空间中的平行关系——数学立体几何

合集下载

高中数学-立体几何-空间中的平行和垂直关系

高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系知识结构图】第 3 课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。

2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。

3.要能灵活的对“线线平行” 、“线面平行”和“面面平行”进行转化。

基础练习】1.若a、b为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线l1, l2与同一平面所成的角相等, 则l1,l2互相平行.④若直线l1, l2是异面直线,则与l1,l2都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。

3.对于任意的直线l 与平面a,在平面a内必有直线m,使m与l 垂直。

4. 已知a、b、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a∥c,b∥c a∥b;②a∥r,b∥r a∥b;③α∥c,β∥c α∥β;④α∥r,β∥r α∥β;⑤a∥c,α∥c a∥α;⑥a∥r ,α∥r a∥α.其中正确的命题是①④范例导析】例1.如图,在四面体ABCD中,截面EFGH是平行四边形.求证:AB∥平面EFG.证明:∵面EFGH是截面.∴点E,F,G,H分别在BC,BD,DA,AC上.∴ EH 面ABC,GF 面ABD,由已知,EH∥GF.∴ EH∥面ABD.又∵ EH 面BAC,面ABC∩面ABD=AB∴EH∥AB.∴ AB∥面EFG.例2.如图,在正方体ABCD—A1B1C1D1 中,点N在BD上,点M在B1C上,并且CM=DN.求证 :MN ∥平面 AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。

本题可以采 用任何一种转化方式。

简证:法 1:把证“线面平行”转化为证“线线平行” 。

即在平面 ABB 1A 1内找一条直线与 MN 平行,如图所示作平行线即可 法 2 :把证“线面平行”转化为证“线线平行” 。

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

立体几何中的平行问题总结

立体几何中的平行问题总结

立体几何中的平行问题总结1. 空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点;2. 平行直线(1)公理4 :平行于同一条直线的两条直线互相平行推理模式:.说明:(1)公理4表述的性质叫做空间平行线的传递性;(2)几何学中,通常用互相平行的直线表示空间里一个确定的方向;(3)如果空间图形的所有点都沿同一个方向移动相同的距离到的位置,则就说图形作了一次平移3. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等4. 直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为,,.5. 线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:.证明:假设直线不平行于平面,∵,∴,若,则和矛盾,若,则和成异面直线,也和矛盾,∴.6. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式:.证明:∵,∴和没有公共点,又∵,∴和没有公共点;和都在内,且没有公共点,∴.7. 平行平面:如果两个平面没有公共点,那么这两个平面互相平行.图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的.8. 平行平面的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:,,,,.分析:这个定理从正面证(用定义)比较困难,所以考虑用反证法.启发:(1)如果平面和平面不平行,那么它们的位置关系怎样?(2)如果平面和平面相交,那么交线和平面中的直线与各有怎样的位置关系?(3)相交直线与都与交线平行,这合理吗?为什么?证明:假设,∵,,∴,同理.即在平面内过点有两条直线与平行,与公理4矛盾,∴假设不成立,∴.推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:.9. 平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:.证明:∵,∴没有公共点,又∵,∴.同理可得面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:.。

