实数基础(平方根、立方根)

合集下载

平方根 算术平方根 立方根 实数

平方根 算术平方根 立方根 实数

实数学习目标1.理解并掌握算术平方根、平方根、立方根等概念及性质,并会用根号表示它们.2.会求算术平方根、平方根和立方根.3.理解有理数、无理数以及实数的概念,知道这些数和数轴上的点的对应关系.4.会进行实数的运算.知识精讲1.算术平方根.(1)概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫作a 的算术平方根.其中a 叫作被开方数.a 的算术平方根记作)0(≥a a ,读作“根号a ”.(2)性质:正数的算术平方根是正数;0的算术平方根是0;负数没有算术平方根.注意:非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身也是非负数.2.平方根.(1)概念:如果一个数的平方等于a ,那么这个数就叫作a 的平方根(或二次方根).即如果a x =2,那么x 叫作a 的平方根,记作)0(≥±a a .(2)开平方:求一个数a 的平方根的运算,叫作开平方.注意:开平方运算与平方的运算互为逆运算.(3)性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根. 注意:①求某数的平方根,先要看这个数是不是非负数.②要判断一个数是不是另一个数的平方根,只需验证这个数的平方是否等于另一个数.③一个正数的正的平方根即为算术平方根.a 表示a 的算术平方根,a ±表示a 的平方根. ④在求一个数的平方根时,只要求出它的算术平方根,就可直接写出它的另一个平方根. ⑤要熟记1至20之间的整数的平方.3.立方根.(1)概念:一般地,如果一个数的立方等于a ,那么这个数叫作a 的立方根或三次方根.即如果a x =3,那么x 叫作a 的立方根,记作3a ,读作“三次根号a ”.注意:这里的根指数3不能省略.(2)开立方:求一个数a 的立方根的运算叫作开立方,其中a 叫作被开方数.注意:开立方运算与立方根运算互为逆运算.(3)性质:正数的立方根是正数;负数的立方根是负数;0的立方根是0.注意:①任何数的立方根都只有一个,其符号与它本身的符号一致. ②3a -=-3a ,a a a ==3333)(.4.实数.(1)无理数:无限不循环小数叫作无理数.注意:无理数常见的三种形式:①开方开不尽的数;②有规律的无限的不循环小数;③含π的数.(2)有理数和无理数统称为实数.(3)实数的分类. 实数 有理数:有限小数或无限循环小数 无理数:无限不循环小数正实数 正有理数 正无理数实数 0负实数 负有理数 负无理数(4)实数与数轴上的点是一一对应的,即数轴上的点都表示实数;反之,实数都可以用数轴上的点来表示.5.实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内任然适用.方法提炼1.平方根的相关结论.(1)当被开方数扩大(或缩小)2n 倍时,它的算术平方根相应地扩大(或缩小)n 倍(0≥n ).(2)平方根和算术平方根与被开方数之间的关系:①)0()(2≥=a a a ;②==a a 2 )0()0(<a a a a -≥ (3)若一个非负数a 介于另外两个非负数1a 、2a 之间,它的算术平方根介于21a a 、之间,即当210a a a <<≤时,则210a a a <<≤.利用这个结论我们可以估算一个非负数的算术平方根的大致范围.2.立方根的相关结论.(1)当被开方数扩大(或缩小)3n 倍时,它的立方根相应地扩大(或缩小)n 倍(0≥n ).(2)a a =33,a a =33)(.(3)若一个数a 介于另外两数1a 、2a 之间,它的立方根介于3231a a 、之间,即当21a a a <<时,则32331a a a <<.利用这个结论我们可以估算一个数的立方根的大致范围.3.三种非负数:,02≥a ,0≥b )0(0≥≥c c .根据非负数的性质.若其中两个或三个非负数的和为0,则每一个非负数均为0,即若02=++c b a ,则.0,0,0===c b a4.对于绝对值与平方根问题一般需分类讨论. 典例精析例1 给出下列说法:(1)正数都有平方根和立方根,负数没有平方根和立方根. (2)一个数的平方根和立方根相等,这个数是0 或1. (3)任何实数都有立方根. (4)一个正数的算术平方很和一个负数的算术平方根互为相反数. (5)一个数的立方根和这个数的相反数的立方根互为相反数.其中正确的有( )个.A.2B.3C.4D.5例2 已知12-a 的平方根为3±,12-+b a 的立方根为2,求b a 2+的平方根.典例精练1.下列语句中正确的是( )A.49的算术平方根是7B.49的平方根是-7C.-49的平方根是7D.49的算术平方根是7±2.下列实数3π,71-,0,2,-3.15,9,33中,无理数有( ) A.1个 B.2个 C.3个 D.4个3.(1)9-的平方根与-8的立方根的和是( )A.1B.-5C.3±D.1或-5(2)一个数的算术平方根是a ,则比这个数大8的数是( )A.a +8B.a -4C.82-aD.82+a4.若0)3(122=++-++c b a ,则c b a -+2等于( )A.0B.1C.2D.35.给出下列说法:(1)无理数就是开方开不尽的数.(2)无理数是无限u 循环小数.(3)无理数包括正无理数、0、负无理数.(4)实数都可以用数轴上的点来表示.其中正确的个数为( )个.A.1B.2C.3D.4 6.75-的相反数是____________,绝对值是____________.7.当x __________时,1-x 有意义.8.比较大小:72___________24.9.(1)若36.25=5.036,6.253=15.906,则253600=___________.(2)已知351.1=1.147,472.21.153=,5325.0151.03=,则31510的值是___________. 10.(1)52233221-+-+-+- (2)3201564321691541)1(21+-++--+-+ (3)327)21()4()4()2(323323-÷--⨯-+-⨯-11.求下列各式中的x .(1)01642=-x (2)0125273=-x12.若15+a 和19-a 是正数m 的平方根,求m 的值.13.已知m 是313的整数部分,n 是13的小数部分,求n m -的值.14.已知实数c b a 、、在数轴上对应点的位置如图所示,化简:3322)()(a b b c b c b a ----+-+-.中考真题1.(湖北鄂州)4的算术平方根为__________.2.(安徽)设n 为正整数,且1n 65+<<n ,则n 的值为(). A.5 B.6 C.7 D.8。

