测定低碳钢和铸铁的拉伸力学性能

合集下载

工程力学实验低碳钢和铸铁的拉压实验_4

工程力学实验低碳钢和铸铁的拉压实验_4
移位法测定断后标距长度
13
第13页,共35页,编辑于2022年,星期四
铸铁的拉伸实验
F · 铸铁拉伸时没有屈服阶段,拉
伸曲线微微弯曲,在变形很小
的情况下即断裂,断口为平端 Fb
口。因此对铸铁只能测得其抗 拉强度,即
· 铸铁的抗拉强度远低于低碳 钢的抗拉强度
0
△L
图1-4铸铁拉伸
14
第14页,共35页,编辑于2022年,星期四
· 2. 开机
打开电源开关;启动计算机进入Windos操作系统;点击试验机控制软件,进入 试验机操作界面;按复位按扭使控制系统上电。
15
第15页,共35页,编辑于2022年,星期四
· 3. 系统参数设置 点击“模式设置”选项,选择试验模式--拉伸实验。
· 4. 试验基本参数设置 点击“操作”按扭,进入“试验基本参数”界面,选择变形测
定在1~3的范围内。本次实验采用φ10×15的圆柱形试样。
28
第28页,共35页,编辑于2022年,星期四
四、实验原理
· 试验时对试样缓慢加载,试验机自动绘出压缩图
(即试验力F—位移ΔL曲线)。低碳钢试样压缩图
如图1-5b所示。试样开始变形时,服从胡克定律, 呈直线上升,此后变形增长很快,材料屈服。此 时载荷暂时保持恒定或稍有减小,这暂时的恒定 值或减小的最小值即为压缩屈服载荷FSC。有时 屈服阶段出现多个波峰波谷,则取第一个波谷之后 的最低载荷为压缩屈服载荷FSC。此后图形呈曲线 上升,随着塑性变形的增长,试样横截面相应增 大,增大了的截面又能承受更大的载荷。试样愈 压愈扁,甚至可以压成薄饼形状(如图1-5a所示) 而不破裂,因此测不出抗压强度。
29
第29页,共35页,编辑于2022年,星期四

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告

竭诚为您提供优质文档/双击可除低碳钢和铸铁拉伸实验报告篇一:低碳钢、铸铁的拉伸试验工程力学实验报告实验名称:试验班级:实验组号:试验成员:实验日期:一、试验目的1、测定低碳钢的屈服点?s,强度极限?b,延伸率?,断面收缩率?。

2、测定铸铁的强度极限?b。

3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。

4、熟悉试验机和其它有关仪器的使用。

二、实验设备1.液压式万能实验机;2.游标卡尺三、设备简介万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。

2、测控部分:指示试件所受载荷大小及变形情况。

四、实验原理低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。

低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。

做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。

需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。

大致可分为四个阶段:(1)弹性阶段(ob段)在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量e。

线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其(:低碳钢和铸铁拉伸实验报告)弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

实验一 低碳钢和铸铁拉伸时力学性能的测定

实验一  低碳钢和铸铁拉伸时力学性能的测定

实验一 低碳钢和铸铁拉伸时力学性能的测定一、实验目的1.观察分析低碳钢的拉伸过程,了解其力学性能;绘制拉伸曲线F-△L ,由此了解试样在拉伸过程中变形随载荷的变化规律以及有关物理现象;2.测定低碳钢材料在拉伸过程中的几个力学性能指标:s σ、b σ、δ、ψ;3.了解万能材料试验机的结构原理,能正确独立操作使用。

二、实验设备1.SHT5305拉伸试验机。

2.x —Y 记录仪。

3.游标卡尺。

三、拉伸试样四、实验原理和方法首先将试件安装于试验机的夹头内,之后匀速缓慢加载,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。

1.弹性阶段 是指拉伸图上的OA ´段,没有任何残留变形。

在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例,εσE =。

2.屈服阶段 对应拉伸图上的BC 段。

金属材料的屈服是宏观塑性变形开始的一种标志,是位错增值和运动的结果,是由切应力引起的。

在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。

屈服阶段中一个重要的力学性能就是屈服点,对应的屈服应力为0/A F SL S =σ3.强化阶段 对应于拉伸图中的CD 段。

变形强化标志着材料抵抗继续变形的能力在增强。

这也表明材料要继续变形,就要不断增加载荷。

D 点是拉伸曲线的最高点,载荷为F b ,对应的应力是材料的强度极限或抗拉极限,记为b σ0/A F b b =σ4.颈缩阶段 对应于拉伸图的DE 段。

载荷达到最大值后,塑性变形开始局部进行。

这是因为在最大载荷点以后,形变强化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。

材料的塑性性能通常用试样断后残留的变形来衡量。

轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为%100/001⨯-=l l l )(δ%100/010⨯-=A A A )(ψ式中,l 0、A 0分别表示试样的原始标距和原始面积;l 1、A 1分别表示试样标距的断后长度和断口面积。

