第五章土力学解析
土力学第五章土的压缩性
5.2 固结试验及压缩性指标
土力学
5.2.1
固结试验和压缩曲线
5.2.2
土的压缩系数和压缩指数
5.2.3
土的压缩模量和体积压缩系数
5.2.4
回弹曲线和再压缩曲线
天津城市建设学院土木系岩土教研室
5.2.2
土的压缩系数和压缩指数
土力学
土的压缩系数:土体在侧限条件下孔隙比减小量与有效压力增 量的比值,即e-p曲线中某一压力段的割线斜率。 e e0 利用单位压力增量所引起得孔 e1 e2 M1
e1 e2 斜率Cc lg p2 lg p1
e-lgp曲线后压力段接近直线,
其斜率Cc为:
e1 e2 Cc e / lg( p2 / p1 ) lg p2 lg p1
同压缩系数一样,压缩指数Cc 值越大,土的压缩性越高。低 压缩性土的Cc值一般小于0.2, Cc值大于0.4为高压缩性土。
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
土的弹性模量
天津城市建设学院土木系岩土教研室
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
土的弹性模量
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
第5章 土的压缩性
土力学
5.1
5.2 5.3 5.4 5.5
概述
固结试验及压缩性指标 应力历史对压缩性的影响
土的变形模量
《土力学》第五章习题集及详细解答
《土力学》第五章习题集及详细解答第5章土的压缩性一填空题1.压缩系数= ,表示压力范围= ,= 的压缩系数,工程上常用评价土的压缩性的高低。
2.可通过室内试验测定的土体压缩性的指标有、、和。
3.天然土层在历史上所经受过的包括自重应力和其他荷载作用形成的最大竖向有效固结压力称为。
4.据前期固结压力,沉积土层分为、、三种。
5.在研究沉积土层的应力历史时,通常将与之比值定义为超固结比。
二选择题1.评价地基土压缩性高低的指标是()(A)压缩系数;(B)固节系数;(C)沉降影响系数;(D)参透系数2.若土的压缩曲线(e-p曲线)较陡,则表明()(A)土的压缩性较大(B)土的压缩性较小(C)土的密实度较大(D)土的孔隙比较小3.固结实验的排水条件为()(A)单面排水;(B)双面排水;(C)不排水;(D)先固结,后不排水4.在饱和土的排水固结过程中,若外载荷不变,则随着土中有效应力()(A)孔隙水压力u相应的增加;(B)孔隙水压力u相应的减少(C)总应力δ相应增加;(D)总应力δ相应减少5.无黏性土无论是否饱和,其实形达到稳定的所需时间都比透水性小的饱和黏性土()(A)长得多;(B)短得多;(C)差不多;(D)有时更长,有时更短6.在饱和土的排水固节过程中,通常孔隙水压力u与有效力将发生如下的变化()(A)u不断减少,不断增加;(B)u不断增加,不断减少(C)u与均不断减少;(D)u与均不断增加7.土体产生压缩的时()(A) 土中孔隙体积减少,土粒体积不变;(B)孔隙体积和土粒体积均明显减少(C)土粒和水的压缩量均较大;(D)孔隙体积不变8.土的变形模量可通过()实验来测定。
(A)压缩;(B)载荷;(C)渗透;(D)剪切;9.土的e-p曲线愈平缓,说明()(A)压缩模量愈小;(B)压缩系数愈大(C)土的压缩性愈低;(D)土的变形愈大10.若土的压缩系数a1-2=0.1MPa-1,则该土属于()(A)低压缩性土;(B)中压缩性土;(C)高压缩性土;(D)低灵敏土11.已知土中某点的总应力,孔隙水压力,则有应力等于()(A)20kPa ;(B)80kPa;(C)100kPa;(D)120kPa12.下列说法中,错误的是()(A)土在压力作用下体积会减小(B)土的压缩主要是土中孔隙体积的减少(C)土的压缩所需时间与土的透水性有关(D)土的固结压缩量与土的透水性有关13.土的压缩性指标包括()(A)a,Cc,Es,E0;(B)a,Cc,Es,e;(C)a,Cc,E0,e ;(D)a,Es,Eo,14.土的压缩模量越大,表示()(A)土的压缩性越高;(B)土的压缩性越低(C)e-p曲线越陡;(D)e-lgp曲线越陡15.下列说法中,错误的是()(A)压缩试验的排水条件为双面排水(B)压缩试验不允许土样产生侧向变形(C)载荷试验允许土体排水(D)载荷试验不允许土体产生侧向变形16.在压缩曲线中,压力p为()(A)自重应力;(B)有效应力;(C)总应力;(D)孔隙水应力17.使土体体积减少的主要因素是()(A)土中孔隙体积的减少;(B)土粒的压缩(C)土中密闭气体的压缩;(D)土中水的压缩18.土的一维固结微分方程表示()(A)土的压缩性大小与固结快慢(B)固结度与时间和深度的关系(C)孔隙水压力与时间和深度的关系(D)孔隙水压力与时间的关系19.土的压缩变形主要是由于土中哪一部分应力引起的?()(A)总应力;(B)有效应力;(C)孔隙应力20.所谓土的固结,主要是指()(A)总应力引起超孔隙水压力增长的过程(B)超孔隙水压力消散,有效应力增长的过程(C)总应力不断增加的过程(D)总应力和有效应力不断增加的过程21.在时间因数表示式Tv=Cv/H2中,H表示的意思是()(A)最大排水距离;(B)土层的意思是(C)土层厚度的一半;(D)土层厚度的2倍三、判断改错题1.在室内压缩试验过程中,土样在产生竖向压缩的同时也将产生侧向膨胀。
土力学 第5章 土的压缩与固结
地下水 位
持力层
下卧层
工程事故——建筑物倾斜、严重下沉、墙体开裂和地基断裂
地基变形值——沉降量、沉降差、倾斜、局部倾斜 地基变形要求:地基变形值<规范允许值
土具有变形特性
荷载作用
荷载大小
地基发生沉降 一致沉降 (沉降量) 差异沉降 (沉降差)
土的压缩特性 地基厚度
建筑物上部结构产生附加应力
影响建筑物的安全和正常使用
a △ p s H 1 e1 △p s H Es
△e e1 e2 压缩系数 a △p △p
压缩模量 E S
1 e1 a
此三个公式都可以计算压缩量、沉降量
a △ p s H 1 e1
△p s H Es
F
填土
一层土的沉降量是这样 计算,
地下水位
黏土
多层土的总沉降量如何 计算呢?