高中数学§3.2立体几何中的向量方法(一)——空间向量与平行关系

高中数学§3.2立体几何中的向量方法(一)——空间向量与平行关系

§3.2立体几何中的向量方法(一)——空间向量与平行关系课时目标 1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线,线面,面面的平行关系.1.直线的方向向量直线的方向向量是指和这条直线________或______的向量,一条直线的方向向量有________个.2.平面的法向量直线l⊥α,取直线l的____________a,则向量a叫做平面α的__________.3.空间中平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),且a2b2c2≠0,则l∥m ⇔______________⇔__________⇔________________________.(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔________⇔__________⇔________________________.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔__________⇔__________⇔________________________.一、选择题1.若n=(2,-3,1)是平面α的一个法向量,则下列向量能作为平面α的一个法向量的是()A.(0,-3,1) B.(2,0,1)C.(-2,-3,1) D.(-2,3,-1)2.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3) B.(1,3,2)C.(2,1,3) D.(3,2,1)3.已知平面α上的两个向量a=(2,3,1),b=(5,6,4),则平面α的一个法向量为() A.(1,-1,1) B.(2,-1,1)C.(-2,1,1) D.(-1,1,-1)4.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长AB=34,则B点的坐标为() A.(-9,-7,7) B.(18,17,-17)C.(9,7,-7) D.(-14,-19,31)5.在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B、AC的中点,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.不能确定6.已知线段AB的两端点的坐标为A(9,-3,4),B(9,2,1),则与线段AB平行的坐标平面是()A .xOyB .xOzC .yOzD .xOy 或yOz二、填空题7.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的单位法向量坐标为________________________.8.已知直线l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,且l ∥α,则m =________. 9.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 、P 、Q 分别为棱AB 、CD 、BC 的中点,若平行六面体的各棱长均相等,则 ①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥面DCC 1D 1; ④A 1M ∥面D 1PQB 1.以上结论中正确的是________.(填写正确的序号) 三、解答题10.已知平面α经过三点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量. 11.如图所示,在空间图形P —ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,CD ∥AB ,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,且PB =4PM ,∠PBC =30°,求证:CM ∥平面P AD .【能力提升】12.在正方体ABCD—A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1.13.如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,P A⊥平面ABCD,P A=AC=a,点E在PD上,且PE∶ED=2∶1.在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.平行关系的常用证法(1)证明线线平行只需要证明表示两条直线的向量满足实数倍数关系,如证明AB ∥CD只需证AB →=λCD →.证明线面平行可转化为证直线的方向向量和平面的法向量垂直,然后说明直线在平面外.证面面平行可转化证两面的法向量平行.(2)证明线面平行问题或面面平行问题时也可利用立体几何中的定理转化为线线平行问题,再利用向量进行证明.§3.2 立体几何中的向量方法(一)——空间向量与平行关系知识梳理1.平行 重合 无数 2.方向向量 法向量3.(1)a∥b a =λb a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)(2)a∥u a·u =0 a 1a 2+b 1b 2+c 1c 2=0(3)u∥v u =k v a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)作业设计1.D [只要是与向量n 共线且非零的向量都可以作为平面α的法向量.故选D.]2.A [∵AB →=(2,4,6),而与AB →共线的非零向量都可以作为直线l 的方向向量,故选A.]3.C [显然a 与b 不平行,设平面α的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧a·n =0,b·n =0, ∴⎩⎪⎨⎪⎧2x +3y +z =0,5x +6y +4z =0. 令z =1,得x =-2,y =1,∴n =(-2,1,1).]4.B [设B (x ,y ,z ),AB →=(x -2,y +1,z -7) =λ(8,9,-12),λ>0.故x -2=8λ,y +1=9λ,z -7=-12λ, 又(x -2)2+(y +1)2+(z -7)2=342, 得(17λ)2=342,∵λ>0,∴λ=2.∴x =18,y =17,z =-17,即B (18,17,-17).]5.B [可以建立空间直角坐标系,通过平面的法向量AB →和MN →的关系判断.]6.C [AB →=(0,5,-3),AB 与平面yOz 平行.]7.⎝⎛⎭⎫33,33,33或⎝⎛⎭⎫-33,-33,-338.-8解析 ∵l ∥α,∴l 的方向向量与α的法向量垂直.∴(2,m,1)·⎝⎛⎭⎫1,12,2=2+12m +2=0,∴m =-8. 9.①③④解析 ∵A 1M →=AM →-AA 1→=D P →-DD 1→=D 1P →, ∴A 1M ∥D 1P .∵D 1P ⊂面D 1PQB 1,∴A 1M ∥面D 1PQB 1. 又D 1P ⊂面DCC 1D 1,∴A 1M ∥面DCC 1D 1. ∵B 1Q 为平面DCC 1D 1的斜线,∴B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行. 10.解 ∵A (1,2,3),B (2,0,-1),C (3,-2,0),∴AB →=(1,-2,-4),AC →=(2,-4,-3), 设平面α的法向量为n =(x ,y ,z ).依题意,应有n ·AB →=0,n ·AC →=0. 即⎩⎪⎨⎪⎧ x -2y -4z =02x -4y -3z =0,解得⎩⎪⎨⎪⎧x =2y z =0. 令y =1,则x =2.∴平面α的一个法向量为n =(2,1,0).11.证明 建立如图所示的空间直角坐标系Cxyz . 方法一∵∠PBC =30°,PC =2, ∴BC =23,PB =4.于是D (1,0,0),C (0,0,0),A (4,23,0),P (0,0,2). ∵PB =4PM ,∴PM =1,M ⎝⎛⎭⎫0,32,32.∴CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设CM →=x DP →+y DA →,其中x ,y ∈R .则⎝⎛⎭⎫0,32,32=x (-1,0,2)+y (3,23,0).∴⎩⎨⎧-x +3y =023y =322x =32,解得x =34,y =14.∴CM →=34DP →+14DA →,∴CM →,DP →,DA →共面.∵CM ⊄平面P AD ,∴CM ∥平面P AD .方法二 由方法一可得CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设平面P AD的法向量为n =(x ,y ,z ),则有,即⎩⎨⎧-x +2z =03x +23y =0.令x =1,解得z =12,y =-32.故n =⎝⎛⎭⎫1,-32,12.又∵CM →·n =⎝⎛⎭⎫0,32,32·⎝⎛⎭⎫1,-32,12=0.∴CM →⊥n ,又CM ⊄平面P AD . ∴CM ∥平面P AD .12.证明 方法一 ∵B 1C →=A 1D →,B 1∉A 1D ,∴B 1C ∥A 1D ,又A 1D ⊂平面ODC 1, ∴B 1C ∥平面ODC 1.方法二 ∵B 1C →=B 1C 1→+B 1B →=B 1O →+OC 1→+D 1O →+OD →=OC 1→+OD →. ∴B 1C →,OC 1→,OD →共面.又B 1C ⊄平面ODC 1,∴B 1C ∥平面ODC 1. 方法三建系如图,设正方体的棱长为1,则可得 B 1(1,1,1),C (0,1,0), O ⎝⎛⎭⎫12,12,1,C 1(0,1,1), B 1C →=(-1,0,-1),OD →=⎝⎛⎭⎫-12,-12,-1,OC 1→=⎝⎛⎭⎫-12,12,0. 设平面ODC 1的法向量为n =(x 0,y 0,z 0),则得⎩⎨⎧-12x 0-12y 0-z 0=0, ①-12x 0+12y 0=0, ②令x 0=1,得y 0=1,z 0=-1,∴n =(1,1,-1). 又B 1C →·n =-1×1+0×1+(-1)×(-1)=0, ∴B 1C →⊥n ,且B 1C ⊄平面ODC 1, ∴B 1C ∥平面ODC 1.13.解 方法一 当F 是棱PC 的中点时,BF ∥平面AEC . ∵BF →=BC →+12CP →=AD →+12(CD →+DP →)=AD →+12(AD →-AC →)+32(AE →-AD →)=32AE →-12AC →. ∴BF →、AE →、AC →共面. 又BF ⊄平面AEC , ∴BF ∥平面AEC . 方法二如图,以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直于平面P AD 的直线为x 轴,建立空间直角坐标系.由题意,知相关各点的坐标分别为A (0,0,0),B ⎝⎛⎭⎫32a ,-12a ,0,C ⎝⎛⎭⎫32a ,12a ,0,D (0,a,0),P (0,0,a ),E ⎝⎛⎭⎫0,23a ,13a . 所以AE →=⎝⎛⎭⎫0,23a ,13a ,AC →=⎝⎛⎭⎫32a ,12a ,0, AP →=(0,0,a ),PC →=⎝⎛⎭⎫32a ,12a ,-a ,BP →=⎝⎛⎭⎫-32a ,12a ,a .设点F 是棱PC 上的点,PF →=λPC →=⎝⎛⎭⎫32aλ,12aλ,-aλ,其中0<λ<1, 则BF →=BP →+PF →=⎝⎛⎭⎫32a λ-1,12a 1+λ,a 1-λ,令BF →=λ1AC →+λ2AE →即⎩⎪⎨⎪⎧λ-1=λ1,1+λ=λ1+43λ2,1-λ=13λ2.解得λ=12,λ1=-12,λ2=32,即λ=12时,BF →=-12AC →+32AE →,即F 是PC 的中点时,BF →、AC →、AE →共面.又BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF∥平面AEC.。

