变化。漏气速 率小于0.1Pa/分或小于0.8mTorr/分为合格。 • 检漏结束后缓慢打开真空管道上的主泵球阀继续抽 一段时间真空,直至真空度低于检漏时的真空度。
CCD监控摄像头调节到最佳状态及检查埚跟随动等各参数无误后投 入等径自动控制。 • 经常观察坩埚上升速度和晶升速度是否正确。埚升太快液面容易碰 到导流筒,晶升太快晶体容易变形。 • 拉晶过程中要求每隔15分钟对炉内巡视一次,确定有无异常,并每 一个小时做一次拉晶记录。
7
直拉硅单晶工艺简介 收尾
目的:防止等径部分产生晶裂和位错导致晶体不合格 • 将单晶直径不断缩小 • 进入收尾先温度控制拉晶后拉速控制拉晶 • 晶体收尾长度应不少于晶体直径的大小,且必须收尖。
21
异常处理
该情况可能会直接导致石英埚破裂引发漏硅事件。 该情况发现应注意以下几点:
一、晶棒过长,停炉处理
1、立即停止埚转,将控制面板转为手动。 2、关闭加热电源.保持真空泵运转。 3、尽量开大氩气流量,尽量开小碟阀开度。保持炉内压力尽量高,氩气
3
直拉硅单晶工艺简介
引晶
• 籽晶与熔体接触后,等1-2分钟有光环出现且棱线有逐渐变大趋势。其时温度 适合缩颈。
• 缩颈拉速最好控制在3-6mm/min之间,引颈直径控制在3mm左右,不宜过粗, 过细,尽量保持平滑。
• 引晶开始时,应先引直径10mm左右较粗的晶体,长度为30mm,可作为下次 熔接使用,这样避免籽晶的浪费。
17
收尾
1、自动收尾时,晶升变化根据收率表来变化 还是根据指数表变化。
2、收尾时,启时拉速是当时的平均拉速还是 设定个拉速。
收尾斜率表,内设定了收尾时的晶升、埚转 、晶转、氩气流量及炉内压力。 2、温度变化根据长度
18
停炉
1、停炉时晶升数据、坩埚下降位置。 2、冷却时功率下降的幅度。 3、冷却时的氩气流量及氩气流量时间 4、进行热检漏的时间及泄漏率
8
直拉硅单晶工艺简介 停炉&冷却
• 晶体收尾结束时,使晶体上升或下降坩埚将晶体脱离液面2-3cm。 • 将晶体生长控制系统改为手动状态。 • 关闭晶升、晶转、埚转;关闭加热电源。
9
直拉硅单晶工艺简介
取晶棒
• 打开进气氩气阀门将炉内压力回充到常压。 • 按控制面板上晶升快速上升键,使晶体上升至副室适当距离关闭
相关文档
最新文档