工程实例 墨西哥某宫殿 存在问题: 沉降2.2米 ,且左右两 部分存在明 显的沉降差 。 地基:20多米厚的黏土
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起地面、阳台裂缝
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
47m
39
150 194 199 175 87
0.9 0.8 0.7 0.6 0
△e
△p
100
200 300 400
p (kPa)
为了便于应用和比较,通常采用压力间隔由 p1 100kPa 增加 到 p 2 200kPa 时所得的压缩系数 a12 来评价土的压缩性。
(课本第77页)
压缩模量——是土在无侧向变形条件下,竖向应力 与应变的比值。 土的压缩模量可根据下式计算:
第五章土力学基本知识
第五章-土力学基本知识第五章地基基础第一节土力学基本知识1.土是固体颗粒、水和蔼体三部分组成的。
2.粘性土的界限含水量(1)粘性土的状态粘性土的稠度状态因含水量的不同,可表现为固态,塑态与流态三种状态。
(2)界限含水量粘性土从一种状态变到另一种状态的含水量分界点称为界限含水量。
流动状态与可塑状态间的分界含水量称为液限WL,可塑状态与半固体状态间的分界含水量称为塑限WP,半固体状态与固体状态间的分界含水量称为缩限Ws 。
(3)塑性指数:可塑性的大小用土处在塑性状态的含水量变化范围来衡量,从液限到塑限含水量的变化范围愈大,土的可塑性愈好。
这个范围称为塑性指数Ip。
粘性土的分类第 1 页/共9 页(4)液性指数液性指数是表示天然含水量与界限含水量相对关系的指标,其表达式为:可塑状态的土的液性指数在0到1之间,液性指数越大,表示土越软,液性指数大于1的土处于流动状态,小于0的土则处于固体状态或半固体状态。
粘性土的状态可按照液性指数分为坚硬、硬塑、可塑、软塑和流塑。
3.地基变形特征(1)因为建造物等的荷载作用在土中产生的附加于原有应力之上的应力,称附加应力。
基底附加压力,是作用在基础底面处因为建造修造后压力的改变量,是引起地基变形、基础沉降的主要因素。
(2)地基承受荷载后,土粒互相挤紧,因而引起地基土的压缩变形,这种性质叫土的压缩。
地基内由增强应力引起的应力-应变随时光变化的全过程(包括总算变形)叫地基固结。
(3)地基变形特征分为沉降量、沉降差、倾斜、局部倾斜。
①沉降量:指基础中央的沉降量。
②沉降差:指相邻单独基础沉降量的差值。
③倾斜:指单独基础倾斜方向两端点的沉降差和距离的比值。
④局部倾斜:指砌体承重结构沿纵墙6~10m之内基础两点的沉降差与其距离的比值。
4.土的抗剪强度(1)测定土的抗剪强度指标的实验主意主要有室内剪切实验和现场剪切实验两大类。
室内剪切实验常用的主意有直接剪切实验、三轴剪切实验和无侧限抗压强度实验等;现场剪切实验常用的主意有十字板剪切实验。
05.注册岩土--土力学重点知识笔记整理- 第五章
第五章土的抗剪强度5.1、5.2土的抗剪强度理论1、土体的抗剪强度组成:土体的抗剪强度主要由内聚力和内摩擦角组成;2、天然休止角:通过漏斗向地面撒沙的时候,沙堆与地面的夹角称为砂土的天然休止角;天然休止角亦最松散状态下的土体内摩擦角;-------同一种砂土、松散和密实状态土体的内摩擦角是不同的,主要因为越密实土体之间的接触面越大、滑动摩擦抗力越大,且越密实咬合摩擦力越大。
3、土体抗剪强度的影响因素:土体的抗剪强度首先取决于土体的C、值(由土体的组成、土的状态、土的结构、应力历史、毛细水压力等决定),其次取决于土体的应力状态,。
4、土体的抗剪强度指标:主要指土体的C、值。
5、抗剪强度主要解决的土力学问题:①各种类型的滑坡→边坡稳定性问题→第七章内容;②挡土结构物的破坏→土压力问题→第六章内容;③地基破坏→基坑承载及地基土稳定性问题→第八章内容;④砂土液化→土体的振动液化特性→第九章内容。
6、各种类型的滑坡:①崩塌:张拉破坏+剪切破坏共同组成;②平移滑动:主要为无粘性土或少粘性土的边坡破坏形式;③旋转滑动:主要为粘性土边坡的破坏形式;④滑流:边坡遇水产生流体似的滑动。
7、土体的内摩擦角:通常由土体之间的滑动摩擦力与咬合摩擦力组成。
(1)粗粒土的内摩擦角的影响主要影响因素有:密度、粒径级配、颗粒形状、矿物成分等,其中前三项影响土体之间的咬合力和接触面积(影响滑动摩擦力),矿物成分主要因为土体的滑动摩擦系数;(2)细粒土的内摩擦角的影响主要影响因素有:细粒土表面存在吸附水膜,颗粒通过吸附水膜间接接触会影响土体的滑动摩擦力,吸附水膜与土颗粒的含水量有关,故其摩擦角的影响因素更为复杂。
