(完整版)万有引力定律
万有引力定律
万有引力定律万有引力定律公式:F=GMm/r²万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适万有引力定律表示如下:任意两个质点通过连心线方向上的力相互吸引。
该引力的大小与它们的质量乘积成正比,与它们距离的平方成反比,与两物体的化学本质或物理状态以及中介物质无关。
万有引力定律是解释物体之间的相互作用的引力的定律。
是物体(质点)间由于它们的引力质量而引起的相互吸引力所遵循的规律。
它是牛顿在前人(开普勒、胡克、雷恩、哈雷)研究的基础上,凭借他超凡的数学能力证明,在1687年于《自然哲学的数学原理》上发表的。
万有引力定律的发现,是17世纪自然科学最伟大的成果之一。
它把地面上物体运动的规律和天体运动的规律统一了起来,对以后物理学和天文学的发展具有深远的影响。
它第一次解释了(自然界中四种相互作用之一)一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。
万有引力定律揭示了天体运动的规律,在天文学上和宇宙航行计算方面有着广泛的应用。
它为实际的天文观测提供了一套计算方法,可以只凭少数观测资料,就能算出长周期运行的天体运动轨道,科学史上哈雷彗星、海王星、冥王星的发现,都是应用万有引力定律取得重大成就的例子。
利用万有引力公式,开普勒第三定律等还可以计算太阳、地球等无法直接测量的天体的质量。
牛顿还解释了月亮和太阳的万有引力引起的潮汐现象。
他依据万有引力定律和其他力学定律,对地球两极呈扁平形状的原因和地轴复杂的运动,也成功的做了说明,推翻了古代人类认为的神之引力。
尽管牛顿对重力的描述对于众多实践运用来说十分地精确,但它也具有几大理论问题且被证明是不完全正确的。
没有任何征兆表明重力的传送媒介可以被识别出,牛顿自己也对这种无法说明的超距作用感到不满意。
牛顿的理论需要定义重力可以瞬时传播。
因此给出了古典自然时空观的假设,这样亦能使约翰内斯·开普勒所观测到的角动量守恒成立。
(完整版)第六章万有引力与航天知识点总结
万有引力与航天1、开普勒行星运动定律(1).所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.(2).对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.(3).所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等. 32a K T= (K 只与中心天体质量M 有关) 行星轨道视为圆处理,开三变成32r K T =(K 只与中心天体质量M 有关)2、万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。
表达式:122,m m F G r=2211kg /m N 1067.6⋅⨯=-G 适用于两个质点(两个天体)、一个质点和一个均匀球(卫星和地球)、两个均匀球。
(质量均匀分布的球可以看作质量在球心的质点)3、万有引力定律的应用:(天体质量M , 卫星质量m ,天体半径R, 轨道半径r ,天体表面重力加速度g ,卫星运行向心加速度n a ,卫星运行周期T)两种基本思路:1.万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h )人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r=R+h ):r GM v =,r 越大,v 越小;3r GM =ω,r 越大,ω越小;GM r T 324π=,r 越大,T 越大;2n GMa r =,r 越大,n a 越小。
(1)求质量:①天体表面任意放一物体重力近似等于万有引力:= G M m R2→2gR M G = ②当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M ,半径为R ,环绕星球质量为m ,线速度为v ,公转周期为T ,两星球相距r ,由万有引力定律有:2222⎪⎭⎫ ⎝⎛==T mr r mv r GMm π,可得出中心天体的质量:23224GT r G r v M π==求密度34/3M M V R ρπ==2高空物体的重力加速度:mg = G2)(h R Mm + 3、万有引力和重力的关系: 一般的星球都在不停地自转,星球表面的物体随星球自转需要向心力,因此星球表面上的物体所受的万有引力有两个作用效果:一个是重力,一个是向心力。
万有引力定律精品课件完整版精品课件
万有引力定律精品课件完整版精品课件一、教学内容本节课我们将学习普通高中物理必修2第三章《万有引力定律》的相关内容。
具体涉及教材第三章第1节至第3节,详细内容包括万有引力定律的发现历程、定律表述及公式推导、万有引力常量的测定以及万有引力定律在天文学上的应用等。
二、教学目标1. 让学生了解万有引力定律的发现过程,理解万有引力定律的基本原理。
2. 掌握万有引力定律的数学表达式,能运用其解决实际问题。
3. 了解万有引力常量的测定方法,理解其物理意义。
三、教学难点与重点重点:万有引力定律的发现过程、数学表达式、应用。
难点:万有引力定律的公式推导,万有引力常量的测定。
四、教具与学具准备1. 教具:地球仪、天平、计算器、PPT课件。
2. 学具:笔记本、教材、计算器。
五、教学过程1. 引入新课:通过展示地球与月球相互吸引的动画,让学生初步认识万有引力现象,激发学习兴趣。
2. 讲解万有引力定律的发现历程:以牛顿的苹果故事为切入点,介绍万有引力定律的发现过程。
3. 讲解万有引力定律的数学表达式:通过PPT展示公式推导过程,引导学生理解万有引力定律的基本原理。
4. 实践情景引入:设置地球与月球之间的万有引力问题,让学生运用公式计算。
5. 例题讲解:讲解地球与月球之间的万有引力计算方法,引导学生掌握如何运用公式解决实际问题。
6. 随堂练习:布置相关练习题,让学生巩固所学知识。
7. 讲解万有引力常量的测定:介绍卡文迪许实验,解释万有引力常量的物理意义。
六、板书设计1. 万有引力定律的发现历程2. 万有引力定律的数学表达式3. 万有引力常量的测定方法4. 应用举例七、作业设计1. 作业题目:(1)根据万有引力定律,计算地球与月球之间的引力。
(2)已知地球半径、地球质量,计算地球表面的重力加速度。
2. 答案:(1)F = G Mm Me / r^2(2)g = G Me / R^2八、课后反思及拓展延伸1. 反思:本节课通过生动的实例引入,激发了学生的学习兴趣,讲解了万有引力定律的基本原理和数学表达式,使学生对万有引力定律有了较为深刻的认识。
(完整版)万有引力与航天公式总结
