人教版·数学Ⅰ_§1.2.2函数的表示法
1.2.2函数的表示法课件人教新课标
的三种表示法表示函数 y f (x)
。
例2.(书P20)下表是某校高一(1)班三名 同学在高一年度六次数学测试的成绩及班级 平均分表。
第一次 第二次 第三次 第四次 第五次 第六次
王伟 张城 赵磊
班级 平均分
98 90 68 88.2
⑵列表法:就是列出表格来表示两个变量 的函数关系
优点:不需要计算就可以直接看出与自变 量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之 间的关系.
优点:能直观形象地表示出自变量的变化,相 应的函数值变化的趋势,这样使得我们可以通 过图象来研究函数的某些性质.
二.例题讲授:
例1(书P19).某种笔记本的单价是5元,买 x
四、作业
P24 A组7、8、9 B组3、4 补充:作出分段函数
y 2x 1 x 2 (3 x 3)
的图像并求值域。
(2) 5公里以上,每增加5公里,票价增加 1元(不足5公里按5公里计算). 如果某条线路的总里程为20公里,请根据题 意,写出票价与里程之间的函数解析式,并 画出函数的图象.
练习:
x 2(x 1)
1.在函数
f
(x)
x
2
(1
x
2)
中,若 f (x) 3
2x(x 2)
则x的值为 。
3x2 2 (x 0)
1.2.2 函数的表示法(一)
一、讲授新课:
函数的表示方法 ⑴解析法:就是把两个变量的函数关系,用 一个等式表示,这个等式叫做函数的解析表 达式,简称解析式.
优点:一是简明、全面地概括了变量间的关 系;二是可以通过解析式求出任意一个自变 量的值所对应的函数值.中学阶段研究的函数 主要是用解析法表示的函数.
人教版高中数学必修一1.2.2函数的表示法 (1)ppt课件
例5、下列映射是不是A到B的一一映射?
A
B
A
B
f
1
3
f
1
3
2
5
3
7
5 2
7
3
9
4
9
4
1
(1)
(2)
解:(1) 是
(2) 不是。由于B中元素1在集合A中没有原像
例6、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} ,f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
5 , 1 5 < x 2 0 , 2 1
图公交车票价.gsp
05
10
15
20
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
注意: (1)有时表示函数的式子可以不止一个,对于分几个 表示的函数,不是几个函数,而是一个函数,我们把它 分段函数.
(2) 函数图象既可以是连续的曲线,也可以是直线、 线、离散的点等等。
注意:解析法表示函数是中学研究函数的主要表示方法;用 法表示函数时,必须注明函数的定义域.
2.图像法:用函数图像表示两个变量之间的对应关系。
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的.
例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
(1)对于任何一个实数a,数轴上都有唯一的点P和它对
(2)对于坐标平面内任何一个点A,都有唯一的有序实数 (x,y)和它对应;
人教高中数学必修1课件:1.2.2函数的表示法第1课时函数的表示法精讲优练课型
1.2. 2函数的表示法第1课时函数的表示法【即时小测】1 •思考下列问题: ⑴所有的函数都能用列表法来表示吗?提示:并不是所有的函数都能用列表法来表示,如函数y二2x+l f xe R.因为自变量X w R不能一一列出,所以不能用列表法来表示•(2)用解析法表示函数是否一定要写出自变量的取值范围?提示:函数的走义域是函数存在的前提,写函数解析式的时候L般要写出函数的定义域.2・已知函数f(x)由下表给出:则f(f(2))= ____________【解析】由表格可知十⑵二4所以f(f⑵)=f⑴二0・答案:03・CU咨 f (x —l)"(x —l)2』=f(X)3晝聖【sm ffiXIlHbpMIXHt+l、s u w (t T t 2・0H (x T x 2・嘯4.已知函数y=f (x)的图象如图所示,则其定义域是3~~03^【解析】因为函数y二f(x)图象上所有点的横坐标的取值范围是[23],所以其定义域为[么3]・答案:[23]5.已知f (n) =2f (n+1), f (1) =2,则f (3)= 【解析】f(n) = 2f(n + l),f(l) = 2, 所以俭)= 2f(2)=4f⑶,故f⑶二( 答案:2 2【知识探究】知识点函数的三种表示方法观察如图所示内容,回答下列问题:(函数的表示方法)——(图象法)问题1 :应用三种方法表示函数时应注意什么问题?问题2:函数的三种表示方法各有什么优缺点?【总结提升】1 •对函数三种表示法的说明列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示•在应用三种方法表示函数时要注意:⑴解析法:必须注明函数的定义域(2)列表法:选取的自变量要有代表性,应能反映定义域的特征.⑶图象法:是否连线.2.