8、土体的内聚力:主要指细粒土的黏聚强度,取决于土颗粒之间的库伦力(静电力)、范德华力(分子间引力)、胶结作用和毛细水压力。
9、土体的库仑强度公式:总应力强度公式:;有效应力强度公式:;孔隙水压力不影响土体的抗剪强度,故上述两个相同。
土力学_第5章(固结与压缩)
P0 P H
③计算地基中自重应力σsz分布
不排水
孔隙水压力
孔隙水压力
(五)三轴压缩试验成果—应力--应变关系
1 3
(1 3 ) y
1 3
f
E
1
b c
②-超固结土或密实砂 b ③-正常固结土或松砂
①-理想弹塑性
a O
b点为峰值强度
土 的 本 构 模 型
线弹性-理想塑性 1 3 1 2
1
应变硬化段
应变软化段
C
s
p
lg '
(五)三轴压缩试验
三轴试验测定: 轴向应变 轴向应力 体应变或孔隙水压力
轴向加压杆 顶帽
压力室
试 样
有机玻璃罩 橡皮膜 加压进水
类型 固结排水 施加σ3时 固结
透水石 排水管
量测体应变或 孔隙水压力
阀门
施加σ1-σ3时 排水
量 测 体应变
固结不排水
不固结不排水
固结
不固结
不排水
将地基分成若干层,认为整个地基 的最终沉降量为各层沉降量之和。
n n
o
s si i H i
i 1 i 1
ΔS1 ΔS2 ΔS3 ΔS4 Δ Si ΔSn
i第i层土的
压缩应变
z v
e e1 e2 1 e1 1 e1
z
取基底中心点下的附加应力进行计算,以基底中点的沉降代
400
e-p曲线
p(kPa)
(σ')
Δp
(σ')
p(kPa)
Δ p相等而 ΔeA> ΔeB,所以曲线A的压缩性 >曲线B的压缩性
土力学 第5章土的压缩性
固结沉降Sc :饱和与接近饱和的粘性土在荷载作用下,随着超静孔隙水 压力的消散,土中孔隙水的排出,土骨架产生变形所造成的沉降(固结压 密)。固结沉降速率取决于孔隙水的排出速率。
次固结沉降Ss:主固结过程(超静孔隙水压力消散过程)结束后,在有效 应力不变的情况下,土的骨架仍随时间继续发生变形。这种变形的速率 已与孔隙水排出的速率无关(土的体积变化速率),而是取决于土骨架 本身的蠕变性质。次固结沉降既包括剪应变,也包括体积变化。
缩性如下:
0.1 低压缩性
a12 / MPa 1 中压缩性
0.5 高压缩性
2.土的压缩指数
Cc
log
e1 e2 p2 log
p1
e / log(
p2
/
p1 )
Cc 是 无 量 纲 系 数 , 同 压
缩系数一样,压缩指数 越大,土的压缩性越高 。虽然压缩系数和压缩 指数都是反映土的压缩 性指标,但两者有所不 同。 前者随所取的初始压力 及压力增量的大小而异 ,而后者在较高的压力 范围内却是常量,不随 压力而变。
② 0.42e0时,土样不受到扰动影响。
e
e0 B
0.42e0
C
推定:
① 确定先期固结压力σp ② 过e0 作水平线与σp作用线交于B。由假定① 知,B点必然位于原状土的初始压缩曲线上;
③ 以0.42e0 在压缩曲线上确定C点,由假定② 知,C点也位于原状土的初始压缩曲线上;
④ 通过B、C两点的直线即为所求的原位压缩曲线 。
第二节 地基的最终沉降量
分层总和法 规范法 考虑不同变形阶段的地基沉降计算方法
可压缩层 不可压缩层
p
t
σz=p
土力学课程讲解第5章
Compressibility of soils
第5章 土的压缩性
5.1 5.2 5.3 5.4 5.5 5.6
土力学
概述 土的变形特性 固结试验及压缩性指标 应力历史对土的压缩性的影响 土的压缩性原位测试 小结
厦门大学 土木系
2
5.1 概述
本章介绍土的压缩性。不少建筑工程事故都是 土的压缩性高或压缩性不均匀,引起地基严重 沉降或不均匀沉降造成的。 地基土层产生变形,其内因是土具有压缩性, 外因主要是建筑物荷载的作用。因此,为了计 算地基的沉降,就必须研究土体的压缩性,同 时要研究在上部荷载作用下地基土中应力分布 情况。 本章内容:固结试验及压缩性指标,应力历史 对压缩性影响、原位测试测定变形模量等。
土力学
厦门大学
土木系
30
一、正常固结、超固结、欠固结 概念
先前地面
Pc=P1时,正常固结土 Pc>P1时,超固结土 Pc<P1时,欠固结土
将来地面
图3-8
4 超固结比——Pc与P1之比。其值越大,超固结作用 越大。确定先期固结压力Pc常用卡萨格兰德法。 土力学 厦门大学 土木系