新高考 核心考点与题型 立体几何 第3讲 空间直线与平面的平行 - 解析

新高考 核心考点与题型 立体几何 第3讲  空间直线与平面的平行 - 解析

第3讲空间直线与平面的平行1.直线与平面平行(1)直线与平面平行的定义:直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理2.(1)平面与平面平行的定义:没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.[微点提醒] 平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊄α,a ⊄β,则α⊄β. (2)平行于同一平面的两个平面平行,即若α⊄β,β⊄γ,则α⊄γ. (3)垂直于同一个平面的两条直线平行,即若a ⊄α,b ⊄α,则a ⊄b .考点一 直线与平面平行的判定与性质多维探究角度1 直线与平面平行的判定【例2-1】在如图所示的几何体中,四边形ABCD 是正方形,P A ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,P A =AB =1.证明:EF ∥平面PDC ; 证明 取PC 的中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 的中点,∴MF ∥CB ,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形,∴DE ∥CB ,DE =12CB ,∴MF ∥DE ,MF =DE ,∴四边形DEFM 为平行四边形,∴EF ∥DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC ,∴EF ∥平面PDC .规律方法 利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.【变式】如图,在直三棱柱ABC ­A 1B 1C 1中,点M ,N 分别为线段A 1B ,AC 1的中点.求证:MN ∥平面BB 1C 1C .证明:如图,连接A 1C .在直三棱柱ABC ­A 1B 1C 1中,侧面AA 1C 1C 为平行四边形. 又因为N 为线段AC 1的中点,所以A 1C 与AC 1相交于点N ,即A 1C 经过点N , 且N 为线段A 1C 的中点.因为M 为线段A 1B 的中点,所以MN ∥BC .又因为MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .角度2直线与平面平行性质定理的应用【例2】如图所示,在正方体ABCD-A1B1C1D1中,棱长为2,E,F分别是棱DD1,C1D1的中点.(1)求三棱锥B1-A1BE的体积;(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F平行的直线,并说明理由.解(1)如图所示,V B1-A1BE =V E-A1B1B=13S△A1B1B· DA=13×12×2×2×2=43.(2)B1F∥平面A1BE.延长A1E交AD延长线于点H,连BH交CD于点G,则BG就是所求直线.证明如下:因为BA1∥平面CDD1C1,平面A1BH∩平面CDD1C1=GE,所以A1B∥GE.又A1B∥CD1,所以GE∥CD1.又E为DD1的中点,则G为CD的中点.故BG∥B1F,BG就是所求直线.规律方法在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【变式1】如图,在四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.证明:在四棱柱ABCD ­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【变式2】如图所示,在四棱锥P ABCD-中,//BC平面PAD,12BC AD=,E是PD的中点.(⊄)求证://BC AD;(⊄)求证://CE平面PAB;(⊄)若M是线段CE上一动点,则线段AD上是否存在点N,使//MN平面PAB?说明理由.【分析】(⊄)根据线面平行的性质定理即可证明;(⊄)取PA的中点F,连接EF,BF,利用中位线的性质,平行四边形的性质,以及线面平行的判断定理即可证明;(⊄)取AD中点N,连接CN,EN,根据线面平行的性质定理和判断定理即可证明.【解答】(⊄)在四棱锥P ABCD-中,//BC平面PAD,BC⊂平面ABCD,平面ABCD⋂平面PAD AD=,//BC AD∴,(⊄)取PA的中点F,连接EF,BF,E是PD的中点,//EF AD∴,12EF AD=,又由(⊄)可得//BC AD,12BC AD=,//BC EF∴,BC EF=,∴四边形BCEF是平行四边形,//CE BF∴,CE⊂/平面PAB,BF⊂平面PAB,//CE∴平面PAB.(⊄)取AD中点N,连接CN,EN,E,N分别为PD,AD的中点,//EN PA∴,EN⊂/平面PAB,PA⊂平面PAB,//EN∴平面PAB,又由(⊄)可得//CE平面PAB,CE EN E=,∴平面//CEN平面PAB,M是CE上的动点,AN⊂平面CEN,//MN∴平面PAB,∴线段AD存在点N,使得//MN平面PAB.考点二面面平行的判定与性质典例迁移【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:平面EF A1∥平面BCHG.证明:∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【变式1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,⊄四边形A1ACC1是平行四边形,⊄M是A1C的中点,连接MD,⊄D为BC的中点,⊄A1B⊄DM.⊄A1B⊄平面A1BD1,DM⊄平面A1BD1,⊄DM⊄平面A1BD1,又由三棱柱的性质知,D1C1綉BD,⊄四边形BDC1D1为平行四边形,⊄DC1⊄BD1.又DC1⊄平面A1BD1,BD1⊄平面A1BD1,⊄DC1⊄平面A1BD1,又DC1∩DM=D,DC1,DM⊄平面AC1D,因此平面A1BD1⊄平面AC1D.【变式2】如图为一简单组合体,其底面ABCD 为正方形,棱PD 与EC 均垂直于底面ABCD ,2PD EC =,求证:平面//EBC 平面PDA .【分析】推导出//AD BC ,//PD EC ,由此能证明平面//EBC 平面PDA . 【解答】底面ABCD 为正方形,//AD BC ∴,棱PD 与EC 均垂直于底面ABCD ,2PD EC =,//PD EC ∴, ADPD D =,BCEC C =,∴平面//EBC 平面PDA .【例4】如图,已知//αβ,P 是平面α,β外的一点,直线PAB ,PCD 分别与α、β相交于A 、B 和C 、D .(1)求证://AC BD ;(2)已知4PA =,5AB =,3PC =,求PD 的长.【分析】(1)由面面平行的性质即可得证;(2)由平行线的性质即可求解. 【解答】解:(1)证明://αβ,平面PBD AC α=,平面PBD BD β=,//AC BD ∴;(2)由(1)可知,PA PC PB PD =,即4345PD =+,∴274PD =. 规律方法 利用线面平行或面面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置.对于线段长或线段比例问题,常用平行线对应线段成比例或相似三角形来解决.【变式】如图,平面//αβ,线段AB 分别交α,β于M ,N ,线段AD 分别交α,β于C ,D ,线段BF 分别交α,β于F ,E ,若9AM =,11MN =,15NB =,78FMC S ∆=.求END ∆的面积.【分析】利用面面平行的性质得到两个三角形对应边的比,结合面积公式即可得解.【解答】解:平面//αβ,又平面AND ⋂平面MC α=,平面AND ⋂平面ND β=,//MC ND ∴, 同理//EN FM ,又9AM =,11MN =,15NB =,∴926,2015MC AM FM BM ND AN EN BN ====, 又FMC END ∠=∠,所以1sin 92678212015100sin 2FMC ENDFM MC FMCS SEN ND END ∠==⨯=∠,78FMC S ∆=,100END S ∆∴=.