华师大版-数学-八年级上册-《定理与证明》名师教案
新华东师大版八年级数学上册《13章 全等三角形 13.1 命题、定理与证明 定理与证明》优质课教案_1
八年级数学导学案 课 题全等三角形及其判定条件 课 型 新授课 编 号 主 编组长审核 领导审核班 级 小 组 姓 名【学习目标】1、掌握两个三角形全等的条件(对应边相等,对应角相等)。
2、能找出对应边、对应角。
【自学指导】预习课本59页“全等三角形的判定条件”第1,2,3自然段,,完成下列问题:1.能够 的两个三角形叫做全等三角形。
2.全等三角形的对应边 ,对应角 。
3.两个三角形中,六个元素指的是 和【自学检测】1. 如图,点O 是平行四边形ABCD 的对角线的交点,△AOB 绕O 旋转180º,可以与△___________重合,这说明△AOB ≌△___________.这两个三角形的对应边是AO 与__________,OB 与__________,BA 与__________;对应角是∠AOB 与________,∠OBA 与_________,∠BAO 与___________.(第1题) (第2题) 第3题2、如图,AE 是平行四边形ABCD 的高,将△ABE 沿AD 方向平移,使点A 与点D 重合,点E 与点F 重合,则△ABE ≌_________, ∠F =_________3、如图,点D 是等腰直角三角形ABC 内一点,AB =AC ,将△ABD 绕点A 逆时针旋转90°,点D 与点E 重合,则△ABD ≌_________, AD =_________, BD =_________.【合作探究】1、在两个三角形中只有一组角对应相等,则这两个三角形一定全等吗?若不一定,请举反例并画图。
2、在两个三角形中只有一组边对应相等,则这两个三角形一定全等吗?若不一定,请举反例并画图。
3、如果两个三角形有三组对应相等的元素(边或角)有几种情况,分别是:【知识梳理】1.能够完全重合的两个三角形是全等三角形,相互重合的顶点是对应顶点,相互重合的边是对应边,相互重合的角是对应角。
八年级数学上册第13章全等三角形13.1命题定理与证明13.1.2定理与证明教案新版华东师大版word版本
2.命题有哪几类?各是什么?
3.一个命题都可以写成什么形式?哪一步分是题设?哪一步分是结论?
前一节课 我们讲过,要 证明一个命题是假命题,只要举 出 一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.
面向全体学生提出相关的问题。明确要研究,探索的问题是什么,怎样去研究和讨论。.
留给学生一定的思考和回顾知识的时 间。
为学生创设表现才华的平台。
一.知识:
(一 )定理
用逻辑推理的方法证明它们是正确的命题叫做定理.
(二)证明
根据条 件,定义以及定理等,经过推理论证,来判断一个命题是否正确,这样的推理过程叫做证明.
(三)命题,公理和定理的区别与联系
学生讨 论
二应用:
问题1.看下面的命题ห้องสมุดไป่ตู้不是真命题?
教学反思
定理与证明
教学目标
知识与技能
了解命题、定理的含义;理解证明的必要性.
过程与方法
结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.
情感态度与价值观
初步感受定理化方法对数学发展和人类文明的价值.
教学重点
知道什么是定理
教学难点
理解证明的必要性.
教学内容与过程
教法学法设计
请看下 面的问题:
一条直线截两条平 行直线所得的同位角相等;
问题2.三角形三边的垂直平分线的交点都在三角形的内部是不是真 命题?
解答:不是
问题3.直角三角形的两个锐角互余是不是真命题?
解答:是,请 你证明.
课后小结:定理,证 明.
课后练习:见教材58页
课后作业:复印给学生
创设良好的问题情境,激活学生的求知欲,促使学生 为问题的解决形成一个合适的思维意向,收到最佳的教学效益。使学生在问题情境中,通过观察、操作、思考交流和运用,逐步形成良 好的数学思维习惯,发展数学应用意识,感受学习数学的乐趣。
八年级数学上册 13.1 命题、定理与证明 13.1.2 定理与证明教案 (新版)华东师大版
1.要求学生注意定理也是命题注意它的两个组成部分:条件和结论.
2.能证明一个较简单的命题是真命题.