31
5.3 固结试验及压缩性指标
1 point a—a minimum radius of curvature 2 draw a horizontal line ab 3 draw the line ac tangent at a 4 draw the line ad which is the bisector of the angle bac 5 project the straight-line gh back to intersect ad at f 6 the abscissa of point f is the pc
土力学_柳厚祥_第五章土的压缩性与沉降计算
第五章 土的压缩性与沉降计算§ 5.1 基本概念一、地基土在上部结构荷载作用下产生应力和变形⎩⎨⎧→→形状变形(剪破)体积变形(不破坏)zx yz xy z y x τττσσσ,,,,地基的竖直方向变形即为沉降三相土受力后的变形包括⎩⎨⎧排出土孔隙中的水和空气的,相互挤紧)土颗粒压缩(重新排列土体积减小的过程土体压缩性:指的是在压力作用下体积减小过程的特性,包括两个方面:1. 1. 压缩变形量的绝对大小(沉降量大) 2. 2. 压缩变形随时间的变化(固结问题)一、一、 工程意义地基的沉降有均匀沉降与不均匀沉降1. 1. 均匀沉降对路桥工程的上部结构危害较小,但过量的 均匀沉降也会导致路面标高的降低,桥下净空的减小而影响正常的使用。
2. 2. 不均匀沉降则会造成路堤的开裂,路面不平,超静定结构,桥梁产生较大的附加应力等工程问题,甚至影响其正常使用。
沉降计算是地基基础验算的重要内容,也是土力学的重要课题之一§5.2 研究土体压缩性的方法及变形指标一、一、 压缩试验与压缩性规律土体积的变小是孔隙体积变小的结果,研究土的压缩性大小及其特征的室内试验方法称为压缩试验。
对一般工程情况来说,或在压缩土层厚度比荷载面宽度小很多的情况下常用侧限压缩试验来研究土的压缩性。
试验室用以进行土的侧限压缩试验的仪器称为压缩仪(固结仪),如图5-1 所示 透水石以便土中水的排出传压活塞向土样施加压力。
由于环刀所限,增压或减压是土样只能在铅直方向产生压缩或回胀,而不可能产生侧向变形,故称为侧限压缩试验。
试验采用压缩仪进行压缩试验是研究土的压缩性最基本的方法,有上述已知,试样土粒本身体积是假定不变的,即()112211211,11,e h he e h e h v v s s +∆=∆+=+=,因此,试样在各级压力pi 作用下的变形,常用孔隙比e 的变化来表示。
(一)e-p 曲线的表示方法如右图所示е0a 曲线为压缩曲线 ab 曲线为减压曲线 ba’为才压缩曲线当在压的压力超过试样所曾经受过的最大压力后,其e-p 曲线很快就和压缩曲线的延长线重合如图a’c 所示。
土力学第五章土的抗剪强度
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基
土
▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验
土力学第五章 土的抗剪强度
m
1
3
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
( 1 3 ) ( 1 3 ) cos 2
1
2
3
A
sin
1 ( 1 3 ) 2 1 ( 1 3 ) c cot 2
c cot
3
( 3 1 ) / 2
1
D
17
5.2 土的抗剪强度
四、土的极限平衡条件
sin 1 ( 1 3 ) 2 1 ( 1 3 ) c cot 2
解 (5) 1 500, 3 200时 作图法
300 200 100
(kPa)
33.690
200 500
(kPa)
应力圆位于抗剪强度线下,不破坏
24
5.2 土的抗剪强度
四、土的极限平衡条件
例 题 解 (5) 1 500, 3 200时
解法1、极限平衡状态 计算法
1 3 tan2 (45 / 2) 2c tan(45 / 2)
5.1 5.2 5.3 5.4 5.5 5.6 5.7
概述 土的抗剪强度 土的剪切试验 砂土和粘土的静剪切特性 砂土的动剪切特性 粘土的时间效应特性 原位剪切特性
1
5.1 概述
土的抗剪强度:土体抵抗剪切破坏的最大能力
主应力线
最大剪应力线
2
5.1 概述
附加应力 z 等值线
附加应力 xz 等值线
土力学第五章土压力 PPT课件
