(完整word版)正弦定理练习含答案
正弦定理练习--含答案
课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________. 【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c=()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =b sin B 可得b =a sin Bsin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π. 5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0, 得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2.(2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12.又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC中,已知sin A=sin B+sin Ccos B+cos C,判断△ABC的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.π∴cos A=0,∴∠A=2,∴△ABC为直角三角形.。
高考正弦定理和余弦定理练习题及复习资料
高考正弦定理和余弦定理练习题与答案一、选择题1.已知△中, a=c=2, A=30°, 则b=( )A. B.2C.3.D. +1答案:B解析: ∵a=c=2, ∴A=C=30°, ∴B=120°.由余弦定理可得b=2.2.△中, a= , b= , = , 则符合条件的三角形有( )A.1.B.2个C.3.D.0个答案:B解析: ∵= ,∴<b= <a= ,∴符合条件的三角形有2个.3.(2010·天津卷)在△中, 内角A, B, C的对边分别是a, b, c.若a2-b2= , =2 , 则A=( )A. 30°B. 60°C. 120°D. 150°答案:A解析: 利用正弦定理, =2 可化为c=2 b.又∵a2-b2= ,∴a2-b2= b×2 b=6b2, 即a2=7b2, a= b.在△中, === ,∴A=30°.4. (2010·湖南卷)在△中, 角A, B, C所对的边长分别为a, b, c, 若∠C=120°, c= a, 则( )A. a>bB. a<bC. a=bD. a与b的大小关系不能确定答案:A解析: 由正弦定理, 得= ,∴==>.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5.如果等腰三角形的周长是底边长的5倍, 则它的顶角的余弦值为( )A..B.C..D.答案:D解析: 方法一: 设三角形的底边长为a, 则周长为5a,∴腰长为2a, 由余弦定理知α== .方法二:如图, 过点A作⊥于点D,则=2a, = , ∴= ,∴α=1-22=1-2×=.6.(2010·泉州模拟)△中, = , =1, ∠B=30°, 则△的面积等于( )A..B.C. 或.D. 或解析: ∵= ,∴=·30°=.∴C=60°或C=120°.当C=60°时, A=90°, S△=×1×= ,当C=120°时, A=30°, S△=×1× 30°= .即△的面积为或.二、填空题7. 在△中, 若b=1, c= , ∠C= , 则a=.答案:1解析: 由正弦定理= , 即= , = .又b<c, ∴B= , ∴A= .∴a=1.8.(2010·山东卷)在△中, 角A, B, C所对的边分别为a, b, c.若a = , b=2, += , 则角A的大小为.答案:解析: ∵+= ,∴(B+)=1.又0<B<π, ∴B= .由正弦定理, 知= , ∴= .又a<b, ∴A<B, ∴A= .9.(2010·课标全国卷)在△中,D为边上一点,=,∠=120°,=2.若△的面积为3-,则∠=.答案: 60°解析: S△=×2××=3- ,解得=2( -1),∴=-1, =3( -1).在△中, 2=4+( -1)2-2×2×( -1)×120°=6,在△中, 2=4+[2( -1)]2-2×2×2( -1)×60°=24-12 ,∴= ( -1),则∠=== ,∴∠=60°.三、解答题10.如图, △是等边三角形, ∠=45°, = , A.B.C三点共线.(1)求∠的值;(2)求线段的长.解: (1)∵△是等边三角形, ∠=45°,∴∠=45°+60°,∴∠=(45°+60°)=45°60°+45°60°=.(2)在△中, = ,∴=∠×=×=1+.11.(2010·全国Ⅱ卷)△中, D为边上的一点, =33, = , ∠= , 求. 解: 由∠= >0知B< ,由已知得= , ∠= ,从而∠=(∠-B)=∠-∠=×-×=.由正弦定理得= ,===25.12.(2010·安徽卷)设△是锐角三角形, a, b, c分别是内角A, B, C 所对边长, 并且2A=+2B.(1)求角A的值;(2)若·=12, a=2 , 求b, c(其中b<c).解: (1)因为2A=+2B= 2B- 2B+2B= ,所以=±.又A为锐角, 所以A= .(2)由·=12, 可得=12.①由(1)知A= , 所以=24.②由余弦定理知a2=c2+b2-2, 将a=2 与①代入, 得c2+b2=52, ③③+②×2, 得(c+b)2=100,所以c+b=10.因此c, b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6, b=4.。
高考正弦定理和余弦定理练习题及答案
高考正弦定理和余弦定理练习题及答案一、选择题1. 已知△ABC中,a=c=2,A=30°,则b=A. 错误!B. 2错误!C. 3错误!D. 错误!+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2错误!.2. △ABC中,a=错误!,b=错误!,sin B=错误!,则符合条件的三角形有A. 1个B. 2个C. 3个D. 0个答案:B解析:∵a sin B=错误!,∴a sin B<b=错误!<a=错误!,∴符合条件的三角形有2个.3.2010·天津卷在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=错误! bc,sin C=2错误!sin B,则A=A.30° B.60°C.120° D.150°答案:A解析:利用正弦定理,sin C=2错误!sin B可化为c=2错误!b.又∵a2-b2=错误!bc,∴a2-b2=错误!b×2错误!b=6b2,即a2=7b2,a=错误!b.在△ABC中,cos A=错误!=错误!=错误!,∴A=30°.4.2010·湖南卷在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案:A解析:由正弦定理,得错误!=错误!,∴sin A=错误!=错误!>错误!.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A. 错误!B. 错误!C. 错误!D. 错误!答案:D解析:方法一:设三角形的底边长为a,则周长为5a,∴腰长为2a,由余弦定理知cosα=错误!=错误!.方法二:如图,过点A作AD⊥BC于点D,则AC=2a,CD=错误!,∴sin错误!=错误!,∴cosα=1-2sin2错误!=1-2×错误!=错误!.6. 2010·泉州模拟△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积等于A. 错误!B. 错误!C. 错误!或错误!D. 错误!或错误!答案:D解析:∵错误!=错误!,∴sin C=错误!·sin30°=错误!.∴C=60°或C=120°.当C=60°时,A=90°,S△ABC=错误!×1×错误!=错误!,当C=120°时,A=30°,S△ABC=错误!×1×错误!sin30°=错误!.即△ABC的面积为错误!或错误!.二、填空题7.在△ABC中,若b=1,c=错误!,∠C=错误!,则a=________.答案:1解析:由正弦定理错误!=错误!,即错误!=错误!,sin B=错误!.又b<c,∴B=错误!,∴A=错误!.∴a=1.8.2010·山东卷在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b =2,sin B+cos B=错误!,则角A的大小为________.答案:错误!解析:∵sin B+cos B=错误!,∴sin B+错误!=1.又0<B<π,∴B=错误!.由正弦定理,知错误!=错误!,∴sin A=错误!.又a<b,∴A<B,∴A=错误!.9. 2010·课标全国卷在△ABC中,D为边BC上一点,BD=错误!DC,∠ADB=120°,AD=2.若△ADC的面积为3-错误!,则∠BAC=________.答案:60°解析:S△ADC=错误!×2×DC×错误!=3-错误!,解得DC=2错误!-1,∴BD=错误!-1,BC=3错误!-1.在△ABD中,AB2=4+错误!-12-2×2×错误!-1×cos120°=6,∴AB=错误!.在△ACD中,AC2=4+2错误!-12-2×2×2错误!-1×cos60°=24-12错误!,∴AC=错误!错误!-1,则cos∠BAC=错误!=错误!=错误!,∴∠BAC=60°.三、解答题10. 如图,△OAB是等边三角形,∠AOC=45°,OC=错误!,A、B、C三点共线.1求sin∠BOC的值;2求线段BC的长.解:1∵△AOB是等边三角形,∠AOC=45°,∴∠BOC=45°+60°,∴sin∠BOC=sin45°+60°=sin45°cos60°+cos45°sin60°=错误!.2在△OBC中,错误!=错误!,∴BC=sin∠BOC×错误!=错误!×错误!=1+错误!.11. 2010·全国Ⅱ卷△ABC中,D为边BC上的一点,BD=33,sin B=错误!,cos ∠ADC=错误!,求AD.解:由cos∠ADC=错误!>0知B<错误!,由已知得cos B=错误!,sin∠ADC=错误!,从而sin∠BAD=sin∠ADC-B=sin∠ADC cos B-cos∠ADC sin B=错误!×错误!-错误!×错误!=错误!.由正弦定理得错误!=错误!,AD=错误!=错误!=25.12. 2010·安徽卷设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin错误!sin错误!+sin2B.1求角A的值;2若错误!·错误!=12,a=2错误!,求b,c其中b<c.解:1因为sin2A=错误!错误!+sin2B=错误!cos2B-错误!sin2B+sin2B=错误!,所以sin A=±错误!.又A为锐角,所以A=错误!.2由错误!·错误!=12,可得cb cos A=12.①由1知A=错误!,所以cb=24.②由余弦定理知a2=c2+b2-2cb cos A,将a=2错误!及①代入,得c2+b2=52,③③+②×2,得c+b2=100,所以c+b=10.因此c,b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6,b=4.。
解三角函数:正弦定理习题及详细答案
1.在△ABC 中,A =60°,a =43,b =42,则( ) A .B =45°或135° B .B =135° C .B =45° D .以上答案都不对.以上答案都不对解析:选C.sin B c =2,b =6,B =120°,则a 等于( ) A.6 B .2 C.3 D.2 解析:选D.由正弦定理6sin 120°=2sin C ⇒sin C =12, 于是C =30°⇒A =30°⇒a =c = 2. 3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________. 解析:在△ABC 中,若tan A =13,C =150°, ∴则根据正弦定理知AB =BC ·sin C sin A =102. 答案:1024.已知△ABC 中,AD 是∠BAC D,求证:BD DC =AB AC. 证明:如图所示,设∠ADB =θ,则∠ADC =π-θ. 在△ABD 中,由正弦定理得: BD sin A 2=AB sin θ,即BDAB =sin A2sin θ;① 在△ACD 中,CD sin A 2=ACsin (π-θ),解三角函数:正弦定理=22,∵a >b ,∴B =45°45°. . 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若A 为锐角,sin A =110,BC =1,的平分线,交对边BC 于∴CDAC =sinA2 sin θ.②由①②得BDAB=CDAC,∴BDDC=ABAC. 一、选择题1.在△ABC中,a=5,b=3,C=120°,则sin A∶sin B的值是() A.53 B.35C.37 D.5B=ab=53. 2.在△ABC中,若sin Aa=cos Cc,则C的值为() A.30°B.45°C.60°D.90°解析:选B.∵sin Aa=cos Cc,∴sin Acos C=ac,又由正弦定理ac=sin Asin C. ∴cos C=sin C,即C=45°,故选B. 3.15,b=10,A =60°,则cos B=() A.-223 B.223C.-63D.63解析:选D.由正弦定理得15sin 60°=10sin B,∴sin B=10·10·sin 60°sin 60°15=10×3215=33. ∵a>b,A 7解析:选A.根据根据正弦定理正弦定理得sin A sin (2010年高考湖北卷)在△ABC中,a==60°,∴B为锐角.∴cos B=1-sin2B=1-(33)2=63. 4.在△ABC中,a=b sin A,则△ABC一定是() A.锐角三角形.锐角三角形 B.直角三角形C.钝角三角形.钝角三角形 D.等腰三角形解析:选B.由题意有a sin A =b =bsin 3,a =3,b =1,则c =( ) A .1 B .2 C.3-1 D.3 解析:选 B..两解.两解 B .一解.一解 C .无解.无解 D .无穷多解.无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解.二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________. 解析:AB =sin C sin A BC =2BC=2 5. 答案:25 8.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得: a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶3 在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 解析:由正弦定理,有3sin 2π3=1sin B , B ,则sin B =1,即角B 为直角,故△ABC是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π由正弦定理a sin A =b sin B ,可得3sin π3=1sin B ,∴sin B =12,故B =30°或150°150°. . 由a >b ,得A >B ,∴B =30°30°. . 故C =90°,由,由勾股定理勾股定理得c =2. 6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A9.(2010年高考北京卷)=6,=. =a2R∶b2R∶c2R=×4A=bsin B,得=a sin Bb=×322=534>=532,所以cos(π-cos(π-cos(π2-cos(π2-a·a2Rcos(π2-cos(π2-2.=π15=根据正弦定理正弦定理asin =b·b2R,。