拉伸试验报告模板

拉伸试验报告模板

一、实验目的1.测定低碳钢拉伸时的屈服极限s σ、强度极限b σ、伸长率δ和断面的收缩率ψ;测定铸铁的抗拉强度。

2.观察低碳钢拉伸时的屈服和颈缩现象,分析力与变形之间的关系,并绘制拉伸图。

3.对低碳钢和铸铁试样拉伸的断口进行分析。

二、实验仪器设备1.万能试验机。

2.游标卡尺。

3.试样:按GB/228-87《金属拉伸试验方法》的规定制作拉伸试样,如图1-1图1-1圆截面拉伸试样(l = 10d )三、实验原理低碳钢和铸铁拉伸时力学性能的测定低碳钢拉伸过程中材料经历的四个阶段:1、弹性阶段,拉伸图是一条直线。

2、屈服阶段,拉伸图成锯齿状。

电脑屏幕上曲线会上下波动,软件会自动记录屈服载荷,进而可以计算出屈服极限。

3、强化阶段,屈服后,曲线又缓慢上升,这段曲线的最高点,拉力达到最大值——最大荷载P b ,即可计算出抗拉强度极限。

4、颈缩阶段,拉伸图上荷载迅速减小,曲线下滑,试样开始产生局部伸长和颈缩,直至试样在颈缩处断裂。

测量断裂后试样标距的长度和断口处的直径,可计算材料的伸长率和断面的收缩率。

铸铁拉伸过程没有屈服和颈缩现象,伸长率非常小,软件会自动记录最大载荷,进而可以计算出抗拉强度极限。

四、实验内容与步骤(一)低碳钢的拉伸实验1、准备试样。

2、测量试样的直径:并量出试样的标距,打上明显的标记。

在标距中间和两端相互垂直的方向各量一次直径,取最小处的平均值来计算截面面积。

3、试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。

按照“软件使用手册”,运行配套软件。

4、夹持试样。

5、开始实验:按运行命令按钮,按照软件设定的方案进行实验。

6、记录数据:试样断裂后,取下试样,观察分析断口形貌和塑性变形能力,填写实验数据和计算结果。

(二)铸铁拉伸实验1、准备试样(除不确定标距外其余同低碳钢)。

2、准备试验(同低碳钢)。

3、进行实验:按运行命令按钮,按照软件设定的方案进行实验。

4、记录数据:试样断裂后,取下试样,观察分析断口形貌和变形能力,填写实验数据和计算结果。

材料力学低碳钢铸铁拉伸实验报告

材料力学低碳钢铸铁拉伸实验报告

材料力学低碳钢铸铁拉伸实验报告材料力学实验报告实验目的:1.了解和掌握材料拉伸试验的基本原理和操作方法;2.通过拉伸试验获取低碳钢和铸铁的力学性能参数,如抗拉强度、屈服强度、延伸率等;3.分析和对比低碳钢和铸铁的力学性能,并探讨其差异。

实验器材:1.拉伸试验机2.低碳钢和铸铁试样3.卡尺4.万能试验机5.整定尺实验步骤:1.试样制备利用卡尺测量低碳钢和铸铁试样的尺寸。

根据实验要求,制备符合标准的试样。

2.实验装置搭建将试样夹持于拉伸试验机上,确保试样夹持牢固。

3.实验参数设定启动拉伸试验机,设置拉伸速度为固定值。

根据试验标准,设置合适的拉伸速度。

4.开始拉伸试验启动拉伸试验机,进行拉伸实验。

记录试样在拉伸过程中所产生的变形、力值等数据。

5.绘制力与变形曲线利用万能试验机绘制力与变形曲线。

在拉伸试验过程中,通过力传感器和位移传感器实时记录和绘制曲线。

6.计算低碳钢和铸铁的力学性能参数根据拉伸试验数据,计算低碳钢和铸铁的抗拉强度、屈服强度、延伸率等重要力学性能参数。

实验数据:实验结果及分析:1.低碳钢的力学性能参数:通过拉伸试验数据计算得出低碳钢的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。

2.铸铁的力学性能参数:通过拉伸试验数据计算得出铸铁的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。