万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公转周期 T 的二次方的比值都相等。
表达式为:R3 = K(K = GM ) k 只与中心天体质量有关的24π2T定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的 .两个物体间引力的方向在它们的连线上 ,引力的大小跟它们的质量的乘积成正比 ,跟它们之间的距离的二次方成反比 .Mm⑵.数学表达式 : F万= G r2⑶.适用条件 :a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b. 当r 0 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当r 0 时,引力F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义 .d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关 .与所在空间的性质无关 ,与周期及有无其它物体无关 .(5)引力常数G:①大小: G = 6.67 x 10一11N . m 2 / kg 2,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 x10一11N四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F万= F 向 即: F 万 = G = ma n = m r v 2= mr= mr 负22. 天体对其表面物体的万有引力近似等于重力:Mm G = m gR 2即 GM = gR 2 (又叫黄金代换式)注意:①地面物体的重力加速度: g =R≈9.8m/s 2②高空物体的重力加速度: g '= (R)2〈 9.8m/s 2g'R 2③关系: — =g (R + h)2五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
万有引力定律公式总结
万有引力定律的应用总结:两个基本思路1.万有引力提供向心力:ma r Tm r m r v m r M G ====222224m πω 2.忽略地球自转的影响:mg RGM =2m(2g R GM =,黄金代换式)一、测量中心天体的质量和密度 测质量:1.已知表面重力加速度g ,和地球半径R 。
(mg R GM =2m ,则GgR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。
(r T m r Mm G 2224π= ,则2324GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。
(r v m r Mm G 22=,则G rv M 2=)4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=)5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m rM G 22m =,联立得G T M π2v 3=)测密度:已知环绕天体的质量m 、周期T 、轨道半径r 。
中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力r T m r Mm G 2224π= 则2324GT r M π=——① 又334R V M πρρ⋅==——② 联立两式得:3233RGT r πρ= 当R=r 时,有23GTπρ=注:R 中心天体半径,r 轨道半径,球体体积公式334R V π= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2RGMmg =(g 为表面重力加速度,R 为星球半径)2.离地面高h: 2)(h R GMg m +='(g '为h 高处的重力加速度) 联立得g'与g 的关系: 22)('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G=2m ,则2a r MG =(卫星离地心越远,向心加速度越小) 2.r v m rMm G 22=,则r GM v =(卫星离地心越远,它运行的速度越小)3.r m r Mm G22ω=,则3rGM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 2224π=,则GMT 32r 4π=(卫星离的心越远,它运行的周期越大)。
万有引力定律公式大全
万有引力定律公式大全
万有引力定律公式大全
1. 引力公式
万有引力定律公式:F = G(m1m2/r²)
其中,
F:两个物体之间的引力;
G:万有引力常量,约等于6.67×10^-11 N·m²/kg²;
m1、m2:分别为两个物体的质量;
r:为两个物体之间的距离。
2. 圆周运动公式
万有引力定律公式也可以用来描述行星绕太阳的圆周运动,其公式为:
F = m*v²/r = G(m1m2/r²)
其中,
m:为行星的质量;
v:为行星绕太阳的线速度;
r:为行星到太阳的距离;
m1、m2:分别为行星和太阳的质量。
3. 行星运动周期公式
行星绕太阳的运动周期公式为:
T² = (4π²r³)/(GM)
其中,
T:为行星绕太阳一周的时间;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
4. 轨道速度公式
行星绕太阳的轨道速度公式为:v = (GM/r)¹/²
其中,
v:为行星绕太阳的速度;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
5. 天体自转周期公式
天体自转周期公式为:
T = 2π(r/v)
其中,
T:为天体的自转周期;
r:为天体的半径;
v:为天体表面的线速度。
以上就是万有引力定律公式大全,每一项公式都有其具体的物理含义和数学表达式,对于物理学或天文学研究者或爱好者都有着极高的参考价值。
万有引力定律_(更新)
2
2 G的含义: 它在数值上等于两个质量都是 1kg的物体相距1m时的相互作用力 3 意义: (1)验证了万有引力定律是正确的; (2)使得万有引力定律有了真正的 实际意义。
引力常量的测定
里地 卡定 比利 文律 较用 迪一 年 准扭 许百 , 确秤 (多 即 地装 年 在 测置 以 牛 出, *后 顿 了第 , 发 引一 英 现 力次 国 万 常在 )物 有 量实 ,理 引 验 巧学 力 室 妙家 1731 1810 1789
.