第7讲 平方根、立方根

第7讲   平方根、立方根

第7讲平方根、立方根一、学习目标1、了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根和立方根.2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,能用立方运算求某些数的立方根.3、能进行方根的估算,会区分立方根与平方根的不同.考情分析中考对这部分知识的考查一般分成两种情况:一是在实数的运算中,一是在解决综合问题中.虽然很少单独考查,但是由于它是学习无理数的前奏,是实数运算中必不可少的内容,故中考时常与其他知识综合考查.二、基础知识·轻松学1.算术平方根一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根,a a”,a叫做被开方数.【精讲】(1)被开方数a表示非负数,即a≥0.(2)0的算术平方根是0.(3)a也表示非负数,即a≥0.即:非负数的算术平方根是非负数.负数不存在算术平方根,即a<0时,a=4,5是252.平方根(1)平方根的概念:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根).就是说,如果x2=a,那么x就叫做a的平方根.因为3和-3的平方都是9,所以3和-3都是9的平方根.(2)平方根的性质:○1正数有两个平方根,它们是互为相反数.记作:a±.○20的平方根是0,记作:00=.○3负数没有平方根.【精讲】算术平方根与平方根的区别与联系:(1)区别①定义不同:如果x2=a,那么x叫做a的平方根,正数a的正的平方根叫做a的算术平方根.②个数不同:正数有两个平方根, 而算术平方根只有一个.±, 正数a的算术平方根③表示方法不同:正数a的平方根表示为a表示为a.④结果不同:正数的算术平方根一定是正数, 正数的平方根是一正一负.(2)联系①具有包含关系:平方根包含算术平方根,算术平方根是平方根中的一个.②存在条件相同:平方根和算术平方根都是只有非负数才有.③0的平方根、算术平方根均为0.3.开平方求一个数a(a≥0)的平方根的运算,叫做开平方.【精讲】(1)开方与平方互为逆运算.(2)正数的平方根有两个,它们互为相反数;其中正的平方根就是这个数的算术平方根.4.立方根如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根) .用式子表示就是,如果x3=a,那么x叫做a的立方根.因为2的立方为8,所以8的立方根为2.5.开立方求一个数的立方根的运算,叫做开立方.一个数a的立方根用符号表示,读作“三次根号a,其中a是被开方数,3是根指数.注意:根指数3不能省略.【精讲3】平方根与立方根的联系与区别(1)联系①都与相应的乘方运算互为逆运算.开平方与平方互为逆运算,开立方与立方互为逆运算.②平方根、立方根都是开方的结果.③0的平方根、立方根都有一个是0.(2)区别:(1)定义不同如果一个数的平方等于a ,这个数就叫做a 的平方根;如果一个数的立方等于a ,这个数就叫做a 的立方根.(2)写法不同在用符号表示平方根时,根指数2可省略,而用符号表示立方根时,根指数3不能省略.(3)个数不同任何一个正数有两个平方根,0的平方根有一个是0,负数没有平方根;任何一个数都有一个立方根.(4)表示法不同正数a 的平方根表示为±a ,a 的立方根表示为3a .(5)被开方数的取值范围不同 ±a 中的被开方数a 是非负数;3a 中的被开方数可以是任何数.三、重难疑点·轻松破1.求算术平方根和平方根因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根.一般的,.被开方数的小数点向右或向左每移动两位,算术平方根则相应地向右或向左移动一位.例1. 求下列各数的平方根:0 (6) a 5 -4 0.0289 3 361225 2 196 162)())(()()()(2222515(1) 1961423611922515 196 143611915141=±=±±±±±±=±解:因为()()因为()所以的平方根是:所以的平方根是:即:即:2222930.02890.1740.02890.170.17ππππ=±-=±±-±±=±()因为()()因为()()所以的平方根是:所以()的平方根是:即:63226335a a (6) 00a a 0 0aπ±±=±=±±=±即:()因为()因为所以的平方根是:所以的平方根是:即:0=点评:求一个数的平方根,也就是求一个非负数是什么数的平方.由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算术平方根是非负数,即当a≥0时,a≥0(当a<0时,a无意义) ,用几何图形可以直观地表示算术平方根的意义如有一个面积为a (a应是非负数) 的正方形的边长a就表示a的算术平方根.变式1、计算:.264.)23(-3.9722.0.0225142±-±)()()()(2.求立方根立方根是与平方根等同的两个概念,在前面学习平方根与算术平方根概念的基础上,很容易学习,要注意: 立方的结果是唯一的;在开立方运算中,被开方数可以是正数,0,负数,开立方的结果是唯一的.例2 求下列各式的值:327、364-解析: (1)∵33=27,∴27的立方根是3,即327=3.(2)∵(-4)3=-64,∴-64的立方根是-4,即364-=-4.(3)∵(35)3=27125,∴27125的立方根是35,35. 点评: 求一个数的立方根的基本方法和基本步聚(1)明确(或易求出)所要求的数是哪一个数的立方的;(2)先指出所要求立方根的那个数是哪个数的立方;(3)根据立方根的定义,求出这个数的立方根.变式2.求下列各数的立方根:(1)512 (2)125.0- (3)3)3(- (4)833- 3.方根的估算:例3 已知3﹣的整数部分是a ,小数部分是b ,求500a 2+(2+)ab +4的值.解析:∵12,∴a =1,b =2∴500a 2+(ab +4=500×12+(×1×(2+4=500+4﹣3+4=505.点评:此题考查了二次根式的化简以及计算,同时考查了学生的估算能力,“夹逼法”是估算的一般方法,有时我们也会先估算整数部分,再用原数减去整数部分即为小数部分.变式3:小明做了以下三道计算题,请你判断一下他的结果对吗?(19.7;(2123;(3 5.1.四、课时作业·轻松练A .基础题组1.下列说法错误的是A .0的平方根是它本身B .-9没有平方根C .(-2)2的平方根是±2D .1的平方根是12.若x 是25的平方根,y x 与y 的关系是()A .x =yB . x =-yC .x =±yD .x =y 23.一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =4.144的算术平方根是 ,16的平方根是 ; 64-的立方根是5..a +1是9的平方根,那么a 的值为_______.6.求下列各式的值(1)2)2(3)(2(45) 3 7.求下列各式中的x(1)x 2-36=0 (2)0.25x 2=1(3)(x +5)3=27 (4)27(x +1)3=-1000B .提升题组8.a 是正数,如果a 的值扩大100 )A 、扩大100倍;B 、缩小100倍;C 、扩大10倍;D 、缩小10倍;9.若a <0,则aa 22等于( ) A 、21 B 、21- C 、±21 D 、0 10.若164=x ,则x = ;若813=n ,则n = .11.已知-3是2a -1的平方根,3a -b -1的立方根是2,求6a +b 的算术平方根.12.已知一个正数x 的两个平方根分别是a +4,a -2,求a 与x 的值. 中考试题初体验1.(2012 )A .4B .2C .﹣2D .2.(2013贵州黔西南州)的平方根是 ±3 .3.(2012( )A . 3B . ﹣3C . ﹣2D . 24.(2012湖北荆州)﹣(﹣2)﹣2﹣2)0= . 五、我的错题本参考答案变式练习变式1:123450.15 -233=====±==解析:()(()()226=±变式2.解析:(1)∵83=512,∴512的立方根是8 (2)∵(-0.5)3=-0.125,∴ -0.125的立方根是-0.5 (3)3)3(-的立方根是-3 (4)∵(32-)3=833-,∴833-的立方根是32-.变式3.解析:(110;(2)也是错误的,因为31001000000=,它比12345大得多;(3)是正确的,因为2525.936<<,所以96,即56<.课时作业·轻松练A.基础题组1.D解析:一个正数有两个平方根,0的平方根是0,负数没有平方根,故选D.2.C.解析:x是25的平方根,所以x=±5, y,y2=5.所以x=±y,选C.3. B解析:由题意得,a2=b,正方形的边长为a,只能是正数,所以a 是b的的算术平方根,故选B.4. 12,±2,-2,所以144的算术平方根是12;16=4,±2,所以16的平方根是±2;64-=-8,64-的立方根是=-2.5. a =2或a =-4 ±3,所以a +1=±3,所以,a =2或a =-4.6.解:(1)(2)2=42(3)(2=12(414(5)3=8.7.解:(1)∵x 2-36=0∴x 2=36 ±6∴x =±6(2) ∵0.25x 2=1∴x 2=4±2∴x =±2(3) ∵(x +5)3=27∴x +5=3∴x =-2(4) ∵27(x +1)3=-1000∴(x +1)3=100027-∴x =103--1=133- B .中档题组8.C =C .9.B .解析:∵a <0a , ∴a a 22=2a a -=12-,故选B . 10.±2;4 解析:∵(±2)4=16,∴x =±2;∵34=81,n =411.解:∵-3是2a -1的平方根,∴2a -1=32=9,a =5; 3a -b -1的立方根是2, ∴3a -b -1=23=8,a =5,b =6, ∴6a +b =6×5+6=3612.解:∵正数x 的两个平方根互为相反数,∴a +4+a -2=0,∴a =-1,∴a +4=-1+4=3,(a +4)2=32=9, ∴x =9.中考试题初体验1.解析:根据算术平方根的定义解答.∵22=4.故选B .2.解析:首先化简,再根据平方根的定义计算平方根=9,9的平方根是±3,故答案为:±3.3.解析:∵33=27.故选A.4.解析:分别根据二次根式的化简、负整数指数幂、零指数幂的知识将各部分化简,然后合并即可得出答案.原式=14﹣14﹣1=﹣1.11。

