小学奥数教师版-5-5-4 余数性质(二)

合集下载

【教师版】小学奥数5-5-2 带余除法(二).专项练习及答案解析

【教师版】小学奥数5-5-2 带余除法(二).专项练习及答案解析

1.能够根据除法性质调整余数进行解题 2.能够利用余数性质进行相应估算 3.学会多位数的除法计算 4. 根据简单操作进行找规律计算带余除法的定义及性质 1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵ 余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.模块一、带余除法的估算问题例题精讲知识点拨教学目标5-5-2.带余除法(二)【例 1】修改31743的某一个数字,可以得到823的倍数。

问修改后的这个数是几?【考点】带余除法的估算问题【难度】3星【题型】解答【解析】本题采用试除法。

823是质数,所以我们掌握的较小整数的特征不适用,31743÷823=38……469,于是31743除以823可以看成余469也可以看成不足(823-469=)354,于是改动某位数字使得得到的新数比原来大354或354+823n也是满足题意的改动.有n=1时,354+823:1177,n=2时,354+823×2=2000,所以当千位增加2,即改为3时,有修改后的五位数33743为823的倍数.【答案】33743【例 2】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】小学数学夏令营【解析】由48412÷=÷=,48412÷=知,一组是10或11人.同理可知48316÷=,4859.6知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【答案】10【例 3】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【考点】带余除法的估算问题【难度】3星【题型】解答【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于13678⨯=,并且小于⨯+=;又因为这个两位数除以11余6,而78除以11余1,这个两位数13(61)91为78583+=.【答案】83【例 4】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【考点】带余除法的估算问题【难度】3星【题型】解答【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余0)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【答案】99【例 5】托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】圣彼得堡数学奥林匹克【解析】除以3、6和9的余数分别不超过2,5,8,所以这三个余数的和永远不超过++=,既然它们的和等于15,所以这三个余数分别就是2,5,8.所以该25815数加1后能被3,6,9整除,而[3,6,9]18=,设该数为a,则181=-,即a m18(1)17=-+(m为非零自然数),所以它除以18的余数只能为17.a m【答案】17模块二、多位数的余数问题【例 6】 2000"2"2222个除以13所得余数是_____.【考点】多位数的余数问题 【难度】3星 【题型】填空【解析】 方法一、我们发现222222整除13,2000÷6余2,所以答案为22÷13余9。

小学奥数—中国剩余定理及余数性质拓展

小学奥数—中国剩余定理及余数性质拓展


【例 22】在 200 至 300 之间,有三个连续的自然数,其中,最小的能被 3 整除,中间的能被 7 整除,最大的 能被 13 整除,那么这样的三个连续自然数分别是多少?
5-5-4.中国剩余定理及余数性质拓展.题库
学生版
page 7 of 8
【例 23】有三个连续自然数,其中最小的能被 15 整除,中间的能被 17 整除,最大的能被 19 整除,请写出 一组这样的三个连续自然数.
【例 7】 某个自然数除以 2 余 1,除以 3 余 2,除以 4 余 1,除以 5 也余 1,则这个数最小是

【例 8】 一个大于 10 的自然数,除以 5 余 3,除以 7 余 1,除以 9 余 8,那么满足条件的自然数最小为多少?
【巩固】一个大于 10 的数,除以 3 余 1,除以 5 余 2,除以 11 余 7,问满足条件的最小自然数是多少?
【例 17】如图,在一个圆圈上有几十个孔(不到 100 个),小明像玩跳棋那样,从 A 孔出发沿着逆时针方向, 每隔几孔跳一步,希望一圈以后能跳回到 A 孔.他先试着每隔 2 孔跳一步,结果只能跳到 B 孔.他 又试着每隔 4 孔跳一步,也只能跳到 B 孔.最后他每隔 6 孔跳一步,正好跳回到 A 孔,你知道这 个圆圈上共有多少个孔吗?
与 7 整除的数;21 是 5 除余 1,被 3 与 7 整除的数,因此 21b 是被 5 除余 b,被 3 与 7 整除的数;同理 15c 是被 7 除余 c,被 3、5 整除的数,105 是 3,5,7 的最小公倍数.也就是说, 70a 21b 15c 是被 3 除余 a,被 5 除余 b,被 7 除余 c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍 数.
5-5-4.中国剩余定理及余数性质拓展.题库

小学奥数余数基础

小学奥数余数基础

余数1.定义: 在整数的除法中,只有能整除与不能整除两种情况。

当不能整时,就产生余数,取余数运算。

余数指整数除法中被除数未被除尽部分。

例如27除以6,商数为4,余数为3。

2.在整数的除法中,只有能整除与不能整除两种情况。

当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。

取余数运算:a modb =c 表示整数a除以整数b所得余数为c如:7 mod 3 = 13.余数性质:余数有如下一些重要性质(a,b,c均为自然数):(1)大小法则:余数小于除数(2)式子变换:被除数=除数×商+余数除数=(被除数-余数)÷商商=(被除数-余数)÷除数余数=被除数-除数×商(3)减法法则:如果a,b除以c的余数相同,那么a与b的差能被c整除。

a÷c=k…mb÷c=p…ma-b=cn例如,17与11除以3的余数都是2,所以17-11能被3整除。

(4)加法法则:a与b的和除以c的余数(不包括能整除),等于a,b分别除以c的余数之和(或这个和除以c的余数)。

a÷c=k…yb÷c=p…z(a+b) ÷c=r..(y+z)例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。

注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。

.(y+z) ÷c例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。

(5乘法法则:a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。

a÷c=k…yb÷c=p…z(a×b) ÷c=s…(y×z)例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。

注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。

小学奥数教师版-5-4-4 完全平方数及应用(一)

小学奥数教师版-5-4-4 完全平方数及应用(一)

