大学物理习题答案11电磁感应
大学物理第11章电磁感应期末试题及参考答案
第11章电磁感应期末试题及参考答案一、填空题1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈。
直导线中的电流由下向上,当线圈平行于导线向右运动时,线圈中的感应电动势方向为___________(填顺时针或逆时针),其大小 (填>0,<0或=0 (设顺时针方向的感应电动势为正)2、如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行,矩形线圈绕AD 边旋转,当BC 边已离开纸面正向里运动时,线圈中感应动势的方向为___________。
(填顺时针或逆时针)3、金属杆AB 以匀速v 平行于长直载流导线运动, 导线与AB 共面且相互垂直,如图所示。
已知导线载有电流I ,则此金属杆中的电动势为 电势较高端为____。
4、金属圆板在均匀磁场中以角速度ω 绕中心轴旋转 均匀磁场的方向平行于转轴,如图所示,则盘中心的电势 (填最高或最低)5、一导线被弯成如图所示形状,bcde 为一不封口的正方形,边长为l ,ab 为l 的一半。
若此导线放在匀强磁场B 中,B 的方向垂直图面向内。
导线以角速度ω在图面内绕a 点匀速转动,则此导线中的电势为 ;最高的点是__________。
6、如图所示,在与纸面相平行的平面内有一载有向上方向电流的无限长直导线和一接有电压表的矩形线框。
当线框中有逆时针方向的感应电流时,直导线中的电流变化为________。
(填写“逐渐增大”或“逐渐减小”或“不变”)IVO O ′ B BAC 7、圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上。
当磁场随时间均匀增加时,从下往上看感应电动势的方向为_______(填顺或逆时针)二、单选题1、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的1/3,则( ) (A) A 点比B 点电势高 (B) A 点与B 点电势相等(C) A 点比B 点电势低 (D) 有稳恒电流从A 点流向B 点2、圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上。
大学物理习题答案第十一章
[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
大学物理第11章习题答案(供参考)
因此
即
又
表明 中电动势方向为 .
所以半圆环内电动势 方向沿 方向,
大小为
点电势高于 点电势,即
例2如图所示,长直导线通以电流 =5A,在其右方放一长方形线圈,两者共面.线圈长 =0.06m,宽 =0.04m,线圈以速度 =0.03m·s-1垂直于直线平移远离.求: =0.05m时线圈中感应电动势的大小和方向.
.
解: 设给两导线中通一电流 ,左侧导线中电流向上,右侧导线中电流向下.
在两导线所在的平面内取垂直于导线的坐标轴 ,并设其原点在左导线的中心,如图所示,由此可以计算通过两导线间长度为 的面积的磁通量.
两导线间的磁感强度大小为
取面积元 ,通过面积元的磁通量为
则穿过两导线间长度为 的矩形面积的磁通量为
故
2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场 :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电
场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数 :
第11章 电磁感应
11.1 基本要求
1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。
吉林大学大学物理电磁感应作业答案
2πa 1 q = (Φ1 − 0) R
5.对位移电流,有下述四种说法,请指出哪一种 .对位移电流,有下述四种说法, 说法是正确的 A.位移电流是由变化电场产生的 . B.位移电流是由变化磁场产生的 C.位移电流的热效应服从焦耳-楞次定律 位移电流的热效应服从焦耳- D.位移电流的磁效应不服从安培环路定理 6.在感应电场中电磁感应定律可写成 . 式中E 为感应电场的电场强度, 式中EK 为感应电场的电场强度,此式表明 v dΦm A. 闭合曲线C 上EK 处处相等 v 闭合曲线C EK ⋅ dl = B. 感应电场是保守力场 L dt C.感应电场的电场线不是闭合曲线 D.感应电场不能像静电场那样引入电势概念
(1)OM 位置 )
r r dε = (υ × B) ⋅ dl = υBdl = ωBldl 2 L 1 µ 0 Iω L 2 ε = ∫ ω Bldl = ω BL = 0 2 4πr0 r
方向: 方向:O M
µ0 I B= 2π r0
3.无限长直导线通过电流I,方向向上,导线旁有长度L金属棒, 无限长直导线通过电流I 方向向上,导线旁有长度L金属棒, 绕其一端O 在平面内顺时针匀速转动,角速度为ω 绕其一端O 在平面内顺时针匀速转动,角速度为ω,O 点至导 线垂直距离r 设长直导线在金属棒旋转平面内,试求: 线垂直距离r0 , 设长直导线在金属棒旋转平面内,试求: 金属棒转至与长直导线垂直、 端靠近导线时, (2)金属棒转至与长直导线垂直、且O 端靠近导线时,棒内的 感应电动势的大小和方向。 感应电动势的大小和方向。
3. 两根无限长平行直导线载有大小相等方向相 . 反电流I, I以dI/dt的变化率增长 的变化率增长, 反电流I, I以dI/dt的变化率增长,一矩形线圈位 于导线平面内(如图) 于导线平面内(如图),则 A.线圈中无感应电流; 线圈中无感应电流; B.线圈中感应电流为顺时针方向; 线圈中感应电流为顺时针方向; C.线圈中感应电流为逆时针方向; 线圈中感应电流为逆时针方向; D.线圈中感应电流方向不确定。 线圈中感应电流方向不确定。 4. 在通有电流I 无限长直导线所在平面内,有一半经r 在通有电流I 无限长直导线所在平面内,有一半经r 电阻R 导线环,环中心距导线a 、电阻R 导线环,环中心距导线a ,且a >> r 。当导线 电流切断后, 电流切断后,导线环流过电量为 Φ ≈ BS = µ0 I πr 2