5.3.4 典型情况下的朗肯土压力
填土表面有超载:
❖ 相当于在深度z处增加q值的作用。
❖ 将 z 用(q+z)代替:
粘 性 土 p a (z q )K a 2 cK a 砂 性 土 p a (z q )K a
成层填土:
强度指标不同,土层分界面上土压力分布有突变。
a点 : pa12c1 Ka1
b点:p 0b= K0 (q+h1)=0.5 (20+186)=64kPa c点:p 0c= K0 (q+h1+h2)=0.5 [20+186+(19-9.8)4]=82.4kPa
静止土压力合力为 E0= ( poa+ pob)h1/2+ ( p0b+ p0c)h2 /2 = 0.5 (10+64) 6+ 0.5 (64+82.4)4=514.8kN/m
(a)静止土压力 (b)主动压力 (c)被动土压力
土压力与挡土墙位移关系
注 意:
➢ 挡土结构物要达到被动土压 力所需的位移远大于导致主 动土压力所需的位移。
➢ 三种土压力关系:
Ea E0Ep
5.2 静止土压力计算
❖ 假定挡土墙后填土处于弹性状态
❖ 相当于天然地基土的应力状态
❖ 计算公式:
p0=K0sz=K0z
(3)被动状态: 应力圆O3,z为小主应力, x为大主应力 滑动面夹角f = (45/2)
(a) 应力状态 (b)应力圆
(c) 破坏面
5.3.2 朗肯主动土压力计算
基本假定:墙背直立、光滑,填土面为水平 基本原理:背离填土移动至AB
达到主动极限平衡状态
土力学第五章-渗透固结理论
两种情况的固结度用叠加原理计算:
情况3、情况4的固结度
在各种附加应力分布情况下,其固结度都可统一写成:
只要知道情况0和情况1的固结度,其它各种情况的固结度都可计算。
情况0:=1;情况1:=0; 情况2:=
情况3:=0~1;情况4:>1
各种情况固结度比较
作图:由于在各种附加应力分布情况下的固结度只与附加应力分布情况和时间因素有关,因而将固结度、时间因素和附加应力比值之间的关系表示成曲线——渗透固结理论曲线。
时间因素:
最远排水距离H:单面排水就是土层厚度,双面排水就是土层厚度的一半。
单向渗透固结微分方程的求解
固结度:指在某一固结应力作用下,经过一段时间后,土体发生固结或孔隙水压力消散的程度。
01
固结度就是土中孔隙水压力向有效应力转化过程的完成程度。
02
固结度的基本概念
平均固结度:指地基在固结过程中,任一时刻的沉降量与最终沉降量之比。
当土层受无限铅直均布荷载作用产生单向压缩时,饱和土的变形速率主要由渗透固结控制。
03
02
01
渗透固结
01
02
03
太沙基渗透固结模型
主要讨论施加外荷后,随着时间的增加,饱和土中孔隙水压力和有效应力的变化。
01
没有外荷载作用时,容器水位与侧压管水位齐平;
02
加荷瞬时,时间为0,来不及排水,外荷全部由水承担,土骨架不受力,这时有效应力为0;
饱和土中,孔隙全被水充满,在外荷作用下,试样排水,引起孔隙体积减小。随时间增加,压缩量增大。
01
饱和土中水的排出速度,主要取决于土的渗透性和土的厚度。
02
土层越厚、土的渗透性越小,水的排出速度越小,化的时间越长。
土力学-第五章土的抗剪强度2简化
44
1、峰值强度与残余强度指标
直剪和三轴试验中:
f 峰值强度指标
r 残余强度指标 f r
f
r
45
峰值强度指标与残余强度指标
峰值强度 :一般问题
残余强度
• • •
凡是可以确定(测量、计算)孔隙水压力u的情况,都应当使用有
效应力指标c, 采用总应力指标时,应根据现场土体可能的固结排水情况,选用
不同的总应力强度指标。
47
抗剪强度指标的选用
应优先采用三轴试验指标
土的抗剪强度指标随试验方法、排水条件的不同而异, 对于具体工程问题,应该尽可能根据现场条件决定采用实验 室的试验方法,以获得合适的抗剪强度指标。
τ
2 3 p 1 p v
常规三轴试验
v 1 3 constant 3
3 1 加压方式2-应变控制
σ
3
1 3
1
σ
16
τ
c tan
Mohr包线
c
σ
特 点
对饱和粘土,可控制孔隙水压,以模拟实际土层的排水条件。
(2) 抗剪强度:固结排水>固结不排水>不固结不排水。
对于同一种土,在不同的排水条件下进行试验,总应 力强度指标完全不同。 有效应力强度指标不随试验方法的改变而不同,抗剪 强度与有效应力有唯一的对应关系
(3) 在工程应用时,应选择与实际工程中排水条件相近的指标。
43
四、土的强度指标及其在工程中的应用
• 优 点