5-4-4.完全平方数及应用(一)教学目标1.学习完全平方数的性质;2.整理完全平方数的一些推论及推论过程3.掌握完全平方数的综合运用。

知识点拨一、完全平方数常用性质1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p 整除完全平方数2a ,则p 能被a 整除。

2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

奥数 六年级竞赛 数论(二).教师版word

奥数 六年级竞赛 数论(二).教师版word

小学奥数数论内容中,余数相关问题是最成体系的,也是各类竞赛考试中的重点.⑴同余性质是解决同余问题的重要依据,复习简单同余问题,学会灵活运用同余性质解决同余问题. ⑵熟练掌握余数定理在多位数除法以及高次冥末尾数字求解中的基本运用.⑶能用凑同余的办法解决一个数除以多个数,得不同余数的问题,学会使用中国剩余定理.带余除法:一般地,如果a 是整数,b 是整数()0b ≠,那么一定有另外两个整数q 和r ,0r b ≤<,使得a b q r =⨯+.当0r =时,我们称a 能被b 整除.当0r ≠时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的不完全商(亦简称为商).用带余数除式又可以表示为a b q r ÷= ,0r b ≤<.同余式:若两个整数a ,b 被自然数m 除有相同的余数,那么称a ,b 对于模m 同余,用“同余式”表示为()mod a b m ≡意味着(我们假设a b ≥)a b mk -=,k 是整数,即()|m a b -.若两个数a ,b 除以同一个数c 得到的余数相同,则a ,b 的差一定能被c 整除.余数定理:①两数的和除以m 的余数等于这两个数分别除以m 的余数和.实例:7321÷= ,5312÷= ,这样()753+÷的余数就等于()123+÷的余数.②两数的差除以m 的余数等于这两个数分别除以m 的余数差.实例:8322÷= ,4311÷= ,这样()843-÷的余数就等于()213-÷的余数.③两数的积除以m 的余数等于这两个数分别除以m 的余数积.实例:7321÷= ,5312÷= ,这样()753⨯÷的余数就等于()123⨯÷的余数. 第 6讲数论(二)【例 1】 有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【分析】 (70110160)50290++-=,503162÷= ,除数应当是290的大于17小于70的约数,只可能是29和58,11058152÷= ,5250>,所以除数不是58.7029212÷= ,11029323÷= ,16029515÷= ,12231550++=,所以除数是29.【例 2】 一个两位数被它的各位数字之和去除,问余数最大是多少?【分析】 设两位数ab (a 表示十位数字,b 表示个位数字)1091ab a b a a b a b a b+==++++ 由于余数不会超过除数a b +的值,所以我们对a b +的值从最大值18开始往小进行尝试搜索:当18a b +=,此时余数为9. 当17a b +=,则两位数为89、98,余数为4、13.当16a b +=,则两位数为97、88、79,余数为1、8、15.则余数最大的为15,因为接下来,除数最大为15,这样余数中最大的也只可能为14,所以余数最大的是15.【例 1】 一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数和a 的值. [分析] 将这些数转化被该自然数除后余数为2a 的数:()42952848-⨯=,791、50021000⨯=,这些数被这个自然数除所得的余数都是2a ,同余. 将这三个数相减,得到84879157-=、1000848152-=,所求的自然数一定是57和152的公约数,而()57,15219=,所以这个自然数是19的约数,显然1是不符合条件的,经过验证,当这个自然数是19时,除429、791、500所得的余数分别为11、12、6,6a =时成立,所以这个自然数是19,6a =.[拓展]已知60,154,200被某自然数除所得余数分别是1a -,2a ,31a -,求该自然数的值. [分析] 自然数61,154,201被该数除所得余数分别是a ,2a ,3a .自然数2613721=与154同余,611549394⨯=与201同余,所以除数是3567和9193的公约数,运用辗转相除法可得到该除数为29.经过检验成立.[拓展]甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?[分析] 设这个数为M ,则11603M A r ÷=22939M A r ÷=33393M A r ÷=122r r =,232r r =,要消去余数1r ,2r ,3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,这样被除数和余数都扩大2倍,同理,第三个式子乘以4. 这样我们可以得到下面的式子:11603M A r ÷=()22939222M A r ⨯÷=()33393424M A r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被M 整除.93926031275⨯-=,3934603969⨯-=,()1275,30651317==⨯.603,939,393这三个数有公约数3.51317÷=.则A 等于17.【例 2】 一个自然数减去它的各位数字之和得到的差值,称为“好数”.例如,根据()757757738-++=是“好数”.在四位数20□○的方框中填入某个恰当的数字后,可以使得无论圆圈内填入09 中的哪个数字,该四位数都不是“好数”,那么在方框中应填写数字__________.【分析】 注意到所有“好数”都是9的倍数,但9的倍数不一定都是好数.200x 对应的“好数”是20021998x x --=;201x 对应的“好数”是201212007x x ---=;202x 对应的“好数”是202222016x x ---=;…… …… ……209x 对应的“好数”是209292079x x ---=;210x 对应的“好数”是210212097x x ---=;即在20□○中“好数”只能是2007、2016、2025、2034、2043、2052、2061、2070、2079、2097. 所以,如果在20□○的“□”内填入8,则不管“○”填入什么数都不能是“好数”.【例 3】 (南京市“兴趣杯”少年数学邀请赛决赛)现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子.余下的糖果、饼干和桔子的数量的比是:1:3:2,这个大班有_____名小朋友,每人分得糖果_____粒,饼干_____块,桔子_____个.【分析】 法一:设大班共有a 名小朋友.由于余下的糖果、饼干和桔子的数量之比是1:3:2,所以余下的糖果、桔子数目的和正好等于余下的饼干数,从而254186210+-一定是a 的倍数,即2541862102301230102325+-==⨯=⨯=⨯⨯是a 的倍数.同样,225418632223142327⨯-==⨯=⨯⨯也一定是a 的倍数.所以,a 只能是232⨯的因数.但40a >,所以46a =.此时25446524=⨯+,21046372=⨯+,18646348=⨯+.故大班有小朋友46名,每人分得糖果5粒,饼干3块,桔子3个.