第3讲 实数的有关概念及性质

第3讲  实数的有关概念及性质

第3讲 实数的有关概念及性质【学习目标】掌握算术平方根、平方根、立方根、实数的概念及性质【教学重难点】算术平方根、平方根、立方根、实数的概念及性质考点1:平方根知识点与方法技巧梳理:1.平方根:一个数x 的平方等于a ,即x2=a (a ≥0),那么这个数x 叫做a 的平方根. 2.平方根的表示方法:①当a ≥0时,a 的平方根记为±a(特别地,0=0); ②当a <0时,a 没有平方根. 3.平方根的性质:①一个正数a 有两个平方根,一个是a 的算术平方根a,另一个是-a,它们互为相反数; ②0有一个平方根,它就是0本身; ③负数没有平方根.【例1】判断下列说法是否正确: (1)25的平方根是±5( ) (2)|-9|的平方根是3( ) (3)-8是64的平方根( ) 【变式】填空:(1)0.04的平方根是_________.(2)若a 是x 的一个平方根,则x 的另一个平方根是_________. (3)若a2=(-7)2,则a =_________. (4)平方根是它本身的数是_________. 【例2】求下列各数的平方根:(1)1.44 (2)2249(3)10-4 (4)|-3116| (5)292-202【变式】求下列各数的平方根:(1)2.89 (2)3625(3)0.000001 (4)|-24164| (5)852-362考点2:算术平方根知识点与方法技巧梳理:1.算术平方根:①正数a 的正的平方根,叫做a 的算术平方根,记作a; ②特别地,0的算术平方根是0.2.算术平方根的性质:非负数的算术平方根是非负数,即当a ≥0时,a≥0.3.(1)(a)2=a (a ≥0);(2)a2=| a |=⎩⎪⎨⎪⎧a (a >0)a (a =0)-a (a <0)【例1】判断下列说法是否正确:(1)361=±19;( ) (2)27是(-27)2的算术平方根;( )(3)4的算术平方根是2.( )【变式1】下列说法错误的是( )A .4是16的平方根B .1的平方根是1C .(-3)2的平方根是±3 D .10-100的算术平方根是10-50 【变式2】填空:(1)49的平方根是_________,225的算术平方根是_________. (2)若a 2=m ,则a =_________. (3)(a)2=_________(a ≥0); a 2=_________.(4)算术平方根是它本身的数是________;________的算术平方根等于它的平方根.(5x +11的平方根是_________,算术平方根是_________. (6)a2的算术平方根是_________,(3-π)2的算术平方根是_________.(73b +=0,则20172017a b +=_________.(8)若4a +1的平方根是±5,则a2的算术平方根是__________. 【例2】求下列各数的算术平方根:(1)179(2)(-35)2 (3)8-2 (4)64(5)0.01 (6)262-102【变式】求下列各数的算术平方根:(1)3625(2)-(-19)3 (3)14-4 (4)81(5)1210- (6)372-122考点3:平方根和算术平方根的运用 知识点与方法技巧梳理:1.开平方:①求一个非负数a 的平方根的运算,叫做开平方,其中a 叫被开方数.开平方和平方互为逆运算. ②开平方与加、减、乘、除、乘方一样,都是一种运算. ③平方与开平方互为逆运算.2.被开方数的小数点向右或者向左移动2位,它的平方根的小数点就相应地向右或者向左移动1位. 【例1】计算:(1)(-7)2(2)(5.7)2【变式】计算:(1)1 40.64-1 5100(2) 2.56×25 64【例2】利用平方根解方程:(1)16( x 2+1 )=41 (2)( 5x -1)2=49【变式】利用平方根解方程:(1)25(x2+2)=86 (2)(3x -2)2=(-7)2【例3】若|2x +3|+4x -y=0,求x 、y 的值.【变式】已知|3a -2|+2a +3b=0,求a +b 的值.考点4:无理数知识点与方法技巧梳理:无理数:无限不循环小数叫做无理数,如3、π.【例】在①0,②10,③-π5,④32,⑤3.14中,是无理数的有____________.【变式】下列各数中,是无理数的是( )A .47B .225C .3πD .4925考点5:立方根知识点与方法技巧梳理:1.立方根的概念:如果x3=a ,则x 叫做a 的立方根(也叫做三次方根) 2.立方根的性质:①正数有一个立方根,仍为正数.如:64的立方根是44;0;③负数有一个立方根,仍为负数,如:-8的立方根为-22=-.任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 【例1】下列说法正确的是( )A -2B .1的立方根是±1C .若x <0xD .0没有立方根【变式】下列说法正确的是( )A .-4没有立方根B .8的立方根是±2C .136的立方根是16D .-5的立方根是【例2】求下列各数的立方根: ①-216 ②0.125 ③61164- ④9【变式】求下列各数的立方根:①343 ②-0.216 ③-1558④3(11)-考点6:立方根的运算知识点与方法技巧梳理:1.开立方:①求一个数a的立方根的运算,叫做开立方,其中a叫被开方数.②正如开平方是平方的逆运算一样,开立方运算也是立方运算的逆运算.2.=②3a=③a=第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.3.被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.【例1】求下列各式的值:【变式】求下列各式的值:①【例2】0.30.03,则x∶y=_________.【变式1】a__________m=.【例3】利用立方根解方程:①27x3=-64 ②(-3+x)3=216=-5 ④64(x+1)3+125=0【变式】利用立方根解方程:①334364x-=0 ②(4x+3)3=-8-6 ④1000-27(x-2)3=0考点7:实数知识点与方法技巧梳理:1.实数:有理数和无理数统称为实数.2.实数的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧无限不循环小数负无理数正无理数无理数小数数有限小数或无限循环小正分数、负分数分数正整数、零、负整数整数有理数实数)()()(3.实数大小的比较:在数轴上表示的两个实数,右边的数总比左边的数大.4.实数和数轴上点的对应关系:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的关系.5.实数的几个概念:①相反数;②倒数;③绝对值都和有理数范围内的概念相同. 【例1】把下列各数分别填入相应的集合中:2,1311,8,π2,-2,-7.77,00.121221222……(相邻两个1之间的2的个数逐次增加1)【变式】请把例1中的各数填入相应的集合中:正实数集合:{____________________________________________________…};分数集合{____________________________________________________…}.【例2【变式A .-1和0之间 B .0和11和2之间D .2和3之间【变式2】比较下列各组数的大小:(1(2)-π______-【变式3】3--【例4】实数a 、b 在数轴上的对应点的位置如图所示,则的大小关系为____________. 【变式】如图,在数轴上表示2、3的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为____________.【家庭作业】1a __________m =__________;2.若正数A 的平方根是3x -2和x -6,求x A 的算术平方根.3.已知有理数a 、b 满足a2+2b +2b =17-42,求a +b 的值.4.已知实数a 、b 满足条件b .(1)求a 、b 的值;(2)求1111(1)(1)(2)(2)(2017)(2017)ab ab a b a b ++++++++++的值. C 0 A B有理数集合 无理数集合。