3.力学性能参数对比及分析:比较低碳钢和铸铁的力学性能参数,并分析其差异。

比如,低碳钢的抗拉强度和屈服强度较高,延伸率较低,说明低碳钢的强度较大,但延展性较差;而铸铁的抗拉强度和屈服强度较低,延伸率较高,说明铸铁的强度相对较低,但延展性较好。

结论:通过本次拉伸实验,我们获取并分析了低碳钢和铸铁的力学性能参数。

通过对比两种材料的实验结果,我们发现它们在抗拉强度、屈服强度和延伸率等方面存在明显差异。

这些数据和结论为进一步研究材料力学性能提供了重要依据。

实验中的不确定因素和改进措施:1.实验设备和试样不同批次或品质的差异可能会对实验结果产生一定影响。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁的拉伸实验报告总结

低碳钢和铸铁的拉伸实验报告总结

低碳钢和铸铁的拉伸实验报告总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!低碳钢和铸铁的拉伸实验报告总结1. 引言在工程领域中,对于材料的性能评估至关重要。

实验一--低碳钢和铸铁拉伸时力学性能的测定讲解学习

实验一--低碳钢和铸铁拉伸时力学性能的测定讲解学习

实验一 低碳钢和铸铁拉伸时力学性能的测定一、实验目的1.观察分析低碳钢的拉伸过程,了解其力学性能;绘制拉伸曲线F-△L ,由此了解试样在拉伸过程中变形随载荷的变化规律以及有关物理现象;2.测定低碳钢材料在拉伸过程中的几个力学性能指标:s σ、b σ、δ、ψ;3.了解万能材料试验机的结构原理,能正确独立操作使用。

二、实验设备1.SHT5305拉伸试验机。

2.x —Y 记录仪。

3.游标卡尺。

三、拉伸试样四、实验原理和方法首先将试件安装于试验机的夹头内,之后匀速缓慢加载,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。

1.弹性阶段 是指拉伸图上的OA ´段,没有任何残留变形。

在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例,εσE =。

2.屈服阶段 对应拉伸图上的BC 段。

金属材料的屈服是宏观塑性变形开始的一种标志,是位错增值和运动的结果,是由切应力引起的。

在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。

屈服阶段中一个重要的力学性能就是屈服点,对应的屈服应力为0/A F SL S =σ3.强化阶段 对应于拉伸图中的CD 段。

变形强化标志着材料抵抗继续变形的能力在增强。

这也表明材料要继续变形,就要不断增加载荷。

D 点是拉伸曲线的最高点,载荷为F b ,对应的应力是材料的强度极限或抗拉极限,记为b σ0/A F b b =σ4.颈缩阶段 对应于拉伸图的DE 段。

载荷达到最大值后,塑性变形开始局部进行。

这是因为在最大载荷点以后,形变强化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。

材料的塑性性能通常用试样断后残留的变形来衡量。

轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为%100/001⨯-=l l l )(δ%100/010⨯-=A A A )(ψ式中,l 0、A 0分别表示试样的原始标距和原始面积;l 1、A 1分别表示试样标距的断后长度和断口面积。

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的.工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能.1、低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ—ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E .线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近.(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。

当材料屈服时,如果用砂纸将试件表面 1打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化.因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(ζs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验低碳钢和铸铁是两种具有不同力学性能的材料,在拉伸和压缩试验中表现出明显的差异。