正余弦定理练习题(含答案)[1]
在“ABC 中,0, b, c 分別是角4 8. C 所对的边,若^ = 105% 8=45% 则c=(A. 1C. 2在茲 ABC 中,已知 a=3y[2. cosC=j, Sg=4品 则 b= ____________. 在茲ABC 中,b=4{i, C=30。
,c=2,则此三角形有 ________组解. 如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方 向线的水平转角)为140。
的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110% 航行半小时后船到达C 点,观测灯塔人的方位角是65。
・则货轮到达C 点时,与灯塔A 的距离是多少18. ii :A ABC 中,0、b 、c 分別为角 A 、8. C 的对边•若 a=2晶 sin|cos|=^r sin Bsin C=cos^.求 A 、 6 及 b 、c.19. (2009年高考四川卷)^A ABC 中,久B 为锐角•角久B 、C 所对应的边分別为6 b 、c,且cos 2A= sin ⑴求 A+B 的值:(2)若 o —/?=匹一1,求 a, b, c 的值.20. 'ABC 中,0b=65/5,sin fi=sinC △ ABC 的面枳为 15 羽,求边 b 的长.在AAfiC 中,Z&=45°, ZB=60°, a=2.2. 3. 已知 0=8, S=60°, C=75°, B ・ 45/3 C. 角A 、B 、C 的对边分別为a 、 B ・ 135" 正弦定理练习题则b 等于()D. 2& 则b 等于()4& b. G &=60。
,0=4羽,b=4品则角 5为( D.以上答案都不对 4. 在△ ABC 中, A. 4迈在△ ABC 中, A. 45°或 135° B ・ 135" C・ 45° 在 A ABC 中,o: b : c=i: 5 : 6.贝 IJsiM: sinB : sinC 等于( ) A. 1:5:6 B. 6:5:1 C. 6:1:5解析J 选 A.由正弦定理知 siM : 5in8 : sinC=o : b : c=l : 5 : 6.D-不确泄5. 6. 8.9.10. 在^ ABC 中,若签?=夕,则^ ABC 是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形 己知A ABC 中,AB=E AC=1, Z 8 = 30% 则A ABC 的面积为()或或誓'ABC 的内角A 、B 、C 的对边分别为a 、b. c •若c=迈,b=E S=120\则o 等于( B ・ 2 c"在4 ABC 中,角久B 、C 所对的边分別为6 b 、G 若0=1, c=Ql C 岭 则A=_ 已知 a=響,fa=4,4 = 30% 则 sin8= _____________________________________ .li:A ABC 中,11. 12. 在茲ABC 中, 在4 ABC 中, 已知ZA=30°, Z S = 120\ 6=12,贝I] o+c=o=2facosC,贝ijA^fiC 的形状为 ________ • 13.14- 在△AB C 中,人= 60°, O = 6A /3, 6=12, S“8c=18 羽,则;;活三篇行花a — 2b + cc —已知"阮中,ZA :ZB :Z C=l: 2:3. a-1,则 sM_2sinB+sinC15. 16. 17.2.3. 4. 5. 6- 1. 8. 9. 10. 11. 12. 13. 14- IS 16. 17. 余弦定理练习题在“ABC 中,如果BC=6, AB=4, cosB=p 那么AC 等于( A. 6 B. 2& C ・ 3yf6 在A ABC 中,0=2, C=30\ 则 c 等于( D. 2 在AAfiC 中,Q2=b2+s+羽be.则ZA 等于( ) A. 60° B ・ 45° C ・ 120° 在4 ABC 中,厶A 、Z 8、ZC 的对边分别为6 b 、c, T 、5n 2n riv tfV 以6 以3 在A ABC 中,0、b 、c 分别是A 、B 、C 的对边,则a cosB+bcosA 等于( A. o B. b C ・c D.以上均不对D. 150" 若(a^+c^—b2)tanB=dlac,则Z B 的值为( 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为() A-锐角三角形 B.直角三角形 C.钝角三角形 D ・由增加的长度决;4^ 已知锐角三角形A3C 中,I 為1=4, I 為1=1., A- 2 B. -2 C. 4在4 ABC 中,b=y[3, c=3, 0=30。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
正弦定理练习题(含答案)
A.6B.2 3 6 应用正弦定理得:=,求得== 6. 42 43 46 D.32 = 6. 3,42,则角由正弦定理=得:==2,又∵=2,则B.1 D.1 ,由=得=2×2×sin 30°sin 30°=中,若cos A =,则△∵=sin B ,∴cos A =sin B ,π. =3A.3 B.3C.3或3 D.3或3 D.=,求出=3,∵1AB =2,6A.6 C.3 D.2 由正弦定理得6=2, =1. = 2. 3,π,则A =c sin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×12×sin30°sin30°sin120°=43,∴a +c =8 3. 答案:83 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得,得2R sin A =2·2·22R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C . 答案:等腰三角形答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×12×sin60°sin60°sin60°××c =183, ∴c =6. 答案:12 6 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C , ∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C =2R =2. 答案:2 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:由解析:由正弦定理正弦定理得:a sin解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3. 答案:23 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.,∴此三角形无解.答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?=BC ·sin ∠ABCsin A =20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是102 2 km. km. 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值. 解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°140°))+65°=105°, 所以∠A =180°-(30°+105°105°))=45°, 由正弦定理得AC=10,=1-sin 2B =310. =3,∴=5,25,25×310-5×10=2. =π4. 3π4,∴=2A =b sin B =c sin C 得5a =10b =2c ,即a =2b ,c =5b ∵a -b =2-1,∴2b -b =2-1,∴=2,c = 5. ABC 中,ab =603,153,求边=1153=1603×3×sin =12,∴∠603,a sin A =b sin B ,∴215. 215. 2. :a sin 。
高中数学苏教版必修5学案:1.1.2 正弦定理(2) Word版含解析
第2课时正弦定理(2)1.利用正弦定理判断三角形的形状,计算三角形的面积.(重点) 2.正弦定理与三角恒等变换的综合应用.(难点)3.利用正弦定理解题时,忽略隐含条件而致误.(易错点)[基础·初探]教材整理正弦定理的应用阅读教材P9~P12,完成下列问题.1.正弦定理的深化与变形(1)asin A=bsin B=csin C=________=________.(2)a=________,b=________,c=________.(3)ab=________,ac=________,bc=________.(4)a∶b∶c=________:________:________.【答案】(1)2Ra+b+csin A+sin B+sin C(2)2R sin A2R sin B2R sin C(3)sin Asin Bsin Asin Csin Bsin C(4)sin A sin B sinC2.三角形面积公式S△ABC=________=________=________.【答案】12ab sin C12bc sin A12ac sin B判断(正确的打“√”,错误的打“×”)(1)在有些三角形中,a =sin A ,b =sin B ,c =sin C .( ) (2)在△ABC 中,asin A =b +c sin B +sin C.( )(3)在△ABC 中,a =2,b =1,C =30°,则S △ABC =1.( )【解析】 由正弦定理a sin A =b sin B =c sin C 可知(1),(2)正确;又S △ABC =12×2×1×sin 30°=12,故(3)错误.【答案】 (1)√ (2)√ (3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________ 疑问4:_________________________________________________ 解惑:_________________________________________________[小组合作型]在△c ,且B =30°,c =23,b =2,求△ABC 的面积S .【精彩点拨】 先求C ,再求A ,最后利用S △ABC =12bc sin A 求解. 【自主解答】 由正弦定理得sin C =c sin B b =23sin 30°2=32.又∵c >b ,∴C=60°或C=120°.当C=60°时,A=90°,∴S=12bc sin A=23;当C=120°时,A=30°,∴S=12bc sin A=3,∴△ABC的面积S为23或3.求三角形的面积,要充分挖掘题目中的条件,转化为求两边或两边之积及其夹角正弦的问题,要注意方程思想在解题中的应用.另外也要注意三个内角的取值范围,以避免由三角函数值求角时出现增根错误.[再练一题]1.在△ABC中,cos A=-513,cos B=35.(1)求sin C的值;(2)设BC=5,求△ABC的面积.【导学号:91730004】【解】(1)在△ABC中,0<A<π,0<B<π,A+B+C=π,由cos A=-513,得sin A=1213,由cos B=35,得sin B=45,∴sin C=sin(A+B)=sin A cos B+cos A sin B=1213×35+⎝⎛⎭⎪⎫-513×45=1665.(2)在△ABC中,由正弦定理得,AC=BC×sin Bsin A=5×451213=133,∴S△ABC=12×BC×AC×sin C=12×5×133×1665=83.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 【精彩点拨】 根据正弦定理可以把问题转化为角的问题,借助三角恒等变换知识化简得到角与角的等量关系,再进一步判断.【自主解答】 由已知得a 2sin B cos B =b 2sin Acos A . 由正弦定理得sin 2 A sin B cos B =sin 2 B sin Acos A , 即sin A cos A =sin B cos B ,亦即sin 2A =sin 2B . ∴2A =2B 或2A =π-2B , ∴A =B 或A =π2-B ,∴△ABC 为等腰三角形或直角三角形或等腰直角三角形.根据边角关系判断三角形形状的途径根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦定理实施边、角转换.[再练一题]2.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.【解】 法一:在△ABC 中,根据正弦定理:a sin A =b sin B =csin C =2R . ∵sin 2A =sin 2B +sin 2C ,∴⎝ ⎛⎭⎪⎫a 2R 2=⎝ ⎛⎭⎪⎫b 2R 2+⎝ ⎛⎭⎪⎫c 2R 2,即a 2=b 2+c 2. ∴A =90°,∴B +C =90°.由sin A =2sin B cos C ,得sin 90°=2sin B cos(90°-B ),∴sin 2B =12,∵B 是锐角,∴sin B =22,∴B =45°,C =45°. ∴△ABC 是等腰直角三角形. 法二:在△ABC 中,根据正弦定理: sin A =a 2R ,sin B =b 2R ,sin C =c 2R . ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴△ABC 是直角三角形且A =90°. ∵A =180°-(B +C ),sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C , ∴sin B cos C -cos B sin C =0,即sin(B -C )=0,∴B -C =0,即B =C , ∴△ABC 是等腰直角三角形.[探究共研型]图1-1-1【提示】 如图,在B 侧选一条基线BC ,测得BC =a ,∠ABC =α,∠ACB =β,则由正弦定理可知 AB sin β=BCsin (α+β),即AB=BC sin βsin(α+β).探究2你能画出下列各角吗?(1)南偏西30°;(2)仰角30°,俯角45°.【提示】如图1-1-2,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C和D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.图1-1-2【精彩点拨】先求出∠CBD,利用正弦定理求BC,再在△ABC中,求AB.【自主解答】在△BCD中,∠BCD=α,∠BDC=β,∴∠CBD=180°-(α+β),∴BCsin β=ssin[180°-(α+β)],即BCsin β=ssin(α+β),∴BC=sin βsin(α+β)·s.在△ABC中,由于∠ABC=90°,∴ABBC=tan θ,∴AB=BC·tan θ=sin β·tan θsin(α+β)·s.解决实际测量问题的过程一般要充分理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[再练一题]3.