实数平方根、立方根基础练习题

实数平方根、立方根基础练习题

实数平方根、立方根基础测试题一、算术平方根与平方根填空:1、 口算:(1)144的平方根 , 225的平方根 , 169的平方根 ,196的平方根 , 121的平方根 , 289的平方根(2) 100的平方根 , 10000的平方根 , 104的平方根 ,1010的平方根 , 0.01的平方根 , 0.000001的平方根 。

(3) 640000的平方根是 , 12100的算术平方根 ,0.64的平方根 ,1.44的算术平方根 , 0.0255的平方根是 ,1169的平方根是(4) 7的平方根 ,11的平方根 ,35的算术平方根 ,(5)平方根 , 算术平方根 , 225平方根 ,169平方根 ,|-972|的算术平方根是______的平方根是______,(6) 5的平方的平方根是 ,-8的平方的平方根是 ,-0.8的平方的算术平方根是 ,2)8( = ,2)8(= 。

2、逆运算:(1) 的算术平方根是15, 的算术平方根是0.5;的平方根是±8, 的平方根是±57. (2)若-21是数a 的一个平方根,则a =_____. (3)若a 的平方根是±5,则a = 。

(4)如果a 的平方根等于2±,那么_____=a ;(5)若a 的算术平方根是2,则a 是2、估算与大小比较:(1) 3介于整数 和 之间,它的整数部分是a ,小数部分是b ,则a = ,b = , (用含3式子表示)(2a 和b 之间,那么ab=(3) 满足x 是(4)在整数 和 之间;(5)在整数 和 之间(6)2-5 0(比大小)3、小数点的移动(1) 2.676=,26.76=,则a 的值等于 。

(2) 若896=29.933 则8960000=4、其他(1)的相反数是 ;绝对值是 .(2) 的点表示的数是 .(3)一个数的平方根是3a +1和7+a ,则a = .(4)一个数的平方根是4b-5和10+b ,则3b-10= 。

初中数学实数(认识平方根和立方根)基础题(含答案)

初中数学实数(认识平方根和立方根)基础题(含答案)

初中数学实数(认识平方根和立方根)基础题一、单选题(共9道,每道11分)1.的平方根是()A. B.C. D.答案:C试题难度:三颗星知识点:整数、分数的平方根、算术平方根2.0.0004的算术平方根是()A.0.2B.±0.2C.0.02D.±0.02答案:C试题难度:三颗星知识点:小数、幂的平方根、算术平方根3.的平方根是()A.4B.±4C.2D.±2答案:D试题难度:三颗星知识点:多重平方根、算术平方根4.一个正数的平方根是a+3与2a+4,则这个正数为()A. B.C. D.答案:D试题难度:三颗星知识点:正数的平方根5.一个数的算术平方根为a,比这个数小2的数是()A.a+2B.-2C.+2D.a2-2答案:D试题难度:三颗星知识点:乘方与开方互为逆运算6.-27的立方根为()A.±3B.-3C.3D.9答案:B试题难度:三颗星知识点:立方根7.如果一个数的平方根是这个数本身,那么这个数一定是()A.1B.1或0C.0D.-1或0或1答案:C试题难度:三颗星知识点:等于本身的数8.已知0≤x≤6,则的化简结果是()A.2x-5B.7C.4D.5-2x答案:B试题难度:三颗星知识点:双重非负性9.一个正方体木块的体积为125厘米3,现先要把它锯成8块同样大小的正方体小木块,则小木块的棱长是()厘米A.5B.2.5C. D.1.25答案:B试题难度:三颗星知识点:立方根的简单应用。

人教版七年级下册第六章实数平方根、立方根(教案)

人教版七年级下册第六章实数平方根、立方根(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根和立方根的基本概念。平方根是一个数的平方等于给定数的非负数解,立方根则是一个数的立方等于给定数的解。它们在解决实际问题,如面积、体积计算中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算一个边长为2的正方形的面积,这时我们就需要用到平方根的概念,即√(2^2)=2。
2.探索与问题解决:引导学生自主探究平方根、立方根的性质和求法,培养他们发现、分析和解决问题的能力。
3.空间观念与几何直观:将平方根、立方根与图形结合,培养学生的空间观念,提高几何直观能力。
4.数据观念与推理能力:通过实际问题的解决,让学生掌握数据处理方法,培养合情推理和演绎推理的能力。
5.数学交流与反思:鼓励学生在学习过程中积极与他人交流,分享解题思路,培养反思和总结的学习习惯。
五、教学反思
今天我们在课堂上探讨了实数平方根和立方根的概念及其应用。整体来看,学生们对这两个概念的理解有了明显的提升,但在教学过程中我也注意到了一些需要改进的地方。
首先,我发现部分学生在理解平方根和立方根的定义时存在困难。在今后的教学中,我需要更加注重从直观和生活实例出发,让学生们更好地感受到这两个概念的实际意义。例如,可以多举一些与面积、体积相关的例子,让学生在实际问题中体会平方根和立方根的应用。
-立方根的求法:学会计算简单实数的立方根。
举例:讲解平方根时,强调正数平方根的互为相反数性质,如√9=3和√9=-3,但通常情况下我们默认平方根为正数。在立方根方面,举例计算∛8,得出∛8=2,强调立方根的结果唯一性。
2.教学难点
-平方根的理解:学生容易混淆平方根与算术平方根的概念,难以理解负数没有平方根。
3.重点难点解析:在讲授过程中,我会特别强调平方根和立方根的概念及其求法这两个重点。对于难点部分,我会通过具体例子和图形来帮助大家理解。

八年级上册数学《实数》平方根和立方根 知识点整理

八年级上册数学《实数》平方根和立方根 知识点整理

加速度学习网 我的学习也要加速平方根和立方根有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网 整理一、本节学习指导平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备基础,也是中考的必考内容之一,此节我们要掌握平方根和立方根的概念。

本节有配套免费学习视频。

二、知识要点1、平方根:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:① 当0=a 时,它的平方根只有一个,也就是0本身;② 当0>a 时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

③ 当0<a 时,也即a 为负数时,它不存在平方根。

2、算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

加速度学习网 我的学习也要加速例1 求下列各数的算术平方根 (1)64;(2)2)3(-;(3)49151. 分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.解:(1)因为6482=,所以64的算术平方根是8,即864=;(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-; (3)因为496449151=,又4964)78(2=,所以49151的算术平方根是78,即7849151=. 注意:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根是3,而不是3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似74149161=的错误.例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-. 分析:±81表示81的平方根,故其结果是一对互为相反数;-16表示16的负平方根,故其结果是负数;259表示259的算术平方根,故其结果是正数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.解:(1)因为8192=,所以±81=±9. (2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53.(4)因为22)4(4-=,所以4)4(2=-.加速度学习网 我的学习也要加速例(1)64的立方根是(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。