函数三种表示方法优缺点比较"能形象、直观地表示壓函数的变化情况点 小、 只能近似求出自变量所对应的函数值,而 R 有时误差较大 K ____________ /【题型探究】类型一待定系数法求函数解析式【典例】1.已知f(X)是一次函数,且f (f (x)) =4x+3,则函数f(X)的解析式为_____________ ■2.已知二次函数y=f (x)的最大值为13,且f(3)=f(-l)=5,求f (x)的解析式.【解题探究】1•典例1中一次函数解析式的形式是什么? 提示:一次函数解析式的形式为f(x)二ax+b (a工0) •2.典例2中二次函数的一般形式是什么?提示:二次函数的一般形式是f(x)二ax?+bx+c (a H 0) •【s s】l ・ffi f (x T ax +b (a H O )・ m=f (fH +b T爾糊f s H 2X +一烘f (X)H —w x —w2•方法一:利用二次函数的一般式求解.设f(x)=ax2+bx+c(a^0).由条件知,点⑶5),(也5),("3)在f(x)的图象上9a+3b+c = 5, fa = -2所以a — b+c = 5,所以f的斤邂时x+lg = ii方法二:利用二次函数的顶点式求解.由f(3)=f(・l),可知:对称轴为x“,又最大值为D故可设f(x)二a(x・l)2+13.将f⑶=5代入得a=2・所以f(x) = -2(x-l)2+13jpf(x) = -2x2+4x+ll.【方法技巧】待定系数法求函数解析式(1)适用范围:已知所要求的解析式f(x)的类型,如是一次函数、二次函数等等,即可设出f(x)的解析式,然后根据已知条件确定其系数.(2)待定系数法求函数解析式的步骤:①设出所求函数含有待定系数的解析式;③解方程或方程组,得到待定系数的值;④将所求待定系数的值代回所设解析式.【变式训练】已知二次函数f (X )的图象过点A(0, -5), B (5, 0),其对称 轴为x=2,求其解析式.【解析】因为抛物线的对称轴为x=2, 所以设二次函数的解析式为f(x)=a(x-2)2+k(a^O).把(0,-5),(5,0)分别代入上式得丽劇嗨斛*9・ 龈敲MX 』",类型二换元法(或配凑法)、方程组法求函数解析式【典例】求满足下列条件的函数f(x)的解析式.(1)函数f(X)满足f ( +l)=x+2 .(2)函数f (x)满足2f 占)+f (x) =x《HO).1X【解题探究】1.典例⑴中的5 +1)中的低+1与x+2低能否建立联系?提示:典例⑴中的X+2 =( +1)2-1.2 •典例(2)中x和有越关爲1提示:互为倒数关黍・(1£)「益(3欝“人1:埠只Ig lx V ^.J (T :+r (T +)J M £ V0+x只因:(+s2e H +s g(一丄jpex) J XH (X )J E5£ rH」u z +z(I £H e 4M £"(IeHxliio 存g芥企 叟+W IK ®l 4W 运(I⑵由题意知f(x) + 2f( i=x f令X二(tHO) fx t则i=t f则f(卅2f(t)二a即班?+2f(x)・(于是得剧关于f(肯f(x)的方程自—i ■x X Xf(x) + 2f』) =xf(-) + 2f(x) = I 2 x1解得f(x)拄-°)・XXX【延伸探究】1.(变换条件)典例(1)中若将条件“f(+l)=x+2 “f(2x-l)p2+x+l”,则f(x)的解析式是什么?【解析】设2x-l=t f则X二t+1所以f(t)二亍Q nX/、t+1 ° t+1 7即f(x)二一r+一+i 二一+t+—.2 2 4 41 97一x~+x -一・4 42.(变换条件)典例(1)中若将条件“f (低+ l)=x+2低”变为“f(l+ 1 )=i+x21 ”,则f(x)的解析式是什么?【解析】平(1 + * X1+?]因為寻岂占诫溜胡析幽)+hf(x)=x24c+ 1 , XG(-OO f 1) U (1 , +8).X【方法技巧】换元法(或配凑法)、方程组法求函数解析式的思路⑴已知f (g (x)) =h (x),求f (x),常用的有两种方法:①换元法,即令t=g (x),解出禺代Ah(x)中,得到一个含t的解析式,即为函数解析式,注意:换元后新元的范围②配凑法,即从f (g(X))的解析式中配凑出即用g(x)来表示h (x),然后将解析式中的g (x)用x代替即可.(2)方程组法:当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.【补偿训练】已知f(x-l)=xMx-5,则f(x)的解析式是()【解析】选A.方法一:设t 二则x=t+l,因为f(x-l)=x2+4x ・5, 所以 f(t) = (t+l)2+4(t+l)-5=t 2+6t ff (x)的解析式是f (x)=x 2+6x.方法二:因为 f (x-1)=x 2+4x- 5=(x-1)2+6 (x-1),所以 f(x)=x 2+6x. 所以f (X )的解析式是f (X )二x2+6x.A. f (x) =x 2+6xC. f (x) =x 2+2x-3 B. f (x) =x 2+8x+7 D. f (x) =x 2+6x-10类型三函数的图象及其应用【典例】作出下列函数的图象:(1)y=2x+l, x G [0, 2]・(2)y=x2-2x, x E [0, 3) •(3)y=.