【拓展提升】
[厦门中考]A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线.小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.
例如图13-1-,有下列三个条件:
图13-1-
①DE∥BC:②∠1=∠2;③∠B=∠C.
(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你都写出来;
(2)请你就其中的一个真命题给出推理过程.
解:(1)一共能组成2个命题,它们是:题设:①②,结论:③;题设:①③,结论:②;
②[讲授效果反思]
A.重点□B.难点□C.易错点□
举反例说明一个命题是假命题是一个难点,教学时要帮助学困生,关注他们在这方面的不足.证明过程的书写是一个较为长期的训练过程,不期望一节课上学生就能很好地掌握.
③[师生互动反思]
学生根据定理的内容画出相应的图形会有较大的困难,师生共同完成.
④[习题反思]
教学
重点
对数学基本事实、定理的理解.
教学
难点
证明一个命题是真命题的一般方法.
授课
类型
新授课
课时
第一课时
教具
多媒体课件
教学活动
教学
步骤
师生活动
设计意图
回顾
问题1请同学们判断下列命题哪些是真命题?哪些是假命题?
华东师大版数学八年级上册-13.1 命题、定理与证明 (第一课时)教案
13.1命题、定理与证明(第一课时)一、学前导入:同学们,“猫是有四条腿的动物”这个判断对吗? “有四条腿的动物是猫”这个判断对吗? 今天我们将学习像这样判断一件事情的语句。
二、课前训练:试判断下列句子是否正确.(1)如果两个角是对顶角,那么这两个角相等;( )(2)两直线平行,同位角相等; ( )(3)同旁内角相等,两直线平行; ( )(4)平行四边形的对角线相等; ( )(5)直角都相等. ( )(6)三角形的内角和等于180°. ( )(7)等腰三角形的两个底角相等 . ( )三、新知导入:1、什么叫命题?_______________________________________________________________________________________________________________________I、点拨提示:(1)错误的命题也是命题。
如:“3<2”是一个命题(2)命题必须是对某种事情作出判断,如问句,几何的作法等就不是命题。
II、巩固练习:判断下列语句是不是命题?是用“√”,不是用“×表示。
1)长度相等的两条线段是相等的线段吗?()2)两条直线相交,有且只有一个交点()3)不相等的两个角不是对顶角()4)一个平角的度数是180度()5)相等的两个角是对顶角()6)取线段AB的中点C()7)画两条相等的线段()2、命题的结构:在数学中,许多命题是由______________________两部分组成的。
______________是_____________,______________是由______________________,这种命题常可写成______________________的形式,“如果”开始的部分是______,“那么”开始的部分是_______.I、例题展示:例:把命题“在一个三角形中,等角对等边”改写成:“如果…那么…”的形式,并分别指出命题的条件和结论。
定理与证明-华东师大版八年级数学上册教案
定理与证明-华东师大版八年级数学上册教案一、教学目标1.了解定理与证明的基本概念和方法;2.能够正确运用定理和相关知识进行数学问题的证明;3.提高数学思维和解决问题的能力。
二、教学重难点1.定理的理解和运用;2.证明的方法与技巧;3.证明过程中思维的拓展。
三、教学内容1.定义:定理是一种真实的、重要的数学命题,需要经过证明才能成立;2.定理的分类:数形结合、解析几何、代数方程、数论等;3.定理的证明方法:直接证明、间接证明、归谬法等;4.基本定理的讲解和运用:比如射影定理、等腰三角形定理、余弦定理等;5.综合运用定理和公式解决实际问题。
四、教学过程1. 导入(5分钟)请学生们回忆上节课学过的定理和证明方法,并举例说明其运用。
2. 讲解定理与证明的基本概念和方法(20分钟)1.讲解定理的定义和分类,举例说明;2.讲解证明的基本方法和技巧,如直接证明、间接证明、归谬法等;3.举例说明定理的证明过程,并让学生模仿练习。
3. 讲解基本定理并运用于实际问题的解决(20分钟)1.介绍常见的基本定理,如射影定理、等腰三角形定理、余弦定理等;2.利用定理解决实际问题的案例分析,并让学生进行练习。
4. 合作探究与案例演示(20分钟)将学生分组,让他们自行查找和收集相关定理和证明的例题,进行合作探究;然后让其中一小组进行案例演示,展示其探究和归纳分析的结果。
5. 课堂小结(5分钟)1.对今天的教学内容进行回顾;2.强调掌握定理和证明的基本方法和技巧;3.提醒学生关注几何图形和代数方程的联系。
五、课后作业1.完成课堂练习题;2.完成课后练习题;3.查找和阅读相关数学文献,了解更多有关定理和证明的知识。
六、教学反思通过本次教学,学生们了解了数学中定理和证明的基本概念和方法,并掌握了一些基本定理的运用和证明。
在教学设计中,我采取了多种教学方法和形式,如讲解、案例分析、小组讨论等,注重培养学生的思维能力和团队合作意识。
但是还需注意,在小组讨论和案例演示环节中,需关注每个小组的参与度和发言机会,让每个学生都能学有所获,提高教学效果。