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北方向,0.5 h后在B处望见灯塔C在货轮的北偏东30°方向.若货轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的西北方向时,求A,D两处的距离.【解】如图所示,在△ABC中,∠A=45°,∠ABC=90°+30°=120°,∴∠ACB=180°-45°-120°=15°,AB=30×0.5=15(n mile).由正弦定理,得AC sin∠ABC =ABsin∠ACB,∴AC=AB sin∠ABCsin∠ACB=15×sin 120°sin 15°=32+62×15(n mile).在△ACD中,∵∠A=∠D=45°,∴△ACD是等腰直角三角形,∴AD=2AC=15(3+3)(n mile).∴A,D两处之间的距离是15(3+3)n mile. 答:A,D两处的距离为15(3+3)n mile.[构建·体系]1.在△ABC中,AB=3,BC=1,B=30°,则△ABC的面积S△ABC=________.【解析】S△ABC =12×AB×BC×sin B=12×3×1×12=34.【答案】3 42.在△ABC中,若acos A=bcos B=ccos C,则△ABC是________三角形.【解析】由正弦定理asin A=bsin B=csin C=2R可知a=2R sin A,b=2R sin B,c=2R sin C.由acos A=bcos B=ccos C可知tan A=tan B=tan C,即A=B=C,∴△ABC为等边三角形.【答案】等边3.如图1-1-3所示,设A,B两点在河的两岸,一测量者在A的同侧,在A 所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为________ m.【导学号:91730005】图1-1-3【解析】 由题意可知∠ABC =180°-105°-45°=30°,由正弦定理,得AB =AC ·sin ∠ACB sin ∠ABC=50×2212=502(m).【答案】 50 24.在△ABC 中,2a sin A -b sin B -csin C =________. 【解析】 由正弦定理可知a sin A =b sin B =csin C , 故2a sin A -b sin B -csin C =0. 【答案】 05.如图1-1-4,A ,B 是海平面上的两个点,相距800 m .在A 点测得山顶C 的仰角为30°,∠BAD =105°,又在B 点测得∠ABD =45°,其中D 是点C到水平面的垂足.求山高CD .图1-1-4【解】 在△ABD 中,由正弦定理,得 AD =AB sin ∠ABD sin ∠ADB =800sin 45°sin (180°-105°-45°)=8002,在Rt △ACD 中,CD =AD ·tan 30°=8002×33=80063(m). 答:山高CD 为80063 m.我还有这些不足:(1)_________________________________________________(2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________(2)_________________________________________________学业分层测评(二)(建议用时:45分钟)[学业达标]一、填空题1.已知△ABC的面积为3且b=2,c=2,则A=______.【解析】∵S△ABC =12bc sin A,b=2,c=2,∴12×2×2sin A=3,∴sin A=3 2.又A∈(0,π),∴A=π3或2π3.【答案】π3或2π32.海上有A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是________ n mile.【解析】如图所示,易知C =45°,由正弦定理得AB sin C =BC sin A , ∴BC =AB sin Asin C =5 6. 【答案】 5 63.(2016·苏州高二检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________.【导学号:91730006】【解析】 由正弦定理知,b sin B =c sin C ,结合条件得c =b sin Csin B =2 2. 又sin A =sin(π-B -C )=sin(B +C )=sin B cos C +cos B sin C =6+24, 所以△ABC 的面积S =12bc sin A =3+1. 【答案】3+14.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.【解析】 由正弦定理得a sin A =bsin B ,∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0,∴cos A =32. 又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,即△ABC 为直角三角形, 由勾股定理得c =12+(3)2=2. 【答案】 25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2 B -sin 2 Asin 2A的值为________.【解析】 由正弦定理得,原式=2b 2-a 2a 2=2⎝ ⎛⎭⎪⎫b a 2-1=2×⎝ ⎛⎭⎪⎫322-1=72.【答案】 726.(2016·泰州高二检测)在△ABC 中,a =2b cos C ,则这个三角形一定是________三角形.【解析】 由a =2b cos C 可知 sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0, ∴B =C ,∴b =c , ∴△ABC 为等腰三角形. 【答案】 等腰7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B ·cos C +c sin B cos A =12b ,且a >b ,则B =________.【解析】 根据正弦定理将边化角后约去sin B ,得sin(A +C )=12,所以sin B =12,又a >b ,所以A >B ,所以B =π6.【答案】 π68.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.【解析】 设最小角为α,则最大角为120°-α, ∴sin (120°-α)sin α=3+12,∴2sin(120°-α)=(3+1)sin α, ∴sin α=cos α,∴α=45°,∴最大角为120°-45°=75°. 【答案】 75° 二、解答题9.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,求这时船与灯塔的距离.【解】 如图所示,在△ABC 中,∠BAC =30°,∠ACB =105°,∴∠ABC =45°,AC =60.根据正弦定理, 得BC =AC sin ∠BAC sin ∠ABC=60sin 30°sin 45°=302(km).10.在△ABC 中,∠A 的平分线交BC 于D ,用正弦定理证明:AB AC =BDDC . 【证明】 如图,由题意可知,∠1=∠2,∠3+∠4=180°,在△ABD 中,由正弦定理得 AB sin ∠3=BDsin ∠1,① 在△ADC 中,由正弦定理得 AC sin ∠4=DCsin ∠2,②又sin ∠1=sin ∠2,sin ∠3=sin ∠4, 故①②得AB AC =BD DC. [能力提升]1.在△ABC 中,a cos B =bcos A ,则△ABC 的形状一定是________. 【解析】 在△ABC 中,∵a cos B =bcos A ,∴a cos A =b cos B ,由正弦定理, 得2R sin A cos A =2R sin B cos B , ∴sin 2A =sin 2B ,∴2A =2B 或2A +2B =180°, ∴A =B 或A +B =90°.故△ABC 为等腰三角形或直角三角形或等腰直角三角形. 【答案】 等腰或直角三角形或等腰直角三角形2.(2016·南京高二检测)在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,则ab 的取值范围为________.【解析】 在锐角三角形ABC 中,A ,B ,C 均小于90°, 即⎩⎨⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2Bsin B =2cos B ∈(2,3), 故ab 的取值范围是(2,3). 【答案】 (2,3)3.△ABC 中,A =π3,BC =3,则△ABC 的周长为________(用B 表示).【导学号:91730007】【解析】 在△ABC 中,A +B +C =π可知C =2π3-B . 由正弦定理得3sin π3=AB sin ⎝ ⎛⎭⎪⎫2π3-B =ACsin B ,∴AB =23sin ⎝ ⎛⎭⎪⎫2π3-B ,AC =23sin B ,∴△ABC 的周长为AB +AC +BC =23·⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B +3=3+6sin ⎝ ⎛⎭⎪⎫B +π6.【答案】 3+6sin ⎝ ⎛⎭⎪⎫B +π64.(2016·如东高二检测)在△ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.【解】 (1)因为a =3,b =26,B =2A , 所以在△ABC 中,由正弦定理得3sin A =26sin 2A, 所以2sin A cos A sin A =263,故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2 A =33. 又B =2A ,所以cos B =2cos 2 A -1=13, 所以sin B =1-cos 2 B =223. 在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539, 所以c =a sin Csin A =5.。
(完整版)正弦练习题
正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. 6B. 2C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135° B.135° C.45° D.以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sinB ∶sinC 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5D .不确定 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.正弦定理1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( )A. 6B. 2C. 3 D.2 6解析:选A.应用正弦定理得:asin A=bsin B,求得b=a sin Bsin A= 6.2.在△ABC中,已知a=8,B=60°,C=75°,则b等于( )A.4 2 B.4 3 C.4 6 D.32 3解析:选C.A=45°,由正弦定理得b=a sin Bsin A=4 6.3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为( )A.45°或135° B.135° C.45° D.以上答案都不对解析:选 C.由正弦定理asin A=bsin B得:sin B=b sin Aa=22,又∵a>b,∴B<60°,∴B=45°.4.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于( ) A.1∶5∶6B.6∶5∶1C.6∶1∶5 D.不确定解析:选A.由正弦定理知sin A∶sin B∶sin C=a∶b∶c=1∶5∶6.5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=( )A.1 B.12C.2 D.14解析:选 A.C=180°-105°-45°=30°,由bsin B=csin C得c=2×sin 30°sin45°=1.6.在△ABC中,若cos Acos B=ba,则△ABC是( )A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B 即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3 D.34或32解析:选D.AB sin C=AC sin B,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°. 再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3D. 2 解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A=c sin C,所以sin A=a·sin Cc=12.又∵a<c,∴A<C=π3,∴A=π6.答案:π610.在△ABC中,已知a=433,b=4,A=30°,则sin B=________.解析:由正弦定理得asin A=bsin B⇒sin B=b sin Aa=4×12433=32.答案:3 211.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.解析:C=180°-120°-30°=30°,∴a=c,由asin A=bsin B得,a=12×sin30°sin120°=43,∴a+c=8 3.答案:8 312.在△ABC中,a=2b cos C,则△ABC的形状为________.解析:由正弦定理,得a=2R·sin A,b=2R·sin B,代入式子a=2b cos C,得2R sin A=2·2R·sin B·cos C,所以sin A=2sin B·cos C,即sin B·cos C+cos B·sin C=2sin B·cos C,化简,整理,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B=C.答案:等腰三角形13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csin A+sin B+sin C=________,c=________.解析:由正弦定理得a+b+csin A+sin B+sin C=asin A=63sin60°=12,又S△ABC=12bc sin A,∴12×12×sin60°×c=183,∴c=6.答案:12 614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csin A-2sin B+sin C=________.解析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=asin A=1sin30°=2,又∵a=2R sin A,b=2R sin B,c=2R sin C,∴a-2b+csin A-2sin B+sin C=2R sin A-2sin B+sin Csin A-2sin B+sin C=2R=2.