《大学物理学》电磁感应部分练习题(马)
《大学物理学》电磁感应部分自主学习材料一、选择题:1.图示为导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行于磁场的转动。
关于导线AB 的两端产生的感应电动势哪个结论是错误的?( ) (A )(1)有感应电动势,A 端为高电势; (B )(2)有感应电动势,B 端为高电势; (C )(3)无感应电动势; (D )(4)无感应电动势。
【提示:(3)虽切割磁感线,但A 、B 两端电势相等;(4)不切割磁感线,(1)和(2)切割磁感线,由右手定则,A 端为高电势】2.如图所示,一根无限长直导线载有电流I ,一个矩形线圈位于导体平面沿垂直于载流导线方向以恒定速率运动,则:( ) (A )线圈中无感应电流;(B )线圈中感应电流为顺时针方向; (C )线圈中感应电流为逆时针方向; (D )线圈中感应电流方向无法确定。
【提示:载流无限长直导线在其附近产生的磁场是非均匀的:02IB rμπ=,知矩形线圈内磁通量发生减小的变化,由右手定则,感应电流为顺时针方向】3.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:( ) (A )感应电动势不同, 感应电流不同;(B ) 感应电动势相同,感应电流相同; (C )感应电动势不同, 感应电流相同;(D )感应电动势相同,感应电流不同。
【提示:铁环与铜环的电阻不同,所以感应电流不同】4.一“探测线圈”由50匝导线组成,截面积24S cm =,电阻R =25Ω,放在均匀磁场中且线圈平面与磁场方向垂直,若把探测线圈迅速翻转︒90,测得通过线圈的电荷量为C 1045-⨯=∆q ,则此均匀磁场磁感应强度B 的大小为: ( )(A )0.01T ; (B )0.05T ; (C )0.1T ; (D )0.5T 。
【提示:由d d t εΦ=-、N BS Φ=及d q I d t R ε==知N BSq R∆=,∴0.05B T =】5.如图所示,在圆柱形空间有一磁感强度为B 的均匀磁场,B 的大小以速率d Bd t变化,在磁场中有A 、B 两点,其间可放 置一直导线和一弯曲的导线,则有下列哪些情况:( )A(1) (2) (3) (4)(A )电动势只在直导线中产生; (B )电动势只在弯曲的导线中产生;(C )电动势在直导线和弯曲的导线中都产生,且两者大小相等; (D )直导线中的电动势小于弯曲导线中的电动势。
大学物理第11章电磁感应期末试题及参考答案
大学物理第11章电磁感应期末试题及参考答案第11章电磁感应期末试题及参考答案一、填空题1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈。
直导线中的电流由下向上,当线圈平行于导线向右运动时,线圈中的感应电动势方向为___________(填顺时针或逆时针),其大小 (填>0,<0或=0 (设顺时针方向的感应电动势为正)2、如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行,矩形线圈绕AD 边旋转,当BC 边已离开纸面正向里运动时,线圈中感应动势的方向为___________。
(填顺时针或逆时针)3、金属杆AB 以匀速v 平行于长直载流导线运动,导线与AB 共面且相互垂直,如图所示。
已知导线载有电流I ,则此金属杆中的电动势为电势较高端为____。
4、金属圆板在均匀磁场中以角速度ω 绕中心轴旋转均匀磁场的方向平行于转轴,如图所示,则盘中心的电势(填最高或最低)5、一导线被弯成如图所示形状,bcde 为一不封口的正方形,边长为l ,ab 为l 的一半。
若此导线放在匀强磁场B 中,B 的方向垂直图面向内。
导线以角速度ω在图面内绕a 点匀速转动,则此导线中的电势为;最高的点是__________。
6、如图所示,在与纸面相平行的平面内有一载有向上方向电流的无限长直导线和一接有电压表的矩形线框。
当线框中有逆时针方向的感应电流时,直导线中的电流变化为________。
(填写“逐渐增大”或“逐渐减小”或“不变”)IVO O ′ B BAC 7、圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上。
当磁场随时间均匀增加时,从下往上看感应电动势的方向为_______(填顺或逆时针)二、单选题1、如图所示,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的1/3,则() (A) A 点比B 点电势高 (B) A 点与B 点电势相等(C) A 点比B 点电势低 (D) 有稳恒电流从A 点流向B 点2、圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上。
大学物理第9章 电磁感应和电磁场 课后习题及答案
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
《大学物理》电磁感应练习题及答案
《大学物理》电磁感应练习题及答案一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述位移电流与传导电流有什么异同答:共同点:都能产生磁场。
不同点:位移电流是变化电场产生的(不表示有电荷定向运动,只表示电场变化),不产生焦耳热;传导电流是电荷的宏观定向运动产生的,产生焦耳热。
5 简述感应电场与静电场的区别?答:感生电场和静电场的区别6、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅s v q dv ds D ρ dS tB l E s L ⋅∂∂-=⋅⎰⎰d 0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d 7、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差8、 简述磁能密度, 并写出其表达式答:单位体积中的磁场能量,221H μ。