华师大版八年级数学上册《定理与证明》优质课课件
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/292021/7/292021/7/297/29/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/292021/7/29July 29, 2021
(两直线平行,同位角相等)
∵ ∠3=∠1 ( 对顶角相等 )
∴∠1=∠2 ( 等量代换 )
命题证明的步骤: 1.根据题意,画出图形; 2.根据题设、结论,结合图形,写出
已知、求证; 3.经过分析,找出由已知推出求证的
途径,写出证明过程.
根据下列命题,画出图形,并结合 图形写出已知、求证(不写证明过程): 1)垂直于同一直线的两直线平行; 2)内错角相等,两直线平行; 3)一个角的平分线上的点到这个角的两边
OE平分∠AOB, OF平分∠BOC
求证:OE⊥OF
E
B
证明:∵OE平分∠AOB,
12 F
∴∠1=
OF平分∠BOC
1
2∠AOB,
∠2= 1
2
A ∠BOC
O
C
又∠AOB、∠BOC互为邻补角
∵ ∠AOB+∠BOC=180° ∴∠1+∠2= 1 (∠AOB+∠BOC)=90° ∴ OE⊥OF 2
如何判断一个命题是假命题?
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/292021/7/292021/7/292021/7/29
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
[配套K12]八年级数学上册 13.1 命题、定理与证明 第2课时 定理与证明教案 (新版)华东师大版
13.1 命题、定理与证明第二课时定理与证明教学目标1.知识与技能:了解命题、公理、定理的含义;理解证明的必要性.2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.重点与难点1.重点:知道什么是公理,什么是定理2.难点:理解证明的必要性.教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.二、探究新知(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道下列命题是真命题:两点确定一条直线;两点之间、线段最短;过一点有且只有一条直线与已知直线垂直;过直线外一点有且只有一条直线与这条直线平行;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.在本书中我们将这些真命题均作为公理.(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2> b2.这个命题是真命题吗?[答案:不正确,因为3>-5,但3 2<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三、随堂练习课本P58练习第1、2题.四、课时总结1、在长期实践中总结出来为真命题的命题叫做公理.2、用逻辑推理的方法证明它们是正确的命题叫做定理五、布置作业课本P58 习题13.1 3。
华东师大版八年级上册数学教学设计《定理与证明》
华东师大版八年级上册数学教学设计《定理与证明》一. 教材分析华东师大版八年级上册数学教材在《定理与证明》这一章节中,主要向学生介绍定理与证明的概念、方法和过程。
本章内容是学生继学习几何初步知识后,进一步深化对几何图形性质和规律的理解,培养学生逻辑思维和论证能力。
本章的主要内容包括定理的定义、定理的证明、公理化体系等。
通过本章的学习,使学生掌握定理与证明的基本概念和方法,提高学生分析问题和解决问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了基本的几何知识,具备一定的逻辑思维能力。
但部分学生对抽象的逻辑论证过程可能存在理解上的困难,因此,在教学过程中需要关注这部分学生的学习情况,加强对其逻辑思维和论证能力的培养。
同时,学生对于新知识的学习兴趣和积极性较高,可以通过引导和激励,激发学生学习本章内容的兴趣。
三. 教学目标1.知识与技能:使学生掌握定理与证明的基本概念和方法,学会阅读和理解几何论证过程。
2.过程与方法:培养学生逻辑思维和论证能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的抽象思维和创新意识。
四. 教学重难点1.教学重点:定理与证明的基本概念和方法,几何论证过程的阅读和理解。
2.教学难点:定理证明的逻辑推理过程,学生逻辑思维和论证能力的培养。
五. 教学方法1.引导法:通过问题引导,激发学生思考,培养学生逻辑思维和论证能力。
2.案例分析法:分析典型几何论证案例,使学生掌握定理与证明的方法。
3.小组合作学习法:引导学生进行合作交流,共同探讨几何论证问题,提高学生分析问题和解决问题的能力。
六. 教学准备1.教学课件:制作多媒体课件,帮助学生直观地理解定理与证明的概念和方法。
2.教学案例:准备一些典型的几何论证案例,用于分析和讲解。
3.练习题:设计一些有关定理与证明的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习几何基本知识,引导学生思考几何论证的过程,引出本章内容——定理与证明。