【解题探究】典例中可以使用什么方法来画函数图象? 提示:典例中函数的图象可通过描点法来画.1X【解析】⑴当x=0时"二1;当x=2时"二5・所画图象如图(1)所示.⑵因为0<x<3f所以这个函数的图象是抛物线y=x2-2x介于0«xv3 之间的一部分,如图(2)所示.⑶函数图象如图⑶所示・图(1)----------- i―I——>0 2 X图⑵图⑶【方法技巧】描点法作函数图象的步骤及关注点(1)步骤:①列表:取自变量的若干个值,求出相应的函数值,并列表表示;②描点:在平面直角坐标系中描出表中相应的点;③连线:用平滑的曲线将描出的点连接起来,得到函数图象・(2)关注点:①画函数图象时首先关注函数的定义域,即在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等•要分清这些关键点是实心点还是空心点.【变式训练】作出函数尸x2-2x-2, xG [0, 3]的图象并求其值域.【解析】因为y=(x-l)2-3f所以函数y二x^2x・2的对称轴为x=4顶点为(1厂3)涵数过点(0厂2)®),具图象如图所示.由图象知函数的值域为[乜1]・• -1 - •【补偿训练】画出函数图象:y=x2-2, xWZ且|x| W2・【解析】因为y=x2・2,xwZ且|x|s2,所以x二・2厂:L,0丄2;对应y的值为2・—2厂12图象如图:\y■-2 -1 0 1 2*■2r • -1 - •易错案例换元法求函数解析式【典例】已知f (x 2+2) =x 4+4x 2,则f (x)的解析式为_严识$【失误案例】 【错解分析】分析解题过程,你知道错哪里吗?)专牛十44,d'化力十? mt"提示:错误的根本原因是忽略了函数f(x)的走义域上面的解法看上去似乎是无懈可击撚而从具结论间f(x)二x?・4来看,并未注明f(x)的走义域,那么按一般理解,就应认为直走义域是全体实数.但是f(x)=x2・4 的定义域不是全体实数.【自我矫正】因为f(x2+2)=x4+4x2=(x2+2)2・4, 令t=x2+2(tn2),则f (t)=t2-4(t>2)f所以f(x)=x2・4(xn2).答案:f(x)=x2-4(x>2)【防范措施】关注换元法求函数解析式时对定义域的要求任何一个函数都由定义域、值域和对应关系f三要素组成•所以, 当函数f (g (x)) 一旦给出,则其对应关系f就已确定并且不可改变,那么f的“管辖范围”(即g(x)的值域)也就随之确定•因此,我们由f (g (x))求f (x)时,求得的f (x)的定义域就理应与f (g (x))中的f的“管辖范一致才妥. 围”课时撮井作此/点击进入Word版可编辑套题。
人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)
PART 03
合作探究·攻重难
TO WORK TOGETHER TO FIND OUT WHAT'S GOING ON
高中数学精品系列课件
[合作探究· 攻重难]
函 数表 示 法的 选 择
例1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图
象法、解析法表示出来. [解] ①列表法如下:
高中数学精品系列课件
[解] (1)不能用解析法表示,用图象法表示为宜. 在同一个坐标系内画出这四个函数的图象如下:
人教版高中数学必修一精品课件
高中数学精品系列课件
(2)王伟同学的数学成绩始终高于班级平均水平, 学习情况比较稳定而且成绩优秀, 张城同学的数学成绩 不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学成绩低于班级平均水平, 但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
优点
缺点
①简明、全面地概括了变量间的关系;②可以通过解析式求出任意
解析法
不够形象、直观
一个自变量所对应的函数值
列表法 不通过计算就可以直接看出与自变量的值相对应的函数值
一般只能表示部分自变量的函数值
直观、形象地表示出函数的变化情况,有利于通过图形研究函数的 只能近似地求出自变量所对应的函数值,有时误
人教版高中数学必修一精品课件
高中数学精品系列课件
图象的画法及应用
例2作 出 下 列 函 数 的 图 象 并 求 出 其 值 域 . 2
(1)y= - x, x∈ {0,1, - 2,3}; (2)y=, x∈ [2, + ∞ ); (3)y= x2+ 2x, x∈ [- 2,2). x
[解] (1)列表
人教版必修一1.2.2函数的表示法课件
[导入新知]
[化解疑难]
三种表示方法的优、缺点比较
优点
缺点
解 析 法
一是简明、全面地概括了变量 间的关系;二是可以通过解析 式求出任意一个自变量所对应 的函数值
不够形象、直观,而且并 不是所有的函数都可以用 解析式表示
列 表 法
不通过计算就可以直接看出与 自变量的值相对应的函数值
例:求下列函数的解析式: (1)已知f1+x x=1+x2x2+1x,求f(x); (2)已知f( x+1)=x+2 x,求f(x).