答案:215.在△ABC中,已知a=32,cos C=13,S△ABC=43,则b=________.解析:依题意,sin C=223,S△ABC=12ab sin C=43,解得b=2 3.答案:2 316.在△ABC中,b=43,C=30°,c=2,则此三角形有________组解.解析:∵b sin C=43×12=23且c=2,∴c<b sin C,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin∠ABCsin A=20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A2,得 sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得cos B cos C+sin B sin C=1,即cos(B-C)=1,所以B=C=π6,B=C=5π6(舍去),A=π-(B+C)=2π3.由正弦定理asin A=bsin B=csin C,得b=c=a sin Bsin A=23×1232=2.故A=2π3,B=π6,b=c=2.19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.解:(1)∵A、B为锐角,sin B=10 10,∴cos B=1-sin2B=310 10.又cos 2A=1-2sin2A=35,∴sin A=55,cos A=255,∴cos(A+B)=cos A cos B-sin A sin B=255×31010-55×1010=22.又0<A+B<π,∴A+B=π4.(2)由(1)知,C=3π4,∴sin C=22.由正弦定理:asin A=bsin B=csin C得5a=10b=2c,即a=2b,c=5b.∵a-b=2-1,∴2b-b=2-1,∴b=1.∴a=2,c= 5.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.解:由S=12ab sin C得,153=12×603×sin C,∴sin C=12,∴∠C=30°或150°.又sin B=sin C,故∠B=∠C.当∠C=30°时,∠B=30°,∠A=120°.又∵ab=603,asin A=bsin B,∴b=215.当∠C=150°时,∠B=150°(舍去).故边b的长为215.。
2024-2025年人教版必修第四册9.1.1正弦定理(带答案)
9.1.1 正弦定理1.在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A .15 B .59C .53D .1 2.已知△ABC 中,a =2 ,b =3 ,B =60°,那么A 等于( )A .45°B .60°C .120°或60°D .135°或45°3.已知锐角△ABC 的面积为3,BC =4,AC =3,则角C 的大小为( )A .75°B .60°C .45°D .30°4.在△ABC 中,a =1,b =3 ,A =30°,则c =( )A .1B .2C .1或2D .无解5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin B =12,A =120°,且b =2,则△ABC 的面积为( )A .3B .23C .3D .436.在△ABC 中,a =7,b =8,cos B =-17. (1)求角A ;(2)求AC 边上的高.7.(多选)在△ABC 中,下列式子可能成立的是A .a >b sin A B .a <b sin AC .a =b sin AD .b <a sin B8.在△ABC 中,若AB → ·AC → =2且∠BAC =30°,则△ABC 的面积为( )A .3B .23C .33D .233 9.(多选)下列关于正弦定理或其变形的叙述正确的是( )A .在△ABC 中,a ∶b ∶c =sin A ∶sinB ∶sin CB .在△ABC 中,sin 2A =sin 2B ,则a =bC .在△ABC 中,若sin A >sin B ,则A >B ;若A >B ,则sin A >sin BD .在△ABC 中,a sin A =b +c sin B +sin C10.(逻辑推理)在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形11.在△ABC 中,A =60°,a =6 ,b =4,则满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定12.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论成立的是( )A .若A >B ,则sin A >sin BB .若A >B ,则cos A <cos BC .若a cos A =b cos B =c cos C,则a =b =c D .若a cos A =b cos B ,则A =B13.在△ABC 中,已知a 2sin B cos B =b 2sin A cos A,试判断△ABC 的形状.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 所对的边,已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.15.已知△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C +32 c =b . (1)求角A 的大小;(2)若a =1,b =3 ,求c 的值.9.1.1 正弦定理必备知识基础练1.答案:B解析:在△ABC 中,由正弦定理a sin A =b sin B ,得sin B =b sin A a =5×133 =59,故选B.2.答案:A解析:在△ABC 中,∵a =2 ,b =3 ,∴a <b ,∴A <B .又∵B =60°,∴A <60°,由正弦定理a sin A =b sin B ,得sin A =a sin B b=2×323 =22 ,则A =45°或135°(舍),故选A. 3.答案:D解析:S =12 BC ·AC ·sin C =12 ×4×3×sin C =3,∴sin C =12,∵三角形为锐角三角形,∴C =30°.4.答案:C 解析:由a sin A =b sin B ,得sin B =b sin A a =32.∵a <b ,∴B >A =30°.∴B 为60°或120°.①当B =60°时,C =180°-60°-30°=90°.此时,c =a 2+b 2 =1+3 =2.②当B =120°时,C =180°-120°-30°=30°.此时,c =a =1.故选C.5.答案:A解析:∵△ABC 中,sin B =12,A =120°,∴B =30°,∴C =30°,又∵b =2,∴c =b =2.∴S △ABC =12 bc sin A =12 ×2×2×32=3 . 6.解析:(1)∵B 是△ABC 的内角,且cos B =-17, ∴B 为钝角,sin B =437. 由正弦定理a sin A =b sin B 得7sin A =8437 , 即sin A =32 ,∴A =π3.(2)由sin C =sin (A +B )=sin A cos B +cos A sin B =32 ×⎝⎛⎭⎫-17 +12 ×437 =3314, 则AC 边上的高=a ·sin C =7×3314 =332. 关键能力综合练7.答案:AC解析:∵a sin A =b sin B ,∴a =b sin A sin B ,b =a sin B sin A,∵sin B ≤1,sin A ≤1,∴a ≥b sin A ,b ≥a sin B ,故选AC.8.答案:C解析:由AB → ·AC → =2得AB ·AC ·cos 30°=2,即AB ·AC =43,所以由三角形面积公式得S =12 AB ·AC ·sin ∠BAC =12 ×43×12 =33 . 9.答案:ACD解析:由正弦定理易知A 、C 、D 正确,对于B ,由sin 2A =sin 2B ,可得A =B 或2A+2B =π,即A =B 或A +B =π2,∴a =b 或a 2+b 2=c 2,故B 错误,故选ACD. 10.答案:B解析:由正弦定理,可设a sin A =b sin B=k ,由a =b sin A 得k sin A =k sin B ·sin A ,所以sin B =1,所以B =π2,故选B. 11.答案:C 解析:由正弦定理得6sin 60° =4sin B.∴sin B =2 >1,∴角B 不存在. 12.答案:ABC解析:对于A :因为A >B ,所以a >b ,由正弦定理可得2R sin A >2R sin B (R 是△ABC 外接圆的半径),所以sin A >sin B ,故正确;对于B :因为y =cos x 在(0,π)上单调递减,A ,B ∈(0,π)且A >B ,所以cos A <cos B ,故正确;对于C :因为a cos A =b cos B =c cos C,由正弦定理化边为角可得tan A =tan B =tan C ,又因为A ,B ,C ∈(0,π),所以A =B =C ,所以a =b =c ,故正确;对于D :利用正弦定理化边为角可得sin A cos A =sin B cos B ,所以sin 2A =sin2B ,所以A =B 或A +B =π2,故错误.故选ABC. 13.解析:∵a 2sin B cos B =b 2sin A cos A,a =2R sin A ,b =2R sin B , ∴4R 2sin 2A sin B cos B =4R 2sin 2B sin A cos A.又∵sin A sin B ≠0,∴sin A cos A =sin B cos B ,即sin 2A =sin 2B ,∴2A =2B 或2A +2B=π,即A =B 或A +B =π2.故△ABC 是等腰三角形或直角三角形. 14.解析:(1)在△ABC 中,由题意知sin A =1-cos 2A =33, 又B =A +π2 ,所以sin B =sin (A +π2 )=cos A =63. 由正弦定理可得b =a sin B sin A =3×6333=32 . (2)由B =A +π2, 得cos B =cos (A +π2 )=-sin A =-33, 由A +B +C =π,得C =π-(A +B ),所以sin C =sin [π-(A +B )]=sin (A +B )=sin A cos B +cos A sin B =33 ×(-33)+63 ×63 =13. 所以△ABC 的面积S =12 ab sin C =12 ×3×32 ×13 =322 . 核心素养升级练 15.解析:(1)由a cos C +32 c =b ,得sin A cos C +32sin C =sin B . 因为sin B =sin (A +C )=sin A cos C +cos A sin C ,所以32sin C =cos A sin C . 因为sin C ≠0,所以cos A =32 . 因为0<A <π,所以A =π6. (2)由正弦定理,得sin B =b sin A a =32 , 所以B =π3 或2π3. ①当B =π3 时,由A =π6 ,得C =π2 ,所以c =2; ②当B =2π3 时,由A =π6 ,得C =π6,所以c =a =1.综上可得c=1或2.。
高考数学(文)一轮复习文档:第三章 三角函数、解三角形 第7讲正弦定理与余弦定理 Word版含答案
第7讲 正弦定理与余弦定理, )1.正弦定理和余弦定理(1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin_B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.辨明两个易误点(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,可能出现一解、两解或无解,所以要注意分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.2.余弦定理的推导过程如图,设CB →=a ,CA →=b , AB →=c .则c =a -b ,所以|c |2=(a -b )2=a 2-2a ·b +b 2=|a |2+|b |2-2|a ||b |cos C . 即c 2=a 2+b 2-2ab cos C . 同理可证a 2=b 2+c 2-2bc cos A .b 2=c 2+a 2-2ca cos B .3.三角形解的判断1.教材习题改编在△ABC 中,A =45°,C =30°,c =6,则a 等于( ) A .3 2 B .6 2 C .2 6D .3 6B 由正弦定理得a sin A =csin C,所以a =6sin 45°sin 30°=6×2212=6 2.2.教材习题改编在非钝角△ABC 中,2b sin A =3a ,则B 角为( ) A .π6B .π4C .π3D .π2C 由正弦定理得b sin A =a sin B ,所以2a sin B =3a ,即sin B =32,又B 非钝角,所以B =π3,故选C. 3.教材习题改编已知△ABC 的三边之比为3∶5∶7,则最大角为( ) A .2π3B .3π4C .5π6D .7π12A 由三边之比为a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k (k >0),由余弦定理得cos C =a 2+b 2-c 22ab=(3k )2+(5k )2-(7k )22×3k ×5k =-12,又0<C <π,所以C =2π3.4.教材习题改编在非钝角△ABC 中,a =1,b =2,S △ABC =32,则c 等于________. 由三角形面积公式得12×1×2×sin C =32,即sin C =32,又0°<C ≤90°, 所以C =60°,由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2×1×2×cos 60°=3, 所以c = 3. 3利用正、余弦定理解三角形(高频考点)利用正、余弦定理解三角形是高考的热点,三种题型在高考中时有出现,其试题为中档题.高考对正、余弦定理的考查主要有以下两个命题角度: (1)由已知求边和角;(2)解三角形与三角函数相结合.(1)(2016·高考全国卷乙)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a=5,c =2,cos A =23,则b =( )A . 2B . 3C .2D .3(2)(2016·高考全国卷丙)在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( )A .310 B .1010C .55D .31010(3)(2016·高考全国卷甲)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.【解析】 (1)由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去),故选D.(2)设BC 边上的高为AD ,则BC =3AD ,DC =2AD ,所以AC =AD 2+DC 2=5AD .由正弦定理,知ACsin B=BCsin A,即5AD22=3AD sin A,解得sin A =31010,故选D.