思考:假设月球停止绕地球公转,月球
做什么运动?为什么? 1.沿直线落向地球; 2.地球对月球的吸引力的吸引。
思考:假设月球绕地球公转的线速度减
小,月球做什么运动?为什么? 1.沿曲线落向地球,相当于平抛运动; 2.地球对月球的吸引力大于需要的向心力而 做向心运动。
本课小结 这节课,我们解决了两个问题: 1.地球与地面物体和月球的引力、太阳与行星 间的引力是否同一种力;使我们认识到地球与地 面物体和月球的引力、太阳与行星间的引力是统 一的并进行了月地检验。 2.任意两个物体之间是否都有这样的引力;使 我们认识到任意两个物体之间都有这样的引力, 在百年之后,卡文迪许在实验里进行了检验。 最终,我们认识了自然界中第一种基本相互作 用——万有引力。
3.万 有 引 力 定 律
月-地检验
月球轨道半径即月-地的距离r为地球半径 R的60倍,地球半径R=6.4×106m,月球的公转周 期T=27天,重力加速度g=9.8m/s2.
①月球受到地球的引力F1是与它同质量的物体在地面附 近受到地球引力F2 的几分乊一?
②月球的向心加速度a是与它同质量的物体在地面附 近重力加速度g的几分乊一?
11
一粒芝麻重的几千分之一!!!
(完整版)万有引力定律公式总结
万有引力定律知识点班级: 姓名:一、三种模型1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。
2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力.3、“天体相遇"模型:两天体相遇,实际上是指两天体相距最近.二、两种学说1、地心说:代表人物是古希腊科学托勒密2、日心说:代表人物是波兰天文学家哥白尼三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。
第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等.(表达式) 四、基础公式线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m (2)2r= m (2)2r=m =m 向心加速度:a== (2r= (2)2r= (2)2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====222224m πω 2.忽略地球自转的影响:mg RGM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度测质量: 1.已知表面重力加速度g ,和地球半径R.(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。
(r T m r Mm G 2224π= ,则2324GTr M π=) 3.已知环绕天体的线速度v 和轨道半径r.(r v m rMm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m rMm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (Tr v π2=,r v m r M G 22m =,联立得G T M π2v 3=)测密度:已知环绕天体的质量m 、周期T 、轨道半径r.中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力r T m r Mm G 2224π= 则2324GTr M π=——① 又334R V M πρρ⋅==—-② 联立两式得:3233R GT r πρ= 当R=r 时,有23GTπρ= 注:R 中心天体半径,r 轨道半径,球体体积公式334R V π=七、星球表面重力加速度、轨道重力加速度问题1.在星球表面: 2RGM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2)(h R GM g m +='(g '为h 高处的重力加速度) 联立得g'与g 的关系: 22)('h R gR g += 八、卫星绕行的向心加速度、速度、角速度、周期与半径的关系1.ma r M G =2m ,则2a rM G =(卫星离地心越远,向心加速度越小) 2.r v m rMm G 22=,则r GM v =(卫星离地心越远,它运行的速度越小) 3.r m rMm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r Tm r Mm G 2224π=,则GMT 32r 4π=(卫星离的心越远,它运行的周期越大) 九、三大宇宙速度 第一宇宙速度(环绕速度):7。
(完整版)万有引力定律-知识点
万有引力定律及其应用二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G221r m m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G221r m m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有 F =F 向+m 2g , 所以m 2g=F 一F 向=G221r m m -m 2R ω自2因地球目转角速度很小G221r m m » m 2R ω自2,所以m 2g= G221r m m假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G221r m m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多. 四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2MG R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.G2rmM =m224Tπr ,由此可得:M=2324GT r π;ρ=V M=334R M π=3223R GT r π(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度专题:人造天体的运动基础知识一、卫星的绕行角速度、周期与高度的关系(1)由()()22mMv Gmr h r h =++,得v =h ↑,v ↓ (2)由G()2h r mM+=m ω2(r+h ),得ω=()3h r GM+,∴当h ↑,ω↓(3)由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑ 二、三种宇宙速度:① 第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