华师版八年级数学HS版上册精品教案 13 全等三角形 课题 定理与证明
课题定理与证明【学习目标】3.在学习的过程中体会数学的逻辑思维能力和有条理的推理能力.【学习重点】理解证明要步步有理有据,【学习难点】证明的步骤和格式.行为提示:点燃激情,引发学生思考本节课学什么.情景导入生成问题行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:1.基本事实与定理的判别:定理需要证明,证明之后就可以直接加以运用,而基本事实则不需要证明,可以直接加以运用,也可以用来证明定理;行为提示:证明的一般步骤:(2)根据题意画出正确的图形,并在图形上标注字母和符号;(3)根据条件、结论,结合图形,用符号语言写出“已知”、“求证”;(4)分析因果关系,探求解题的思路,书写推理过程,并标明依据.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.自学互研生成能力知识模块一基本事实与定理阅读教材P55~P57,完成下面的内容:1.什么是基本事实?什么是定理?你能写出几个学过的定理吗?范例:下列说法错误的是( C )A.定义 B.定理 C.基本事实 D.定义A.两直线平行,内错角相等 B.内错角相等,两直线平行C.两点之间,线段最短 D.若a2=b2,则a=b知识模块二证明的定义与步骤范例:证明:直角三角形的两个锐角互余.已知:如图,在Rt△ABC中,∠C=90°.求证:∠A+∠B=90°.证明:∵∠A+∠B+∠C=180°(三角形的内角和等于180°),又∵∠C=90°(已知),仿例:证明:三角形的一个外角等于和它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证明:过C作CE∥AB,∵CE∥AB,∴∠ACE=∠A(两直线平行,内错角相等),∠ECD=∠B(两直线平行,同位角相等),∵∠ACD=∠ACE+∠DCE(已知),∴∠ACD=∠A+∠B(等量代换).交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一基本事实与定理知识模块二证明的定义与步骤检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:_______________________________________________________________ _________。
2024-2025学年华师版初中数学八年级(上)教案第14章勾股定理14.1勾股定理(第1课时)
第14章 勾股定理14.1 勾股定理第1课时 直角三角形的三边关系教学目标1.体验勾股定理的探索.2.会用勾股定理求直角三角形的边长.教学重难点重点:用勾股定理求直角三角形的边长. 难点:用拼图法证明勾股定理.教学过程导入新课2002年国际数学家大会在我国北京召开,投影显示本届国际数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)我国古代3000多年前有一个叫商高的人,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.画一个两直角边长分别为3和4的直角△ABC ,用刻度尺量出斜边的长,再画一个两直角边长分别为5和12的直角△ABC ,用刻度尺量出斜边的长.你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?探究新知1.勾股定理的证明活动1:如图,让学生剪4个全等的直角三角形,拼成如图所示的图形,利用面积证明.222(),ABCD ABCD S c S ab b a +-正方形正方形=,=从而222222(),.c ab a b c a b =+-+即=活动2:给学生如图所示的图形,利用面积证明.分析:左右两边的正方形边长相等,则两个正方形的面积相等.左边S =2214,2ab c S a b ⨯++右边=() .左边和右边的面积相等,即2214,2ab c a b ⨯++=()教学反思222.c a b +化简可得=教学说明:以上两图出示给学生,分两组交流、证明,完成后由学生代表展示.教师归纳板书:勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.求直角三角形的边长活动:出示习题:(1)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则AB =____; (2)在Rt △ABC 中,∠C =90°,AB =25,AC =20,则BC =____; (3)在Rt △ABC 中,∠C =90°,它的两边是6和8,则它的第三边长是__________.【答案】(1)13 (2)15 (3)10或教学说明:先由学生独立完成,再由学生展示,注意(3)要分类,分8为直角边长或斜边长两种情况.最后教师板书:在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边长,则c a b【合作探究,解决问题】【小组讨论,师生互学】例1 如图,在Rt △ABC 中,已知∠B =90°,AB =6, BC =8,求AC .解:根据勾股定理,可得AB ²+BC ²=AC ²,所以AC10.