法二:如果糖果有25461524⨯=粒,饼干有2102420⨯=块,橘子有1863558⨯=个,那么余下的糖果、饼干、橘子的个数相等,所以1524、420、558这三个数的相互之差是大班人数的倍数,152********-=,558420138-=,()1104,138138=,所以幼儿园大班人数是138的大于40的约数,即138、69、46,经过检验,其中只有46满足条件.每人分得糖果5粒、饼干3块、橘子3块.【例 4】 试求105253168⨯的末两位数.【分析】 分别考虑这两个幂除以4和25所得的余数.首先考虑4,253除以4余数是1,所以25310除以4的余数仍是1;168是4的倍数,它的5次方仍是4的倍数,即除以4的余数为0,则原数除以4的余数也是0.再考虑25,253除以25余3,则只需看310除以25的余数,又310=27×27×27×3,则310除以25的余数为2×2×2×3=24;168除以25余18,则只需看51832432418=⨯⨯除以25的余数,可知余数为18;又2418432⨯=除以25的余数为7,所以原式除以25的余数即为7.两位数中,能被4整除,除以25余7的数只有32,则原式的末两位即为32.[拓展]试求20082007的末两位数.[分析]200720007=+,所以20082007的末两位数与20087的末两位数相同. ()()100450220082100425027749492401====,2401被100除余1所以5022401被100除得的余数等于5021,所以20082007的末两位数是01.[拓展]求89143除以7的余数.[分析] 法一:∵()1433mod7≡(143被7除余3)∴()89891433mod7≡(89143被7除所得余数与893被7除所得余数相等)而63729=,()7291mod7≡∴()8966655143333335mod7≡⨯⨯⨯⨯≡≡个. 89于是余数以6为周期变化.所以335mod7≡≡.【例 5】1234200512342005+++++ 除以10所得的余数为多少? 【分析】 求结果除以10的余数即求其个位数.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把每个加数的个位数按20个(20是4和10的最小公倍数)一组,则不同组中对应的数字应该是一样的.首先计算123420123420+++++ 的个位数字,为4.2005个加数中有100组另5个数,100组的个位数是4100400⨯=的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1476523++++=的个位数 3,所以原式的个位数字是3,即除以10的余数是3.【例 6】 求{10031203308L 个除以19的余数. 【分析】 法一:{{{10161003101312033081266406332=-L L L 个个个 {{101310132063326332=⨯-L L 个个 {1013196332=⨯L 个 所以{10031203308L 个除以19的余数为0. 法二:首先计算120308被19除所得余数为0,120330812030810228=⨯+,228也是19的倍数,所以1203308也是19的倍数.12033308120330810228=⨯+,所以1203308也是19的倍数.以此递推可得到{10031203308L 个也是19的倍数.[拓展](2008年奥数网杯)已知20082008200820082008a = 个,问:a 除以13所得余数是______.[分析]2008除以13余6,10000除以13余3, 注意到200820082008100002008=⨯+;20082008200820082008100002008=⨯+;2008200820082008200820082008100002008=⨯+;根据这样的递推规律求出余数的变化规律:20082008除以13余6361311⨯+-=,200820082008除以13余1136390⨯+-=,即200820082008是13的倍数,而2008除以3余1,所以20082008200820082008a = 个除以13的余数与2008除以13的余数相同,为6.【例 7】 对任意的自然数n ,证明2903803464261n n n n A =--+能被1897整除.【分析】18977271=⨯,7与271互质,因为29035(mod 7)≡,8035(mod7)≡,4642(mod 7)≡,2612(mod7)≡,所以,290380346426155220(mod7)n n n n n n n n A =--+≡--+≡,故A 能被7整除.又因为2903193(mod 271)≡,803261(mod 271)≡,464193(mod 271)≡,所以29038034642611932611932610(mod271)n n n n n n n n A =--+≡--+≡,故A 能被271整除. 因为7与271互质,所以A 能被1897整除.【例 8】 在下表中填入自然数,要求第一行中所填入的自然数从左到右依次是31,32,33, ,第中填入的自然数从左到右依次是13,23,33, ,第三行中填入的自然数是同一列当中第一行、7【分析】 第一行的数被7除所得余数依次是1,1,6,1,6,6,0,……,以7为周期.第二行的数被7除所得的余数依次是3,2,6,4,5,1……,以6为周期.第三行的自然数如果除以7余1,那么对应第一行、第二行的自然数被7除,只有0+1和6+2两种情况,其中第一种情况下,对应的列数能被7和6整除,所以在第42列才能出现该情况,第二种情况下,对应的列数被7除余3,5,6,被6除余2,符合条件的最小列数是20.“物不知数问题”一般解题步骤:①凑“多”相同,即把余数处理成相同 条件:余数与除数的和相同②凑“缺”相同,即把余数处理成缺的数字相同 条件:除数与余数的差相同③先考虑上面两种,如果都不行,可使用逐步满足法或使用“中国剩余定理” .④逐步满足法:先满足条件一,得N ,再用“M N =+已满足除数公倍数”来满足下一个条件.《孙子算经》中有记载:“今有物不知其数:三三数之余二,五五数之余三,七七数之余二,问物几何?”它的意思就是,有一些物品,如果3个3个的数,最后剩2个;如果5个5个的数,最后剩3个;如果7个7个的数,最后剩2个;求这些物品一共有多少?这个问题人们通常把它叫作“孙子问题”, 西方数学家把它称为“中国剩余定理”.到现在,这个问题已成为世界数学史上闻名的问题.到了明代,数学家程大位把这个问题的算法编成了四句歌诀:三人同行七十稀,五树梅花廿一枝;七子团圆正半月,除百零五便得知.用现在的话来说就是:一个数用3除,除得的余数乘70;用5除,除得的余数乘21;用7除,除得的余数乘15.最后把这些乘积加起来再减去105的倍数,就知道这个数是多少.《孙子算经》中这个问题的算法是:702213152233⨯+⨯+⨯=;23310510523--=;所以这些物品最少有23个.得出问题中的系数70、21、15,实际上是非常巧妙的构造过程,这三个数满足以下条件70是5和7的公倍数,且被3除余1;21是3和7的公倍数,且被5除余1;15是3和5的公倍数,且被7除余1.在这样的条件下,任意一个系数乘以对应余数所得的积,被对应除数除后所得的余数恰好等于对应余 数,且该积仍然能被其他两个除数整除,因此三个积相加并不相互影响各自被对应除数除后所得的余数. 即702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数.【例 9】 一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【分析】 法一:仔细分析可以发现321527⨯+=+=,所以这个数可以看成被3、5、11除余7,[]3,5,11165=,所以这个数最小是1657172+=.