下面是这两种材料的拉伸和压缩试验的详细介绍。

1.低碳钢低碳钢是一种塑性材料,因此在拉伸试验中,低碳钢的应力-应变曲线呈现出明显的塑性变形阶段。

在弹性阶段,应力与应变成正比,低碳钢的弹性模量约为200-250GPa。

当应力超过弹性极限后,低碳钢进入塑性变形阶段,变形量逐渐增大,但应力增长速度减缓。

在塑性阶段后期,低碳钢发生颈缩现象,局部截面面积减小,应力集中,最终导致试样断裂。

在压缩试验中,低碳钢的应力-应变曲线与拉伸试验类似,但在压缩情况下,不会出现颈缩现象。

由于低碳钢具有较好的塑性,因此其抗压强度高于抗拉强度。

2.铸铁铸铁是一种脆性材料,因此在拉伸试验中,铸铁的应力-应变曲线呈现出明显的脆性断裂特征。

铸铁的弹性模量约为150-200GPa,略低于低碳钢。

在拉伸过程中,铸铁的变形量很小,并且应力增长速度迅速下降。

当应力达到一定值后,铸铁突然断裂,断口呈脆性断裂特征。

在压缩试验中,铸铁的应力-应变曲线也呈现出明显的脆性断裂特征。

铸铁在压缩情况下具有较高的抗压强度,但与低碳钢相比仍然较低。

综上所述,低碳钢和铸铁在拉伸和压缩试验中的表现具有明显的差异。

低碳钢具有较好的塑性和较高的抗拉强度,而铸铁则呈现出脆性断裂特征和较低的抗压强度。

这些差异使得这两种材料在不同的应用场景中有各自的优势和局限性。

在实际工程应用中,应根据具体受力情况和使用要求来选择合适的材料。

例如,对于需要承受较大拉力的结构部件,应选择低碳钢等塑性材料;而对于一些需要承受较大压力且对脆性断裂不敏感的结构部件,铸铁等脆性材料可能更为合适。

此外,对于材料的加工和制造工艺也需要考虑,以充分发挥材料的力学性能并降低成本。

为了获得更准确的结果,实际测试中需要注意以下几点:(1)测试前应对材料进行充分的预处理,以消除材料内部的缺陷和应力;(2)测试过程中应保证试样的尺寸和形状符合标准要求,以确保结果的准确性;(3)在测试过程中应使用合适的加载设备和测试仪器,以确保测试结果的可靠性;(4)测试后应对结果进行分析和处理,以得出材料的力学性能参数和结论。

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告实验目的,通过对低碳钢和铸铁的拉伸实验,探究它们的力学性能和拉伸特性。

实验原理,拉伸试验是通过加载试样,使其在拉伸力的作用下逐渐拉伸,以破坏试样为结束,来确定材料的拉伸性能。

在拉伸试验中,我们通常关注材料的屈服点、抗拉强度、断裂伸长率等参数。

实验步骤,首先,准备好低碳钢和铸铁的试样。

然后,将试样固定在拉伸试验机上,施加逐渐增大的拉伸力,记录拉伸过程中的应力-应变曲线。

最后,观察试样的断裂形态,并计算出材料的力学性能参数。

实验结果,通过拉伸试验得到的应力-应变曲线可以清晰地反映出低碳钢和铸铁的拉伸性能。

从曲线上我们可以看出,低碳钢的屈服点较高,抗拉强度也较大,而铸铁的屈服点较低,但断裂伸长率较高。

这说明低碳钢具有较好的强度和刚性,而铸铁具有较好的韧性。

实验分析,低碳钢和铸铁的力学性能差异主要来自其组织和化学成分的不同。

低碳钢中碳含量较低,具有较细的晶粒和均匀的组织结构,因此具有较高的强度;而铸铁中含有较多的碳和硅等合金元素,使其具有较大的断裂伸长率和较好的耐磨性。

结论,通过本次拉伸实验,我们对低碳钢和铸铁的力学性能有了更深入的了解。

低碳钢具有较好的强度和刚性,适用于要求高强度的场合;而铸铁具有较好的韧性和耐磨性,适用于要求耐磨性能的场合。

在工程实践中,我们可以根据材料的不同特点,选择合适的材料应用于不同的工程领域。

总结,拉伸实验是一种常用的材料力学性能测试方法,通过实验我们可以全面了解材料的力学性能和拉伸特性。

在工程实践中,我们需要根据材料的具体特点,选择合适的材料以满足工程需求,从而保障工程的质量和安全。

希望本次实验能对大家有所启发,谢谢阅读。

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1、低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。

线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。

当材料屈服时,如果用砂纸将试件表面 1打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能标准化管理部编码-[99968T-6889628-J68568-1689N]低碳钢和铸铁在拉伸试验中的力学性能低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段:弹性阶段(OA):试件的变形是弹性的。

在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。

习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即比例系数E代表直线(OA) 的斜率,称作材料的弹性模量。

屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。

这表明材料暂时丧失抵抗继续变形的能力。

这时,应力基本上不变化,而变形快速增长。

通常把下屈服点(Bˊ)作为材料屈服极限ReL。

ReL是材料开始进入塑性的标志。

结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。

因此强度设计时常以屈服极限ReL作为确定许可应力的基础。

从屈服阶段开始,材料的变形包含弹性和塑性两部分。

如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。

如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。

强化阶段的卸载路径与弹性阶段平行。

卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。

这种现象称作为形变强化或冷作硬化。

冷作硬化是金属材料极为宝贵的性质之一。

塑性变形和形变强化二者联合,是强化金属材料的重要手段。

例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。

强化阶段的塑性变形是沿轴向均匀分布的。

随塑性变形的增长,试样表面的滑移线亦愈趋明显。

D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。

对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档