平方根和立方根知识点总结及练习

平方根和立方根知识点总结及练习

基础知识巩固一、平方根、算数平方根和立方根1、平方根1平方根的定义:如果一个数x 的平方等于a,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.2开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义;3平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3 4一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算 5符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6a x =2 <—> a x ±=a 是x 的平方 x 的平方是a x 是a 的平方根 a 的平方根是x2、算术平方根1算术平方根的定义: 一般地,如果一个正数x 的平方等于a,即a x =2,那么这个正数x叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 x≥0中,规定a x =;2a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数;3当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小;一般来说,被开放数扩大或缩小a 倍,算术平方根扩大或缩小a 倍,例如=5,=50;4夹值法及估计一个无理数的大小5a x =2x≥0 <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x 6正数和零的算术平方根都只有一个,零的算术平方根是零; a a ≥00≥a==a a 2 ;注意a 的双重非负性:-a a <0 a ≥07平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数; 3、立方根1立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根也叫做三次方根,即如果3x a =,那么x 叫做a 的立方根2一个数a 的立方根,记作3a ,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方; 3 一个正数有一个正的立方根;0有一个立方根,是它本身; 一个负数有一个负的立方根; 任何数都有唯一的立方根;4利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即()330a a a -=->;5a x =3 <—> 3a x =a 是x 的立方 x 的立方是a x 是a 的立方根 a 的立方根是x633a a -=-,这说明三次根号内的负号可以移到根号外面;典型例题分析知识点一:有关概念的识别 1、下列说法中正确的是 A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数2、下列语句中,正确的是A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个3、下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±;其中正确的有A 、1个B 、2个C 、3个D 、4个 4、()20.7-的平方根是A .0.7-B .0.7±C .0.7D .0.49 5、下列各组数中,互为相反数的组是A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和2知识点二:计算类题型1、25的算术平方根是_______;平方根是_____. -27立方根是_______.___________, ___________,___________.2、=-2)4( ; =-33)6( ; 2)196(= . 38-= .3、① 2+32—52 ② 771-7③ |23- | + |23-|- |12- | ④ 41)2(823--+4、1327-+2)3(--31- 233364631125.041027-++---3知识点三:利用平方根和立方根解方程1、12x-12-169=0; 212142=x 3125)2(3=+x知识点四:关于有意义的题a ,有非负性,a 0a a ≥0;要使1a有意义,必须满足a ≠0. 1、若a 的算术平方根有意义,则a 的取值范围是 A 、一切数 B 、正数 C 、非负数 D 、非零数 2、要使62-x 有意义,x 应满足的条件是3、当________x 时,式子21--x x 有意义;知识点五:有关平方根的解答题1、一个正数a 的平方根是3x ―4与2―x,则a 是多少2、若5a +1和a -19是数m 的平方根,求m 的值;3、已知x 、y 都是实数,且334y x x =--,求x y 的平方根;知识点六:非负性的应用1、已知实数x,y 满足 2x -+y+12=0,则x-y 等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1, 所以,x-y=2--1=2+1=3.2、已知a 、b 满足0382=-++b a ,解关于x 的方程()122-=++a b x a ;3、若0)13(12=-++-y x x ,求25y x +的值;4、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式acb -的值;5、已知a 31-和︱8b -3︱互为相反数,求ab -2-27 的值;重点知识巩固考点、平方根、算术平方根、立方根 1、概念、定义1如果一个正数x 的平方等于a,即,那么这个正数x 叫做a 的算术平方根;2如果一个数的平方等于a,那么这个数就叫做a 的平方根或二次方跟;如果,那么x 叫做a 的平方根;3如果一个数的立方等于a,那么这个数就叫做a 的立方根或a 的三次方根;如果,那么x叫做a的立方根;2、运算名称1求一个正数a的平方根的运算,叫做开平方;平方与开平方互为逆运算;2求一个数的立方根的运算,叫做开立方;开立方和立方互为逆运算;3、运算符号1正数a的算术平方根,记作“a”;2aa≥0的平方根的符号表达为;3一个数a的立方根,用表示,其中a是被开方数,3是根指数;4、运算公式4、开方规律小结,a的算术平方根a;正数的平方根有两个,它们互为相反1若a≥0,则a的平方根是a数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根;实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同;正数的立方根是正数,负数的立方根是负数,0的立方根是0;2若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是;3正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数;。

沪科版七年级下册数学教学课件 第6章 实数 6-1 平方根、立方根 立方根

沪科版七年级下册数学教学课件 第6章 实数 6-1 平方根、立方根 立方根

课堂小结
立方根的概念及性质
立方根
开立方及相关运算
七年级数学下(HK) 教学课件
第6章 实 数导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.了解立方根的概念,会用根号表示一个数的立方根. (重点) 2.能用开立方运算求某些数的立方根,了解开立方和
立方互为逆运算.(重点,难点)
导入新课
情境引入
某化工厂使用半径为1米的一种球形储气罐储藏 气体,现在要造一个新的球形储气罐,如果要求它 的体积必须是原来体积的8倍,那么它的半径应是原 来储气罐半径的多少倍?
因为(
1 2
)3
=0.125,所以0.125的立方是(
1 2
);
因为( 0)3 =0,所以0的立方根是(0 );
因为 (-2 )3 =-8,所以-8的立方根是(-2 );
因为(
2 3
)3
= 8
27
,所以 8
27
的立方(
2 3
).
知识要点
立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
体会:对于任何数a , 3 a3 _a__
探究2 求下列各式的值:
3 8 3 _8__
3
3 27 2__7_
( 3 8)3 _-_8_
3 27 3 -_2_7_
3 0 3 _0__
3
体会:对于任何数a , 3 a _a__
探究3 求下列各式的值: (1) 3 0.008 ; -0.2
讲授新课
一 立方根的概念及性质 问题:要做一个体积为27cm3的正方体模型(如图), 它的棱长要取多少?你是怎么知道的?