解:(1)法一:(换元法) 令t=1+x x=1x+1,得x=t-1 1,则t≠1. 把x=t-1 1代入f1+x x=1+x2x2+1x,得
f(t)=1+ 1t-112 2+
y 0 -1 0 3
8
画图象,图象是抛物线y=x2+2x在-2≤x≤2之间的部分.
由图可得函数的值域是[-1,8].
[类题通法] 1.作函数图象的三个步骤 (1)列表.先找出一些有代表性的自变量x的值,并计算出与 这些自变量相对应的函数值f(x),用表格的形式表示出来. (2)描点.把第(1)步表格中的点(x,f(x))一一在坐标平面上描 出来. (3)连线.用平滑的曲线把这些点按自变量由小到大的顺序连 接起来. [注意] 所选的点越多画出的图象越精确,同时所选的点应 该是关键处的点.
s_t函数图象与故事情节相吻合的是
()
解析:由于兔子中间睡了一觉,所以有一段路程不变,而乌龟的 路程始终在增加且比兔子早到终点,故选B. 答案:B
2.函数y=f(x)的图象如图,则f(x)的定义
域是
()
A.R
B.(-∞,1)∪(1,+∞)
1.2.2. 函数的表示法
列表法: 笔记本数x 1 2 3 4 5
钱数y
5 10 15 20 25
图象法:
y
25
.
20
.
15
.
10
.
5.
O1 2 3 4 5
x
问题:你认为三种表示法各自特点是什么? 能举例说明吗?
解析法特点:清楚,精确 (是中学研究函数的主要表达方法)
图象法特点:形象、直观
列表法特点:直接看出对应函数值
例2 下表是某高一(1)班三名同学在高一 学年六次数学测试的成绩及班级平均分表
高一(1)班三位同学在高一学年度几次数学测试的成绩
及班级平均分表
第一次 第二次 第三次 第四次 第五次 第六次 平均分 方差
王伟
98
87
91
92
88
95 91.83333 14.47222
张城
1.回顾:函数Leabharlann 概念设A,B是非空的数集,如果按照某种确定的 对应关系f ,对于集合A中的任何一个数x, 在集 合B中都有唯一确定的数 f(x) 与之对应, 那么
就称f:A→B为从集合A到集合B的一个函数.
自变量的范围是函数的定义域A,函数值的范 围是函数的值域,值域是B的子集。
函数的三要素: 定义域 、值域、对应关系f
90
76
88
75
86
80
82.5 33.91667
赵磊
68
65
73
72
75
82
72.5 28.91667
班平均分 88.2
78.3
85.4
80.3
75.7
82.6
【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)
第一章 集合与函数概念1.2.2 函数的表示法一、选择题1.若()()20(0)x x f x x x ⎧≥=⎨-<⎩,,,则f [f (–2)]=A .2B .3C .4D .5【答案】C【解析】∵–2<0,∴f (–2)=–(–2)=2.又∵2>0,∴f [f (–2)]=f (2)=22=4,故选C .2.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点.用S 1和S 2分别表示乌龟和兔子经过时间t 所行的路程,则下列图象中与故事情节相吻合的是A .B .C .D .【答案】D3.已知函数f (x +1)=3x +2,则f (x )的解析式是A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x–1 D.f(x)=3x+4【答案】C【解析】设t=x+1,∵函数f(x+1)=3x+2=3(x+1)–1,∴函数f(t)=3t–1,即函数f(x)=3x–1,故选C.4.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个B.1,2 C.2 D.无法确定【答案】A【解析】映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,可得b的象为1或2,故选A.5.若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为A.1 B.–1 C.–32D.32【答案】B【解析】∵f(x)满足关系式f(x)+2f(1x)=3x,分别令x=2,和x=12,得()()12262132222f ff f⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩①②,①–②×2得–3f(2)=3,∴f(2)=–1,故选B.6.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【答案】D7.已知f(x–2)=x2–4x,那么f(x)=A .x 2–8x –4B .x 2–x –4C .x 2+8xD .x 2–4【答案】D【解析】由于f (x –2)=x 2–4x =(x 2–4x +4)–4=(x –2)2–4,从而f (x )=x 2–4.故选D . 8.国内某快递公司规定:重量在1000 g 以内的包裹快递邮资标准如下表:运送距离x (km ) 0<x ≤500 500<x ≤10001000<x ≤15001500<x ≤2000… 邮资y (元)5.006.007.008.00如果某人从北京快递900 g 的包裹到距北京1300 km 的某地,他应付的邮资是 A .5.00元B .6.00元C .7.00元D .8.00元【答案】C【解析】邮资y 与运送距离x 的函数关系式为 5.00(0500)6.00(5001000)7.00(10001500)8.00(15002000)x x y x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,∵1300∈(1000,1500],∴y =7.00,故选C .9.