(1)仪器构造简单,操作方便, 在工程上应用广泛。 (2)可方便地用于卵石土、砾 石土等大颗粒土的抗剪强度指标的 确定。 • 缺 点
土力学 第五章 土压缩性与地基沉降计算
土的压缩性的有关概念
为了保证建筑物的安全和正常使用,地基的最大
沉降量和沉降差都必须控制在一定的范围之内。
建筑物地基沉降的研究内容:
绝对沉降量的大小
沉降与时间的关系
第一节 土的压缩性试验 及压缩性指标
一、室内压缩试验及压缩模量
室内侧限压缩试验(固结试验)
百分表 压缩容器
支架
加 压 设 备
pc OCR p0
土的固结状态的划分
正常固结土:
土层的自重应力等于前期固结压力,OCR = 1;
超固结土:
土层的自重应力小于前期固结压力,OCR > 1;
欠固结土:
土层的自重应力大于前期固结压力,OCR < 1。
二、现场载荷试验及变形模量
载荷试验装置
堆重平台反力法
地锚反力架法
室内压缩试验与现场载荷试验的比较
地基是均质的、各向同性的线弹性半无限连续体;
基础整个底面和地基土体一直保持接触。
集中荷载作用下地表沉降
Q 1
2 2 2
s
2
E x y
Q 1
Er
完全柔性基础沉降
均布荷载作用下矩形完全柔性基础下任意点沉降:
1 so obp0 E
2
中点沉降影响系数, l/b的函数,表5-3
高压缩性土 Cc > 0.4
土的回弹曲线和再压缩曲线
回弹曲线与初始压
缩曲线并不重合; 土样中有残留的塑 性变形(残余变 形),但也有恢复 的弹性变形;
超过卸载点后,再
压力完全卸除以后,
压缩曲线就像是初 始压缩曲线的延长 线。
e~p 曲线
土力学第五章-土的压缩性
算。注意地下水位以下用浮容重计算。
超固结比及土的分类
• 超固结比:指土体的先期固结压力与现存上覆压力之比。
OCR pc p0
• 土的分类:超固结土(OCR>1) 正常固结土(OCR=1) 欠固结土(OCR<1)
• 超固结土:指历史地面高于现在地面, • 正常固结土:指历史地面就是现在地面, • 欠固结土:指现在地面高于稳定地面。
先期固结压力的确定
• 土的先期固结压力可由e-lgp曲线确定。 • 方法:
1)在e-lgp曲线上,找到曲率最大点; 2)过最大点作水平线和切线; 3)作水平线和切线的角平分线; 4)反向延长e-lgp曲线的直线段; 5)直线段与角平分线的交点所对应的压力就是所求的 先期固结压力。
侧压力系数和侧膨胀系数
• 侧压力系数K0:指土体在有侧限条件下,水平方向的应 力与垂直方向应力之比。
• 侧膨胀系数: 指土体在无侧限条件下,水平方向的应变
与垂直方向应变之比。
K0
x z
y z
x y z z
• 关系:
K0 1
压缩模量及变形模量
• 压缩模量Es:指土体在有侧限条件下,垂直方向的应力 与垂直方向应变之比。
试验时,使土体受到4级不同垂直压力作用, 测定土体在各级垂直压力下达到压缩稳定时的变形量, 计算出相应的孔隙比。 • 不同土体达到压缩稳定的时间不同,粘性土达到压缩 稳定至少需要1天时间。
压缩曲线
• 土体压缩试验的结果用压缩曲线表示 • 压缩曲线:
就是反映孔隙比与垂直压力的关系曲线。 分为两种:e-p曲线和e-lgp曲线。 • 特性: 压缩曲线的陡缓程度反映了土体压缩性的大小。 压缩曲线越陡,土体的压缩性越大;
土力学第5章-土的渗透性及固结理论讲解
u
u0
(ur u0
)(uz u0
)
(7)
编辑ppt
2 Barron理论解
当径向和竖向组合时,地基任意时刻t,深度z之固结度 U rz
及整个土层之平均固结度 U rz 为:
Urz1m 1M 2s
in Mzemt H
(1)
Urz
1
2
m1M2
emt
(2)
式中,
m[M H2C 2v
8Ch ] (FaD)de2
(2)测定方法
室内试验
渗透系数测定
现场试验
编辑ppt
常水头 变水头 压缩试验
抽水试验
常水头
kT
QL Ath
变水头
kT
aL lnh0 A(t1t0) h1
编辑ppt
抽水试验
k
(h22qh12)
ln
r2 r1
编辑ppt
k n v L h
三、渗流作用下土体中的有效应力计算
1. 静水压时的有效应力 z
• 单元体内水量的变化dQ
dQ(vv zdz)1v1v zdz
v
1
dz
du(uu zdz)uu zdz
v v dz z
1 u
dh
dz
w z
Darcy定律 v ki k u w z
i dh 1 u dz w z
dQ k 2u dz w z2
编辑ppt
• 单元体体积的变化dV