9、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
10、全电流安培环路定理答:磁场强度沿任意闭合回路的积分等于穿过闭合回路围成的曲面的全电流 s d t D j l d H s e •⎪⎪⎭⎫ ⎝⎛∂∂+=•⎰⎰二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M .若它们分别流过1i 和2i 的变化电流且dt di dt di 21<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈1中产生的互感电动势为21ε,下述论断正确的是( D )A 、 12212112,εε==M MB 、 12212112,εε≠≠M MC 、 12212112,εε>=M MD 、 12212112,εε<=M M3、对于位移电流,下列四种说法中哪一种说法是正确的 ( A )A 、位移电流的实质是变化的电场B 、位移电流和传导电流一样是定向运动的电荷C 、位移电流服从传导电流遵循的所有规律D 、位移电流的磁效应不服从安培环路定理4、下列概念正确的是 ( B )。
电磁感应习题(有答案)
大学物理6丫头5《大学物理AI 》作业 No.11 电磁感应班级 ________________ 学号 ______________ 姓名 ____________ 成绩 ___________一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将: (A)加速铜板中磁场的增加 (B)减缓铜板中磁场的增加(C)对磁场不起作用 (D)使铜板中磁场反向[ B ] 解:根据愣次定律,感应电流的磁场总是力图阻碍原磁场的变化。
故选B2.一无限长直导体薄板宽度为l ,板面与Z 轴垂直,板的长度方向沿Y 轴,板的两侧与一个伏特计相接,如图。
整个系统放在磁感应强度为B的均匀磁场中,B的方向沿Z 轴正方向,如果伏特计与导体平板均以速度v向Y 轴正方向移动,则伏特计指示的电压值为(A) 0 (B)vBl 21(C) vBl (D) vBl 2[ A ]解:在伏特计与导体平板运动过程中,dc ab εε=,整个回路0=∑ε,0=i ,所以伏特计指示0=V 。
故选A3.两根无限长平行直导线载有大小相等方向相反的电流I ,I 以tId d 的变化率增长,一矩形线圈位于导线平面内(如图),则: (A)线圈中无感应电流。
(B)线圈中感应电流为顺时针方向。
(C)线圈中感应电流为逆时针方向。
(D)线圈中感应电流方向不确定。
[ B ]解:0d d >t I ,在回路产生的垂直于纸面向外的磁场⊗增强,根据愣次定律,回路中产生的电流为顺时针,用以反抗原来磁通量的变化。
故选B4.在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。
当aIroabcVdYBZlI直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220ra a R Ir +-πμ(B)a ra R Ir +ln20πμ (C)aRIr 220μ (D)rRIa 220μ[ C ]解:直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=ε 感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为 ∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daRIr R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈故选C5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的边长为l 。
大学物理作业11答案ppt
(D) 0Ir 2
2aR
答案:[ D ]
线圈内磁场 B 0I BS 0I r2 0Ir2
2 a
2 a 2a
d Q i dq 1 d
dt
dt R R dt
dq d q 0 0Ir2
3. 半径为R的金属圆板在均匀磁场中以角速度绕中心轴旋转,均
匀磁场的方向平行于转轴,如图11所示.这时板中由中心至同一边
缘点的不同曲线上总感应电动势的大小为 BR2 / 2,
方向 沿曲线中心向外 .
BO
O 图11
4. 如图12所示. 匀强磁场局限于半径为R的圆柱形空间区域, B垂直
于纸面向里,磁感应强度B以dB/dt=常量的速率增加. D点在柱形空
0
2
9. 在一通有电流I的无限长直导线所在平面内, 有一半径为r、电
阻为R的导线环,环中心距直导线为a,如图8所示,且a>>r.当直
导线的电流被切断后,沿导线环流过的电量约为
(A) 0Ir2 ( 1 1 )
2R a a r
(B) 0Ia2
2rR
(C) 0Ir ln a r
2R a
成轴对称分布,图为此磁场的截面,磁场按dB/dt随时间变化,
圆柱体外一点P的感应电场Ei应 (A) 等于零. (B) 无法判定. (C) 不为零,方向向左或向右.
(D) 不为零,方向向内或向外. (E) 不为零,方向向上或向
下. 答案:[ E ]
××× B
× × × × ·P
×××
图5
d
dt
答案:[ D ]
d
dt
磁通量变化率同,感应电动势同,但材料不同, 电阻不同,所以感应电流不同
大学物理习题参考解答上电磁场理论_电磁感应习题课
的感应电动势,并判断感应电流的方向。
选取逆时针为回路绕行正方向,长圆柱外的磁场为零。
穿过回路 abcd 的磁通量为穿过图中面积 S 的磁通量:
B
(
1 2
R2
)
B
(
1 2
ab
Oa
cos
1 2
)
B