故END ∆的面积为:100.方法总结(1)线面平行思考途径 I.转化为直线与平面无公共点;II.转化为线线平行; III.转化为面面平行支持定理 ①; ②; ③配图助记(2)线线平行:思考途径 I.转化为判定共面二直线无交点;II.转化为二直线同与第三条直线平行; III.转化为线面平行; IV.转化为线面垂直; V.转化为面面平行.支持定理①;②;③;④配图助记(3)面面平行:思考途径 I.转化为判定二平面无公共点;II.转化为线面平行; III.转化为线面垂直.////a b b a a ααα⎫⎪⊂⇒⎬⎪⊄⎭////a a αββα⎫⇒⎬⊂⎭//a a a αββαα⊥⎫⎪⊥⇒⎬⎪⊄⎭////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭//a a b b αα⊥⎫⇒⎬⊥⎭////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭//////a b c b a c ⎫⇒⎬⎭αb βa a b αb γβ α aαβaaαbβαa支持定理 ①;②;③配图助记空间平行的判定与性质 基础巩固题组(建议用时:40分钟)一、选择题1.若直线l 不平行于平面α,且l ⊄α,则( ) A.α内的所有直线与l 异面 B.α内不存在与l 平行的直线 C.α与直线l 至少有两个公共点 D.α内的直线与l 都相交解析 因为l ⊄α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线. 答案 B2.已知直线l ,m ,平面α,β,γ,则下列条件能推出l ∥m 的是( ) A.l ⊂α,m ⊂β,α∥β B.α∥β,α∩γ=l ,β∩γ=m C.l ∥α,m ⊂αD.l ⊂α,α∩β=m解析 选项A 中,直线l ,m 也可能异面;选项B 中,根据面面平行的性质定理,可推出l ∥m ,B 正确;选项C 中,直线l ,m 也可能异面;选项D 中,直线l ,m 也可能相交.故选B. 答案 B3.如图所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于DE ,则DE 与AB 的位置关系是( )A.异面B.平行C.相交D.以上均有可能解析 在三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1,,////,//a b a b o a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭//a a ααββ⊥⎫⇒⎬⊥⎭//////αβαγγβ⎫⇒⎬⎭a β αbOβ aαβ αγ∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.答案B4.设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案D5.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A.0条B.1条C.2条D.1条或2条解析如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.答案C二、填空题6.如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析 根据题意,因为EF ∥平面AB 1C ,所以EF ∥AC .又E 是AD 的中点,所以F 是CD 的中点.因为在Rt △DEF 中,DE =DF =1,故EF = 2. 答案27.如图,平面α∥平面β,△ABC ,△A ′B ′C ′分别在α,β内,线段AA ′,BB ′,CC ′共点于O ,O 在α,β之间,若AB =2,AC =1,∠BAC =60°,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.解析 相交直线AA ′,BB ′所在平面和两平行平面α,β相交于AB ,A ′B ′,所以AB ∥A ′B ′.同理BC ∥B ′C ′,CA ∥C ′A ′.所以△ABC 与△A ′B ′C ′的三内角相等,所以△ABC ∽△A ′B ′C ′,A ′B ′AB =OA ′OA =23.S △ABC =12×2×1×32=32, 所以S △A ′B ′C ′=32×⎝⎛⎭⎫232=32×49=239.答案2398.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ; ②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).解析 ①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误. 答案 ② 三、解答题9.已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面P AB ⊥平面ABCD ,E 是棱P A 的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点.又E 是P A 的中点,连接EO ,则EO 是△P AC 的中位线,所以PC ∥EO , 又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC ∥平面EBD .(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V , 则三棱锥E -ABD 的体积V 1=13×S △ABD ×h ,因为E 是P A 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1,所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)连接AE ,则AE 必过DF 与GN 的交点O , 连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .能力提升题组 (建议用时:20分钟)11.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A.4条B.6条C.8条D.12条解析如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.答案B12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案D13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面P AO.解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥P A.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面P AO,QB⊄平面P AO,PO⊂平面P AO,P A⊂平面P AO,所以D1B∥平面P AO,QB∥平面P AO,又D1B∩QB=B,所以平面D1BQ∥平面P AO.故Q为CC1的中点时,有平面D1BQ∥平面P AO.答案Q为CC1的中点14.已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.解(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△ABC是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH ⊥平面ABC ,∴NG ⊥平面ABC , 易知DH =3,∴NG =32, 又S △ABC =12·BC ·AH =12×2×32-12=22, ∴V E -ABC =13·S △ABC ·NG =63.。