已知函数()()()32121x x f x x x x ⎧>⎪=⎨-+≤⎪⎩.若()54f a =-,则a 的值为A .12-或52B .12或52C .12-D .12【答案】C【解析】当a >1时,f (a )=3514a >≠-,此时a 不存在,当a ≤1,f (a )=–a 2+2a =–54,即4a 2–8a –5=0,解可得a =–12或a =52(舍),综上可得a =12-,故选C .10.已知函数f (x )=()20(0)x x x x ⎧≥⎨<⎩,,,则f (f (–2))的值是A .2B .–2C .4D .–4【答案】C【解析】∵已知函数()()20(0)x x f x x x ⎧≥=⎨<⎩,,,∴f (–2)=(–2)2,∴f (f (–2))=f (4)=4,故选C .二、填空题11.已知f+1)=x,则f (x )=__________.【答案】x 2–1,(x ≥1)【解析】∵()12fx x x +=+=x +2x +1–1=(x +1)2–1,∴则f (x )=x 2–1,(x ≥1).故答案为:x 2–1,(x ≥1).12.已知f (x +1)=2x 2+1,则f (x –1)=__________.【答案】2x 2–8x +9【解析】设x +1=t ,则x =t –1,f (t )=2(t –1)2+1=2t 2–4t +3,f (x –1)=2(x –1)2–4(x –1)+3=2x 2–4x +2–4x +4+3=2x 2–8x +9.故答案为:2x 2–8x +9. 13.已知f (x +1)=x 2,则f (x )=__________.【答案】(x –1)2【解析】由f (x +1)=x 2,得到f (x +1)=(x +1–1)2,故f (x )=(x –1)2.故答案为:(x –1)2. 14.已知函数f (x )=ax –b (a >0),f (f (x ))=4x –3,则f (2)=__________.【答案】3三、解答题15.()()()11032f x kx b f f =+==-,,,求f (4)的值. 【解析】∵()()()11032f x kx b f f =+==-,,,∴0132k b k b +=⎧⎪⎨+=-⎪⎩,解得k =–14,b =14, ∴f (x )=–14x +14,∴f (4)=–14×4+14=–34.16.二次函数f (x )满足f (x +1)–f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[–1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【解析】(1)由题意,设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而f (x +1)–f (x )=[a (x +1)2+b (x +1)+c ]–(ax 2+bx +c )=2ax +a +b , 又f (x +1)–f (x )=2x ,∴220a a b =⎧⎨+=⎩即11a b =⎧⎨=-⎩,又f (0)=c =1, ∴f (x )=x 2–x +1.17.已知函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩(1)在坐标系中作出函数的图象; (2)若f (a )=12,求a 的取值集合. 【解析】(1)函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩的图象如下图所示:(2)当a ≤–1时,f (a )=a +2=12,可得:a =32-;当–1<a <2时,f (a )=a 2=12,可得:a =22±;当a ≥2时,f(a )=2a =12,可得:a =14(舍去); 综上所述,a 的取值构成集合为{32-,22-,22}.18.(1)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭,求f (x ). (2)已知21f lgx x ⎛⎫+=⎪⎝⎭,求f (x ). (3)已知f (x )是一次函数,且满足3f (x +1)–2f (x –1)=2x +17,求f (x ). (4)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x ). 【解析】(1)∵3331111()3f x x x x x x x x ⎛⎫⎛⎫+=+=+-+ ⎪ ⎪⎝⎭⎝⎭, ∴f (x )=x 3–3x (x ≥2或x ≤–2).(2)令21t x +=(t >1), 则21x t =-,∴()21f t lg t =-,∴()()211f x lg x x =->.19.已知函数f (x )=1+2x x -(–2<x ≤2),用分段函数的形式表示该函数.【解析】f (x )=1+1021202x x x x x ≤≤-⎧=⎨--<<⎩,,.。
1.2.2函数的表示法1
例3、某质点在30s内运动速度vcm/s是时间t
的函数,它的图像如下图.用解析式表示出这
个函数, 并求出9s时质点的速度.
解:解析式为
v 30
t+10, 0≤t<5
v (t)=
3t, 5≤t<10 30, 10≤t<20 10 -3t+90,20≤t≤30
t
t=9s时,v(9)=3×9=27(cm/s)O 10 20 30
.....
5
012345
x
注意:用解析法表示函数一定要写出自变量的取 值范围
函数的定义域是函数存在的前提,在写函数解析式 的时候,一定要写出函数的定义域。
用描点法画函数图象的一般步骤是什么?本题中的图象为 什么不是一条直线?