(3)法一:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而sin B =sin(A+C )=sin A cos C +cos A sin C =35×513+45×1213=6365.由正弦定理a sin A =bsin B,得b =a sin B sin A =2113. 法二: 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而cos B =-cos(A+C )=-cos A cos C +sin A ·sin C =-45×513+35×1213=1665.由正弦定理a sin A =csin C,得c =a sin C sin A =2013.由余弦定理b 2=a 2+c 2-2ac cos B ,得b =2113.法三:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,由正弦定理a sin A =c sin C ,得c =a sin C sin A =2013.从而b =a cos C +c cos A =2113.法四:如图,作BD ⊥AC 于点D ,由cos C =513,a =BC =1,知CD =513,BD =1213.又cos A =45,所以tan A =34,从而AD =1613.故b =AD +DC =2113.【答案】 (1)D (2)D (3)2113利用正、余弦定理解三角形的应用(1)解三角形时,如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.角度一 由已知求边和角1.在△ABC 中,2a cos A +b cos C +c cos B =0,则角A 为( ) A .π6B .π3C .2π3D .5π6C 由余弦定理得2a cos A +b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=0,即2a cos A +a =0,所以cos A =-12,A =2π3.故选C.角度二 解三角形与三角函数相结合2.(2017·安徽皖南八校联考)已知向量m =⎝ ⎛⎭⎪⎫32,-sin x ,n =(1,sin x +3cos x ),x ∈R ,函数f (x )=m ·n .(1)求f (x )的最小正周期及值域;(2)已知△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,若f (A )=0,a =3,bc =2,求△ABC 的周长.(1)由题知f (x )=-sin 2x -3sin x cos x +32=cos 2x -3sin x cos x +12=cos ⎝ ⎛⎭⎪⎫2x +π3+1,所以f (x )的最小正周期为T =2π2=π,因为x ∈R ,所以-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1, 故f (x )的值域为.(2)f (A )=cos ⎝ ⎛⎭⎪⎫2A +π3+1=0,cos ⎝ ⎛⎭⎪⎫2A +π3=-1,由A ∈(0,π),得A =π3,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,又a =3,bc =2,所以(b +c )2=9,b +c =3,所以△ABC 的周长为3+ 3.利用正、余弦定理判定三角形的形状在△ABC 中,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,试判断△ABC 的形状. 【解】 法一:利用边的关系来判断: 由正弦定理得sin C sin B =c b,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二:利用角的关系来判断: 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°, 所以△ABC 为等边三角形.判断三角形形状的两种途径(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角三角函数间的关系,通过三角函数恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论,在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形D 因为(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), 所以b 2=a 2,所以2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .法一:由正弦定理知a =2R sin A ,b =2R sin B , 所以sin 2A cos A sinB =sin 2B sin A cos B ,又sin A ·sin B ≠0,所以sin A cos A =sin B cos B ,所以sin 2A =sin 2B . 在△ABC 中,0<2A <2π,0<2B <2π,所以2A =2B 或2A =π-2B .所以A =B 或A +B =π2.所以△ABC 为等腰三角形或直角三角形,故选D. 法二:由正弦定理、余弦定理得:a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), 所以(a 2-b 2)(a 2+b 2-c 2)=0, 所以a 2-b 2=0或a 2+b 2-c 2=0, 即a =b 或a 2+b 2=c 2.所以△ABC 为等腰三角形或直角三角形.故选D.与三角形面积有关的问题(2017·唐山统考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c sin B=b cos C =3.(1)求b ;(2)若△ABC 的面积为212,求c .【解】 (1)由正弦定理得sin C sin B =sin B cos C , 又sin B ≠0,所以sin C =cos C ,C =45°. 因为b cos C =3, 所以b =3 2.(2)因为△ABC 的面积S =12ac sin B =212,c sin B =3,所以a =7.又c 2=a 2+b 2-2ab cos C =25,所以c =5.与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,且(2b -c )·cos A=a cos C .(1)求角A 的大小;(2)若a =3,b =2c ,求△ABC 的面积. (1)由(2b -c )cos A =a cos C ,得2sin B cos A =sin A cos C +sin C cos A ,即2sin B cos A =sin(A +C ),所以2sin B cos A =sin B , 因为0<B <π,所以sin B ≠0, 所以cos A =12,因为0<A <π,所以A =π3.(2)因为a =3,b =2c , 由(1)得A =π3,所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,所以b =2 3.所以S △ABC =12bc sin A =12×23×3×32=332., )——正、余弦定理的应用(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.(1)(2)(1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C .(3分) 又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C , 解得tan C =2.(6分)(2)由tan C =2,C ∈(0,π),得 sin C =255,cos C =55.(8分)因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010.(9分)由正弦定理得c =22b3,(10分)又因为A =π4,12bc sin A =3,所以bc =62,(11分)故b =3.(12分)(1)本题是解三角形与三角恒等变换的结合,求解中首先利用正弦定理把边的关系转化为三角函数关系,再利用恒等变换,再次应用正弦定理,求解所求问题.(2)计算准确,争取得满分①公式运用要准确,这是计算正确的前提.②算数要准确无误,尤其注意正、负号的选择,计算时要尽量利用学过的公式简化计算过程., )1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( ) A .30° B .45° C .60°D .75°A 因为在锐角△ABC 中,b =2a sinB ,由正弦定理得,sin B =2sin A sin B ,所以sinA =12,又0°<A <90°,所以A =30°.2.(2017·兰州一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =7,b =3,c =2,则A =( )A .π6B .π4C .π3D .π2C 易知cos A =b 2+c 2-a 22bc =32+22-(7)22×3×2=12,又A ∈(0,π),所以A =π3,故选C.3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定C 由正弦定理得b sin B =csin C, 所以sin B =b sin Cc=40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.4.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定B 依据题设条件的特点,由正弦定理,得sin B ·cosC +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,所以A =π2,故选B.5.(2017·东北三校高三模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =13,sin C =3sin B ,且S △ABC =2,则b =( )A .1B .2 3C .3 2D .3A 因为cos A =13,所以sin A =223.又S △ABC =12bc sin A =2,所以bc =3.又sin C =3sin B ,所以c =3b ,所以b =1,c =3,故选A.6.(2017·大连一模)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高为( ) A .32 B .332C .34D . 3B 在△ABC 中,由余弦定理可得,AC 2=AB 2+BC 2-2AB ×BC ×cos B ,因为AC =7,BC =2,B =60°,所以7=AB 2+4-4×AB ×12,所以AB 2-2AB -3=0,所以AB =3,作AD ⊥BC ,垂足为D ,则在Rt △ADB 中,AD =AB ×sin 60°=332,即BC 边上的高为332.7.(2016·高考山东卷改编)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =________.由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,所以2b 2(1-sin A )=2b 2(1-cosA ),所以sin A =cos A ,即tan A =1,又0<A <π,所以A =π4.π48.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 49.(2017·海淀期末检测)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,a sinA sinB +b cos 2A =2a ,则角A 的取值范围是________.由已知及正弦定理得sin 2A sinB +sin B cos 2A =2sin A ,即sinB (sin 2A +cos 2A )=2sinA ,所以sinB =2sin A ,所以b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac≥23ac 4ac =32,当且仅当c =3a 时取等号,因为A 为三角形的内角,且y =cos x 在(0,π)上是减函数,所以0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎥⎤0,π6.⎝ ⎛⎦⎥⎤0,π610.(2017·广东揭阳一模)已知△ABC 中,角A 、32B 、C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________.因为A 、32B 、C 成等差数列,所以A +C =3B ,又A +B +C =π, 所以B =π4,设角A ,B ,C 所对的边分别为a ,b ,c . 由S △ABC =12ac sin B =1+2得ac =2(2+2),由余弦定理及a 2+c 2≥2ac , 得b 2≥(2-2)ac ,即b 2≥(2-2)×2(2+2),所以b ≥2,所以AC 边的长的最小值为2. 211.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知c -b =2b cos A . (1)若a =26,b =3,求c ; (2)若C =π2,求角B .(1)由c -b =2b cos A 及余弦定理cos A =b 2+c 2-a 22bc ,得c -b =2b ·b 2+c 2-a 22bc =b 2+c 2-a 2c,即a 2=b 2+bc ,所以(26)2=32+3c ,解得c =5. (2)因为c -b =2b cos A ,所以由正弦定理得sin C -sin B =2sin B cos A ,又C =π2,所以1-sin B =2sin B cos A ,所以1-sin B =2sin B cos ⎝ ⎛⎭⎪⎫π2-B , 所以1-sin B =2sin 2B , 即(2sin B -1)(sin B +1)=0, 所以sin B =12或sin B =-1(舍去),因为0<B <π2,所以B =π6.12.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________. 如图,在△ABD 中,由正弦定理,得 AD sin B =ABsin ∠ADB , 所以sin ∠ADB =22. 由题意知0°<∠ADB <60°, 所以∠ADB =45°,所以∠BAD =180°-45°-120°=15°. 所以∠BAC =30°,∠C =30°, 所以BC =AB = 2. 在△ABC 中,由正弦定理, 得ACsin B =BCsin ∠BAC,所以AC = 6. 613.(2017·湖北三市第二次联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎪⎫A +π3.(1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. (1)因为a sin B =-b sin ⎝ ⎛⎭⎪⎫A +π3,所以由正弦定理得sin A =-sin ⎝⎛⎭⎪⎫A +π3,即sin A =-12sin A -32cos A ,化简得tan A =-33, 因为A ∈(0,π),所以A =5π6. (2)因为A =5π6,所以sin A =12,由S =34c 2=12bc sin A =14bc ,得b =3c , 所以a 2=b 2+c 2-2bc cos A =7c 2,则a =7c , 由正弦定理得sin C =c sin A a =714. 14.(2017·河南郑州模拟)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos 2C -cos 2A =2sin ⎝ ⎛⎭⎪⎫π3+C ·sin ⎝ ⎛⎭⎪⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围. (1)由已知得2sin 2A -2sin 2C=2⎝ ⎛⎭⎪⎫34cos 2C -14sin 2C , 化简得sin A =±32, 因为A 为△ABC 的内角, 所以sin A =32,故A =π3或2π3. (2)因为b ≥a ,所以A =π3.由正弦定理得b sin B =c sin C =asin A=2,得b =2sin B ,c =2sin C , 故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎪⎫2π3-B=3sin B -3cos B =23sin ⎝⎛⎭⎪⎫B -π6.因为b ≥a , 所以π3≤B <2π3,则π6≤B -π6<π2, 所以2b -c =23sin ⎝⎛⎭⎪⎫B -π6∈[3,23).。