立体几何复习专题及答案-高中数学

立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

高中数学-立体几何-空间中的平行和垂直关系

高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系【知识结构图】第3课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。

2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。

3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。

【基础练习】1.若ba、为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。

3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。

4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a ∥c ,b ∥c ⇒a ∥b ;②a ∥r ,b ∥r ⇒a ∥b ;③α∥c ,β∥c ⇒α∥β; ④α∥r ,β∥r ⇒α∥β;⑤a ∥c ,α∥c ⇒a ∥α;⑥a ∥r ,α∥r ⇒a ∥α. 其中正确的命题是 ①④ 。

【范例导析】例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面.∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH面ABC ,GF面ABD ,由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB∴EH ∥AB . ∴AB ∥面EFG .例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN.求证:MN ∥平面AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定立体几何基础——平行与垂直的性质与判定立体几何是数学中的一个重要分支,它研究的对象是在三维空间内的图形和物体。

在立体几何中,平行和垂直是两个基本概念,它们在判断和解决几何问题时起着重要的作用。

本文将介绍平行与垂直的性质和判定方法,帮助读者更好地理解立体几何的基础知识。

一、平行的性质与判定平行是指在同一平面内,两条直线永不相交的性质。

在立体几何中,我们常用平行性质来推导和证明定理。

以下是一些与平行相关的性质和判定方法。

1. 平行线性质:(1)平行线上的对应角相等:如果两条平行线被一条横截线所交,那么对应的角都是相等的。

(2)平行线上的内错角互补:如果两条平行线被一条横截线所交,那么内错角互补,即相互补充的角和为180度。

(3)平行线上的同旁内角相等:如果两条平行线被一条横截线所交,那么同旁内角相等,即相邻的内角相等。

2. 判定平行线的方法:(1)两条线段平行的充要条件是斜率相等:如果两条线段的斜率相等,那么它们是平行的。

(2)两个向量平行的充要条件是比值相等:如果两个向量的坐标分量比值相等,那么它们是平行的。

(3)两条直线互相垂直的充要条件是斜率乘积为-1:如果两条直线的斜率乘积为-1,那么它们互相垂直。

二、垂直的性质与判定垂直是指两条直线或线段在交点处互相成直角的性质。

垂直的性质在几何证明中经常被用到,下面是关于垂直的一些性质和判定方法。

1. 垂直线性质:(1)垂直线上的对应角互补:如果两条垂直线被一条横截线所交,那么对应的角互补,即相互补充的角和为90度。

(2)垂直线上的内角相等:如果两条垂直线被一条横截线所交,那么内角相等,即相邻的内角相等。

2. 判定垂直线的方法:(1)两条线段垂直的充要条件是斜率乘积为-1:如果两条线段的斜率乘积为-1,那么它们是垂直的。

(2)两个向量垂直的充要条件是内积为0:如果两个向量的内积为0,那么它们是垂直的。

三、平行和垂直在实际中的应用平行和垂直的性质在日常生活和工程实践中有广泛的应用。

立体几何中的平行与垂直判定

立体几何中的平行与垂直判定

立体几何中的平行与垂直判定立体几何是研究三维空间中的几何关系和性质的一门学科,平行与垂直判定是其中重要的一部分。

在解题过程中,准确判定两个线、面或空间立体之间的平行与垂直关系至关重要。

本文将介绍几种常用的判定方法,并通过具体例子进行说明。

一、平面与平面的判定在立体几何中,平面与平面间的平行与垂直关系是经常需要判断的。

下面将介绍两种常用的判定方法。

1. 垂直判定两个平面互相垂直的条件是它们的法向量垂直。

设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2垂直的条件可以表示为:n1·n2 = 0(向量的点积为0)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。

我们可以计算两个法向量的点积:n1·n2 = (2, -1, 3)·(1, 2, -1) = 2×1 + (-1)×2 + 3×(-1) = 0因此,平面1和平面2是垂直的。

2. 平行判定两个平面互相平行的条件是它们的法向量平行。

设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2平行的条件可以表示为:n1 = k·n2(k为非零实数)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。

我们可以通过判断两个法向量的比例关系来确定其是否平行。

在本例中,两个法向量的各个分量之间的比例并不相等,因此平面1和平面2不是平行的。

二、直线与直线的判定在立体几何中,直线与直线的平行与垂直关系也经常需要判断。

下面将介绍两种常用的判定方法。

1. 垂直判定两条直线互相垂直的条件是它们的方向向量垂直。

第3章3.2 立体几何中的向量方法(一)平行关系

第3章3.2 立体几何中的向量方法(一)平行关系
【思路分析】 解答本题可先建立空间直角坐标系,写出每 个平面内两个不共线向量的坐标,再利用待定系数法求出平面的 法向量.
第11页
高考调研 ·新课标 ·数学选修2-1
【解析】 ∵AD,AB,AS 是三条两两垂直 的线段,∴以 A 为原点,以A→D,A→B,A→S的方向 为 x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则 A(0,0,0),D(12,0,0),C(1,1,0),S(0, 0,1),A→D=(12,0,0)是平面 SAB 的法向量,
2.用向量方法证明空间中的平行关系
线线 平行
设直线 l1,l2 的方向向量分别是 a,b,则要证明 l1∥l2,只需证 明 a∥b,即 a=kb(k∈R)
①设直线 l 的方向向量是 a,平面 α 的法向量是 u,则要证明
l∥α,只要证明 a⊥u,即 a·u=0
②根据线面平行判定定理在平面内找一个向量与已知直线的 线面平行
高考调研 ·新课标 ·数学选修2-1
【思路分析】 直线的方向向量与平面的法向量的关系和直 线与平面位置关系之间的内在联系是 l∥α⇔a⊥u,l⊥α⇔a∥u.
第22页
高考调研 ·新课标 ·数学选修2-1
【解析】 ①∵u=(2,2,-1),a=(-3,4,2), ∴u·a=-6+8-2=0,∴u⊥a. ∴直线 l 和平面 α 的位置关系是 l⊂α或 l∥α. ②∵u=(0,2,-3),a=(0,-8,12), ∴u=-14a,∴u∥a,∴l⊥α. ③∵u=(4,1,5),a=(2,-1,0), ∴u 和 a 既不共线,也不垂直. ∴l 与 α 斜交.
第2页
高考调研 ·新课标 ·数学选修2-1
要点 3 空间平行关系的向量表示 (1)线线平行. 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2),则 l∥m⇔a∥b⇔a=λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R). (2)线面平行. 设直线 l 的方向向量为 a=(a1,b1,c1),平面 α 的法向量为 u =(a2,b2,c2),则 l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.