法二:事实上,如果没有“大于10”这个条件,7即可符合条件,在7的基础上加上3,5,11的最小公倍数,得到172即为所求的数.[铺垫]一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为____. [分析] 根据总结,我们发现三个数中两个数的除数与余数的和都是53718+=+=,这样我们可以把余数都处理成8,所以[]5,7,9315=,所以这个数最小为3158323+=.[铺垫]一个小于200的数,它除以11余8,除以13余10,这个数是多少?[分析] 根据总结,我们发现这两个除数与余数的差都等于11813103-=-=,观察发现这个数加上3后就能同时被11和13整除,所以[]11,13143=,所以这个数是1433140-=.【例10】 一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数为____.【分析】 法一:根据总结,我们发现前面两种都不符合,所以可以使用普遍适用的“中国剩余定理”,步骤如下:分别找出除以7余7的公倍数,除以3余2的5、7的公倍数,分别是:60、63、35可见60+63+35=158满足我们的条件,但不是最小的自然数,处理方法就是减去最小公倍数的若干倍,使结果小于最小公倍数.所以答案为:158-105=53.法二:逐步构造符合条件的最小自然数,首先求符合前两个条件的最小自然数,用3不断加2,当2被加上两个3时得到8,检验符合前两个条件,再用3和5的最小公倍数不断加8,当8被加上3个15,得到53,检验符合三个条件.法三:逐步构造符合条件的最小自然数,首先求符合后面两个条件的最小自然数,用7不断加4,当4被加上两个7时得到18,检验符合后两个条件,再用7和5的最小公倍数不断加18,当18被加上1个35,得到53,检验符合三个条件.【例11】有连续的三个自然数a、1a+,它们恰好分别是9、8、7的倍数,求这三个自然数中最a+、2小的数至少是多少?【分析】法一:由1a+是7的倍数,得到a被7除余5,运用中国a+是8的倍数,得到a被8除余7,由2剩余定理求a:(⨯+⨯=495是满足各个余数条件的最小441728854527值,所以a至少是495.法二:a、1a++也分别是9、a++、27a+、18a+、2a+恰好分别是9、8、7的倍数,那么9a+的最小值是987504⨯⨯=,即a至少是495.8、7的倍数,即9a+是9、8、7的倍数,9【例12】一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数:【分析】将33210×5=1050被11除余5,由此可知770+693+165+1050=2678是符合条件的一个值,又3、5、7、11的最小公倍数是1155,所以2678-1155×2=368是符合条件的最小值.[拓展]一个数除以2、3、5、7、11的余数分别是1、2、3、4、5,求符合条件的最小数.[分析]本题实际上就是求被3、5、7、11除的余数分别是2、3、4、5的最小奇数,符合条件的最小偶数是368,只要将368加上3×5×7×11就能求得符合条件的最小奇数,这个数是368+3×5×7×11=1523.1. 有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【分析】 由于这三个数除以这个自然数后所得的余数和为25,所以63、90、130的和除以这个自然数后所得的余数为25,所以63+90+130-25=258能被这个自然数整除.258=2×3×43,显然当除数为2、3、6时,3个余数的和最大为3×(2-1)=3,3×(3-1)=6,3×(6-1)=15,所以均不能满足条件.当除数为43×2、43×3、43×6时,它除63的余数均是63,所以也不满足.那么除数只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足. 显然这3个余数中最大的为20.2. ()200831312008+被13除所得的余数是多少?【分析】31被13除所得的余数为5,31n 当n 取1,2,3, 时31n 被13除所得余数分别是5,12,8,1,5,12, 所以200831被13除余1.2008被13除所得的余数是6,6n 当n 取1,2,3, 时,6n 被13除所得的余数分别是6,10,8,9,2,12,7,3,5,4,11,1,6, 所以316被13除所得的余数等于76被13除所得的余数,即7,所以()200831312008+被13除所得的余数是178+=.3. 一个自然数除以7、8、9后分别余3、5、7,而所得的三个商的和是758,这个数是___________.【分析】 这个数加上11后能被7、8、9整除.7、8、9的最小公倍数是789504⨯⨯=,所以除以7,8,9后分别余3、5、7的数最小为50411-.504分别除以7、8、9所得的商之和是897879191⨯+⨯+⨯=,则50411-分别除以7、8、9所得的商之和是19123185-⨯=.7581851913=+⨯,所以这个数为5041150432005-+⨯=.4. 一个数除以5余3,除以6余4,除以7余1,求适合条件的最小的自然数.【分析】 “除以5余3”即“加2后被5整除”,同样“除以6余4”即“加2后被6整除”.[]5,6228-=,即28适合前两个条件.分析[]285,6x +⨯中能满足“除以7余1”的x 的值.可得到4x =是满足条件的最小值,所以,适合条件的最小的自然数是28304148+⨯=.5. 将一些水果装盘(少于100)个,如果7个7个装盘则剩下2个不能装,如果11个11个装盘则剩下6个不能装盘,如果13个13个装盘,那么还剩下7个不能装盘,那么这些水果有多少个?【分析】 11×13的倍数:143、286、429,……其中被7除余2的有429;7×13的倍数:91,182,……除以11余6的有182;7×11的倍数:77,154,……除以13余7的有462.1824624291073++=,由于水果数少于100,所以水果数有1073100172-=个.选绿色包装——减少垃圾灾难每人每年丢掉的垃圾重量超过人体平均重量的五六倍.北京年产垃圾430万吨,日产垃圾1.2万吨,人均每天扔出垃圾约1千克,相当于每年堆起两座景山.我国目前垃圾的产生量是1989年的4倍,其中很大一部分是过度包装造成的.不少商品特别是化妆品、保健品的包装费用已占到成本的30%—50%.过度包装不仅造成了巨大的浪费,也加重了消费者的经济负担,同时还增加了垃圾量,污染了环境.我们选购产品的时候还是以使用价值为主,尽量避免选购过度包装的产品,减少垃圾的制造量.拒子入门子发是战国时期楚国的一位将军.一次,他带兵与秦国作战,前线断了粮草,他派人向楚王告急.使者顺便去看望子发的老母.老人问使者:“兵士都好吗?”使者回答:“还有点儿豆子,只能一粒一粒分着吃.”“你们将军呢?”母亲问.使者回答道:“将军每餐都能吃到肉和米饭,身体很好.”子发得胜归来,母亲紧闭大门不让他进家门,并派人去告诉子发:“你让士兵饿着肚子打仗,自己却有吃有喝,这样做将军,打了胜仗也不是你的功劳.”母亲又说:“越王勾践伐吴的时候,有人献给他一罐酒,越王让人把酒倒在江的上游,叫士兵们一起饮下游的水.虽然大家没尝到酒味,却鼓舞了全军的士气,提高了战斗力.现在你却只顾自己不顾士兵,你不是我的儿子,你不要进我的门.”子发听了母亲的批评,向母亲认了错,决心改正,才得以进家门.俗话说:“子不教,父之过.”子女成长的好坏,长辈有着极大的责任.父母为了使孩子成长成参天大树,就必须在我们心中植下博爱之心,有了博爱之心,才有施爱于他人的可能.多以有时候,责备也蕴涵着父母对子女深沉的爱.。