(
1 2
R2
)
1 2
B
(Oa 2
sin
)
6
R2B
3 Oa2B 4
根据法拉第电磁感应定律: Ei
d dt
计算题_18 图示
填空题_09 图示
10. 如图所示为一充电后的平行板电容器, A 板带正电, B 板带负电,当将开关 K 合上时, AB 板 之间的电场方向为 x 轴的正方向,位移电流的方向为 x 轴的负方向。 (按图所标 x 轴正方向来回答)
填空题_10 图示
填空题_11 图示
11. 如图所示, (1) 中是充电后切断电源的平行板电容器; (2) 中是一直与电源相接的电容器,当两
极板间距离相互靠近或分离时,试判断两种情况的极板间有无位移电流,并说明原因。
(1) 中:无位移电流,因为极板上的电荷分布不变,电场不随时间变化; (2) 中:在两极板间距离相互靠近或分离时,均有位移电流。因为在保持极板两端的电压不变
的前提下,极板距离的变化引起电容的变化和极板上电荷的变化,因此极板间的电场发生变化。位
S
D
dS
V
dV
,
L
E
dl
S
B t
dS
,
S
B
dS
0
,
J
D t
)
dS
四 计算题
大学物理第二部分电磁场与电磁学之第11章 电磁感应
vB
v
11-2 动生电动势和感生电动势
方法二 作辅助线,形成闭合回路CDEF
m B dS
S
ab
a
i
0 Ix a b ln 2 a d m
dt
0 I xdr 2r
I
方向
DC
v
X
C
D
0 I a b dx ( ln ) 2 a dt 0 Iv a b ln 2 a
11-2 动生电动势和感生电动势
动生电动势的公式 非静电力 Fm e( v B ) Fm vB 定义 E k 为非静电场强 E k e 由电动势定义 i Ek dl
运动导线ab产生的动生电动势为
i
a Ek dl ( v B ) dl
L
11-2 动生电动势和感生电动势
平动
计 算 动 生 电 动 势 分 类 均匀磁场 转动 非均匀磁场
方 法
i
i
b
d m dt
a
(v B) dl
11-2 动生电动势和感生电动势
均匀磁场
例 已知: v , B , , L 求: 解: d ( v B ) dl
a
f
感应电流
产生
阻碍
导线运动
v
感应电流
b
产生 阻碍
磁通量变化
11-1 电磁感应的基本定律
判断感应电流的方向:
1、判明穿过闭合回路内原磁场 的方向; 2、根据原磁通量的变化 , 按照楞次定律的要求确定感 应电流的磁场的方向; 3、按右手法则由感应电流磁场的 方向来确定感应电流的方向。
《大学物理》电磁感应练习题及答案解析
《大学物理》电磁感应练习题及答案解析一、选择题1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时.( D )(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。
(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。
(C) 铜盘上没有感应电流产生,铜盘中心处电势最高。
(D) 铜盘上没有感应电流产生,铜盘边缘处电势最高。
2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中( C )A.感应电动势相同,感应电流相同;B.感应电动势不同,感应电流不同;C.感应电动势相同,感应电流不同;D.感应电动势不同,感应电流相同。
3.两根无限长的平行直导线有相等的电流但电流的流向相反如右图,而电流的变化率均大于零,有一矩形线圈与两导线共面,则( B )A.线圈中无感应电流;B.线圈中感应电流为逆时针方向;C.线圈中感应电流为顺时针方向;D.线圈中感应电流不确定。
4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。
(a)、(b)、(c)处有三个光滑细金属框。
今使以速度向右滑动。
设(a)、(b)、(c)、(d)四种情况下在细棒中的感应电动势分别为ℇa、ℇb、ℇc、ℇd,则( C )A.ℇa =ℇb =ℇc <ℇd B.ℇa =ℇb =ℇc >ℇdC.ℇa =ℇb =ℇc =ℇd D.ℇa >ℇb <ℇc <ℇd5.一矩形线圈,它的一半置于稳定均匀磁 场中,另一半位于磁场外,如右图所示, 磁感应强度B的方向与纸面垂直向里。
欲使线圈中感应电流为顺时针方向则(A ) A .线圈应沿x 轴正向平动; B .线圈应沿y 轴正向平动;C .线圈应沿x 轴负向平动D .线圈应沿y 轴负向平动6.在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示,B 的大小以速率dtdB变化,在磁场中有A 、B 两点,其间可以放置一直导线和一弯曲的导线,则有下列哪种情[ D ] (A) 电动势只在直导线中产生(B) 电动势只在弯曲的导线产生 (C) 电动势在直导线和弯曲的导线中都产生, 且两者大小相等(D)直导线中的电动势小于弯曲导线中的电动势 知识点:电动势 类型:A7、关于感生电场和静电场下列哪一种说法正确.( B )(A) 感生电场是由变化电场产生的.(B) 感生电场是由变化磁场产生的,它是非保守场. (C) 感生电场是由静电场产生的(D) 感生电场是由静电场和变化磁场共同产生的1D 2C 3B 4C 5A6D7B二、填空题1.如图所示,AB 、CD 、为两均匀金属棒,长均为0.2m ,放在磁感应强度 B=2T 的均匀磁场中,磁场的方向垂直于屏面向里,AB 和CD 可以在导轨上自由滑动,当 CD 和AB 在导轨上分别以s m v /41=、s m v /22=速率向右作匀速运动时,在CD 尚未追上AB 的时间段内ABDCA 闭合回路上动生电动势的大小______________ 方向 _____________________.1电动势的大小 0.8V 方向 顺时针方向2.一匝数的线圈,通过每匝线圈的磁通量,则任意时刻线圈感应电动势的大小 ______________ . 感应电动势的大小 t ππ10cos 1057⨯ 3.感生电场产生的原因_ 变化的磁场产生感生电场4.动生电动势的产生的原因是:___电荷在磁场中运动受到洛伦兹力___ 5 。