空间几何中的平行关系

空间几何中的平行关系

空间几何中的平行关系在空间几何中,平行关系是一个重要的概念。

它涉及到线与线、面与面之间的关系,并且在实际应用中有着广泛的应用。

本文将会介绍空间几何中的平行关系的定义、性质以及应用,并且结合具体的例子来说明。

1. 平行关系的定义在空间几何中,如果两个线(又称为直线)不相交,并且在同一个平面上,那么它们被称为平行线。

类似地,如果两个平面之间没有相交的情况,那么它们被称为平行平面。

2. 平行关系的性质平行关系具有以下性质:- 平行线之间的距离相等:如果一条线与另一条线平行,并且在同一个平面上,那么这两条线之间的距离是相等的。

- 平行线的倾斜角度相等:如果两条线平行,并且这两条线与另外一条直线相交,那么与第一条线相交的角度与与第二条线相交的角度是相等的。

- 平行平面之间的距离相等:如果两个平面之间平行,并且这两个平面分别与另一平面相交,那么与第一个平面相交的直线到与第二个平面相交的直线的距离是相等的。

3. 平行关系的应用空间几何中的平行关系在实际应用中有着广泛的应用。

下面将介绍一些应用的例子:- 建筑设计中的平行关系:在建筑设计过程中,设计师需要确保墙壁、天花板等构件是平行的,以保证建筑结构的稳定和美观。

- 航空航天中的平行关系:在飞机、火箭等交通工具的设计中,需要考虑平行关系来确保机翼、尾翼等部件的平行安装,以提高飞行性能和稳定性。

- GPS定位中的平行关系:全球定位系统(GPS)利用卫星进行定位,而卫星之间的轨道需要保持平行关系,以确保精确的定位和导航。

通过以上例子可以看出,平行关系在各个领域都有着重要的应用。

它不仅关乎到结构的稳定性和性能,还对人类的生活和发展产生着重要的影响。

总结起来,空间几何中的平行关系是指在同一平面内两条线不相交,或者两个平面没有交点的情况。

平行关系具有距离相等和角度相等的性质,这些性质在建筑设计、航空航天、GPS定位等领域都有着广泛的应用。

通过对平行关系的研究和应用,人们能够更好地理解和利用空间中的几何关系,为各个领域的发展做出贡献。

8.4空间中的平行关系

8.4空间中的平行关系

1.平行直线平行公理:过直线外一点有且只有一条直线和已知直线平行.基本性质4:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.2.直线与平面平行判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b3.平面与平面平行判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=b α∥β,a⊂β结论α∥βα∥βa∥b a∥α【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α答案 D解析当距离不为零时,l∥α,当距离为零时,l⊂α.2.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或②B.②或③C.①或③D.①或②或③答案 C解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选C.3.(教材改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD 1∥EO ,而BD 1⊄平面ACE ,EO ⊂平面ACE , 所以BD 1∥平面ACE .5.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条. 答案 6解析 各中点连线如图,只有面EFGH 与面ABB 1A 1平行,在四边形EFGH 中有6条符合题意.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点. (1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC , ∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP , FO ⊂平面BEF ,AP ⊄平面BEF , ∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面P AD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD .又∵GH ⊂平面OHF ,∴GH ∥平面P AD . 命题点2 直线与平面平行性质定理的应用例2 (2014·安徽)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH . (1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK . 因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK ,所以PO ∥GK ,且GK ⊥底面ABCD ,从而GK ⊥EF . 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积 S =GH +EF 2·GK =4+82×3=18.如图所示,在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC=∠CAD =60°,E 为PD 的中点,AB =1,求证:CE ∥平面P AB .证明由已知条件有AC=2AB=2,AD=2AC=4,CD=2 3.如图所示,延长DC,AB,设其交于点N,连接PN,因为∠NAC=∠DAC=60°,AC⊥CD,所以C为ND的中点,又因为E为PD的中点,所以EC∥PN,因为EC⊄平面P AB,PN⊂平面P AB,所以CE∥平面P AB.思维升华判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”“线面平行”“面面平行”的相互转化.如图,在正方体ABCD—A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.题型三平行关系的综合应用例4在正方体ABCD—A1B1C1D1中,如图.(1)求证:平面AB1D1∥平面C1BD;(2)试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明A1E=EF=FC.(1)证明因为在正方体ABCD—A1B1C1D1中,AD綊B1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D⊂平面C1BD,AB1⊄平面C1BD,所以AB1∥平面C1BD.同理,B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2)解如图,连接A1C1交B1D1于点O1,连接AO1,与A1C交于点E.因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.连接AC交BD于点O,连接C1O,与A1C交于点F,则点F就是A1C与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO 1∥C 1F ,在△A 1C 1F 中,O 1是A 1C 1的中点, 所以E 是A 1F 的中点,即A 1E =EF .同理可证OF ∥AE ,所以F 是CE 的中点,即FC =EF , 所以A 1E =EF =FC .思维升华 (1)线面平行和面面平行的性质都体现了转化思想.(2)对较复杂的综合结论问题往往需要反复运用线面平行的判定定理和性质定理来进行证明,有如下方法: 线线平行―――――→在平面内找或作一直线线面平行 ―――――――――→经过直线找或作平面与已知平面的交线线线平行 如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解 如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG , ∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD , ∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2, 由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE =a 2-(63a )2=33a ,∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .即AF =23AB .故点F 是AB 上靠近B 点的一个三等分点.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2.tan ∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan ∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,[4分] V S -ABCD =13×SA ×12×(BC +AD )×AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分] 证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤 第一步:写出探求的最后结论. 第二步:证明探求结论的正确性. 第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾的结论就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.[方法与技巧]1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[失误与防范]1.在推证线面平行时,一定要强调直线不在平面内,否则会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:35分钟)1.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CDB.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.2.(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析 对于A ,α,β垂直于同一平面,α,β关系不确定,故A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l ∥α,l ∥β,则α∥βB.若l ⊥α,l ⊥β,则α∥βC.若l ⊥α,l ∥β,则α∥βD.若α⊥β,l ∥α,则l ⊥β答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故D 项错.故选B.4.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数为( )A.3B.2C.1D.0答案 C解析 ①中当α与β不平行时,也可能存在符合题意的l 、m ;②中l 与m 也可能异面;③中⎩⎪⎨⎪⎧ l ∥γl ⊂αα∩γ=n⇒l ∥n ,同理,l ∥m ,则m ∥n ,正确.5.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A.①③B.①④C.②③D.②④解析①中易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.6.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________. 答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.7.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由基本性质4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.8.如图,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)9.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点. 求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.10.如图,E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H.证明(1)取B1D1的中点O,连接GO,OB,易证四边形BEGO为平行四边形,故OB∥GE,由线面平行的判定定理即可证EG∥平面BB1D1D.(2)由题意可知BD∥B1D1.如图,连接HB、D1F,易证四边形HBFD1是平行四边形,故HD1∥BF.又B1D1∩HD1=D1,BD∩BF=B,所以平面BDF∥平面B1D1H.B组专项能力提升(时间:20分钟)11.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D解析A中,m与n可垂直、可异面、可平行;B中m与n可平行、可异面;C中若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;故D正确.12.空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是________.答案(8,10)解析 设DH DA =GH AC =k ,∴AH DA =EH BD=1-k , ∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的范围为(8,10).13.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.答案 452解析 取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.14.(2015·四川改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG 与平面ACH 的位置关系.并证明你的结论.解 (1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH ,证明如下:因为ABCD-EFGH 为正方体,所以BC ∥FG ,BC =FG ,又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是BCHE 为平行四边形,所以BE ∥CH ,又CH ⊂平面ACH ,BE ⊄平面ACH ,所以BE ∥平面ACH ,同理BG ∥平面ACH ,又BE ∩BG =B ,所以平面BEG ∥平面ACH .15.如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,AD 上,AE =AF=4,现将△AEF 沿线段EF 折起到△A ′EF 位置,使得A ′C =2 6. (1)求五棱锥A ′-BCDFE 的体积; (2)在线段A ′C 上是否存在一点M ,使得BM ∥平面A ′EF ?若存在,求A ′M 的长;若不存在,请说明理由.解 (1)如图所示,连接AC ,设AC ∩EF =H ,连接A ′H .因为四边形ABCD 是正方形,AE =AF =4,所以H 是EF 的中点,且EF ⊥AH ,EF ⊥CH ,从而有A ′H ⊥EF ,CH ⊥EF ,又A ′H ∩CH =H ,所以EF ⊥平面A ′HC ,且EF ⊂平面ABCD ,从而平面A ′HC ⊥平面ABCD ,过点A ′作A ′O 垂直HC 且与HC 相交于点O ,则A ′O ⊥平面ABCD ,因为正方形ABCD 的边长为6,AE =AF =4,故A ′H =22,CH =42,所以cos ∠A ′HC =A ′H 2+CH 2-A ′C 22A ′H ·CH =8+32-242×22×42=12, 所以HO =A ′H ·cos ∠A ′HC =2,则A ′O =6,所以五棱锥A ′-BCDFE 的体积V =13×(62-12×4×4)×6=2863.(2)线段A′C上存在点M,使得BM∥平面A′EF,此时A′M=6 2.证明如下:连接OM,BD,BM,DM,且易知BD过O点.A′M=62=14A′C,HO=14HC,所以OM∥A′H,又OM⊄平面A′EF,A′H⊂平面A′EF,所以OM∥平面A′EF,又BD∥EF,BD⊄平面A′EF,EF⊂平面A′EF,所以BD∥平面A′EF,又BD∩OM=O,所以平面MBD∥平面A′EF,因为BM⊂平面MBD,所以BM∥平面A′EF.。