(完整版)万有引力与航天重点知识归纳
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
(完整版)万有引力定律公开课教案
第二节万有引力定律【教材分析】本节课内容主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力推证了万有引力的一般规律的思路与方法.这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比。
这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。
本节内容包括:发现万有引力的思路及过程、万有引力定律的推导。
【三维目标】一、知识与技能1.了解万有引力定律得出的思路和过程。
2.理解万有引力定律的含义并会推导万有引力定律,记住引力常量G并理解其内涵。
3。
知道任何物体间都存在着万有引力,且遵循相同的规律.二、过程与方法1。
培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法.2.培养学生的科学推理能力。
三、情感态度与价值观通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性.【教学重点】1。
万有引力定律的推导。
2。
万有引力定律的内容及表达公式。
【教学难点】1.对万有引力定律的理解。
2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来。
【教学方法】1.对万有引力定律的推理-—采用分析推理、归纳总结的方法。
2。
对疑难问题的处理——采用讲授法、例证法.【教学用具】多媒体课件【课时安排】1课时【教学设计】导入本节课主要以启发式教学为主。
首先通过前面知识的回顾和提出问题使学生产生对引力是否同一性质的探究兴趣。
问题设置:师提问:太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用?【新课教学】课件展示:画面1:八大行星围绕太阳运动画面2:月球围绕地球运动演示3:地面上的人向上抛出物体,物体总落回地面学生思考、讨论下面问题:1、行星为何能围绕太阳做近似圆周运动?2、月球为什么能围绕地球做近似圆周运动?3、地面上的物体受到的力与上述力相同吗?如果将苹果放到月球的位置受力会有什么特点呢?4、根据以上四个问题的探究,你有何猜想?师引导分析,猜想:“天上"的力与“人间”的力应属于同种性质的力。
万有引力定律-开普勒三大定律-同步卫星
万有引力定律◆知识精要1、万有引力定律(1)内容:任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。
(2)公式:F=G ,其中G=6.67×10-11N·m2/kg2(3)万有引力定律适用于一切物体,而该公式在中学阶段只能直接用于质点间的万有引力的计算(匀质球体或匀质球壳亦可)。
(4)万有引力是一种场力在空间只要存在有质量的物体,它就会在周围空间建立起引力场。
任何一个有质量的物体进入这个引力场,就会受到万有引力的作用,这是由于进入引力场的物体也在周围空间形成自己的引力场,并通过引力场与其它物体相互作用。
2、地球上物体重力变化的原因(1)自转的影响当物体位于纬度F处时,万有引力为F=G ,向心力为F n=mω2RcosF,则重力mg= 当物体位于赤道时,F=0°,mg=F-F n=G -mω2R;当物体位于两极时,F=90°,mg=F=G 。
可见,物体的重力产生于地球对物体的引力,但在一般情况下,重力不等于万有引力,方向不指向地心,由于地球自转的影响,从赤道到两极,物体的重力随纬度的增大而增大。
(2)地面到地心的距离R和地球密度r的影响由于地球是椭球体,质量分布也不均匀,根据F=G = ρGRmr可知,随着R和r 的变化,重力也会发生变化。
说明:由于地球自转的影响,从赤道到两极,重力变化为千分之五;地面到地心的距离R每增加一千米,重力减少不到万分之三。
所以,在近似计算中,mg≈F。
3、万有引力定律的应用(1)重力加速度g=M(2)行星绕恒星、卫星绕行星做匀速圆周运动,万有引力充当向心力,根据万有引力定律和牛顿第二定律可知:G =ma n又a n= =w2r=()2r,则:v= ,w= ,T=2p(3)中心天体的质量M和密度r由G =m()2r可得M= ,r=当r=R,即近地卫星绕中心天体运行时,r= 。
4、人造地球卫星(1)发射速度、宇宙速度和环绕速度发射速度(v0)是从地面将人造卫星沿切线方向送入轨道的初速度;宇宙速度(v n)是最小发射速度,如第一宇宙速度v1=7.9km/s是发射人造卫星的最小发射速度;环绕速度(v)是人造卫星在轨道上运行的线速度。
(完整版)万有引力定律教学设计
《万有引力定律》教学设计山东省莒南第一中学朱淑娟【教材依据】人教版高中物理必修二第六章第三节【教材分析】1、万有引力定律这一节承上启下,承接上章匀速圆周运动,开启之后要学习的卫星的运动规律。
2、万有引力定律这一节是本章的核心,这节内容是对上两节课教学内容的进一步推演,也是下节课教学内容的基础,是本章的教学重点。