五年级奥数余数性质(二)学生版

五年级奥数余数性质(二)学生版

1. 五年级奥数余数性质(二)学生版2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为1知识点拨 教学目标5-5-4.余数性质(二)1898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

五年级奥数学练习试卷思维培训资料余数问题 (2)

五年级奥数学练习试卷思维培训资料余数问题 (2)

第五讲余数问题内容概述从此讲开始,我们来进一步研究数论的有关知识。

小学奥数中的数论问题,涉及到整数的整除性、余数问题、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

在整数的除法中,只有能整除和不能整除两种情况。

当不能整除时,就产生余数,余数问题在小学数学中非常重要。

一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a=b×q+r), 0≤r<b;当r=0时,我们称a能被b整除;当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商余数问题和整除性问题是有密切关系的,因为只要我们去掉余数那么就能和整除性问题联系在一起了。

余数有如下一些重要性质,我们将通过例题给大家讲解。

例题讲析【例1】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。

分析:法1:因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088;则乙=(1088-32)÷12=88,甲=1088-乙=1000。

法2:将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(11+1)倍,所以得到:乙数=1056÷12=88 ,甲数=1088-88=1000 。

【例2】(第十届迎春杯决赛)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.分析:设这个数为n,除以9所得余数r≤8,所以除以8得到的商q≥13—8=5,又显然q≤13.q=5时,r=8,n=5×8+4=44;q=6时,r=7,n=6×8+4=52;q=7时,r=6,n=7×8+4=60;q=8时,r=5,n=8×8+4=68;q=9时,r=4,n=9×8+4=76;q=10时,r=3,n=10×8+4=84;q=11时,r=2,n=11×8+4=92;q=12时,r=1,n=12×8+4=100;q=13时,r=0,n=13×8+4=108.满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.【例3】(北京八中小升初入学测试题)有一个整数,用它去除70,110,160得到的三个余数之和是50。