大学物理习题答案11电磁感应
大学物理练习题十一一、选择题1. 如图,导体棒AB 在均匀磁场B 中绕过C 点的垂直于棒长且沿磁场方向的轴OO ’转动(角速度ωϖ与B ϖ同方向),BC 的长度为棒长的31。
则 [ A ](A )A 点比B 点电势高. (B )A 点与B 点电势相等.(C )A 点比B 点电势低. (D )有稳恒电流从A 点流向B 点.解: 从上往下看,AC 、CB 段导体在磁场中旋转切割磁力线,由B v q ϖϖ⨯=ε知外端电势高。
由221λB ωε=及BC AC λλ>知BC AC ε>ε,即B A U U >2. 有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12。
若它们分别流过i 1和i 2的变化电流且dtdi dt di 21>,并设由i 2变化在线圈1中产生的互感电动势为12ε,由i 1变化在线圈2中产生的互感电动势为21ε,判断下述哪个论断正确?[ C ](A) 2112M M =,1221εε=。
(B) 2112M M ≠,1221εε≠。
(C) 2112M M =,1221εε>。
(D) 2112M M =,1221εε<。
解:由dt di M 21212-=ε,dtdi M 12121-=ε,2112M M =, 有 dt di dt di //211221=εε,当dt di dt di 21>时必有1221εε> 注:这里ε指大小(绝对值)。
*3. 已知圆环式螺线管的自感系数为L 。
若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数 [ D ](A) 都等于21L 。
(B) 有一个大于21L ,另一个小于21L 。
(C) 都大于21L 。
(D) 都小于21L 。
解: 将圆环看作是两个半环串联,M L L L 221++=, 显然L L L 2121<=4. 真空中一根无限长直细导线上通有电流强度为I 的电流,则距导线垂直距离为a 的空间某点处的磁能密度为: [ B ] (A) 200221⎪⎭⎫ ⎝⎛a I πμμ (B) 200221⎪⎭⎫ ⎝⎛a I πμμ (C) 20221⎪⎪⎭⎫ ⎝⎛I a μπ (D) 200221⎪⎭⎫ ⎝⎛a I μμ 解: a I B πμ20=代入022μB w m =5. 两个线圈P 和Q 并联地接到一电动势恒定的电源上。
大学物理电磁感应练习题
9、选择题第四章恒定电流的磁场1 、均匀磁场的磁感应强度B 垂直于半径为R 的圆面,今以圆周为边线,作一半球面S,则通过S 面的磁通量的大小为()2 A、2 R B2B、R BC、0D、无法确定2、答案: B 有一个圆形回路,及一个正方形回路,圆直径和正方形的边长相等,二者载有大小相等的电流,它们各自中心产生的磁感强度的大小之比B1/B2 为()A 、0.90B、1.00C、1.11D、1.22答案:C3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S,S 边线所在平面的法线方向单位矢量n与B 的夹角为,则通过半4、5、6、7、8、A、球面S 的磁通量为()A、r2B22B、2 r BC、r 2BsinD、r 2Bcos答案:D四条皆垂直于纸面的载流细长直导线,每条中的电流强度皆为如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示,则在图中正方形中心点O 的磁感应强度的大小为()I,这四条线被纸面截得的断面,A、B 2U0 IB、B2U0I2a C、B=0 D 、B U0 I a答案:C边长为L 的一个导体方框上通有电流2A 、与L 无关B、正比于L2I ,则此框中心的磁感应强度(C、与L 成正比D、与L 成反比)E、与I2有关如图所示,电流从a点分两路通过对称的圆环形分路,汇合于 b 点,若ca,bd都沿环的径向,则在环形分路的环心处的磁感应强度() A 、方向垂直环形分路所在平面且指向纸内B、方向垂直环形分路所在平面且指向纸外C、方向在环形分路所在平面内,且指向b在一平面内,有两条垂直交叉但相互绝缘的导线,其方向如图所示,问哪些区域中某些点的磁感应强度A 、仅在象限ⅠD、零答案:I 的大小相等, B 可能为零?()流过每条导线的电流、仅在象限ⅡC、仅在象限Ⅰ、Ⅳ在真空中有一根半径为0I 0I、仅在象限Ⅱ答案:R 的半圆形细导线,流过的电流为I ,则圆心处的磁感应强度为()4RB、2RC、0 D、0I4R电流由长直导线 1 沿半径径向 a 点流入电阻均匀分布的圆环,再由 b 点沿切向从圆流出,经长导线 2 返回电源,(如图),已知直导线上电流强度为I,圆环的半径为R,且a,b 与圆心O 三点在同一直线上,设直线电流1、2 及圆环电流分别在O点产生的磁感应强度为B1,B2及B3。
大学基础物理学答案(习岗) 电磁感应与电磁场
dx x O L x
I
d
a
图 7-3
99
第七章 电磁感应
于是,在 d=10cm 时,一匝线圈中产生的感生电动势为
0 2
L
2
0
ln
a
d dI d dt
N 匝线圈中产生的感生电动势为
N
由于
2
NL a d dI ln 2 d dt 500 cos100 t
dI dt
带入数据,得
4.36 10 2 cos100 t (V)
96
第七章 电磁感应
7-2 灵敏电流计的线圈处于永磁体的磁场中,通入电流线圈就会发生偏转, 切断电流后线圈在回到原来位置前总要来回摆动几次。这时,如果用导线把线圈 的两个头短路,摆动就会马上停止,这是为什么? 答:处于永磁体磁场中的灵敏电流计的通电线圈要受到四个力矩的作用,它 们是: (1)磁场对线圈的电磁力矩 BSNIg,其中,B 为磁场的磁感应强度,S 为线 圈的截面积,N 为线圈的总匝数,Ig 为线圈中通过的电流; (2)线圈转动时张丝 扭转而产生的反抗(恢复)力矩-Dθ,其中,D 为张丝的扭转系数,θ 为线圈的 偏转角; (3)电磁阻尼力矩; (4)空气阻尼力矩。 电磁阻尼力矩产生的原因是因为线圈在磁场中运动时的电磁感应现象。根据 电磁感应定律,线圈在磁场中运动时会产生感应电动势。灵敏电流计的内阻 Rg 和外电路的电阻 R 构成一个回路,因而有感应电流 i 流过线圈,这个电流又与磁 场相互作用,产生了一个阻止线圈运动的电磁阻尼力矩 M。可以证明,M 与回路 的总电阻 Rg+R 成反比,有 d M BNSi dt 其中,