3、教材在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础,经历一次“发现”万有引力定律的过程。
【学情分析】1.高一学生已经学习了牛顿的三个定律、圆周运动的知识、开普勒三定律,已经积累了一定的知识。
理论上已经具备了接受万有引力定律的能力。
2. 在上一节中,学生经历了太阳与行星间引力的探究过程,学生对天体运动的研究产生了极大的兴趣和求知欲。
3.另一方面我国在航天事业上成就突出,捷报频传,极大的激发了学生学习有关宇宙、航天、卫星知识的兴趣。
【教学目标】一、知识与技能1、了解万有引力定律得出的思路和过程,知道重物下落和天体运动的统一性。
2、理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。
3、知道万有引力定律公式的适用范围。
4、理解万有引力常量的意义及测定方法,了解卡文迪许实验室。
二、过程与方法1、在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。
2、培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。
三、情感态度与价值观1、通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。
2、经过万有引力常量测定的学习,让学生体会科学的方法论和物理常量数量级的重要性。
【教学重点】1、月-地检验的推导过程。
2、万有引力定律的内容及表达式。
【教学难点】1、对万有引力定律的理解。
2、使学生能把地面上的物体所受重力与月地之间存在的引力是同性质的力联系起来。
【教学设计思想】在本节课教学,将让学生继续进行“发现之旅”---追寻牛顿的足迹,为此整个教学流程如下:由苹果落地引起猜想---月地检验---更大胆的猜想---万有引力定律---卡文迪许测定G。
万有引力定律
万有引力定律及其应用1. 万有引力定律○1内容:自然界中任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。
○2表达式:221r m m G F = ○3万有引力定律是两个具有质量的物体间的相互作用力,是宇宙中物体间的一种基本作用形式。
公式中的r 应理解为相互作用的两个物体质心间的距离;对于均匀的球体,r 是两球心间的距离;对地表附近的物体,r 是物体和地心间的距离。
G 称作引力常量:G =6.67×10-11N ·m 2/kg 2(不要求记住)○4适用条件: 1、严格地说,万有引力定律的公式只适用于计算质点间的相互作用。
当两个物体间的距离比物体本身大得多时,也可用于近似计算两物体间的万有引力。
2、质量均匀的球体间的相互作用,也可用于万有引力定律公式来计算,式中的r 是两个球体球心间的距离。
3、一个均匀球体与球外一个质点的万有引力也可用计算,式中的是球体球心到质点的距离。
2. 三种宇宙速度(1)第一宇宙速度(环绕速度):v1= 7.9 km/s ,是人造地球卫星的最小发射速度.(2)第二宇宙速度(脱离速度):v2= 11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度.(3)第三宇宙速度(逃逸速度):v3= 16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.3万有引力定律在天体运动中的应用1.在处理天体的运动问题时,通常把天体的运动看成是匀速圆周 运动,其所需要的向心力由 万有引力 提供.其基本关系式为:在天体表面,忽略自转的情况下有:2. 卫星的绕行速度、角速度、周期与轨道半径r 的关系r f m r Tm r m r v m r Mm G 22222)π2()π2(====ωmg R Mm G =23.体质量M、密度ρ的估算方法点拨1.分析天体运动类问题的一条主线就是F万=F向,抓住黄金代换GM= gR22.近地卫星的线速度即第一宇宙速度,是卫星绕地球做圆周运动的最大速度,也是发射卫星的最小速度.3.因卫星上物体的重力用来提供绕地球做圆周运动的向心力,所以均处于完全失重状态,与重力有关的仪器不能使用,与重力有关的实验不能进行.4.卫星变轨时,离心运动后速度变小 ,向心运动后速度变大 .5.确定天体表面重力加速度的方法有:①测重力法;②单摆法;③平抛(或竖直上抛)物体法;④近地卫星环绕法.【典型题解】类型一万有引力定律及其应用例1(2009·南京模拟)图1所示是我国的“探月工程”向月球发射一颗绕月探测卫星“嫦娥一号”的过程简图.“嫦娥一号”进入月球轨道后,在距离月球表面高为h的轨道上绕月球做匀速圆周运动.(1)若已知月球半径为R 月,月球表面的重力加速度为g 月,则“嫦娥一号”环绕月球运行的周期为多少?(2)若已知R 月= R 地/4,g 月= g 地/6,则近月卫星的运行速度约为近地卫星运行速度的多少倍?解析 (1)设“嫦娥一号”环绕月球运行的周期是T,根据牛顿第二定律得(2)对于靠近天体表面的行星或卫星有类型二 中心天体质量、密度的计算例2 把地球绕太阳公转看作匀速率圆周运动,轨道平均半径约为1.5×108 km,已知万有引力常量G=6.67×10-11 N ·m2/kg2,则可估算出太阳的质量大约是多少?(结果取一位有效数字)解析 题干给出地球轨道半径r=1.5×108 km,虽没直接给出地球运转周期数值,但日常知识告诉我们:地球绕太阳公转一周为365天,周期T=365×24×3 600 s=3.2×107 s.万有引力提供向心力 ,故太阳质量r Tm r Mm G 22)π2(例3美国“勇气”号火星车在火星表面成功登陆,登陆时间选择在6万年来火星距地球最近的一次,火星与地球之间的距离仅有5 580万千米,火星车在登陆前绕火星做圆周运动,距火星表面高度为H,火星半径为R,绕行N圈的时间为t.