小学五年级奥数 余数定理

小学五年级奥数 余数定理

余数问题(二)本讲主线【课前小练习】(★)1. 余数的三大性质2. 三性的实际应用⑴21除以5的余数是____; 32除以5的余数是____;⑵21+32除以5的余数是_____;⑶32-21除以5的余数是_____;⑷32×21除以5的余数是.知识要点屋版块一:余数的三大性质1. 余数的三大性质:【例1】(★★)⑴和的余数等于余数的和⑵差的余数等于余数的差⑶积的余数等于余数的积⑴123+456+789除以11的余数是多少?⑵123×456×789的结果除以23的余数是多少?知识要点屋1. 特征求余法:⑴尾数系,(2、5) ,(4、25) ,(8、125)⑵和系,3,9⑶11:奇数位数字之和-偶数位数字之和的差.⑷7、11、13:截断法. 【例3】(★★☆)一年有365天,轮船制造厂每天都可以生产零件1234个. 年终将这些零件按19个一包的规格打包,最后一包不够19个. 请问:最后一包有多少个零件?【例2】(★★★)188+288+388+…+2088除以9、11的余数各是多少?【拓展】(★★★)自然数3100 1的个位数字是多少?1版块二:三大性质的实际应用【例4】(★★★★)(全国小学数学奥林匹克试题) 【例6】(★★★)六张卡片上分别标上2357、2367、4143、1419、2485、8465六个数,甲取4张,乙取1张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另一个人的8倍,则丙手中卡片上的数是_____.有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是_______.【例5】(★★★)(南京市少年数学智力冬令营试题)在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组. 这样的数组共有组. 【例7】(★★★★)从1~20中最多可以选取多少个数,使得取出的数中任意三个数的和能被3整除?知识大总结【今日讲题】1. 余数的三大性质⑴和的余数等于余数的和⑵差的余数等于余数的差⑶积的余数等于余数的积2. 替换求余法3. 整除判定法则—特征求余法例2,例3,例4,例6【讲题心得】___________________.【家长评价】__________________________________________________________________.2。

小学奥数 5-4-2 约数与倍数(二).教师版

小学奥数  5-4-2 约数与倍数(二).教师版

5-4-2.约数与倍数(二)教学目标1.本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。

2.本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为△☆△☆...△☆的结构,而且表达形式唯一”知识点拨一、约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a能被整数b整除,a叫做b的倍数,b就叫做a的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1.求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711,25222327,所以(231,252)3721;21812②短除法:先找出所有共有的约数,然后相乘.例如:396,所以(12,18)236;32③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********;6003151285;315285130;28530915;301520;所以1515和600的最大公约数是15.2.最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.3.求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各个分数的分子的最大公约数b;b即为所求.a注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如: ⎡ 1 , 4 ⎤ = ⎣ ⎦4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数 (3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。

小学奥数5-5-6 中国剩余定理及余数性质拓展.专项练习及答案解析

小学奥数5-5-6 中国剩余定理及余数性质拓展.专项练习及答案解析

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?知识点拨 教学目标5-5-4.中国剩余定理及余数性质拓展先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,a b c但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

小学奥数5-5-3 余数性质(一).专项练习及答案解析

小学奥数5-5-3 余数性质(一).专项练习及答案解析

1.学习余数的三大定理及综合运用 2.理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

余数问题(二)

余数问题(二)

第十三讲余数问题余数问题我们已经学过了两讲,但那两讲主要都是应用余数性质去解决除法中的除数问题,今天我们要解决的是除法中的被除数问题—“中国剩余定理”。

本类形题的出题特点:已知两种或三种除数和余数的情况,求同时满足这些情况的被除数是多少。

例如:一个自然数除以4余3,除以9余4,除以6余1,求满足条件的最小三位数?本类形题的解题方法:根据余数的基本含义有:公倍加余法和公倍减余法。

根据同余的性质有:逐级满足法。

一、公倍加余法例:求满足除以3余1,除以4余1的最小两位数?分析:根据余数的定义我们知道,余数表示被除数除以除数时没有除尽,还多出来的一些数,所以满足除以3余1的数,应该都是3的倍数再加上1即可;同理,满足除以4余1的数,应该都是4的倍数再加上1即可。

那么如想两个都满足,我们只需要找到3,4的最小公倍数再加上这个都有的余数1就可以了,所以最小的两位数即为[3,4]+1=12+1=13二、公倍减余法例:求满足除以3余2,除以4余3的最小两位数?分析:根据余数的定义我们知道,这个数除以3余2,说明还差1个数就又是3的倍数了,则这样的数应该都是3的倍数再减1即可;同理,满足除以4余3的数,也是还差1个就又是4的倍数了,则这样的数应该都是4的倍数再减1即可。

那么如想两个都满足,我们只需要找到3,4的最小公倍数再减去1就可以了。

所以最小的两位数即为[3,4]-1=12-1=11三、逐级满足法例:求满足除以7余2,除以4余1,除以11余4的最小自然数?分析:此题没有余数相同的,也没有差相同的,则上述两种方法均不可用。

那么我们可以根据同余的性质逐级满足,最后求出同时满足三种情况的最小自然数。

过程如下:(1)满足除以7余2的数应该是7a+2这样的数,但这样的数又要除以4余1。

说明:7a+2除以4是余1的,即:7a+2≡1(mod4)7a+2≡5(mod4)7a≡5-2≡3(mod4)3a≡3(mod4)a=1则满足前两种情况(除以7余2,除以4余1)的最小数为:7×1+2=9则满足前两种情况(除以7余2,除以4余1)的所有数为:[7,4]×b+9(2)那么满足除以7余2,除以4余1应该是28b+9这样的数,但这样的数又要除以11余4。

余数的性质及其计算

余数的性质及其计算

余数的性质及其计算余数是除法运算中得到的剩下的部分。

在代数中,余数通常表示为R,例如:A=BQ+R,其中A,B,Q,R都是整数,A和B不为零,Q是商数,R是余数。

余数有以下几个性质:1.余数的范围:余数的范围通常是大于等于0,小于除数的绝对值。

例如,当我们用5去除17时,商数为3,余数为2,因此余数的范围为0至42.余数的唯一性:除法运算中,当给定一个被除数和除数时,对于给定的被除数,只存在一个唯一的余数。