(完整版)正余弦定理习题加答案详解超级详细
正余弦定理高中数学组卷一.选择题(共9小题)1.(2016•太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.2.(2016•潍坊模拟)在△ABC中,sinA=sinB是△ABC为等腰三角形的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(2016•岳阳校级模拟)在△ABC中,A:B:C=1:2:3,则a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::14.(2016•大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形5.(2016•河西区一模)已知△ABC的内角A,B,C的对边分别为a,b,c,且,则∠B=()A.B.C.D.6.(2016•宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C.D.或7.(2016•岳阳二模)△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=a,则=()A.2 B.2C.D.8.(2016•新余二模)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.角B的值为()A.B.C.D.9.(2016•江西模拟)在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.二.填空题(共7小题)10.(2016•上海二模)△ABC中,,BC=3,,则∠C=.11.(2016•丰台区一模)在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于.12.(2016•焦作一模)在△ABC中,已知a=8,∠B=60°,∠C=75°,则b等于.13.(2016•潍坊一模)已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.14.(2016•抚顺一模)已知△ABC的周长为+1,且sinA+sinB=sinC,则边AB的长为.15.(2016•长沙一模)△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于.16.(2016•湖南校级模拟)设△ABC的内角A,B,C的对边分别为a,b,c.若,,则b=.三.解答题(共4小题)17.(2016•白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.18.(2016•安徽校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.19.(2016•平果县模拟)已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b ﹣2c)cosA=a﹣2acos2.(1)求角A的值;(2)若a=,则求b+c的取值范围.20.(2016•鹰潭一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a ﹣c(Ⅰ)求B;(Ⅱ)若△ABC的面积为,求b的取值范围.正余弦定理高中数学组卷参考答案与试题解析一.选择题(共9小题)1.(2016•太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.【解答】解:∵在锐角△ABC中,sinA=,S△ABC=,∴bcsinA=bc=,∴bc=3,①又a=2,A是锐角,∴cosA==,∴由余弦定理得:a2=b2+c2﹣2bccosA,即(b+c)2=a2+2bc(1+cosA)=4+6(1+)=12,∴b+c=2②由①②得:,解得b=c=.故选A.2.(2016•潍坊模拟)在△ABC中,sinA=sinB是△ABC为等腰三角形的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【解答】解:当sinA=sinB时,则有A=B,则△ABC为等腰三角形,故sinA=sinB是△ABC 为等腰三角形的充分条件,反之,当△ABC为等腰三角形时,不一定是A=B,若是A=C≠60时,则sinA≠sinB,故sinA=sinB是△ABC为等腰三角形的不必要条件.故选A.3.(2016•岳阳校级模拟)在△ABC中,A:B:C=1:2:3,则a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::1【解答】解:在△ABC中,若∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=π所以∠A=,∠B=,∠C=.由正弦定理可知:a:b:c=sin∠A:sin∠B:sin∠C=sin:sin:sin=1::2.故选:C.4.(2016•大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形【解答】解:根据正弦定理可知∵bcosB=acosA,∴sinBcosB=sinAcosA∴sin2A=sin2B∴A=B,或2A+2B=180°即A+B=90°,即有△ABC为等腰或直角三角形.故选C.5.(2016•河西区一模)已知△ABC的内角A,B,C的对边分别为a,b,c,且,则∠B=()A.B.C.D.【解答】解:已知等式利用正弦定理化简得:=,即c2﹣b2=ac﹣a2,∴a2+c2﹣b2=ac,∴cosB==,∵B为三角形的内角,∴B=.故选:C.6.(2016•宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C.D.或【解答】解:由正弦定理可得:sinA===∵a=<b=∴∴∠A=,故选:B.7.(2016•岳阳二模)△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=a,则=()A.2 B.2C.D.【解答】解:∵△ABC中,asinAsinB+bcos2A=a,∴根据正弦定理,得sin2AsinB+sinBcos2A=sinA,可得sinB(sin2A+cos2A)=sinA,∵sin2A+cos2A=1,∴sinB=sinA,得b=,可得=.故选:C.8.(2016•新余二模)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.角B的值为()A.B.C.D.【解答】解:由条件及正弦定理得sinBcosC+sinCcosB=﹣2sinAcosB.即sin(B+C)=﹣2sinAcosB.∵A+B+C=π,A>0∴sin(B+C)=sinA,又sinA≠0,∴cosB=﹣,而B∈(0,π),∴B=.故选:C.9.(2016•江西模拟)在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.【解答】解:∵A+B+C=π,A=2B,∴===.再结合正弦定理得:.故选:D.二.填空题(共7小题)10.(2016•上海二模)△ABC中,,BC=3,,则∠C=.【解答】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:11.(2016•丰台区一模)在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于30°.【解答】解:利用正弦定理化简b=2asinB得:sinB=2sinAsinB,∵sinB≠0,∴sinA=,∵A为锐角,∴A=30°.故答案为:30°12.(2016•焦作一模)在△ABC中,已知a=8,∠B=60°,∠C=75°,则b等于4.【解答】解:∵a=8,B=60°,C=75°,即A=45°,∴由正弦定理,得:b===4.故答案为:413.(2016•潍坊一模)已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.【解答】解:∵a•cosB+b•cosA=3c•cosC,∴利用余弦定理可得:a×+b×=3c×,整理可得:a2+b2﹣c2=,∴由余弦定理可得:cosC===.故答案为:.14.(2016•抚顺一模)已知△ABC的周长为+1,且sinA+sinB=sinC,则边AB的长为1.【解答】解:由题意及正弦定理,得:AB+BC+AC=+1.BC+AC=AB,两式相减,可得AB=1.故答案为:1.15.(2016•长沙一模)△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于1.【解答】解:设△ABC的三边分别为a,b,c,外接圆半径为R,由正弦定理得,∴a=2RsinA,b=2RsinB,c=2RsinC,∵a+b+c=2(sinA+sinB+sinC),∴2RsinA+2RsinB+2RsinC=2(sinA+sinB+sinnC),∴R=1.故答案为:1.16.(2016•湖南校级模拟)设△ABC的内角A,B,C的对边分别为a,b,c.若,,则b=2.【解答】解:B=π﹣A﹣C=,△ABC中,由正弦定理可得,∴b=2,故答案为:2.三.解答题(共4小题)17.(2016•白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.【解答】解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.18.(2016•安徽校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.【解答】解:(1)∵.∴由正弦定理,得,化简得cosA=,∴A=;(2)∵∠B=,∴C=π﹣A﹣B=,可知△ABC为等腰三角形,在△AMC中,由余弦定理,得AM2=AC2+MC2﹣2AC•MCcos120°,即7=,解得b=2,∴△ABC的面积S=b2sinC==.19.(2016•平果县模拟)已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b ﹣2c)cosA=a﹣2acos2.(1)求角A的值;(2)若a=,则求b+c的取值范围.【解答】解:(1)在锐角△ABC中,根据(b﹣2c)cosA=a﹣2acos2=a﹣2a•,利用正弦定理可得(sinB﹣2sinC)cosA=sinA(﹣cosB),即sinBcosA+cosBsinA=2sinCcosA,即sin(B+A)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,∴A=.(2)若a=,则由正弦定理可得==2,∴b+c=2(sinB+sinC)=2[sinB+sin(﹣B)]=3sinB+cosB=2sin(B+).由于,求得<B<,∴<B+<.∴sin(B+)∈(,1],∴b+c∈(3,2].20.(2016•鹰潭一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a ﹣c(Ⅰ)求B;(Ⅱ)若△ABC的面积为,求b的取值范围.【解答】解:(1)由正弦定理,得2sinBcosC=2sinA﹣sinC,﹣﹣﹣﹣(2分)在△ABC中,sinA=sin(B+C)=sinBcosC+cosBsinC,∴2cosBsinC=sinC,又∵C是三角形的内角,可得sinC>0,∴2cosB=1,可得cosB=,∵B是三角形的内角,B∈(0,π),∴B=.﹣﹣﹣﹣﹣(6分)(2)∵S△ABC==,B=∴,解之得ac=4,﹣﹣﹣﹣(8分)由余弦定理,得b2=a2+c2﹣2accosB=a2+c2﹣ac≥2ac﹣ac=ac=4,(当且仅当a=c=2时,“=”成立)∴当且仅当a=c=2时,b的最小值为2.﹣﹣﹣﹣(12分)综上所述,边b的取值范围为[2,+∞)﹣﹣﹣﹣(13分)。
正弦定理和余弦定理的应用Word版含答案