求:(1)若地球、火星绕太阳公转为匀速圆周运动,其周期分别为T地、T火,试比较它的大小;(2)求火星的平均密度(用R、H、N、t、万有引力常量G表示);(3)火星车登陆后不断地向地球发送所拍摄的照片,地球上接收到的第一张照片大约是火星车多少秒前拍摄的.解析(1)设环绕天体质量为m,中心天体质量为M,类型三卫星变轨问题例3 (2009·山东卷·18)2008年9月25日至28日,我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是()A.飞船变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于失重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度解析由于变轨过程中需点火加速,所以变轨后飞船的机械能增大,选项A错误;宇航员出舱前后均与飞船一起做匀速圆周运动,万有引力提供了做圆周运动的向心力,因此出舱前后航天员都处于失重状态,选项B正确;飞船在圆轨道上运行的周期为90分钟,而同步卫星的周期为24小时,所以飞船在圆轨道上运动的角速度大于同步卫星的角速度,选项C 正确.只要在同一点受到的万有引力相同,由牛顿第二定律得a=,即加速度相同,选项D 错误.答案 BC例4“嫦娥一号”探月卫星发动机关闭,轨道控制结束,卫星进入地月转移轨道.图2中MN 之间的一段曲线表示转移轨道的一部分,P 是轨道上的一点,直线AB 过P 点且和两边轨道相切.下列说法中正确的是(BCD )A.卫星在此段轨道上,动能一直减小B.卫星经过P 点时动能最小C.卫星经过P 点时速度方向由P 向BD.卫星经过P 点时加速度为零解题归纳 卫星的变轨问题应结合离心运动和向心运动去分析,因为变轨的过程中不满足稳定运行的条件F 向=F 万,而是在原轨道上因为速度减小做向心运动而下降,速度增大做离心运动而升高,但是一旦变轨成功后又要稳定运行,这时又满足F 向=F 万,进而按规律分析即可,在这里要注意,因为原轨道上的速度减小做向心运动轨道降低了,但是降低后在低轨道运行的速度要比原高轨道的速度大.(2009·上海十校联考)2008年9月25日我国成功发射了“神舟七号”飞船,关于“神舟七号”飞船的运动,下列说法中正确的是 (CD )A.点火后飞船开始做直线运动时,如果认为火箭所受的空气阻力不随速度变化,同时认为推力F (向后喷气获得)和重力加速度g 不变,则火箭做匀加速直线运动B.入轨后,飞船内的航天员处于平衡状态C.入轨后,飞船内的航天员仍受到地球的引力作用,但该引力小于航天员在地面时受到的地球对他的引力D.返回地面将要着陆时,返回舱会开启反推火箭, 这个阶段航天员处于超重状态类型四 万有引力与航天科技例4(2009·天津卷·12)2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A ”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A 做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A 就处在该椭圆的一个焦点上.观测得到S2星的运动周期为15.2年.(1)若将S2星的运动轨道视为半径r=9.50×102天文单位的圆轨道,试估算人马座A 的质量MA 是太阳质量MS 的多少倍(结果保留一位有效数字);(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为22rGM mr GMmm 的粒子具有的势能为Ep=- (设粒子在离黑洞无限远处的势能为零),式中M 、R 分别表示黑洞的质量和半径.已知引力常量G=6.7×10-11N ·m2/kg2,光速c=3.0×108 m/s ,太阳质量MS=2.0×1030 kg ,太阳半径RS=7.0×108 m ,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A 的半径RA 与太阳半径RS 之比应小于多少(结果按四舍五入保留整数).解析 (1)S2星绕人马座A 做圆周运动的向心力由人马座A 对S2星的万有引力提供,设S2星的质量为mS2,角速度为ω,周期为T ,则rE=1天文单位 ⑤代入数据可得 =4×106 ⑥(2)引力对粒子作用不到的地方即为无限远,此时粒子的势能为零,“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零,此时势能仍为负值,则其能量总和小于零.根据能量守恒定律,粒子在黑洞表面处的能量也小于零,则有例5(2009·四川卷·15)据报道,2009年4月29 日,美国亚利桑那州一天文观测机构发现一颗与太 阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为3.39年, 直径2~3千米,其轨道平面与地球轨道平面呈 155°的倾斜.假定该小行星与地球均以太阳为中心 做匀速圆周运动,则小行星和地球绕太阳运动的速度大小的比值为 ( )22r m M G S A备考作业1.(2009·安徽卷·15)2009年2月11日,俄罗斯的“宇宙—2251”卫星和美国的“铱—33”卫星在西伯利亚上空约805 km处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是()A.甲的运行周期一定比乙的长B.甲距地面的高度一定比乙的高C.甲的向心力一定比乙的小D.甲的加速度一定比乙的大解析根据万有引力提供向心力有由于v甲>v乙,所以甲离地面的高度小于乙离地面的高度,甲的周期小于乙的周期,甲的向心加速度比乙的大.由于甲、乙质量未知,所受向心力大小无法判断.综上所述正确选项为D项.2.(2009·上海市高三物理质量抽查卷)某探月卫星经过多次变轨,最后成为一颗月球卫星.设该卫星的轨道为圆形,且贴近月球表面,则该近月卫星的运行速度率约为(已知月球的质量约为地球质量的1/81,月球半径约为地球半径的1/4,近地地球卫星的速率为7.9 km/s)()A.1.8 km/sB.0.4 km/sC.11 km/sD.36 km/s3.