列表、描点、连线(视其定义域决定是否连线)
函数的图象既可以是连续的曲线,也可以是直线、 折线、离散的点等。
值变化的趋势,有利我们通过图象研究函数的某
些性质。
列表法 列表法:列出表格表示两个变量的函数关系 例:平方表,平方根表,三角函数表,银行的 利息表
下表也是表示函数关系.
我国国内生产总值(单位:亿元)
年份 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
赵磊 68 65 73 72 75 82 较三个人的成绩高
低? 班级平均 分
88.2
78.3
85.4
80.3
75.7
82.5
y
王伟
100
张城
90
80
赵磊
班级平均分
70
60
0 1 2 3 4 5 6x
例5、画出函数y=|x|的图象.
1.2.2函数的表示法
列车时刻表
函数的表示法
对于一个具体问题,要根据研究方向 的需要来选择恰当的方法表示问题中的函 数关系.
函数的三种表示法的优点:
1、解析法有两个优点:一是简明、全面地概括了变 量间的关系;二是可以通过解析式求出任意一个自 变量的值所对应的函数值。 2、图象法的优点是直观形象地表示自变量的变化, 相应的函数值变化的趋势,有利我们通过图象研究 函数的某些性质。 3、列表法的优点是不需要计算就可以直接看出与 自变量的值相对应的函数值。
h 130 t 5 t 2(*)
函数的表示法 问题:
在初中我们已经接触过函数的三种表示法:解 析法、图象法和列表法.你能分别说说这三种表示 方法吗? 就是用图象表示两个变量之间的对 应关系,如前面的实例(2). 实例2
曲线显示南极上空臭氧 层空洞的面积从1979~2001 年的变化情况.
函数的表示法 问题:
例2:某市某条公交线路的总里程是20公里,在 这条线路上公交车“招手即停”,其票价如下: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里按照5公里计算).
思考3:该函数用列表法怎样表示?
里程x (0,5] (5,10] (10,15](15,20] (公里) 票价y 2 3 4 5 (元)
函数的表示法 思考二:比较三种表示法,它们各自的特点是
什么?并试着再举出一些用这三种方法分别表示函数 的实例. 图象法:就是用函数图象表示两个变量之间的关 系.
股市走势图
函数的表示法 思考二:比较三种表示法,它们各自的特点是
什么?并试着再举出一些用这三种方法分别表示函数 的实例. 列表法:就是列出表格来表示两个变量的函数关 系. 优点:不需要计算就可以直接看出自变量的值相 对应的函数值,表格法在实际生产和生活中有广泛的 利用.如银行利率表、列车时刻表等.
(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)
的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.
高中数学 1.2.2.1函数的表示法课件 新人教版必修1
变量的值 并不是所有的函 点 少的有限值的对
所对应的 数都能用解析式 应关系
函数值 表达出来
3.作出函数y=x2-3,x∈{-2,-1,0,1,2,3}的图象. 提示:函数的图象是一些离散的点,图象如图所示:
1.求函数的解析式的常用方法有 (1)代入法:如已知f(x)=x2-1,求f(x+x2)时,有f(x+ x2)=(x2+x)2-1. (2)待定系数法:已知f(x)的函数类型,要求f(x)的解析 式时,可根据类型设其解析式,确定其系数即可.
【解析】 利用函数的定义作出判断.
【解】 (1)填表如下: 洗衣次数n 5 8 12 13 16 洗衣费c/元 20 32 48 48 60
(2)由n=12,13时,c=48可知,次数n与费用c是一个 “多对一”的对应,根据函数的定义,只能是“费用c是次 数n的函数”.
通法提炼 用列表法表示函数,不需要经过计算,就可以直接看 出与自变量的值相对应的函数值,但它只能表示自变量个 数较少的函数关系,而且从表中不易看出自变量与函数间 的对应关系,也不能直观反映函数值的变化规律.
【解析】 列表 ⇒ 描点 ⇒ 用平滑曲线连成图象 ⇒观 察,图象 求得值域 .
(1)已知反比例函数f(x)满足f(3)=-6,则函数f(x)= ________.
解析:设f(x)=kx(k≠0),则f(3)=3k=-6,k=-18, ∴f(x)=-1x8.
答案:-1x8
(2)已知fx+1x=x2+x12,则f(x)=________. 解析:∵fx+1x=x2+x12=x2+2·x·1x-2+1x2=x+1x2 -2,∴f(x)=x2-2.
第一章
集合与函数的概念
人教版高中数学必修一1.2.2函数的表示法ppt课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
1
x ,x≥0, Y=
-x ,x<0.
y 5
4 3 2
1
0
5 10 15 20 x -3 -2 -1
01 2
3
例6:画出函数y=|x|的图象。
解:由绝对值的概念,我们有
x ,x≥0,
y
Y=
5
-x ,x<0.