Utn 1
Ur z(ttn2tn1)
pn p
式中
U
t
-多级等速加荷,t时刻修正后的平均固结度;
U rz -瞬时加荷条件的平均固结度;
t n1 , t n -分别为每级等速加荷的起点和终点时间(从时间0点起算),当计算
土力学讲义第五章
e
交于D点;
e0
D
B
③ 过D点作斜率为Ce的直线, 与σp作用线交于B点,DB为原
④ 结果修正
S修=s S
土力学讲义第五章
二、粘土地基沉降计算的若干问题
研究表明:粘性土地基在基底压 力作用下的沉降量S由三种不同
的原因引起:
Si :初始瞬时沉降
t
SSdScSs
S
Sc:主固结沉降
n
S Si i 1
Ss: 次固结沉降
土力学讲义第五章
•初始沉降(瞬时沉降) Sd:有限范围的外荷载作用下 地基由于发生侧向位移(即剪切变形)引起的。
(2)与基底附加应力p0/f土k力的学大讲义小第五有章关
沉降计算总结:
① 准备资料
•建筑基础(形状、大小、重量、埋深) •地基各土层的压缩曲线 原状土压缩曲线 •计算断面和计算点
② 应力分布
•自重应力 •基底压力基底附加应力 •附加应力
土力学讲义第五章
③ 沉降计算
•确定计算深度 •确定分层界面 •计算各土层的szi,zi •计算各层沉降量 •地基总沉降量
先期固结压力σp的确定: Casagrande 法 A
e (a) 在e-lgσ’压缩试验曲
线上,找曲率最大点 m
C
(b) 作水平线m1 (c) 作m点切线m2
mB
(d) 作m1,m2 的角分线m3
(e) m3与试验曲线的直
线段交于点B
(f) B点对应于先期固结压
力p
土力学讲义第五章
p
1 3 2
D
lgP
本节主要内容:
一、地基最终沉降量分层总和法 二、粘土地基沉降计算的若干问题
土力学讲义第五章
最新土力学及基础工程第五章-抗剪强度详解教学讲义PPT课件
f tanc
粘性土的抗剪强度 取 颗粒间的摩擦阻力
土力学及基础工程第五 章-抗剪强度详解
§5.1 土的抗剪强度概述
土的抗剪强度:土体抵抗剪切破坏的极限能力
工程事故
南美洲巴西于1955年开始建造一幢11层大楼,长29m,宽 12m,支撑在99根21m长的钢筋混凝土桩上。1958年1月 大厦建成时,发现大厦背后明显下沉,1月30日沉降速度达 到每小时4mm,晚上8点钟,在20秒内大厦倒塌,平躺地面, 事后查明,当地为沼泽土,邻近建筑物桩长26m,大厦桩长 21m,未打入较好土层,悬浮在软弱粘土和泥炭层中,地基 产生滑动引起倒塌。
3
1 21 3 2 2 1 21 3 2
1
A(, )
2
O 3 1/2(1 +3 ) 1
圆心坐标[1/2(1 +3 ),0] 应力圆半径r=1/2(1-3 )
土中某点的应 力状态可用莫 尔应力圆描述
五、土的极限平衡条件
• 如果土中某一点某一平面的剪应力等于该平面上 的抗剪强度,称该点处于应力极限平衡状态,所 绘出的应力圆为极限平衡状态应力圆或破坏应力 圆
决
土的粘聚力
土的粘聚力是土粒间胶结作用和各种物理化学键作用的结果
大 土的粘聚力
小
土的矿物成分、粘粒含量 压密程度
• 三、总应力强度指标与有效应力强度指标
库仑定律
f tanc
说明:施加于试样上的垂直法向应力为总应力,c、为总应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
τ τf
边坡滑动
τ
τf
地基破坏
§5.1 抗剪强度概述(二)
5.1.1 总应力表示法 库仑定律表达式
无粘性土 f =σ×tanφ 粘性土
f = c +σ×tanφ
式中:c—内聚力;φ—内摩擦角,土的抗剪强度参数
无粘性土
粘性土
§5.1 抗剪强度概述(三)
5.1.2 有效应力表示法
不排水剪:
快剪、固结快剪
排水剪:
四联直剪仪 作者摄
3-5min内水平推力小手轮转速:6 round/min 应变式直剪仪
慢剪 优点:简单、方便、省时 缺点:固定的剪切破坏面, 不能控制排水条件
§5.2 土的抗剪强度试验(二)
5.2.2 三轴剪切试验 真三轴试验(σ1 >σ2>σ3)
cos 2
(
1 3
2
)2 2 (
1 3
2
)2
在σ-τ坐标上土体单元的应力状态的轨迹是一个圆,称为莫尔圆
§5.3 土的抗剪强度及破坏理论(五)
莫尔圆上每一点都代表一个斜截面,材料的破坏和该斜
截面上的切向及法向应力有关。根据土样破坏时的σf 和τf 作 出的莫尔圆称为极限莫尔应力圆,其与抗剪强度包络线相 切。
3 1