(2009·徐州三检)卫星甲、乙、丙在如图4所示的三个椭圆轨道上绕地球运行,卫星甲与卫星乙的运行轨道在P点相切.不计大气阻力,以下说法正确的是()A.卫星甲运行时的周期最大B.卫星乙运行时的机械能最大C.卫星丙的加速度始终大于卫星乙的加速度D.卫星甲、乙分别经过P点时的速度相等4.(2009·苏锡常镇学情调查二)我国发射的“亚洲一号”地球同步通信卫星的质量为1.24 t,在某一确定的轨道上运行.下列说法正确的是()A.“亚洲一号”卫星定点在北京正上方太空,所以我国可以利用它进行电视转播B.“亚洲一号”卫星的轨道平面一定与赤道平面重合C.若要发射一颗质量为2.48 t的地球同步通信卫星,则该卫星的轨道半径将比“亚洲一号”卫星轨道半径小D.若要发射一颗质量为2.48 t的地球同步通信卫星,则该卫星的轨道半径和“亚洲一号”卫星轨道半径一样大解析同步卫星一定在赤道上方,周期24 h,且高度一定,所以本题应选择B、D.答案 BD5.(2009·长春调研)如图5所示,从地球表面发射一颗卫星,先让其进入椭圆轨道Ⅰ运动,A、B分别为椭圆轨道的近地点和远地点,卫星在远地点B变轨后沿圆轨道Ⅱ运动,下列说法中正确的是()A.卫星沿轨道Ⅱ运动的周期大于沿轨道Ⅰ运动的周期B.卫星在轨道Ⅱ上C点的速度大于在轨道Ⅰ上A点的速度C.卫星在轨道Ⅱ上的机械能大于在轨道Ⅰ上的机械能D.卫星在轨道Ⅱ上C点的加速度大于在轨道Ⅰ上A点的加速度6.(2009·苏北四市联考)为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图6为“嫦娥一号”卫星撞月的模拟图,卫星在控制点1开始进入撞月轨道.假设卫星绕月球作圆周运动的轨道半径为R ,周期为T ,引力常量为G.根据题中信息,以下说法正确的是( )A.可以求出月球的质量B.可以求出月球对“嫦娥一号”卫星的引力C.“嫦娥一号”卫星在控制点1处应减速D.“嫦娥一号”在地面的发射速度大于11.2 km/s7.(2009·天津模拟)2007年10月24日18时29分,图7星箭成功分离之后,“嫦娥一号”卫星进入半径为205 km 的圆轨道上绕地球做圆周运动,卫星在这个轨道上“奔跑”一圈半后,于25日下午进行第一次变轨,变轨后,卫星轨道半径将抬高到离地球约600 km 的地方,如图7所示.已知地球半径为R,表面重力加速度为g,质量为m 的“嫦娥一号”卫星在地球上空的万有引力势能为Ep=(以无穷远处引力势能为零),r 表示物体到地心的距离.(1)质量为m 的“嫦娥一号”卫星以速率v 在某一圆轨道上绕地球做圆周运动,求此时卫星距地球地面高度h1.(2)要使“嫦娥一号”卫星上升,从离地面高度h1再增加h的轨道上做匀速圆周运动,卫星发动机至少要做多少功?rm gR28.(2009·上海卢湾区)牛顿在1684年提出这样一些理论:当被水平抛出物体的速度达到一定数值v1时,它会沿着一个圆形轨道围绕地球飞行而不落地,这个速度称为环绕速度;当抛射的速度增大到另一个临界值v2时,物体的运动轨道将成为抛物线,它将飞离地球的引力范围,这里的v2我们称其为逃离速度,对地球来讲逃离速度为11.2 km/s.法国数学家兼天文学家拉普拉斯于1796年曾预言:“一个密度如地球而直径约为太阳250倍的发光恒星,由于其引力作用,将不允许任何物体(包括光)离开它.由于这个原因,宇宙中有些天体不会被我们看见.”这种奇怪的天体也就是爱因斯坦在广义相对论中预言的“黑洞(black hole)”.已知对任何密度均匀的球形天体,v2恒为v1的2倍,万有引力恒量为G,地球的半径约为6 400 km,太阳半径为地球半径的109倍,光速c=3.0×108 m/s.请根据牛顿理论求:(1)求质量为M,半径为R的星体逃离速度v2的大小;(2)如果有一黑洞,其质量为地球的10倍,则其半径满足什么条件?(3)若宇宙中一颗发光恒星,直径为太阳的248倍,密度和地球相同,试通过计算分析,该恒星能否被我们看见.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行星的运动万有引力定律
学习目标:
1.了解地心说(托勒密)和日心说(哥白尼)。
2.了解开普勒对行星运动的描述。
3.初步掌握万有引力定律。
学习重点:
1.地心说(托勒密)和日心说(哥白尼)。
2.开普勒三大定律。
3.万有引力定律。
学习难点:
1.有关开普勒三大定律的理解和认识。
2.万有引力定律。
主要内容:
一、地心说和日心说
l.地心说:在古代,以希腊亚里士多德为代表,认为地球是
宇宙的中心。
其它天体则以地球为中心,在不停地运动。
这
种观点,就是“地心说”。
公元二世纪,天文学家托勒密,
把当时天文学知识总结成宇宙的地心体系,发展完善了“地
心说”描绘了一个复杂的天体运动图象。
2.日心说:随着天文观测不断进步,“地心说”暴露出许多问题。
逐渐被波兰天文学家哥白尼提出的“日心说”所取代。
波兰天文学家哥白尼经过近四年的
观测和计算,于1543年出版了“天体运行论”正式提出“日心说”。
“日心说”
认为,太阳不动,处于宇宙的中心,地球和其它行星
公转还同时自转。
“日心说”对天体的描述大为简化,同时
打破了过去认为其它天体和地球截然有
别的界限,是一项真正的科学革命。
这
种学说和宗教的主张是相反的。
为宣传
和捍卫这个学说,意大利学者布鲁诺被
宗教裁判所活活烧死。
伽利略受到残酷
的迫害,后人把历史上这桩勇敢的壮举形容为:“哥白尼拦住了太阳,推动了
地球。
哥白尼(1473一1543)Nicolaus Copemicus
二、开普勒行星运动三大定律
十七世纪,德国人开普勒在“日心说”的基础上,整理了他的老师,丹麦人第20多年观测行星运动的数据后,经过四年艰苦计算,总结了关于行星运动的三条规律,即:
开普勒第一定律:也叫椭圆轨道定律,它的具体
内容是:所有行星分别在大小不同的轨道上同绕太
阳运动。
人阳在这些椭圆的一个焦点上。
他当时算
出,火星的偏心率为0.093,是当时所知的在太阳系内最大的,因此椭圆轨道最为明显。