4
3
2
所以,函数y=|x|的图象如右图所示
1
-3 -2 -1 0 1 2
规律总结
求分段函数的函数值,要先确定要求值的自变量属 于哪一段区间,然后代入该段的解析式求值,当出
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
1950 1955 1960 1970 1975 1980 1985
时
例5 下表是某校高一(1)班三名同学在高一学年度六次数 测试的成绩及班级平均分表。
解:从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学的 成绩变化情况。如果将“成绩”与“测试时间”之间的关系用函数图象表示出来 如下表,那么就能比较直观地看到成绩变化地情况。这对我们地分析很有帮助。
定系数法求解.
【解析】设f(x)=ax+b(a≠0),
则f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b=4x+3,
高中新课程数学(新课标人教A版)必修一《1.2.2 函数的表示法》课件
人 教 A
解:(1)∵f(x+1x)=x3+x13=(x+1x)3-3(x+1x), ∴f(x)=x3-3x(x≥2 或 x≤-2).
版
(2)设 f(x)=ax+b(a≠0),
必 修 一
则 3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b =ax+b+5a=2x+17,
·
∴a=2,b=7,∴f(x)=2x+7.
A
对应 关系,这种表示方法叫做解析法,这个数学
版
必 表达式叫做函数的解析式.
修
一
·
新 课 标
·
数 学
温馨提示:解析法有两个优点:一是简明、全面地概
人 教
括了变量间的变化规律,二是可以通过解析式求出任意一
A 个自变量所对应的函数值.缺点是并不是任意函数都可用
版 必 解析法表示,仅当两个变量间有变化规律时,才能用解析
A
版
()
必 修
A.同一函数
一
B.定义域相同的两个函数
·
新
C.值域相同的两个函数
课 标
D.图象相同的两个函数
·
数
解析:y=f(x)与y=f(x+1)的自变量发生变化,而函数
学 的值域却没发生变化,故选C.
答案:C
2.可作为函数y=f(x)的图象的是
()
人 教
解析:判断图象是否可以表示函数y=f(x)的图象,关
人
教
A
版
必
修
一
高中新课程数学(新课标人教A版)必修一《1.2.2 函数的 表示法》课件
新 课 标
·
·
数 学
人 教 A 版 必 修 一
·
新
人教A版数学必修一1.2.2函数的表示法(一).pptx
此函数关系除了用图表之外,能否用其他 方法表示?
解:可以用图象法表示:
解:可以用图象法表示:
y 1.5 1.0 0.5
O 1 234 5 67 8 9 x
解:也可以用解析式法表示为:
解:也可以用解析式法表示为:
0.5, y 1, 1.5,
x {1, 2, 3} , x {4, 5, 6} , x {7, 8, 9} .
y
O
x
3. 图象法:
用函数图象来表示两个变量之 间的关系.
如: 一次函数的图象是一条直线; 如函数 y=kx+b (k<0、b>0)
y
优点:直观形象.
O
x
想一想
想一想 1)所有的函数都能用解析法表示吗?
想一想
1)所有的函数都能用解析法表示吗? 2)所有的函数都能用列表法表示吗?
想一想
1)所有的函数都能用解析法表示吗? 2)所有的函数都能用列表法表示吗? 3)所有的函数都能用图象法表示吗?
优点:函数关系清楚, 便于研究 函数性质.
2. 列表法: 列出表格来表示两个变量的关系.
2. 列表法:
列出表格来表示两个变量的关系.
如:平方表,平方根表,汽车、 火车站的里程价目表、银行里的 “利率表”等等.
2. 列表法:
列出表格来表示两个变量的关系.
如:平方表,平方根表,汽车、 火车站的里程价目表、银行里的 “利率表”等等.
分段函数的定义
分段函数的定义
函数在它的定义域中,对于自变量 x 的不同取值范围,对应关系不同,这 种函数通常称为分段函数.
分段函数的定义
函数在它的定义域中,对于自变量 x 的不同取值范围,对应关系不同,这 种函数通常称为分段函数.
数学人教A版必修一1.2.2函数的表示法
并分别注明各部分的自变量的取值情况1,分段函数是一个函数,
不要把它误认为是几个函数. ③分段函数的定义域是各段定义域的并0 集,值5 域是10各段15值域20的并x 集.
④如果分段函数具有实际背景, 定义域应考虑其实际意义;
例7.以下给出的对应是不是从集合A到B的映射?
(3)集合A={x|x是三角形},集合B={x|x是圆}, 对应关系f:每一个三角形都对应它的内切圆;
f : A B是集合A到集合B的映射
(4)集合A={x|x是新华中学的班级}, 集合B={x|x是新华中学的学生}, 对应关系f:每一个班级都对应班里的学生; f : A B不是集合A到集合B的映射
如果某条线路的总里程为20公里y,请根据题意,写出票
价与里程之间的函数解析式,并5画出函数的图象.