例2 如图,Rt △ABC 的斜边AC 比直角边AB 长2 cm ,另一直角边BC 长为6 cm ,求AC 的长.解:由已知AB =AC -2,BC =6cm ,根据勾股定理,可得AB ²+BC ²=(AC -2)²+6²=AC ²,解得AC =10(cm).例3 如图,为了求出湖边两点A ,B 之间的距离,一名观测者在点C 设桩,使△ABC 恰好为直角三角形,通过测量,得到160米,BC 的长为128米,问A ,B 解:Rt △ABC 中,AC =100,BC =128, 根据勾股定理得教学反思96AB (米).答: A ,B 两点之间距离96米.课堂练习1.在△ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边长. (1)已知a =2.4,b =3.2,则c =_______.(2)已知c =17,b =15,则△ABC 的面积等于_______. (3)已知∠A =45°,c =18,则a 2=______.2.直角三角形三边长是连续偶数,则这三角形的各边长分别为_______.3.△ABC 的周长为40 cm ,∠C =90°,BC ∶AC =15∶8,则它的斜边长为______.4.直角三角形的两直角边之和为14,斜边为10,则它的斜边上的高为________,两直角边分别为________.5.在Rt △ABC 中,已知两直角边长a =1,b =3,那么斜边c 的长为( ).A.2B.4C.22D.106.直角三角形的两直角边分别为5 cm ,12 cm ,则斜边上的高为( ).A.6 cmB.5 cmC.3060cm D.1313cm 参考答案1.(1)4 (2)60 (3)1622.6 8 103.17 cm4.4.8 6和85.D6.D课堂小结教师提问:这一节课我们一起学习了哪些知识和思想方法? 在学生自由发言的基础上,师生共同总结:知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边长和斜边长,那么222a b c +=. 方法:(1) 观察——探索——猜想——验证——归纳——应用; (2)“割、补、拼、接”法.思想:(1) 特殊——一般——特殊; (2) 数形结合思想.布置作业请完成本课时对应练习!板书设计直角三角形的三边关系勾股定理直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边长和斜边长,那么222a b c +=.教学反思。
华东师大初中八年级数学上册《定理与证明》教案
定理与证明教学目标1.了解命题、公理、定理的含义,会区分命题的题设和结论,会判断真命题和假命题,会把命题改写为“如果……,那么……”的形式;会运用公理、定理进行简单的真命题的证明.2.让学生经历观察、分析、讨论的过程,得出可以用举反例的方法判断一个命题是假命题.3.初步感受公理化方法对数学发展和人类文明的价值.重点让学生分清命题的题设和结论,熟悉命题的表达式;会运用公理、定理进行简单的真命题的证明.难点将一个命题改写为“如果……,那么……”的形式.教学过程一、复习旧知,导入新课1.什么是命题?命题的结构是什么?2.命题如何分类?如何证明一个命题是假命题?今天我们将学习说明一个命题是真命题的方法.二、师生互动,探究新知(一)基本事实.教师讲解;并板书:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行;(5)两条直线被第三条直线所截,如果同位角相等,两直线平行.上述五个命题是被公认的真命题,我们将它们当作基本事实,是我们用来判断其他命题真假的原始依据,即出发点.(二)定理与证明教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1.教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)5的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2.教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2>b2.这个命题是真命题.教师总结在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题的可能是真命题,也可能是假命题.教师讲解数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)定理的证明直角三角形两锐角互余.【教师引导】将文字语言转化为几何语言,注意推理步步有据,并在后面的括号里写上每步的依据.教师讲解此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三、随堂练习,巩固新知下列命题中,假命题是( )A.定理都是命题B.命题都是定理C.公理都是命题D.推理过程叫证明四、典例精析,拓展新知例试证明:如果两条平行线被第三条直线所截,同旁内角的角平分线互相垂直.教学说明教师引导文字命题证明步骤,先画图写出已知求证,再分析找出思路,最后写出证明过程,注意步步有据.五、运用新知,深化理解如图,AD∥BC,∠A=∠C,求证:AB∥CD.教师说明教师启发由AD∥BC,得到了什么?要证明AB∥CD,需要证明什么?与AB∥BC相关的信息是什么?如何书定使条理清晰,层次分明.六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上,教师归纳总结.1.可以推断它是正确的或是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题.命题可以写成“如果……,那么……”的形式.要判断一个命题是假命题,只要举出一个反例即可.2.从长期实践中总结出来为真的命题叫做公理,把一些用逻辑推理的方法证明它们是正确的命题叫做定理.。