他的这条定律否定了行星轨道为圆形的理论。
开普勒第二定律:对任意行星来说,他与太阳的连线在相等的时间内扫过相等的面积。
开普勒第三定律:行星绕太阳运动轨道半长轴的立方与运动周期的平方成正比。
三、万有引力定律
1.内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
2.公式:
3.引力常量G:适用于任何两个物体,它在数值上等于两个质量都是1kg的物体相距1m时的相互作用力,引力常量的标准值为G=6.67259×10-11N·m2/kg2,通常取G=6.67×10-11N·m2/kg2。
4.重大意义:万有引力定律的发现,是17世纪自然科学最伟大的成果之一。
它把地面上物体运动的规律和天体运动的规律统一了起来,对以后物理学和天文学的
发展具有深远的影响。
它第一次揭示了自然界中一种基本相互作用的规律,在人
类认识自然的历史上树立了一座里程碑。
【例一】有两颗行星环绕某恒星运动,它们的运动周期之比为27:1,则它们的轨道半径之比为()
A.3:1 B.9:1 C.27:1 D.1:9
【例二】月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在天空中不动一样。
【例三】火星和地球质量之比为P,火星和地球的半径之比为q,则火星表面处和地球表面处的重力加速度之比为:()
A.p/q2 B.P·q2 C.P/q D.P·q
【例四】地球表面的平均重力加速度为g,地球半径为R,万有引力恒量为G,可以估算出地球的平均密度为( )
A. B.P·q2 C.P/q D.P·q
课堂训练:
1.由万有引力定律可知,万有引力恒量G的单位是( )
A.牛·米2/千克2 B.千克2/(牛·米2) C.牛·千克2/米2 D.米2/(牛·千克)2
2.以下说法中正确的是( )
A.质量为m的物体在地球上任何地方其重力都一样。
B.把质量为m的物体从地面移到高空中,其重力变小。
C.同一物体在赤道上的重力比在两极处重力大。
D.同一物体在任何地方质量都是相同的。
3.已知火星的半径约为地球半径的1/2,火星质量约为地球质量的1/9。
若一物体在地球表面所受重力比它在火星表面所受重力大49N,则这个物体的质量是________kg。
4.离地面某一高度h处的重力加速度是地球表面重力加速度的1/2,则高度h是地球
半径的____________倍。
课后作业:
1.设人造地球卫星绕地球作匀速圆周运动,卫星离地面越高,则卫星的( )
A.速度越大 B.角速度越大 C.向心加速度越大D.周期越长
2.环绕地球做匀速圆周运动的人造卫星,距地面高度越大,以下说法中正确的是( )
A.线速度和周期越大 B.线速度和周期越小
C.线速度越大,周期越小 D.线速度越小,周期越大
3.两个质量均匀的球体,相距r,它们之间的万有引力为10-8牛,若它们的质量、距
离都增加为原来的2倍,则它们间的万有引力为()
A.4×10-8牛 B.10-8牛;C.1/4×10-8牛 D.10-4牛
4.宇宙飞船进入一个围绕太阳运行的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( )
A.3年 B.9年 C.27年 D.81年
5.有一行星的密度跟地球密度相同,但它表面处的重力加速度是地面上重力加速度的
4倍,则行星的质量是地球质量的()
A.1/4 B.4倍 C.16倍D.64倍
6.地球表面重力加速度为g,在离地面高h处的重力加速度g′=__________g。
(已知地球半径为R)
7.一个半径比地球大两倍,质量是地球质量的36倍的行星、同一物体在它表面上的重力是在地球表面上的____________倍。
8.火星的半径约为地球半径的一半,火星的质量约为地球质量的1/9地球上质量为50kg 的人,如果到火星上去,他的重力将是_____________。
9.月球质量是地球质量的1/80,月球半径是地球半径的1/4,如分别在地球上和月球上以相同的初速度竖直上抛一物体,则物体在地球上的上升高度与在月球上的上升高度之比为_______________。
10.火星的半径约为地球半径的一半,质量约为地球质量的1/9。
在地球重490牛的人,他在火星上所受的重力是____________,质量是__________。
11.如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?
12.宇宙飞船由地球飞向月球是沿着它们的连线飞行的,途中经某一位置时飞船受地球和月球引力的合力为零,已知地球和月球两球心间的距离为3.84×108m,地球质量是月球质量的81倍。
试计算飞船受地球引力和月球引力的合力为零的位置距地球中心的距离。
阅读材料:万有引力定律由来
并普勒定律说明了行星运动的规律。
很自然地会
产生这样一个问题:什么原因使行星沿着椭圆轨道运
动?怎样的力使行星运动遵从第二定律和第三定律呢?开普勒认为应该有某种原因存在着,他并且正确地指出太阳和行星会象磁铁一样互相吸引,他还认为这种作用和距离的一次方成反比。
但在那个时候,科学还没发达到彻底解决这个问题的水平,因此开普勒的这些深刻的思想不能得到进一步发展。
此后半个世纪经过包括牛顿本人在内的许多科学家如伽利略,惠更斯、虎克等人的努力,力学才得到充分的发展。
牛顿集前人之大成,建立了运动公理。
牛顿根据这些力学公理和力的合成法则,并应用他所创立的微积分数学方程推出了支配行星运动的力的性质。
1665到1666年间牛顿发现,如某行星作匀速圆属运动,根据开普勒第三定律,太阳对行星的引力与行星轨道半径的平方成反比。
1679年牛顿使用严格的数学方法论证了如果轨道是椭圆而又遵循开普勤三定律的话,引力仍然是平方反比的规律。
1687年在英国天文学家哈雷的促进和协助下,牛顿出版了《自然哲学的数学原理弦》发表了万有引力定律----任何两个质点之间存在着相互的吸引力(F)其大小与它们之间距离(r)的平方成反比,与它们质量(m1、m2)的乘积成正比。