数学自学指南 实数之平方根、立方根

数学自学指南  实数之平方根、立方根

自学资料一、平方根【知识探索】1.如果一个正数x的平方等于a,即,如果x2=a,那么这个正数x就叫做a的算术平方根(arithmetic square root).a的算术平方根记为“”,读作“根号a”,a叫做被开方数.【说明】规定:0的算术平方根是0.2.开平方与平方互为逆运算.【说明】(1)一个正数的平方根的平方等于这个数;(2)一个正(负)数的平方的正平方根等于这个数(这个数的相反数).3.正数a的两个平方根可以用“”表示,其中“”表示a的正平方根(又叫算数平方根),读作“根号a”;“”表示a的负平方根,读作“负根号a”.零的平方根记作“”,.【总结】(1)一个正数有两个平方根,它们互为相反数;(2)零的平方根是零;(3)负数没有平方根.【说明】负数没有平方根,或者说负数不能进行开平方运算,这个结论只是在实属范围内正确.【错题精练】例1.若(k是整数),则k=()第1页共10页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 6B. 7C. 8D. 9【答案】D例2.已知m的平方根是a+3与2a﹣15,求m的值.【答案】解:当a+3与2a﹣15是同一个平方根时,a+3+2a﹣15=0,解得a=4,此时,m=49.例3.已知(2x+y)2+=0,求x﹣2y的平方根.【答案】例4.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A. a+2B.C.D.【答案】C例5.求下列式子中的x28x2-63=0.第2页共10页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】±【举一反三】1.下列计算正确的是()A.B. =﹣2C.D. (﹣2)3×(﹣3)2=72【解答】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【答案】B2.一个正方形的面积是9平方单位,则这个正方形的边长是()长度单位A. 3B.C. ±D. ±【答案】A3.下列判断正确的是()A. 若,则B. 若,则C. 若,则D. 若,则第3页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【答案】B4.的平方根是()A.B.C.D.【答案】A5.已知边长为a的正方形的面积为8,则下列说法中,错误的是A. a是无理数B. a是方程x2﹣8=0的解C. a是8的算术平方根D. a满足不等式组【答案】D6.9的平方根是__________ ,9的算术平方根是__________【答案】±3|37.求x值:(x﹣1)2=25【答案】x=6,或x=﹣48.已知,则a﹣b的值是__________ .第4页共10页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】【答案】9.观察数表:根据数阵排列的规律,第10行从左向右数第8个数是__________ .【解答】【答案】二、立方根【知识探索】1.任意一个数都有立方根,而且只有一个立方根.(1)正数的立方根是一个正数;(2)零的立方根是零;(3)负数的立方根是一个负数.2.一般地,如果一个数的立方等于a,那么这个数就叫做a的立方根(cube root)或三次方根.即,如果x3=a,那么x就叫做a的立方根.用“”表示,读作“三次根号a”.中的“a”叫做被开方数,“3”叫做根指数.【错题精练】例1.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;第5页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训(2)若与互为相反数,求的值.【解答】【答案】见解析例2.一个正方体木块的体积是125cm3,现将它锯成8块同样大小的正方体小木块,求每个小正方体木块的表面积。

初中实数根知识点

初中实数根知识点

初中实数根知识点实数是数学中非常重要的一个概念,它包含了所有的有理数和无理数。

在初中阶段,我们需要掌握实数的一些基本概念和性质,其中就包括实数的根。

一、平方根在初中数学中,我们首先学习的是平方根。

对于一个非负实数a,它的平方根记作√a,表示满足b²=a的非负实数b。

换句话说,如果b是一个非负实数,且b的平方等于a,那么b就是a的平方根。

那么如何求一个数的平方根呢?在初中数学中,我们可以通过估算和试算的方法来求解。

以求解√2为例,我们可以尝试一些非负实数的平方,比如1²=1,2²=4,3²=9,4²=16,5²=25等等。

通过这种试算的方式,我们可以发现2的平方根位于1和2之间,而且比1.5更接近2。

通过进一步的试算,我们可以得到1.4²=1.96,1.5²=2.25,可以发现1.4²小于2,而1.5²大于2,因此√2的值位于1.4和1.5之间。

通过这种方法,我们可以逐步逼近√2的值,求得一个比较精确的结果。

二、立方根除了平方根之外,立方根也是我们在初中数学中要学习的一个重要概念。

对于一个实数a,它的立方根记作³√a,表示满足b³=a的实数b。

换句话说,如果b是一个实数,且b的立方等于a,那么b就是a的立方根。

和求平方根类似,我们可以通过试算的方法来求解一个数的立方根。

以求解³√27为例,我们可以尝试一些实数的立方,比如1³=1,2³=8,3³=27,4³=64,5³=125等等。

通过试算,我们可以得到3的立方根是3,而且它是唯一的。

这是因为3³=27,没有其他实数的立方等于27。

三、实数根的运算性质除了掌握实数根的概念和求解方法之外,我们还需要了解实数根的一些基本运算性质。

在初中数学中,我们主要学习了以下几个性质:1.两个实数的积的平方根等于这两个实数的平方根的乘积。

平方根和立方根

平方根和立方根

七年级数学下册实数--平方根【知识点总结】1.乘方:“n a ”.乘方的结果叫做幂,a 叫做底数,n 叫做指数,读作a 的n 次方或a 的n 次幂.2.平方:“2a ”,读作a 的平方或a 的二次方.3.平方的性质:任何数的平方都是;算术平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,(x>0)那么x 叫做a 的算术平方根.则a x =算术平方根性质:(1)非负性:(2)个数性质:的算术平方根据都只有一个;(3)还原性质:当0≥a 时,2)(a =,即非负数算术平方根的平方等于该非负数完全平方数:能够完全开方开的尽的数。

如1,4,9,16,...平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,那么x 叫做a 的平方根.则=x 开平方:求一个数...a 的平方根的运算.......叫做开平方.即求a ±的运算叫开平方. 表示方法:一个正数a 的平方根表示为a ±;若x 2=a (a >0)则x=a ±。

平方根的性质:(1)个数性质:(2)还原性质:(由定义得出)当a ≥0时(a ±)2=,即:非负数的平方根的平方等于该数【经典例题】【例1】计算:12=;22=;32=;42=;52=;62=;72=;82=;92=;112=;122=;132=;142=;152=;162=;172=;182=;192=;2≈;3≈;5≈;6≈;7≈;10≈【例2】求下列各式的值:(1)144(2)-36121(3)±00001.(4)214116+ 【例3】判断下列语句是否正确,正确的打“√”,错误的画“×”,并将错误改正。

(1)7是()-72的算术平方根;()(2)-25的平方根是±5;() (3)36等于±6;()(4)16的平方根是±2;()(5)6是()-62的平方根;()(6)10是10的一个平方根;()(7)正数的平方比它的算术平方根大。