华师大版-数学-八年级上册-华师大版八年级上册 命题、定理与证明 同步教案
第十三章全等三角形13.1 命题、定理与证明第一课时教学目标:1、知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。
会区分命题的题设和结论。
知道用反例可以判断一个命题是假命题的方法。
2、过程与方法:经历观察、操作、推理、交流等过程,发展空间观念、推理能力和有条理地表达的能力。
3、情感态度价值观:在活动中培养学生乐于探究、合作的习惯,进一步体会“数学就在我们身边”启发学生用数学解决实际问题的意识。
教学重点:找出命题的题设和结论。
教学难点:是对那些题设和结论不明显的命题找出题设和结论。
关键问题:关键是在具体实例中区分什么是命题,什么不是命题。
命题的结构教学方法:采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。
教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数学兴趣。
教学过程:一、复习引入:教师给出下列语句,学生分析语句的特点.我们已经学过一些图形的特性,如“三角形的内角和等于180°”、“等腰三角形的两个底角相等”等.根据我们学过的图形特性,试判断下列句子是否正确.(1)如果两个角是对顶角,那么这两个角相等;(2)两直线平行,同位角相等;(3)同旁内角相等,两直线平行;(4)平行四边形的对角线相等;(5)直角都相等.二、探究新知(一)命题、真命题和假命题学生:这些语句都是对某一件事情作出“是”或“不是”的判断. 学生阅读文字,学生观察、思、回答,得出命题的定义.学生回答后给出答案:句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.引出概念:可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.这样的命题常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论.有的命题的题设与结论不十分明显,将它写成“如果……,那么……”的形式,也可分清它的题设与结论.例如,命题(5)可写成“如果两个角是直角,那么这两个角相等”.(二)例题选讲例1:把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式,并分别指出命题的题设与结论.解:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.例2:指出下列命题的题设和结论,并把它改写成“如果……那么……”的形式,它们是真命题还是假命题?(1)对顶角相等;(2)如果a>b,b>c,那么a=c;(3)两角和其中一个角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等;(5)全等三角形的面积相等。
最新2019-2020年华东师大版八年级数学上册《定理与证明1》教学设计~评奖教案
13.1.2.定理与证明教学目标1.知识与技能:了解命题、基本事实、定理的含义;理解证明的必要性.2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感、态度与价值观:初步感受基本事实化方法对数学发展和人类文明的价值.重点与难点1.重点:知道什么是基本事实,什么是定理2.难点:理解证明的必要性.教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.二、探究新知(一)基本事实教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做基本事实.我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;两点之间,线段最短.在本书中我们将这些真命题均作为基本事实.(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b 时,a2>b2.这个命题是真命题吗?答案:不正确,因为3>-5,但3 2<(-5)2.教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从基本事实出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三、随堂练习课本练习第1、2题.四、课时总结1、在长期实践中总结出来为真命题的命题叫做基本事实.2、用逻辑推理的方法证明它们是正确的命题叫做定理.五、布置作业课本习题13.1第3题;补充题.六、板书设计(课题)复习证明的必要基本事实例题定理(学生板演)。
数学华东师大版八年级上册教案:13.1 命题、定理与证明 第二课时 定理与证明