E H
电磁波的传播速度为
v 1
其中, 和 分别为介质的电容率和磁导率。在真空中 0 =8.8542× 10 - 12F/m , 0 =4 ×10 7 H/m。由此可知,电磁波在真空中的传播速度为 C=
《大学物理》练习题及详细解答-—电磁感应.docx
法拉第电磁感应定律10-1如图10-1所示,一半径a=0.10m,电阻7?=1.OX1O 3Q 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为TT /3,若磁场变化的规律为3(f ) = (3" +8/ + 5)X 10-4T求:(1) f=2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。
解:(1) <t>^B S^BScosO图 10-1a —3 ? x 10 -5t = 2s, & =—3.2x107, I =_=------ =—2x10—2 AR -负号表示与方向与确定五的回路方向相反(2) / = ;(0 -Q )=;留(0)-8(2)]• S• cos 。
= 28x1" 1*0.1 - =4.4xl0-2 CR R 1x10 x210-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。
大回路中有电流/,小的回路在大 dx的回路上面距离X 处,X»R,即/在小线圈所围面积上产生的磁场可视为是均匀的。
若—=v 等速 dt 率变化,(1)试确定穿过小回路的磁通量e 和X 之间的关系;(2)当x=NR (N 为一正数),求小回 路内的感应电动势大小;(3)若v>0,确定小回路中感应电流方向。
解:(1)大回路电流/在轴线上x 处的磁感应强度大小B = cl" 2、3 2 '方向竖直向上。
2(舟+》2产x»R 时,® = B ・S = BS = B •兀尸=“祁:"2疽 2x3(2)=1. ju JR-TIP 2x 4 — , x = NR 时, dt 2dt (3)由楞次定律可知,小线圈中感应电流方向与/相同。
动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为W 的均匀磁场中,该导线以 速度v沿水平方向向右平动,如图10-3所不,分别采用(1)法拉第电磁 感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电 势高?解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向,在x 处O…, = (2Rx+-兀R2 )B , s = 一^^ = -2RB — = -2RBv2 dt dt由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 8 = -2RBv 负号表示电动势方向为逆时针,即上端电势高。
大学物理课后习题答案 电磁感应 电磁场
第十三章 电磁感应 电磁场 1、[D]分析:应用楞次定律为分析的根据,若要产生乙线圈中的,则乙线圈中电流产生的电感应强度是由右向左,说明甲线圈中电流产生的由右向左的电感应强度在减小,即产生该磁场的电流在减小,由此可见,将抽出甲中铁心,nI B r 0μμ=,在I 不变时,B 减小。
2、[D]依据法拉第电磁感应规律,td d φε-=在上述条件下,ε应相同。
依据欧姆定律,RI ε=因为是不同的导体电阻率不同,所以R 不同,I 也不同。
3、[B]应用楞次定律分析,在I 增长时,垂直通过线圈平面内向外的磁通量是增大,因此感应电流产生的磁感强度垂直平面向里,为顺时针方向。
4、[C]分析:当a >>r 时,有以r 为半径的圆周内各点的B可视为常矢量。
断电前通过导体环的磁通量:2012r aIBS S B ππμφ==⋅=。
断电后通过导体环的磁通量:02=φ。
对纯电阻电路有:aRIr RRq 2)(120112μφφφ==--=5、[D]θαεcos d sin d )(d l vB l B v =⋅⨯=)(B v ⨯和l d 之间夹角2πθ=,∴0d =ε 0d ==⎰εε6、[D]在t ωθθ+=,θαεcos d sin d l vB =其中θ是)(B v⨯和l d 之间夹角r r l vB d cos d sin d ωθαε-== 2OP 21d BL r r B ωωε-=-=⎰O 处为高电势 221BL ωε=7、[D]两自感线圈顺接和反接的自感系数:M L L L 221++=顺21L L KM =10≤≤KM L L L 221-+=反图(1)为反接:1111ab 2L L K L L L -+=,由于1<K ,∴0ab >L 图(2)为反接:1111ab 2L L KL L L -+=,由于1=K ,∴0ab =L8、[C]V 0.8161225.0d d 11=-⨯-=∆∆-=-=tI LtI Lε9、[C]a Ia IaIB πμπμπμ000P 22=+=10、tS B td d d d )( ⋅-=-=φεt mIa nI a nI BS BS S B mωπμπμθcos cos 2020====⋅t mIa nI mωωπμεcos 20-=11、解:Wb 1057.1)1.0(1416.310562521--⨯=⨯⨯⨯===⋅=rB BS S B πφWb 1057.1612-⨯-=-=φφC 1014.3)(1612-⨯=--=φφRq12、(1)向右移动时,垂直纸面向内的φ减小。
第10-11章 电磁感应 电磁场 -- 习题解答
该回路的磁通量:
R B / 2
2