平方根和立方根知识点总结

平方根和立方根知识点总结

平方根和立方根知识点总结数字运算是数学中的基础内容,而平方根和立方根是其中常见且重要的概念。

它们用来求解数字的根号运算,能够帮助我们计算数字的次方根。

本文将对平方根和立方根进行知识点总结,帮助读者更好地理解和运用这两个概念。

一、平方根平方根是一个数学运算符号,用symbol √ 表示。

它表示一个数的平方根。

对于一个非负数 a,其平方根记作√a,表示满足 b² = a的正数 b。

例如,√25 = 5,因为 5² = 25。

1. 平方根的性质平方根有一些基本的性质,包括:(1)非负性质:一个非负数的平方根是非负的。

例如,√25 = 5,√0 = 0。

(2)保号性质:如果两个非负数 a 和 b 满足 a < b,则有√a < √b。

例如,√9 = 3 < √16 = 4。

(3)开方法则:对于任意非负数 a 和 b,有以下等式成立:√(a × b) = √a × √b。

例如,√(4 × 9) = √4 × √9 = 2 × 3 = 6。

2. 平方根的应用平方根在数学和实际生活中都有广泛的应用。

以下是一些常见的应用示例:形的斜边长度等。

(2)物理学公式:平方根可以用于求解物理学公式中的问题,如求解速度、加速度等。

(3)统计学问题:平方根可以用于求解统计学问题,如计算方差、标准差等。

二、立方根立方根是另一种常见的根号运算,用 symbol ∛表示。

它表示一个数的立方根。

对于一个实数 a,其立方根记作∛a,表示满足 b³ = a 的实数 b。

例如,∛8 = 2,因为 2³ = 8。

1. 立方根的性质立方根与平方根一样,也有一些基本的性质。

其中包括:(1)非负性质:一个实数的立方根可以是正数、负数或零。

(2)保号性质:如果两个实数 a 和 b 满足 a < b,则有∛a < ∛b。

例如,∛1 = 1 < ∛8 = 2。

平方根与立方根的性质

平方根与立方根的性质

平方根与立方根的性质平方根和立方根是数学中常见的运算,它们具有一些特殊的性质和应用。

在本文中,将介绍平方根和立方根的定义、计算方法以及它们在数学和实际生活中的应用。

一、平方根的性质1. 定义:对于非负实数a,它的平方根是一个非负实数x,称为平方根,记作√a。

即x = √a,其中x ≥ 0。

2. 计算方法:平方根的计算可以通过开平方运算得到。

求一个数a 的平方根,就是求出一个实数x,使得x * x = a。

3. 平方根的性质:(1) 非负实数的平方根是唯一的,即没有两个不同的非负实数的平方等于同一个非负实数。

(2) 平方根运算具有封闭性,即对于任意的非负实数a和b,如果a、b的平方根存在,则a + b的平方根也存在。

二、立方根的性质1. 定义:对于任意实数a,它的立方根是一个实数x,使得x * x * x = a。

记作x = ∛a。

2. 计算方法:立方根的计算可以通过开立方运算得到。

3. 立方根的性质:(1) 任意实数的立方根不一定是唯一的,即同一个实数可能有多个立方根。

(2) 立方根运算具有封闭性,即对于任意实数a和b,如果a、b的立方根存在,则a + b的立方根也存在。

三、平方根与立方根的应用1. 平方根的应用:(1) 平方根广泛应用于几何学中的勾股定理。

根据勾股定理,直角三角形的斜边长度等于其两条直角边长度的平方根。

(2) 平方根也常用于计算机科学中的图像处理和数据压缩等领域。

2. 立方根的应用:(1) 立方根常用于立方体的计算。

例如,立方体的体积等于边长的立方,可以通过立方根运算得到边长。

(2) 立方根还用于统计学中的均值和方差的计算,帮助分析数据的分布情况。

四、总结平方根和立方根是数学中常见的运算,它们具有一些特殊的性质和应用。

平方根的计算可以通过开平方运算得到,而立方根的计算则需要进行开立方运算。

平方根和立方根的运算都具有封闭性,可以进行加法和其他运算。

在几何学、计算机科学和统计学等领域,平方根和立方根有着广泛的应用。

平方根与立方根知识点总结

平方根与立方根知识点总结

平方根与立方根知识点总结平方根和立方根是数学中非常基础且重要的概念,它们在解决数学问题、理解数学规律以及应用于实际生活中都有着广泛的用途。

下面就让我们来详细了解一下平方根与立方根的相关知识。

一、平方根1、定义如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

即若 x²=a,则 x 叫做 a 的平方根,记作 x =±√a。

例如,因为 3²= 9,(-3)²= 9,所以 9 的平方根是 ±3。

2、性质(1)一个正数有两个平方根,它们互为相反数。

(2)0 的平方根是 0。

(3)负数没有平方根。

这是因为在实数范围内,任何数的平方都不可能是负数。

3、开平方求一个数 a 的平方根的运算叫做开平方,其中 a 叫做被开方数。

开平方与平方互为逆运算。

例如,因为 5²= 25,所以√25 = ±5。

4、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作√a。

例如,9 的算术平方根是 3,即√9 = 3。

5、平方根的表示方法正数 a 的平方根表示为±√a,其中“√”读作“根号”,“±”表示正负两个值。

6、常见平方根(1)√1 = 1,√4 = 2,√9 = 3,√16 = 4,√25 = 5 等。

(2)一些常见的无理数平方根,如√2 ≈ 1414,√3 ≈ 1732 等。

二、立方根1、定义如果一个数的立方等于 a,那么这个数叫做 a 的立方根。

即若 x³=a,则 x 叫做 a 的立方根,记作 x =³√a。

例如,因为 2³= 8,所以 8 的立方根是 2,即³√8 = 2。

2、性质(1)正数的立方根是正数。

(2)负数的立方根是负数。

(3)0 的立方根是 0。

3、开立方求一个数 a 的立方根的运算叫做开立方,其中 a 叫做被开方数。

开立方与立方互为逆运算。

4、立方根的表示方法数 a 的立方根表示为³√a。

(完整版)平方根与立方根及实数知识点总结

(完整版)平方根与立方根及实数知识点总结

“平方根”与“立方根”知识点小结一、知识要点 1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a 的算术平。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3有意义的条件是a ≥0。

4、公式:⑴)2=a (a ≥0)=(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1 求下列各数的平方根和算术平方根 (1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵ 10227-; ⑶ 0.729二、巧用被开方数的非负性求值. 大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。

第八章实数

第八章实数

⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负数正无理数正分数正整数正有理数正数实数0⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数正整数整数有理数实数0第八讲 实数考点综述:对于实数,中考中重点考查平方根、算术平方根、立方根、无理数、实数的概念,用有理数估计无理数的近似值,以及根式的化简、实数的简单四则运算。

主要题型以填空、选择、计算为主,主要考查方向以概念理解及基础知识的运用能力为主,在考查基础知识、基本技能、基本方法的同时,会加强考查运用所学知识分析和解决实际问题的能力。

中考课标要求考点精析考点1 平方根(1)平方根的概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也称二次方根。

也就是说,如果a x =2,那么x 就叫做a 的平方根。

(2)平方根的表示:一个正数a 的正的平方根,记为“a ”,一个正数a 的负的平方根,记为“a -”,这两个平方根合起来记为“a ±”。

(3)平方根的性质①一个正数有两个平方根,它们互为相反数; ②0只有一个平方根,它是0本身;③负数没有平方根。

(4)算数平方根:正数a 有两个平方根,其中正数a 的正的平方根,也叫做a 的算术平方根。

0的平方根也叫做0的算术平方根,即00=。

考点2 立方根(1)立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也称三次方根。

也就是说,如果a x =3,那么x 就叫做a 的立方根,记为3a x =。

(2)立方根的性质正数的立方根是正数,负数的立方根是负数,0的立方根是0.考点3 实数(1)无理数:无限不循环小数称为无理数。

常见无理数有:①3,5,32等这些开放开不尽的数都是无限不循环小数,它们都是无理数;②圆周率π及一些含有π的也都是无理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数基础练习题(平方根、立方根)一、算术平方根与平方根填空:1、 口算:(1)144的平方根 , 225的平方根 , 169的平方根 ,196的平方根 , 121的平方根 , 289的平方根(2) 100的平方根 , 10000的平方根 , 104的平方根 ,1010的平方根 , 0.01的平方根 , 0.000001的平方根 。

(3) 640000的平方根是 , 12100的算术平方根 ,0.64的平方根 ,1.44的算术平方根 , 0.0255的平方根是 ,1169的平方根是 (4) 7的平方根 ,11的平方根 ,35的算术平方根 ,(5平方根 ,算术平方根 , 225平方根 ,169平方根 ,|-972|的算术平方根是______的平方根是______, (6) 5的平方的平方根是 ,-8的平方的平方根是 ,-0.8的平方的算术平方根是 ,2)8(-= , 2)8(= 。

2、逆运算:(1) 的算术平方根是15, 的算术平方根是0.5; 的平方根是±8, 的平方根是±57. (2)若-21是数a 的一个平方根,则a =_____. (3)若a 的平方根是±5,则a = 。