优质资料---欢迎下载课题:13.1 命题、定理与证明第二课时定理与证明&.教学目标:1、理解公理与命题,公理与定理之间的关系。
2、了解定理的作用,并初步学会运用公理、定理或真命题来证明其他的真命题。
&.教学重点、难点:重点:公理、定理、命题之间的关系以及定理的作用。
难点:从公理、定理出发,用逻辑推理的方法进行简单的证明。
&.教学过程:一、问题引入1、复习回顾:一个命题是由哪几部分组成的?2、根据你学过的知识填空.(1)一条直线截两条平行线所得的同位角相等;(2)两条直线被第三条直线所截,如果同位角相等,那么,这两条直线互相平行;(3)全等三角形的对应边、对应角分别相等。
二、探究新知思考:上述三个命题是真命题吗?以上三个都是真命题,以上的三个真命题均作为本书的公理。
(引出标题)§.公理:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
注意:(1)公理是真命题,而真命题不一定是公理。
(2)公理可以作为判断其他命题真假的原始依据。
§.探究定理的概念:观察下列判断真命题的推理过程,并在后面括号内填写适当的理由。
(1)命题:垂直于同一条直线的两条直线互相平行.如图所示,ab⊥,ac⊥.求证:cb//证明:∵ab⊥,ac⊥(已知)∴︒=∠901,︒=∠902(垂直的定义)∴21∠=∠(等量代换)a1 2b c∴c b //(同位角相等,两直线平行)(2)如图所示,已知ABC Rt ∆中,︒=∠90C ,点D 为AB 上任一点,BC DE ⊥. 求证:A ∠=∠1证明:∵︒=∠90C ,BC DE ⊥(已知)∵DE AC //(垂直于同一条直线的两条直线互相平行) ∴A ∠=∠1(两直线平行,同位角相等) §.定理:数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。
数学华东师大版八年级上册教案:13.1 命题、定理与证明 第一课时 命题
优质资料---欢迎下载课题:13.1 命题、定理与证明第一课时命题&.教学目标:1、理解命题的概念及命题的结构形式,会把一个命题写成“如果……,那么……”的形式。
2、理解真命题和假命题,并会通过举反例判定一个命题是假命题。
&.教学重点、难点:重点:让学生分清命题的条件和结论,熟悉命题的表达方式。
难点:将一个命题改写成“如果……,那么……”的形式。
&.教学过程:一、问题引入1、根据你所学过的一些图形的特征填空:(1)三角形的内角和等于 .(2)等腰三角形的两个底角 .(3)平行四边形的对角线 .(4)两直线垂直于同一直线,则这两条直线 .(5)等边三角形的三个内角 .2、根据你学过的图形特征,试判断下列句子是否正确。
(1)如果两个角是对顶角,那么这两个角相等;(2)两直线平行,同位角相等;(3)同旁内角相等,两直线平行;(4)平行四边形的对角线相等;(5)直角都相等。
二、探究新知教学活动:学生先独立完成,然后在分组交流讨论。
根据已有的知识可以判断出上面的句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的。
像这样可以判断它是正确的或是错误的句子叫做命题。
(引出标题)§1.命题:对一件事情作出判断(肯定的或否定的)的句子叫做命题。
注意:(1)命题一定是对一个问题作出了判断,即正确或错误(肯定或否定)。
(2)一般地对概念的定义,或作图的叙述或问句都不是命题,即:“祈使句、疑问句”一定不是命题。
§2.命题的分类:命题分为真命题和假命题两类,其中正确的命题叫做真命题,错误的命题叫做假命题。
例如:上述问题中的(1)、(2)、(5)就是真命题,(3)、(4)就是假命题。
§3.命题的结构形式:观察以下三个命题,看看它们在叙述方式上有什么共同的特点。
(1)如果在一个三角形中有两个角相等,那么这两个角所对的边也相等;(2)如果两条平行的直线被第三条直线所截,那么内错角相等;(3)如果两个三角形全等,那么对应边相等.教学方法:教师引导,学生独立与合作相结合探讨。
华师大版数学八年级上册13.1《命题、定理与证明》教学设计
华师大版数学八年级上册13.1《命题、定理与证明》教学设计一. 教材分析《命题、定理与证明》是华师大版数学八年级上册第13.1节的内容。
本节内容是学生学习数学证明的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
本节内容主要包括命题、定理与证明的定义,以及如何写出完整的证明过程。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。
但学生在逻辑思维和证明方面可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生逐步理解和掌握证明的方法。
三. 教学目标1.了解命题、定理与证明的定义,理解它们之间的关系。
2.学会写出完整的证明过程,培养学生的逻辑思维能力。
3.通过对本节内容的学习,使学生能够运用证明的方法解决实际问题。
四. 教学重难点1.重点:命题、定理与证明的定义,证明过程的写法。
2.难点:理解命题的假设和结论,掌握证明的方法。
五. 教学方法1.采用问题驱动法,引导学生主动探究命题、定理与证明的关系。
2.通过实例分析,让学生了解证明的过程和方法。
3.利用小组合作学习,培养学生团队合作精神,提高学生的逻辑思维能力。
六. 教学准备1.准备相关的教学PPT,内容包括命题、定理与证明的定义及示例。