3.余数的循环性:当一个数被不断地除以同一个除数时,其余数会形成若干个循环。

例如,当我们用7去除100时,余数会不断循环:1,3,2,6,4,5计算余数的方法有以下几种常用的技巧:1.短除法:短除法是最常用的计算余数的方法。

首先将被除数写在上方,除数写在下方,然后进行除法运算,求商和余数。

例如,计算27除以4的余数可以使用短除法,得到商为6,余数为3```27÷4=6余3```2.余数的性质:如果一个数能被另一个数整除,那么其余数将为零。

例如,当我们用3去除9时,商为3,余数为0。

3.模运算:模运算是计算机科学中常用的计算余数的方法。

模运算是指用一个数除以另一个数,然后取得余数。

在计算机中,通常使用“%”符号表示模运算。

例如,在计算9模3时,使用9%3的结果为0。

此外,余数还具有以下一些重要的应用和性质:1.余数可以用来判断一个数的奇偶性。

如果一个数除以2的余数为0,则该数为偶数;如果余数为1,则该数为奇数。

2.余数可以用来进行数的循环计算。

例如,计算一个数的十进制表示中各位数之和可以使用余数来计算。

3.余数可以用来进行数制转换。

例如,将一个二进制数转换为十进制数时,可以使用余数和权重相乘的方式进行转换。

总之,余数在数学和计算机科学中具有重要的应用和性质。

掌握余数的计算方法和理解其性质对于数学和计算机科学的学习都是非常重要的。

小学奥数5-5-3 余数性质(一).专项练习及答案解析-精品

小学奥数5-5-3 余数性质(一).专项练习及答案解析-精品

1.学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

小学奥数5-5-5 同余问题.专项练习及答案解析(精品)

小学奥数5-5-5 同余问题.专项练习及答案解析(精品)

1.学习同余的性质 2.利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除.(2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题 【难度】1星 【题型】解答 例题精讲知识点拨教学目标5-5-3.同余问题【解析】 (法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】 某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.【考点】两个数的同余问题 【难度】2星 【题型】填空【关键词】人大附中,分班考试【解析】 “加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

五年级奥数余数性质(一)教师版

五年级奥数余数性质(一)教师版

1. 五年级奥数余数性质(一)教师版2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为1知识点拨 教学目标5-5-3.余数性质(三)1898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

小学奥数 数论 余数问题 余数性质(二).题库版

小学奥数  数论  余数问题     余数性质(二).题库版

1.学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4知识点拨教学目标5-5-4.余数性质(二)678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

余数问题(教师版)

余数问题(教师版)

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

一、带余除法的定义及性质 一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数5-6余数问题教学目标知识点拨的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

小学奥数教师版-5-5-3 余数性质(一)

小学奥数教师版-5-5-3 余数性质(一)
请;
5-5-3.余数性质(三)
教学目标
1. 学习余数的三大定理及综合运用 2. 理解弃 9 法,并运用其解题
知识点拨
一、三大余数定理:
1.余数的加法定理
a 与 b 的和除以 c 的余数,等于 a,b 分别除以 c 的余数之和,或这个和除以 c 的余数。 例如:23,16 除以 5 的余数分别是 3 和 1,所以 23+16=39 除以 5 的余数等于 4,即两个余数的和 3+1.
【考点】余数的加减法定理 【难度】3 星 【题型】填空 【关键词】香港圣公会,小学数学奥林匹克 【解析】三所学校的高中生分别是:A 校 742 人,B 校 732 人,C 校 722 人.如果 A 校或 C 校初中人数是高
【考点】余数的加减法定理 【难度】2 星 【题型】填空 【关键词】少年数学智力冬令营 【解析】1995,1998,2000,2001,2003 除以 9 的余数依次是 6,0,2,3,5.因为 2 5 2 5 0 7 ,
2 5 3 6 0 2 5 3 6 7 9 , 所 以 这 样 的 数 组 共 有 下 面 4 个 : 2000, 2003 , 1998, 2000, 2003 , 2000, 2003, 2001,1995 , 1998, 2000, 2003, 2001,1995 .
5-5-3.余数性质(一).题库
教师版
page 1 of 7
请;
而我们在求一个自然数除以 9 所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的 各个位数字之和除以 9 的余数就可以了,在算的时候往往就是一个 9 一个 9 的找并且划去,所以这种方法被 称作“弃九法”。
所以我们总结出弃九法原理:任何一个整数模 9 同余于它的各数位上数字之和。 以后我们求一个整数被 9 除的余数,只要先计算这个整数各数位上数字之和,再求这个和被 9 除的余数 即可。 利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用 注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。 例如:检验算式 9+9=9 时,等式两边的除以 9 的余数都是 0,但是显然算式是错误的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5-5-4.余数性质(二)教学目标1.学习余数的三大定理及综合运用2.理解弃9法,并运用其解题知识点拨一、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。

而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。

所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和。

以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。

利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。

例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。

这个思想往往可以帮助我们解决一些较复杂的算式迷问题。

例题精讲【例1模块一、余数性质的综合运用】20032与22003的和除以7的余数是________.【考点】余数性质的综合运用【难度】3星【题型】填空【关键词】南京市,少年数学智力冬令营【解析】找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【答案】5【巩固】2008222008+除以7的余数是多少?【考点】余数性质的综合运用【难度】3星【题型】解答【解析】328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【答案】3【巩固】()30313130+被13除所得的余数是多少?【考点】余数性质的综合运用【难度】3星【题型】解答【解析】31被13除所得的余数为5,当n 取1,2,3, 时5n 被13除所得余数分别是5,12,8,1,5,12,8,1 以4为周期循环出现,所以305被13除的余数与25被13除的余数相同,余12,则3031除以13的余数为12;30被13除所得的余数是4,当n 取1,2,3, 时,4n 被13除所得的余数分别是4,3,12,9,10,1,4,3,12,9,10, 以6为周期循环出现,所以314被13除所得的余数等于14被13除所得的余数,即4,故3130除以13的余数为4;所以()30313130+被13除所得的余数是124133+-=.【答案】3【例2】M 、N 为非零自然数,且20072008M N +被7整除。