解:设票价为y,里程为x,则根4据题意, 自变量x的取值范围是(0,20] 由“招手即停”公共汽车的3票价的规定规则,
可得到以下函数解析式: 2
2, 0<x ≤ 5
1
3, 5 < x ≤ 10
y=
0
5 4,10 101<5 x ≤ 2105 x
(1)5公里以内(含5公里),票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公
里按5公里计算).如果某条线路的总里程为20公里,请
根据题意,写出票价与里程之间的函数解析式,并画出
函数的图象.
解:设票价为y元,里程为x公里,则根据题意,自变量x
的取值范围是 (0,20].
2, 0<x ≤ 5
5, 15 < x≤20
解:设票价为y,里程为x,则根据题意, 自变量x的取值范围是(0,20]
1.2.2函数的表示法
1.2.2 函数的表示法学习目的:(1)明确函数的三种表示方法;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用;(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.学习重点:函数的三种表示方法,分段函数的概念.学习难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.课堂探究:一、引入课题1.复习:函数的概念;2.常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.二、新课学习1.典型例题例1某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.解:(略)注意:○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2解析法:必须注明函数的定义域;○3图象法:是否连线;○4列表法:选取的自变量要有代表性,应能反映定义域的特征.巩固练习:课本P23练习第1题例2下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80赵磊68 65 73 72 75 82班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:(略)注意:○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;○2本例能否用解析法?为什么?巩固练习:课本P23练习第2题例3画出函数y = | x | .解:(略)巩固练习:课本P23练习第3题拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.说明:象上例中的函数,称为分段函数.注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.2.函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射(mapping).记作“f:A→B”说明:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
1.2.2 函数的表示
轴上的点与它所代表的实数对应;
(2)集合A={P|P是平面直角坐标系中的点},
集合B=
,对应关系f:平面直角坐标
系中的点与它的坐标对应;
(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f :
每一个三角形都对应它的内切圆;
(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中 学的学生},对应关系f :每一个班级都对应班里的学生。
数的对应值。
图象法表示: 25
20
优点:能直观形象地
15
表示出函数的变化情况。
10 5
O 1 234 5
例5、画出函数
的图象。
解:由绝对值的概念,我们有
所以,函数
的图象如下图所示
3 2 1 -3 -2 -1 O 1 2 3
例6、某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足5公里的 按5公里计算)。
映射定义
一般地,我们有: 设A、B是非空集合,如果按照某种确定的对应关系f,
使对于集合A中的任意一个元素x,在集合B中都有唯一确 定的元素y和它对应,那么称f:A→B为从集合A到集合B 的一个映射。
例7、以下给出的对应是不是从集合A到集合B的映射?
(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数
一般地,我们有:
设A、B是非空集合,如果按照某种确
定的对应关系f,使对于集合A中的任意一
个元素x,在集合B中都有唯一确定的元素
y和它对应,那么称f:A→B为从集合A到
集合B的一个映射。
函数定义
一般地,我们有: 设A、B是非空数集,如果按照某种确定的对应关系f,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§1.2.2函数的表示法
教学目的:(1)明确函数的三种表示方法;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用;
(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
教学过程:
一、引入课题
1.复习:函数的概念;
2.常用的函数表示法及各自的优点:
(1)解析法;
(2)图象法;
(3)列表法.
二、新课教学
(一)典型例题
例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;
○2解析法:必须注明函数的定义域;
○3图象法:是否连线;
○4列表法:选取的自变量要有代表性,应能反映定义域的特征.
巩固练习:
——————————————第 1 页(共4页)——————————————
课本P27练习第1题
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:
第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95
张城90 76 88 75 86 80
赵磊68 65 73 72 75 82
班平均分88.2 78.3 85.4 80.3 75.7 82.6
请你对这三们同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;
○2本例能否用解析法?为什么?
巩固练习:
课本P27练习第2题
例3.画出函数y = | x | .
解:(略)
巩固练习:课本P27练习第3题
拓展练习:
任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.
课本P27练习第3题
例4.某市郊空调公共汽车的票价按下列规则制定:
(1)乘坐汽车5公里以内,票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
——————————————第 2 页(共4页)——————————————
——————————————第 3 页 (共 4页)——————————————
分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.
解:设票价为y 元,里程为x 公里,同根据题意,
如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x 的取值范围是{x ∈N *| x ≤19}.
由空调汽车票价制定的规定,可得到以下函数解析式:
⎪⎪⎩⎪⎪⎨⎧=543
2y 19
1515101055
0≤<≤<≤<≤<x x x x (*
N x ∈)
根据这个函数解析式,可画出函数图象,如下图所示:
注意:
○
1 本例具有实际背景,所以解题时应考虑其实际意义; ○
2 本题可否用列表法表示函数,如果可以,应怎样列表? 实践与拓展:
请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)
说明:象上面两例中的函数,称为分段函数.
注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
三、归纳小结,强化思想
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.
四、作业布置
课本P28习题1.2(A组)第8—12题(B组)第2、3题
——————————————第 4 页(共4页)——————————————。