正弦定理和余弦定理的应用【课前回顾】测量中的有关几个术语(2)南偏西α:【课前快练】1.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B (如图),要测量A ,B 两点的距离,测量人员在岸边定出基线BC ,测得BC =50 m ,∠ABC =105°,∠BCA =45°.可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:选A 由题意知∠CAB =180°-∠ABC -∠BCA =30°, 由正弦定理得AB sin ∠BCA =BCsin ∠CAB,所以AB =BC ·sin ∠BCAsin ∠CAB=50×2212=502(m).2.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m解析:选D 设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,由余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =-20(舍去)或x =40.故电视塔的高度为40 m.3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的________方向上.解析:如图所示,∠ACB =90°, 又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案:北偏西15°考点一 测量高度问题求解高度问题的3个注意点(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.【典型例题】(2018·衡水模拟)如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m.[思维路径](结论)求CD →放在△ACD 中求解→在Rt △ACD 中知∠DAC →(关键点)需再知AC →在△ACM 中,易知两角与一边,用正弦定理可解得.解析:在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC 32,解得AC =600 6.在△ACD 中,∵tan ∠DAC =DC AC =33,∴DC =6006×33=600 2. 答案:600 2【针对训练】(2018·大连大联考)为了测量某新建的信号发射塔AB 的高度,先取与发射塔底部B 在同一水平面内的两个观测点C ,D ,测得∠BDC =60°,∠BCD =75°,CD =40 m ,并在点C 的正上方E 处观测发射塔顶部A 的仰角为30°,且CE =1 m ,则发射塔高AB =( )A .(202+1)mB .(203+1)mC .20 2 mD .(402+1) m解析:选A 如图,过点E 作EF ⊥AB ,垂足为F , 则EF =BC ,BF =CE =1,∠AEF =30°. 在△BCD 中,由正弦定理得, BC =CD ·sin ∠BDC sin ∠CBD =40·sin 60°sin 45°=20 6.所以EF =206,在Rt △AFE 中,AF =EF ·tan ∠AEF =206×33=202, 所以AB =AF +BF =202+1 (m).考点二 测量距离问题1.测量距离问题,无论题型如何变化,即两点的情况如何,实质都是要求这两点间的距离,无非就是两点所在三角形及其构成元素所知情况不同而已,恰当地画出(找出)适合解决问题的三角形是解题的基础,将已知线段长度和角度转化为要解的三角形的边长和角是解题的关键.2.求距离问题的两个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. 角度(一) 两点都不可到达1.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离为________km.解析:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°,∴AC =DC =32(km). 在△BCD 中,∠DBC =45°, 由正弦定理,得BC =DC sin ∠DBC ·sin ∠BDC =32sin 45°·sin 30°=64.在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64 km. 答案:64角度(二) 两点不相通的距离2.如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,则A ,B 两点的距离为________m.解析:在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000. ∴AB =200 7 (m).即A ,B 两点间的距离为200 7 m. 答案:200 7角度(三) 两点间可视但有一点不可到达3.如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠PAB =90°,∠PAQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m.解析:由已知,得∠QAB =∠PAB -∠PAQ =30°.又∠PBA =∠PBQ =60°,∴∠AQB =30°,∴AB =BQ . 又PB 为公共边,∴△PAB ≌△PQB ,∴PQ =PA . 在Rt △PAB 中,AP =AB ·tan 60°=900,故PQ =900, ∴P ,Q 两点间的距离为900 m. 答案:900【针对训练】1.已知A ,B 两地间的距离为10 km ,B ,C 两地间的距离为20 km ,现测得∠ABC =120°,则A ,C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D 由余弦定理可得: AC 2=AB 2+CB 2-2AB ×CB ×cos 120° =102+202-2×10×20×⎝⎛⎭⎫-12=700. ∴AC =107(km).2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( )A .15 2 kmB .30 2 kmC .45 2 kmD .60 2 km 解析:选B 作出示意图如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°,∴∠MAB =30°,∠AMB =45°. 在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°, 解得BM =30 2.考点三 测量角度问题1.注意解决测量角度问题的3事项(1)测量角度时,首先应明确方位角及方向角的含义. (2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.2.掌握解三角形应用题的4步骤【典型例题】游客从某旅游景区的景点A 处至景点C 处有两条线路.线路1是从A 沿直线步行到C ,线路2是先从A 沿直线步行到景点B 处,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C 处.经测量,AB =1 040 m ,BC =500 m ,则sin ∠BAC 等于________.解析:依题意,设乙的速度为x m/s , 则甲的速度为119x m/s ,因为AB =1 040 m ,BC =500 m , 所以AC x =1 040+500119x ,解得AC =1 260 m.在△ABC 中,由余弦定理得,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =1 0402+1 2602-50022×1 040×1 260=1213,所以sin ∠BAC =1-cos 2∠BAC = 1-⎝⎛⎭⎫12132=513.答案:513【针对训练】在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=ACsin 120°, 所以sin α=20sin 120°28=5314. 所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314. 【课后演练】1.如图,两座灯塔A 和B 与河岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C ∵tan 15°=tan(60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=2-3,∴BC =60tan60°-60tan 15°=120(3-1)(m).3.如图,在塔底D 的正西方A 处测得塔顶的仰角为45°,在塔底D 的南偏东60°的B 处测得塔顶的仰角为30°,A ,B 的距离是84 m ,则塔高CD 为( )A .24 mB .12 5 mC .127 mD .36 m解析:选C 设塔高CD =x m , 则AD =x m ,DB =3x m.又由题意得∠ADB =90°+60°=150°, 在△ABD 中,利用余弦定理,得 842=x 2+(3x )2-23·x 2cos 150°, 解得x =127(负值舍去),故塔高为127 m.4.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 作出示意图如图所示,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,在Rt △BCD 中,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.5.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 3 海里D .20 2 海里解析:选A 画出示意图如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°, 解得BC =102(海里).6.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D两点,测出四边形ABCD 各边的长度(单位:km):AB =5,BC =8,CD =3,DA =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 km解析:选A 在△ACD 中,由余弦定理得: cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230.在△ABC 中,由余弦定理得: cos B =AB 2+BC 2-AC 22AB ·BC =89-AC 280.因为∠B +∠D =180°,所以cos B +cos D =0, 即34-AC 230+89-AC 280=0,解得AC =7.7.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile.解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =180°-60°-75°=45°,由正弦定理,得AB sin C =BCsin A, 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile). 答案:5 68.如图所示,一艘海轮从A 处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20 n mile 的B 处,海轮按北偏西60°的方向航行了30 min 后到达C 处,又测得灯塔在海轮的北偏东75°的方向上,则海轮的速度为________n mile/min.解析:由已知得∠ACB =45°,∠B =60°, 由正弦定理得AC sin B =ABsin ∠ACB ,所以AC =AB ·sin B sin ∠ACB=20×sin 60°sin 45°=106,所以海轮航行的速度为10630=63(n mile/min).答案:639.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________km.解析:如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=ABsin 45°,∴BS =AB ·sin 30°sin 45°=32(km).答案:3 210.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析:由题意,在△ABC 中,∠BAC =30°, ∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =300 2 m. 在Rt △BCD 中,CD =BC ·tan 30°=3002×33=100 6(m). 答案:100 611.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( )A .5 kmB .10 kmC .5 3 kmD .5 2 km解析:选C 作出示意图(如图),点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15,由正弦定理,得15sin 120°=BC sin 30°,即BC =15×1232=53,即这时船与灯塔的距离是5 3 km.12.地面上有两座相距120 m 的塔,在矮塔塔底望高塔塔顶的仰角为α,在高塔塔底望矮塔塔顶的仰角为α2,且在两塔底连线的中点O 处望两塔塔顶的仰角互为余角,则两塔的高度分别为( )A .50 m,100 mB .40 m,90 mC .40 m,50 mD .30 m,40 m解析:选B 设高塔高H m ,矮塔高h m ,在O 点望高塔塔顶的仰角为β.则tan α=H 120,tan α2=h 120, 根据三角函数的倍角公式有H 120=2×h 1201-⎝⎛⎭⎫h 1202.① 因为在两塔底连线的中点O 望两塔塔顶的仰角互为余角,所以在O 点望矮塔塔顶的仰角为π2-β, 由tan β=H 60,tan ⎝⎛⎭⎫π2-β=h 60, 得H 60=60h .② 联立①②解得H =90,h =40.即两座塔的高度分别为40 m,90 m.13.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径的长度为( )A .50 5 mB .507 mC .5011 mD .5019 m解析:选B 设该扇形的半径为r ,连接CO .由题意,得CD =150(m),OD =100(m),∠CDO =60°,在△CDO 中,由余弦定理得,CD 2+OD 2-2CD ·OD ·cos 60°=OC 2,即1502+1002-2×150×100×12=r 2, 解得r =507.14.(2018·惠州调研)如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC=45°,根据以上数据可得cos θ=________.解析:由∠DAC=15°,∠DBC=45°,可得∠DBA=135°,∠ADB=30°.在△ABD中,根据正弦定理可得ABsin∠ADB=BDsin∠BAD,即50sin 30°=BDsin 15°,所以BD=100sin 15°=100×sin(45°-30°)=25(6-2).在△BCD中,由正弦定理得CD∠DBC=BDsin∠BCD,即25sin 45°=25(6-2)sin∠BCD,解得sin∠BCD=3-1.所以cos θ=cos(∠BCD-90°)=sin∠BCD=3-1.答案:3-115.(2018·福州质检)如图,小明同学在山顶A处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A处测得公路上B,C两点的俯角分别为30°,45°,且∠BAC=135°.若山高AD=100 m,汽车从B点到C点历时14 s,则这辆汽车的速度约为______m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.解析:因为小明在A处测得公路上B,C两点的俯角分别为30°,45°,所以∠BAD =60°,∠CAD=45°.设这辆汽车的速度为v m/s,则BC=14v.在Rt△ADB中,AB=ADcos∠BAD=ADcos 60°=200.在Rt△ADC中,AC=ADcos∠CAD=100cos 45°=100 2.在△ABC中,由余弦定理,得BC2=AC2+AB2-2AC·AB·cos∠BAC,所以(14v)2=(1002)2+2002-2×1002×200×cos 135°,所以v=50107≈22.6,所以这辆汽车的速度约为22.6 m/s.答案:22.616.一艘海轮从A出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B,然后从B出发,沿北偏东15°的方向航行4 n mile到达海岛C.(1)求AC的长;(2)如果下次航行直接从A出发到达C,求∠CAB的大小.解:(1)由题意,在△ABC中,∠ABC=180°-75°+15°=120°,AB=23-2,BC=4,根据余弦定理得,AC2=AB2+BC2-2AB×BC×cos∠ABC=(23-2)2+42+(23-2)×4=24,所以AC=2 6.故AC的长为2 6 n mile.(2)根据正弦定理得,sin∠BAC=4×3226=22,所以∠CAB=45°.17.已知在东西方向上有M,N两座小山,山顶各有一座发射塔A,B,塔顶A,B的海拔高度分别为AM=100 m和BN=200 m,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30°,该测量车向北偏西60°方向行驶了100 3 m后到达点Q,在点Q处测得发射塔顶B处的仰角为θ,且∠BQA=θ,经测量tan θ=2,求两发射塔顶A,B之间的距离.解:在Rt△AMP中,∠APM=30°,AM=100,∴PM=100 3.连接QM,在△PQM中,∠QPM=60°,PQ=1003,∴△PQM为等边三角形,∴QM=100 3.在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200.在Rt△BNQ中,tan θ=2,BN=200,∴BQ=1005,cos θ=5 5.在△BQA中,BA2=BQ2+AQ2-2BQ·AQ cos θ=(1005)2,∴BA=100 5.即两发射塔顶A,B之间的距离是100 5 m.18.如图所示,在一条海防警戒线上的点A,B,C处各有一个水声监测点,B,C两点到点A的距离分别为20 km和50 km.某时刻,B收到发自静止目标P的一个声波信号,8 s后A,C同时接收到该声波信号,已知声波在水中的传播速度是1.5 km/s.(1)设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2)求静止目标P到海防警戒线AC的距离.解:(1)依题意,有PA=PC=x,PB=x-1.5×8=x-12.在△PAB 中,AB =20,cos ∠PAB =PA 2+AB 2-PB 22PA ·AB =x 2+202-(x -12)22x ·20=3x +325x. 同理,在△PAC 中,AC =50,cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =x 2+502-x 22x ·50=25x . 因为cos ∠PAB =cos ∠PAC ,所以3x +325x=25x ,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠PAD =2531,得 sin ∠PAD =1-cos 2∠PAD =42131, 所以PD =PA sin ∠PAD =31×42131=421(km). 故静止目标P 到海防警戒线AC 的距离为421 km.。