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

l n
☺ 简称:线线垂直,线面垂直.
复习定理
空间中的垂直
2.直线与平面垂直性质
判定:如果一条直线和一个平面垂直,则称这条直线和这 个平面内任意一条直线都垂直.
l m
l
m
☺ 简称:线面垂直,线线垂直.
复习定理
空间中的垂直
3.平面与平面垂直判定
判定:如果一个平面经过另一个平面的一条垂线,则这两个 平面互相垂直.
(1)求证:BC1∥平面 CA1D; (2)求证:平面 CA1D⊥平面 AA1B1B. 证明:(1)连结AC1交A1C于E,连结DE.
∵AA1C1C为矩形,则E为AC1的中点. 又D是AB的中点,
∴在△ABC1中,DE∥BC1.
E
又DE⊂平面CA1D,
BC1⊄平面CA1D,
∴BC1∥平面CA1D.
证明:(2)∵AC=BC, D为AB的中点, ∴在△ABC中,AB⊥CD.
空间中的平行与垂直 定理总结
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.
①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,
则α∥β;
③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,
m⊥α,则m⊥γ.
正确的命题是( C)
A.①③
B.②③
C.①④
D.②④
解析 ②中平面α与β可能相交,③中m与n可以

立体几何平行垂直所有判定定理和性质定理

立体几何平行垂直所有判定定理和性质定理

性质定理一
如果一条直线与平面平行, 那么这条直线与平面内的 任何直线都不相交。
性质定理二
如果两个平面平行,那么 这两个平面内的任何直线 都不相交。
性质定理三
如果两个平面垂直,那么 其中一个平面内的任何直 线都垂直于另一个平面。
平行线和垂直线的综合判定定理和性质定理的应用
应用一
在建筑学中,利用判定定理和性 质定理判断建筑物的稳定性,如 判断墙、柱、梁等是否垂直或平
垂直线的性质定理
垂直线之间的角度都是直角,且垂直线之间的距 离是零。
3
平行四边形的性质定理
平行四边形的对角线互相平分,且对角相等。
空间几何中的其他重要定理的应用
在几何图形中,判定定理和性质定理的应用非常广泛,例如在计算面积、周长、 角度等几何量时,需要使用判定定理和性质定理来证明某些几何关系或求解某些 几何问题。
在机械工程中,垂直线的判定定理和 性质定理被用于确定机械零件的位置 和角度,以确保机械设备的正常运行。
应用二
在建筑学中,垂直线的判定定理和性 质定理被广泛应用于确定建筑物的垂 直度和平行度,以确保建筑物的稳定 性和安全性。
03
平行线和垂直线的综合判定
定理和性质定理
平行线和垂直线的综合判定定理
01
立体几何平行垂直判 定定理和性质定理
• 平行线的判定定理和性质定理 • 垂直线的判定定理和性质定理 • 平行线和垂直线的综合判定定理
和性质定理 • 空间几何中的其他重要定理
目录
01
平行线的判定定理和性质定