由电磁感应定律:
d / dt 0.5R dB / dt
2
方向由楞次定律:
dB dB 0 " ";反之: 0 " " dt dt
1 2
( r , 0)
ds
o
d d
dr
d
d
r
1 2
( r , 0)
o
d
d
dr ds
d
d
r
0 I B 2 (r d ) 2 r 在线圈上取面元: d s
解:建立坐标系or如图示,设 垂直于纸面向外为B正方向。
0 I
磁通量:
0 I ( ) d dr 2 d 2 ( r d ) 2 r 0 Id 4 ln 2 3
解: 作辅助线 MN ,则在回路中 向运动时 d m 0
MeNM
,沿 v 方
MeNM MeN NM 0 MeN NM MN
N
MN
a b (v B ) d r B sin cos dr M a b 2 0 I a b ln 0 2 ab
L1
L2
d ( D r 2 ) d ( D R 2 ) d D H dl L1 dt dt dt
9、A
10、D
二、填空题 1、
1 q 5 104 Wb R
d ( 0 ni a 2 ) d i dt dt
2、
i I m sin t
0n a I m cos t
2
3、感应电流为:0 4、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理练习题十一一、选择题1. 如图,导体棒AB 在均匀磁场B 中绕过C 点的垂直于棒长且沿磁场方向的轴OO ’转动(角速度ω 与B 同方向),BC 的长度为棒长的31。
则 [ A ](A )A 点比B 点电势高. (B )A 点与B 点电势相等.(C )A 点比B 点电势低. (D )有稳恒电流从A 点流向B 点.解: 从上往下看,AC 、CB 段导体在磁场中旋转切割磁力线,由B v q ⨯=ε知外端电势高。
由221 B ωε=及BC AC >知BC AC ε>ε,即B A U U >2. 有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12。
若它们分别流过i 1和i 2的变化电流且dtdi dt di 21>,并设由i 2变化在线圈1中产生的互感电动势为12ε,由i 1变化在线圈2中产生的互感电动势为21ε,判断下述哪个论断正确?[ C ](A) 2112M M =,1221εε=。
(B) 2112M M ≠,1221εε≠。
(C) 2112M M =,1221εε>。
(D) 2112M M =,1221εε<。
解:由dt di M 21212-=ε,dt di M 12121-=ε,2112M M =, 有 dt di dt di //211221=εε,当dt di dt di 21>时必有1221εε> 注:这里ε指大小(绝对值)。
*3. 已知圆环式螺线管的自感系数为L 。
若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数 [ D ](A) 都等于21L 。
(B) 有一个大于21L ,另一个小于21L 。
(C) 都大于21L 。
(D) 都小于21L 。
解: 将圆环看作是两个半环串联,M L L L 221++=, 显然L L L 2121<=4. 真空中一根无限长直细导线上通有电流强度为I 的电流,则距导线垂直距离为a 的空间某点处的磁能密度为: [ B ] (A) 200221⎪⎭⎫ ⎝⎛a I πμμ (B) 200221⎪⎭⎫ ⎝⎛a I πμμ (C) 20221⎪⎪⎭⎫ ⎝⎛I a μπ (D) 200221⎪⎭⎫ ⎝⎛a I μμ 解: a I B πμ20=代入022μB w m =5. 两个线圈P 和Q 并联地接到一电动势恒定的电源上。
线圈P 的自感和电阻分别是线圈Q 的两倍。
当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是 [ D ]2/16. 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1、L 2磁场强度H 的环流中,必有: [ C ] (A) ⎰⋅1L l d H >⎰⋅2L l d H (B) ⎰⋅1L l d H =⎰⋅2L l d H (C) ⎰⋅1L l d H <⎰⋅2L l d H (D) ⎰⋅1L l d H =0. 解: c L I l d H =⋅⎰2 ,c c D L I r R I I l d H <==⋅⎰221ππ7. 对位移电流,有下述四种说法,请指出哪一种说法正确? [ A ](A) 位移电流是由变化电场产生的。
(B) 位移电流是由变化磁场产生的。
(C) 位移电流的热效应服从焦耳---楞次定律。
(D) 位移电流的磁效应不服从安培环路定理。
解:位移电流是由变化电场产生的。
8. 在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示,B的大小以速率dB/dt 变化。
有一长度为l 0的金属棒先后放在磁场的两个不同位置1(a b)和2(b a ''),则金属棒在这两个位置时棒内的磁感应电动势的大小关系为 [ B ](A) 012≠=εε (B) 12εε>. (C) 12εε< (D) 012==εε解:连oa 、ob ,则三角形oab 回路中的电动势大小S dt dB =||ε。
考虑到半径方向没有电动势,所以这就是棒内的电动势大小。
由S 2>S 1,及可知选B 。
注:这里ε的大小是指其绝对值。
二、填空题1. 一段导线被弯成圆心在O 点、半径为R 的三段圆弧ab 、bc 、ca ,它们构成了一个闭合回路,ab 位于XOY 平面内,bc 和ca 分别位于另两个坐标面中(如图)。
均匀磁场B 沿X 轴正方向穿过圆弧bc 与坐标轴所围成的平面。
设则闭合回路a b c a bc 中感应电流的方向是 b c →。
解: 磁通量穿过的有效截面为四分之一圆面S dtdB =||ε,22414R k R dt dB dt d ππε==Φ= 由楞次定律判定电流方向。
注:这里ε的数值指大小(绝对值)。