§5.3 土的抗剪强度及破坏理论(七)
5.3.3 库仑-莫尔理论的应用 确定强度参数c、φ值
作极限莫尔圆的抗剪强度包络 线,得内摩擦角φ和与纵坐标的截 距粘聚力c。
判断土样的破坏 1 3 sin 1 3 2c cot
(σ1-σ3) / [σ1+σ3+2c×cotφ] < sinφ;未破坏 (σ1-σ3) / [σ1+σ3+2c×cotφ] = sinφ;极限平衡状态
破坏准则或强度理论作为工程安全的控制标准或控制界限
各 种 破 坏 准 则
§5.3 土的抗剪强度及破坏理论(二)
土力学常用破坏准则或强度理论 最大剪应力理论
τmax= (σ1 -σ3) / 2=常量
库仑-莫尔(Mohr)理论
τf = f (σ) 莫尔抗剪强度包线
米泽斯(Mises)理论
(σ1 –σ2)2 + (σ2 -σ3)2 + (σ3 –σ1)2=6K2
德鲁克-普拉格(Drucker-Prager)理论
aI1 +J21/2 –K=0 I1 =σ1 +σ2 +σ3 应力张量第一不变量
J2=[(σ1 –σ2)2 +(σ2 -σ3)2 +(σ3 –σ1)2]/6 应力偏张量第二不变量
§5.3 土的抗剪强度及破坏理论(三)
双剪理论
双剪理论的应力函数可写为
τ13 +τ12=σ1 – (σ2+σ3) / 2 (τ12 ≥τ23) τ13 +τ23= (σ1+σ2) / 2 –σ3 (τ12 ≤τ23)
双剪屈服准则为
f3 =τ13 +τ12≤(1+b)σs / 2 (τ12 >τ23) f3’=τ13 +τ23≤(1+b)σs / 2 (τ12 <τ23) σs—材料拉伸屈服极限;b—中间主应力影响系数。
第5章 土的抗剪强度
5.1 抗剪强度概述 5.3 土的抗剪强度及 破坏理论 5.5 粘性土的抗剪强度特征
5.2 土的抗剪强度试验
5.4 砂类土的抗剪强度特征 5.6 特殊粘性土的抗剪 强度特征 5.8 土的动力强度特性
5.7 粘性土的流变特性
§5.1 抗剪强度概述(一)
抗剪强度概念:
土体抵抗剪切破坏的极限能力,数值上等于土体
(σ1-σ3) / [σ1+σ3+2c×cotφ] > sinφ;已破坏
破坏时的倾角:cr= 45°+φ/2
例题1
例题5-1 一饱和粘性土试样在三轴仪中进行固结不排水试验,施加围 压σ3=200kPa,试样破坏时主应力差σ1-σ3=280kPa。测得孔隙水压力 uf=180kPa,整理试验结果得:有效内摩擦角φ’ =24°,有效粘聚力c’ =80kPa ,试求破坏面上的σf 和τf 及试样中的τmax 。 解:已知 σ3=200kPa,σ1=280+200=480kPa,
库仑定律表达式
无粘性土 f =σ’×tanφ’ = (σ- u)×tanφ’ 粘性土
f =c’ + u)×tanφ’
式中:c’ —有效内聚力;φ’ —有效内摩擦角;土的 有效抗剪强度参数。
§5.2 土的抗剪强度试验(一)
5.2.1 直接剪切试验
根据施加直剪力的速率和 土样被剪坏的速度可分为:
§5.3 土的抗剪强度及破坏理论(四)
5.3.2 库仑-莫尔理论 莫尔圆的概念
根据材料力学,某一单元体上作用有大主应力σ1 和小主应力σ3时,则与大主应力成α角的任一平面 上的法向应力σ和剪应力τ关系有:
1 3
2 2 1 3 sin 2 2
1 3
抗剪强度包络线
破坏时 斜截面
(
1 3
2 cr 45 2
) (
2 2
1 3
2
)2
§5.3 土的抗剪强度及破坏理论(六)
实际破坏面有两组,横轴下方还有一条极限莫尔圆的切线,土体达
到极限平衡时:
2 实际破坏面上的切应力为: ( 3 ) f 1 cos 2 库伦-莫尔理论推导
由图中的直角三角形OAN得:
1 3 1 3
2 2 c cot sin
cr 45 ; cr 135
2
1 3 sin 1 3 2 cot
1 sin cos 2c 1 tan2 (45 ) 2c 1 tan(45 ) 1 sin 1 sin 2 2 1 sin cos 1 3 2c 3 tan2 (45 ) 2c 1 tan(45 ) 1 sin 1 sin 2 2
常规/拟三轴试验
σ1 >σ2=σ3
不固结不排水(UU)
三轴仪 作者摄
应变控制式三轴仪
快剪
固结不排水(CU)
固结快剪
固结排水(CD)
慢剪
§5.3 土的抗剪强度及破坏理论(一)
5.3.1 岩土材料的屈服、强度、破坏 屈服:开始产生塑性变形; 破坏:断裂(拉断、剪断) 强度:对荷载的最大抵抗能力或承载力