2.准备一些实际的数学问题,用于引导学生进行证明练习。
3.准备黑板,用于板书重要的概念和证明过程。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际的数学问题,引导学生思考如何用数学语言来描述这些问题,从而引入命题的概念。
2.呈现(10分钟)通过PPT讲解命题、定理与证明的定义,让学生理解它们之间的关系。
同时,给出一些简单的命题和定理,让学生初步了解证明的过程。
3.操练(10分钟)让学生分组讨论,尝试对给出的命题进行证明。
教师巡回指导,解答学生的问题,并引导学生写出完整的证明过程。
4.巩固(10分钟)让学生自主完成一些证明练习题,检验学生对证明方法的掌握程度。
最新2019-2020年华东师大版八年级数学上册《定理与证明》1教学设计~评奖教案
教学目标1.知识与技能:了解命题、基本事实、定理的含义;理解证明的必要性.2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感、态度与价值观:初步感受基本事实化方法对数学发展和人类文明的价值.重点与难点1.重点:知道什么是基本事实,什么是定理2.难点:理解证明的必要性.教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.二、探究新知(一)基本事实教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做基本事实.我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;全等三角形的对应边、对应角相等.在本书中我们将这些真命题均作为基本事实.(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2>b2.这个命题是真命题吗?[答案:不正确,因为3>-5,但3 2<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从基本事实出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)例题与证明三、随堂练习课本练习第1、2题.四、课时总结1、在长期实践中总结出来为真命题的命题叫做基本事实.2、用逻辑推理的方法证明它们是正确的命题叫做定理.五、布置作业课本习题13.1第3题;补充题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.1 命题、定理与证明
第二课时定理与证明
教学目标
1.知识与技能:了解命题、公理、定理的含义;理解证明的必要性.
2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.
3.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.
重点与难点
1.重点:知道什么是公理,什么是定理
2.难点:理解证明的必要性.
教学过程
一、复习引入
教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.
二、探究新知
(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.
我们已经知道下列命题是真命题:
两点确定一条直线;
两点之间、线段最短;
过一点有且只有一条直线与已知直线垂直;
过直线外一点有且只有一条直线与这条直线平行;
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
在本书中我们将这些真命题均作为公理.
(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.
1、教师讲解:请大家看下面的例子:
当n=1时,(n2-5n+5)2=1;
当n=2时,(n2-5n+5)2=1;
当n=3时,(n2-5n+5)2=1.
我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?
实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.
2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2>b2.这个命题是真命题吗?
[答案:不正确,因为3>-5,但3 2<(-5)2]
教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.
教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.
(三)例题与证明
例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.
教师板书证明过程.
教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.
定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.
三、随堂练习
课本P58练习第1、2题.
四、课时总结
1、在长期实践中总结出来为真命题的命题叫做公理.
2、用逻辑推理的方法证明它们是正确的命题叫做定理
五、布置作业
课本P58 习题13.1 3。