2.如图,aoc 为一折成∠形的金属导线(ao=oc= L),位于XY 平面中;磁感应强度为B 的匀强磁场垂直于XY 平面。
当aoc 以速度v 沿X 轴正向运动时,导线上a 、c 两点间电势差=ac U ;当aoc 以速度v 沿Y 轴正向运动时,a 、c 两点中是 点电势高。
解: (1)沿X 轴正向运动时,oc 中无电动势,oa 在垂直于运动方向的等效长度为θsin L ,且a 端电势高。
θεsin vBL U ao ac ==(2)沿Y 轴正向运动, O 点电势高,且θεcos vBL oa =,vBL oc =ε对aoc 导线,c 点电势比a 点更低,故a 点电势高。
注:可以用两节电动势不同的电池反接来理解a 点电势高。
3.真空中,有一半径为R 的两块圆板构成的平行板电容器,当使此电容器充电因而两极E解: =∂∂==S t D S j I D d充电过程E 增大,D I 与E 同向。
4.圆形平行板电容器,从q=0开始充电,试画出充电过程中,极板间某点P 处电场强度的方向和磁场强度的方向。
解: 充电过程E 增大,D I 与E 同向。
P 点的E 向下,H 向里(在垂直于E 的平面内),方向如图。
思考:极板间的磁场是如何分布的?5.反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为 ⎰∑=⋅S i q S d D , (1) ⎰Φ-=⋅L m dt d l d E / , (2) ⎰=⋅S S d B 0 , (3) ⎰∑Φ+=⋅L e i dt d I l d H / (4)试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的。
将你确定的方程式用代号填在相应结论后的空白处。
(1)变化的磁场一定伴随有电场, (2) ;(2)磁感应线是无头无尾的, (3) ;(3)电荷总伴随有电场, (1) 。
三、计算题1.如图所示,真空中一长直导线通有电流t e I t I λ-=0)( (式中I 0、λ为常量,t 为时间),有一带滑动边的矩形导线框与长直导线平行共面,二者相距a 。
矩形线框的滑动边与长直导线垂直,它的长度为b ,并且以匀速v(方向平行长直导线)滑动.若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻t 在矩形线框内的感应电动势i ε并讨论i ε方向。
解: vtdr dS =,r IB πμ20=, t 时刻穿过回路的磁通量a b a Ivt dr r Ivt BdS ba a m +===⎰⎰+ln 2200πμπμφt te ab a v I λπμ-⋅+=ln 200 ][ln 200t t m te e ab a v I dt d λλλπμφε---⋅+-=-=ε方向: 当0>ε时沿顺时针;当0<ε时沿逆时针。
注:因电流与磁场均随时间变化,仅用动生电动势公式求结果是错误的。
2.两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b 的金属杆CD 与两导线共面且垂直,相对位置如图.CD 杆以速度v 平行直线电流运动,求CD 杆中的感应电动势,并判断C 、D 两端哪端电势较高?解:按右图坐标,)211(20ax a x I B +-+=πμ,向外 x Bd v d =ε,b a b a I x d a x a x I v v b ++=+-+=⎰2)(2ln 2)211(2000πμπμε ε方向:由B v ⨯方向可知D 点电势高。
注1:动生电动势的方向同B v ⨯的方向。
注2:坐标原点与图示不同,则线元dx 处B 的表达式与积分区间也不同。
3.如图,有一弯成θ角的金属架COD 放在磁场中,磁感应强度B 的方向垂直于金属架COD所在平面。
一导体杆MN 垂直于OD 边,并在金属架以恒定速度v 向右滑动,v与MN 垂直。
设t=0时,x=0。
求下列两情形,框架内的感应电动势i ε。
⑴ 磁场分布均匀,且B 不随时间改变。
⑵ 非均匀的时变磁场t Kx B ωcos =。
解:(1) 运动的导线长θxtg = ,B 不变时的动生电动势θθεtg t Bv vBxtg vB ⋅===2 方向: N M →(2)dx xtg ydx dS θ==,t Kx B ωcos =t 时刻穿过回路的磁通量(t 作常量)t tg Kx dx x t Ktg BdS xm ωθωθφcos 31cos 302===⎰⎰ t t tg Kv ωθcos )31(33=或=ε)cos 3sin (312t v t x tg Kx ωωωθ-= 磁场向外时:0>ε时ε沿逆时针方向; 0<ε时ε沿顺时针方向. 注:计算题1、3题可以先取回路正向(回路正向与磁场方向成右螺旋),当ε>0时与回路正向同向(按题中实际指出具体方向)。
也可以直接由楞次定律确定。
4.矩形截面螺绕环(尺寸如图)上绕有N 匝线圈。
若线圈中通有电流I ,则通过螺绕环截面的磁通量πμ20NIh =Φ。
⑴ 求螺绕环内外直径之比D 1/D 2;⑵ 若h=0.01m ,N=100,求螺绕环的自感系数;⑶ 若线圈通以交变电流t I i ωcos 0=,求环内感应电动势。
(提示:环内磁场r NI B πμ2/0=,指出i ε与i 方向的关系) 解: (1) hdr ds =,r I N B πμ20=,1201200ln 2ln 222221D D Ih N R R Ih N r hd r I N BdS D D m πμπμπμφ====⎰⎰,由m NIh φπμφ==20可知 1D D ln 12=(2) πμφ220h N I N I L ==ψ==⨯⨯⨯=--ππ21010104247)H (1025-⨯由楞次定律可知:当ε>0时,ε沿电流方向。
[附] 参考题1. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m= [ D ] (A) 只适用于无限长密绕螺线管。
(B) 只适用于单匝圆线圈。
(C) 只适用于一个匝数很多,且密绕的螺线环。