M N +的最小值为。

【考点】余数性质的综合运用【难度】4星【题型】填空【关键词】走美杯,6年级,决赛,第7题,10分【解析】2007除以7的余数是5,2008除以7的余数是6,所以56M N +能被7整除,经试算,M N +最小【答案】5【例3】1234200512342005+++++ 除以10所得的余数为多少?【考点】余数的加减法定理【难度】3星【题型】解答【解析】求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算123420123420+++++ 的个位数字,为1476563690163656749094+++++++++++++++++++=的个位数字,为4,由于2005个加数共可分成100组另5个数,100组的个位数字和是4100400⨯=的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1476523++++=【例4】的个位数3,所以原式的个位数字是3,即除以10的余数是3.【答案】3已知n 是正整数,规定!12n n =⨯⨯⨯ ,令1!12!23!32007!2007m =⨯+⨯+⨯++⨯ ,则整数m 除以2008的余数为多少?【考点】余数性质的综合运用【难度】3星【题型】解答【关键词】清华附中【解析】1!12!23!32007!2007m =⨯+⨯+⨯++⨯ 1!212!313!412007!20081=⨯-+⨯-+⨯-++⨯- ()()()()2!1!3!2!4!3!2008!2007!=-+-+-++- 2008!1=-2008能够整除2008!,所以2008!1-的余数是2007.【答案】【例5】2007设n 为正整数,2004n k =,k 被7除余数为2,k 被11除余数为3,求n 的最小值.【考点】余数性质的综合运用【难度】3星【题型】解答【解析】2004被7除余数为2,被11除余数也为2,所以2n 被7除余数为2,被11除余数为3.由于122=被7除余2,而328=被7除余1,所以n 除以3的余数为1;由于82256=被11除余3,1021024=被11除余1,所以n 除以10的余数为8.可见2n +是3和10的公倍数,最小为[]3,1030=,所以n 【例6】的最小值为28.【答案】28试求不大于100,且使374n n ++能被11整除的所有自然数n 的和.【考点】余数性质的综合运用【难度】3星【题型】解答【解析】通过逐次计算,可以求出3n 被11除的余数,依次为:13为3,23为9,33为5,43为4,53为1,…,因而3n 被11除的余数5个构成一个周期:3,9,5,4,1,3,9,5,4,1,……;类似地,可以求出7n 被11除的余数10个构成一个周期:7,5,2,3,10,4,6,9,8,1,……;于是374n n ++被11除的余数也是10个构成一个周期:3,7,0,0,4,0,8,7,5,6,……;这就表明,每一个周期中,只有第3、4、6个这三个数满足题意,即3,4,6,13,14,16,.....,93,94,96n =时374n n ++能被11整除,所以,所有满足条件的自然数n 的和为:346131416...9394961343...2831480+++++++++=+++=.【答案】1480【例7】对任意的自然数n ,证明2903803464261n n n n A =--+能被1897整除.【考点】余数性质的综合运用【难度】3星【题型】解答【解析】略【答案】18977271=⨯,7与271互质,因为29035(mod 7)≡,8035(mod 7)≡,4642(mod 7)≡,2612(mod 7)≡,所以,290380346426155220(mod 7)n n n n n n n n A =--+≡--+≡,故A 能被7整除.又因为2903193(mod 271)≡,803261(mod 271)≡,464193(mod 271)≡,所以29038034642611932611932610(mod 271)n n n n n n n n A =--+≡--+≡,故A 能被271整除.因为7与271互质,所以A 能被1897整除.【例8】若a 为自然数,证明2005194910()a a -.【考点】余数性质的综合运用【难度】3星【题型】解答【解析】略【答案】1025=⨯,由于2005a 与1949a 的奇偶性相同,所以200519492()a a -.20051949194956(1)a a a a -=-,如果a 能被5整除,那么1949565(1)a a -;如果a 不能被5整除,那么a 被5除的余数为1、2、3或者4,4a 被5除的余数为41、42、43、44被5除的余数,即为1、16、81、256被5除的余数,而这四个数除以5均余1,所以不管a 为多少,4a 被5除的余数为1,而56414()a a =,即14个4a 相乘,所以56a 除以5均余1,则561a -能被5整除,有1949565(1)a a -.所以200519495()a a -.由于2与5互质,所以2005194910()a a -.【例9】【解析】有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……100,同时还向每位观众赠送一个单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备种颜色的喇叭.【考点】余数性质的综合运用【难度】4星【题型】填空【关键词】迎春杯,五年级,初赛,第11题编号1、3、6、8这四个编号两两之间的差都是质数,所以这四个编号的观众应该使用不同颜色的喇叭.所以他最少应该准备4种不同颜色的喇叭,然后按编号被4除后的余数分派不同颜色喇叭.【答案】4种【例10】模块二、弃九法将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:12345678910111213 20072008,试求这个多位数除以9的余数.【考点】弃九法【难度】3星【题型】解答【解析】以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数12345678910111213 20072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.【巩固】【答案】1连续写出从1开始的自然数,写到2009时停止,得到一个多位数:123456789101119992000 ,请说明:这个多位数除以3,得到的余数是几?为什么?【考点】弃九法【难度】3星【题型】解答【关键词】希望杯【分析】因为连续3个自然数可以被3整除,而且最后一个自然数都是3的倍数,因为1998是3的倍数,所以12345678910111998 是3的倍数,又因为12345678910111999200012345678910111998000000001998119982=++++ ,所以123456789101119992000 除以3,得到的余数是0.【例11】【答案】0将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是________.【考点】弃九法【难度】3星【题型】填空【关键词】小学数学奥林匹克【解析】本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯=(个),100999~共900个三位数,共有数字:90032700⨯=(个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷=(组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例12】【答案】7有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和。

相关文档
最新文档