平行线的判定定理
01
02
03
04
同一平面内,不相交的两条直 线判定为平行线。
平行于同一直线的两条直线互 相平行。

2024届高考数学专项立体几何大题含答案

2024届高考数学专项立体几何大题含答案

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。

空间立体几何中的平行问题

空间立体几何中的平行问题
说明理由.
感 谢
感 谢
阅阅
读读
2023最新整理收集 do something
立体空间中的平行
复习定理
空间中的平行
解决空间直线与平面平行的相关问题,特别要注意下面的 转化关系:
空间平行之间的转化

② ①③ ④
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
CD / / AB, BC AB ,且 AB AE BE 2BC 2CD 2,动点 F 在棱 AE 上,且
EF FA.试探究 的值,使 CE / / 平面 BDF ,并给予证明;
E
●F
B
A
C
D
小结:
关键
高频 考点
线线平行-------- 线面平行------- 面面平行
转化思想:把空间问题转化为平面问题解决 证明推理过程要规范、严密,条件缺一不可!
a,b
a a
//
b
A
//
b //
☺ 简称:线面平行,面面平行.
复习定理
空间中的平行
4.平面与平面平行的判定与性质
➳性质:如果两个平面平行,那么其中一个平面内 的任何一条直线都平行于另外一个平面。
a
//
a
//
☺ 简称:面面平行,线面平行.
复习定理
空间中的平行
5.平面与平面平行的判定与性质
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.

空间中的平行关系(基础+复习+习题+练习)

空间中的平行关系(基础+复习+习题+练习)

如图,在直四棱柱中,底面为等腰梯形,∥,且,在棱上是否存在一 点,使平面∥平面?若存在,求点 的位置;若不存在,请说明理由.
走向高考:
(北京)如图,在底面为平行四边形的四棱锥中, ,平面,且 ,点是的中点. 略; 求证:∥平面;略.
(山东文)如图,在直四棱柱中, B C D A
已知,. 求证:;设是上一点,试确定 的位置,使平面,并说明理由.
(北京文)如图,在中,,,分别为,的中点,点为线段上的一点,将 沿折起到的位置,使,如图.求证: ∥平面;略.略.
(安徽) 如图,为多面体,平面与平面垂直,点在线段上,,,,都是 正三角形;
证明直线∥;求棱锥的体积.
(届高三福建师大附中期中文)如图,在直角梯形中,,,.将 沿折起,使 平面平面,得到几何体,如图所示.(Ⅰ)若为的中点,试在线段上找一 点,使 ∥平面,并加以证明;(Ⅱ)略;(Ⅲ)略. A B C D 图2 B A C D 图1
(届高三福建师大附中期中文)在如图所示的多面体中,已知正方形和 直角梯形所在的平面互相垂直,,∥,, 求证:平面;略;略;略.
典例分析:
考点一 线线平行
问题1.(山东) 如图所示,在三棱锥中,平面,,分别是的中点,,
与交于点,与交于点,连接.求证:∥;略.
考点二 线面平行
问题2.( 新课标Ⅱ) 如图,直棱柱
中, 分别是
的中点, .证明: 平面 ;略.
问题3.(海南高考改编) 如图,在底面是菱形的四棱锥中,,,,
点在上,且,在棱上是否存在一点,使∥平面?证明你的结论.
与此

么过该直线的任意一个平
一条直线平行,则该直线 面与已知平面的
与此平面平行.
与该直线
符号语
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【思路】
本题可以转化为证明EE1平行于 平面FCC1内的一条直线或证明平 面A1ADD1与平面FCC1平行.
【解答】
证法一:在直四棱柱ABCD- A1B1C1D1 中 , 取 A1B1 的 中 点 F1 , 连 接 A1D , C1F1 ,
CF1. 因为AB=2CD,且AB∥CD,
所以CD平行且等于A1F1,
∵BC∥AD且BC=1/2AD, 又Q为AD的中点 即BC平行且等于AQ.
M
D
∴四边形BCQA为平行四边形, Q N
C
且N为AC中点,
又∵点M在是棱PC的中点, A
B
∴ MN // PA
………………...…2分
∵ MN⊂平面MQB,PA⊄平面MQB, ...………3分
∴ PA // 平面MBQ.
……………...……4分
【点评】
证明线面平行的方法主要有两种:利 用线面平行的判断定理和面面平行的 性质定理.定理的条件的叙述要完整, 同时也需根据不同特点的题选用不同 方法.关键是找到(或作出)平面内与已 知直线平行的直线,常用平行四边形 的对边平行(如本例)或三角形的中位线 的性质(如变式题),还可以逆用线面平 行的性质先推测出需要的直线.
空间中的平行关系
空间平行例题
空间中的平行关系例题
[2009·山东] 如图所示,在直四棱柱ABCD- A1B1C1D1 中 , 底 面 ABCD 为 等 腰 梯 形 , AB∥CD , AB = 2CD , E 、 E1 、 F 分 别 是 棱 AD、AA1、AB的中点. 证明:直线EE1∥平面FCC1.
2011·丰台一模·立体几何
如图,在四棱锥P-
P
ABCD中,底面ABCD
为直角梯形,AD//BC,Biblioteka ∠ADC=90°,Q为AD
D
的中点,PA=PD,
Q
BC=1/2 AD.若点M是 A 棱PC的中点,求证:PA
// 平面BMQ.(4分)
M
C B
【解答】
连接AC,交BQ于N,
P
连接MN.
……………… 1分
A1F1CD为平行四边形, 所以CF1∥A1D. 又因为E、E1分别是棱AD、AA1的中点, 所以EE1∥A1D, 所以CF1∥EE1,又因为F1C⊂平面FCC1, 所以直线EE1∥平面FCC1.
【解答】
证法二:由已知,DD1∥CC1,所以DD1∥平面FCC1. 又AB∥CD,AB=2CD,所以DC平行且等于AF, 所以四边形AFCD是平行四边形,所以AD∥FC, 所以AD∥平面FCC1. 又AD∩DD1=D, 所以平面A1ADD1 ∥平面FCC1. 因为EE1⊂平面A1ADD1, 所以EE1∥平面FCC1.
相关文档
最新文档