正弦定理与余弦定理练习题共3套(附答案)
正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。
正弦定理与余弦定理练习题(5篇模版)
正弦定理与余弦定理练习题(5篇模版)第一篇:正弦定理与余弦定理练习题正弦定理与余弦定理1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a等于2.在△ABC中,角A、B、C的对边分别为a、b、c,若(a+c-b)tanB=3ac,则角B的值为3.下列判断中正确的是A.△ABC中,a=7,b=14,A=30°,有两解B.△ABC中,a=30,b=25,A=150°,有一解C.△ABC中,a=6,b=9,A=45°,有两解D.△ABC中,b=9,c=10,B=60°,无解4.在△ABC中,若2cosBsinA=sinC,则△ABC一定是()()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形5.在△ABC中,A=120°,AB=5,BC=7,则A.85sinB的值为sinC5335()B.458C.D.()6.△ABC中,若a+b+c=2c(a+b),则∠C的度数是A.60°B.45°或135°C.120°D.30°7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=7,c=3,则B=.8.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为.9.在△ABC中,角A、B、C所对的边分别为a、b、c.若(b-c)cosA=acosC,则cosA10.在△ABC中,已知a=3,b=2,B=45°,求A、C和c.11.在△ABC中,a、b、c分别是角A,B,C的对边,且cosBb=-.cosC2a+c(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.12.在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a+b)sin(A-B)=(a-b)sin(A+B),判断三角形的形状.2213.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC 的面积为S,且2S=(a+b)-c,求tanC的值.14.已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.15.在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=7,且4sin(1)求角C的大小;(2)求△ABC的面积.7A+B-cos2C=.22第二篇:正弦定理和余弦定理练习题【正弦定理、余弦定理模拟试题】一.选择题:1.在∆ABC中,a=23,b=22,B=45︒,则A为()A.60︒或120︒B.60︒C.30︒或150︒D.30︒sinAcosB2.在∆AB C中,若=,则∠B=()abB.45︒C.60︒D.90︒A.30︒3.在∆ABC中,a2=b2+c2+bc,则A等于()B.45︒C.120︒D.30︒A.60︒→→→→→→→|AB|=1,|BC|=2,(AB+BC)⋅(AB+BC)=5+23,4.在∆ABC中,则边|AC|等于()A.5B.5-23C.5-23D.5+235.以4、5、6为边长的三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形6.在∆ABC中,bcosA=acosB,则三角形为()A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形7.在∆ABC中,cosAcosB>sinAsinB,则∆ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形8.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为()A.52B.213C.16 D.4二.填空题:9.在∆ABC中,a+b=12,A=60︒,B=45︒,则a=_______,b=________10.在∆ABC中,化简bcosC+ccosB=___________11.在∆ABC中,已知sinA:sinB:sinC=654::,则cosA=___________12.在∆ABC中,A、B均为锐角,且cosA>sinB,则∆ABC是_________三.解答题:13.已知在∆ABC中,∠A=45︒,a=2,c=6,解此三角形。
正弦定理余弦定理习题及答案
正弦定理余弦定理习题及答案Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】正 余 弦 定 理1.在ABC∆中,A B >是sin sin A B >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin 02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是 ( )(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= .4、如图,在△ABC 中,若b = 1,c =3,23C π∠=,则a= 。
5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若3a =,3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c .AB323π1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .2、【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin sin 60A =得1sin 2A =,由a b <知60AB <=,所以30A =,180C A B =--90=,所以sin sin 90 1.C ==4、【命题立意】本题考查解三角形中的余弦定理。
正弦定理和余弦定理习题及答案
正弦定理和余弦定理习题及答案正弦定理和余弦定理 测试题一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63D.632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627B.23C.33D.344.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝ ⎛⎭⎪⎫0,π2,则△ABC的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c ≥2a7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=15.15.53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π (B)3π (C) 2π (D) 23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A.323 C.158D.15720、已知ABC △21,且sin sin 2A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cot A +cot C 的值; (Ⅱ)设32BA BC ⋅=,求a +c 的值.22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东︒60,向北航行40分钟后到达B 点,测得油井P 在南偏东︒30,海轮改为北偏东︒60的航向再行驶80分钟到达C 点,求P 、C 间的距离.答案1.解析:依题意得0°<B <60°,由正弦定理得a sin A =bsin B得sin B =b sin A a =33,cos B =1-sin 2B =63,选D. 2.解析:由sin C =23sin B 可得c =23b ,由余弦定理得cos A =b 2+c 2-a 22bc =-3bc +c 22bc =32,于是A =30°,故选A. 3.解析:设AC =1,则AE =EF =FB =13AB =23,由余弦定理得CE =CF =AE 2+AC 2-2AC ·AE cos45°=53,所以cos ∠ECF =CE 2+CF 2-EF 22CE ·CF =45,所以tan ∠ECF =sin ∠ECF cos ∠ECF=1-⎝ ⎛⎭⎪⎫45245=34. 答案:D 4.解析:∵lg a -lg c =lgsin B =-lg 2,∴lg a c =lgsin B =lg 22.∴a c =sin B =22. ∵B ∈⎝⎛⎭⎪⎫0,π2,∴B =π4,由c =2a , 得cos B =a 2+c 2-b 22ac=3a 2-b 222a2=22. ∴a 2=b 2,∴a =b . 答案:D5.解析:2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33. 答案:C6.解析:由sin 2A -cos 2A =12,得cos2A =-12, 又A 是锐角,所以A =60°,于是B +C =120°. 所以b +c 2a =sin B +sin C2sin A=2sinB +C2cosB -C23=cosB -C2≤1,b +c ≤2a . 答案:c7.解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23A A A +=+=,故选A8.解:111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形。
正弦定理余弦定理练习题及答案(供参考)
正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为B.D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为°°°°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.C.D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是△B.锐角△ C.钝角△ D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=+(-1) C.(+1)10.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为12.在△ABC中,a2=b2+c2+bc,则A等于°°°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.C.+1D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于+cos2B+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A.B.C.D.20.在△ABC中,,则k为D.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C 和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC 的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1.2(-1) 23. 45°4. 85.等腰三角形6.:钝角三角形7.a=b sin A或b<a8.60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13.120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶4=6,b=5,c=48.当θ=时,S四边形OACB最大, 最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________. 【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c=()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =b sin B 可得b =a sin Bsin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π.5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0,得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2. (2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12. 又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC 中,已知sin A =sin B +sin Ccos B +cos C,判断△ABC 的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.∴cos A=0,∴∠A=π2,∴△ABC为直角三角形.。