(4)如果a 的平方根等于2±,那么_____=a ;(5)若a 的算术平方根是2,则a 是2、估算与大小比较:(1) 3介于整数 和 之间,它的整数部分是a ,小数部分是b ,则a = ,b = , (用含3式子表示)(2a 和b 之间,那么ab=(3) 满足x 是(4)在整数 和 之间;(5)在整数 和 之间(6)2-5 0(比大小)3、小数点的移动(1) 2.676=, 26.76=,则a 的值等于 。

(2) 若896=29.933 则8960000=4、其他(1)的相反数是 ;绝对值是 .(2) 的点表示的数是 .(3)一个数的平方根是3a +1和7+a ,则a = .(4)一个数的平方根是4b-5和10+b ,则3b-10= 。

(5)若无理数a 满足:1<a <4, 请写出两个你熟悉的无理数: ,• .二、立方根填空题:1、口算:(1) -27的立方根是 ,27的立方根是 ,-8的立方根是__ ___,8的立方根是 ,64的立方根是 ,-278的立方根是______, 278的立方根是 ;-0.125的立方根是 ,64000的立方根是 ,-0.008的立方根是 , 0.216的立方根是______.-64的立方根是 ,2、逆运算:(1) 的立方根是-4. 的立方根是-0.5. -103是 的立方根. (2) 0.1是数a 的立方根,则a =_____.(3) 一个数的算术平方根是8,则这个数的立方根是 .3、其他:(1)64的平方根是______,64的立方根是_________.(2)若642=x ,则3x = .(4) 335= 33a = 33)53(y x - = 33)15(= 33)85.0(-= 33)(a = 33)1(-a =33)1(a -= (-13)3的立方根是 .(5) 在3.14,33,31,2,⋅⋅21.0,722,3π,0.2020020002…,3216,94中, 有理数有___________________,无理数有_____________________.(6) 数325-的相反数是___,它的绝对值是______;数4-17的绝对值是_____.(7) 若a<0,则2a +33a = .(8)若a,b 互为相反数,c,d 互为负倒数,则2222b a b a +--5cd = .三、选择题1、下列说法中正确的是( )(A )36的平方根是±6 (B )16的平方根是±2(C )|-8|的立方根是-2 (D )16的算术平方根是42、下列各式中,无意义的是( )A .41B .2)2(-C .41- D .2-3、下列说法错误..的是( )A .无理数没有平方根;B .一个正数有两个平方根;C .0的平方根是0;D .互为相反数的两个数的立方根也互为相反数.4、下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.A.1个B.2个C.3个D.4个5、若a 为实数,下列式子中一定是负数的是( )A.2a -B.()21+-aC. 2a -D.()1+--a8、a =,则下列结论正确的是( )A. 4.5 5.0a <<B. 5.0 5.5a <<C. 5.5 6.0a <<D. 6.0 6.5a <<9、下列各式估算正确的是( )A30≈ B250≈ C5.2≈ D4.1≈10、 面积为10的正方形的边长为x ,那么x 的范围是( )A .13x <<B .34x <<C .510x <<D .10100x <<11、下列等式不一定成立的是( )=a a =2 C.a a =33 D.a a =33)(12、 实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 12、 如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心、正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A. 211B. 1.4C. 3D. 213、在 1.414-,,227,3π,3.142,2,2.121121112中,无理数的个数是( ) A .1 B .2 C .3 D .414、如图,数轴上表示1A 、点B .若点B 关于点A 的对称点为点C ,则点C 所表示的数为( )A1 B.1.2 D .215、下列说法正确的有( )①1-的k 3次方(k 是整数)的立方根是1-.②如果一个数的立方根等于它本身,那么这个数或者是1,或者是0.a 0③如果0≠a ,那么a 的立方根的符号与a 的符号相同.④一个正数的算术平方根以及它的立方根都小于原来的数.⑤两个互为相反数的数开立方所得的结果仍然互为相反数.A .1句B .2句C .3句D .4句16、有下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1和0.其中错误的是A .①②③B .①②④C .②③④D .①③④17、下列语句正确的是{ } (多选)(1)0.027的立方根是0.3.(2)3a 不可能是负数.(3)如果a 是b 的立方根,那么0≥ab .(4)一个数的平方根与其立方根相同,则这个数是1.18、下列说话正确的是( )A .64的立方根是2B .-3是27的负立方根C .216125的立方根是65± D .2)1(-的立方根是1-19、 设827-=x ,则2x ,3x ,32x 分别等于( )A .89,23,827--B .89,23,827-C .49,23,827- D .49,23,827--20、 要使33)4(a -=4-a 成立,那么a 的取值范围是( )A.a ≤4B.-a ≤4 4C.a ≥4D.一切实数21、下列计算或命题中,正确的个数有( )①±3都是27的立方根; ②33a =a ; ③364的立方根是2; ④32)8(±=±4.A.1个B.2个C.3个D.4个22、下列说法正确的是( )A.零不存在算术平方根B.一个数的算术平方根一定是正数C.一个数的立方根一定比这个数小D.一个非零数的立方根,仍然是一个非零数23、若一个数的立方根等于这个数的立方,则不满足这个条件的数必为( )A.1B.0C.-1D.不为1,0,-1的其他数24、 一个数的平方根与立方根相等,则这个数是( ).A .1B .1±C .0D .1-25、如果b -是a 的立方根,那么下列结论正确的是( ).A .b -也是a -的立方根B .b 也是a 的立方根C .b 也是a -的立方根D .b ±都是a 的立方根26、下列说法,正确的是( ).A .一个实数的平方根有两个,它们互为相反数B .一个实数的立方根不是正数就是负数C .负数没有立方根D .如果一个数的立方根是这个数本身,那么这个数一定是1-或0或127、设n 是大于1的整数,则等式211=--n n 中的n 必是( ).A .大于1的偶数B .大于1的奇数C .2D .328 、下列运算正确的是( ).A .3333--=-B .3333=-C .3333-=-D .3333-=-29、一个数扩大为原来的m 倍,那么它的算术平方根( ).A .扩大到m 倍B .扩大到m 2倍C 倍D .不变30、如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .331、一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、210+32B 、210+34C 、210+32或210+34D 、无法确定五、计算(1)38- (2)327- (3)3125.0--(4)33)001.0(-- (5)3512 (6)36427--(7)0196.0-(9)33a - (10)33a六 解方程:(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;(3)064252=-x ;(4)02713=+x .(5)012583=+x(6)4(x+1)2=8;9)3(x -1)2=363.(10)2523=+x11)871)2(3=++x (12)41 (2x+3)3=54.13)12142=x (14)05121253=+x(15)625164=x (16)19-=x已知01134=+++y x ,其中x ,y 为实数,求3x -1998y -的值.圆柱形水池的深是2m ,要使这个水池能蓄水628吨(每立方米水有1吨),池的底面半径应当是多少米?一种形状为正方体的玩具名为“魔方”,它是由三层完全相同的小正方体组成的,体积为216立方厘米,求组成它的每个小正方体的棱长.一个比例式的两个外项分别是2和0.18,两个内项是相等的数,求这两个内项各是多少?一个长方体木箱子,它的底是正方形,木箱高2米,体积50立方米.求这个木箱底边的长.。

相关文档
最新文档