概率论知识点总结

合集下载

概率论知识点

概率论知识点

第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间: 概率论术语。

我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。

样本空间的元素,即E 的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。

互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。

互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。

概率论的知识点总结

概率论的知识点总结

概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。

样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。

2.概率分布概率分布描述了随机变量可能取值的概率情况。

概率分布分为离散分布和连续分布两种。

常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。

概率密度函数和累积分布函数是描述连续分布的重要工具。

3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。

随机变量分为离散随机变量和连续随机变量。

离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。

4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。

数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。

5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。

大数定律包括弱大数定律和强大数定律两种。

弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。

6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。

中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。

中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。

以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。

随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。

概率论知识点总结归纳

概率论知识点总结归纳

概率论知识点总结归纳概率论是数学中的一个分支,研究随机现象发生的规律性及其数学模型。

概率论广泛应用于统计学、金融、生物学等领域。

本文将对概率论的基本概念、概率计算方法、常见概率分布以及概率论在实际问题中的应用进行总结归纳。

一、基本概念1. 随机试验:在相同的条件下可以重复进行的实验,结果不确定。

2. 样本空间:随机试验所有可能结果的集合,用S表示。

3. 事件:由样本空间S的一个或多个元素构成的子集,表示试验结果的一个集合。

4. 概率:事件发生的可能性大小的度量,用P(A)表示。

二、概率计算方法1. 古典概型:指随机试验中每个基本事件发生的概率相等的情况。

计算概率时可以根据样本空间和事件个数进行计算。

2. 频率派概率:根据大量实验的频率来计算概率,概率等于事件发生的次数与试验次数之比的极限。

3. 主观概率:根据个人主观判断来计算概率,没有明确的计算方法。

三、常见概率分布1. 离散概率分布:表示随机变量在有限取值集合上的概率分布。

a. 伯努利分布:只有两个可能取值的离散概率分布。

b. 二项分布:多次伯努利试验的结果相加,每次试验相互独立。

c. 泊松分布:表示单位时间或空间内随机事件发生的次数的概率分布。

2. 连续概率分布:表示随机变量在一个区间上的概率分布。

a. 均匀分布:随机变量在一段区间上取值的概率相等。

b. 正态分布:最常见的连续概率分布,具有钟形曲线的特点。

四、概率论的应用1. 统计学:概率论是统计学的基础,通过概率论可以推导出统计学各种假设检验和置信区间的计算方法。

2. 金融学:概率论在金融学中被广泛应用,例如在风险管理、期权定价、投资组合构建等方面。

3. 生物学:概率论能够帮助解释生物学中的随机现象,如遗传、进化等过程中的概率计算。

4. 工程学:概率论可以用于工程问题的风险评估和可靠性分析,如工程结构的寿命预测等。

总结:概率论是研究随机现象的规律性及其数学模型的学科,它包括了基本概念、概率计算方法、常见概率分布以及在各个领域的应用。

概率知识点总结

概率知识点总结

概率知识点总结1、确定性现象:在一定条件下必然出现的现象。

2、随机现象:在一定条件下可能发生也可能不发生的现象。

3、概率论:是研究随机现象统计规律的科学。

4、随机试验:对随机现象进行的观察或实验统称为随机试验。

5、样本点:随机试验的每个可能出现的实验结果称为这个试验的一个样本点。

6、样本空间:所有样本点组成的集合称为这个试验的样本空间。

7、随机事件:如果在每次试验的结果中,某事件可能发生,也可能不发生,则这一事件称为随机事件。

8、必然事件:某事件一定发生,则为必然事件。

9、不可能事件:某事件一定不发生,则为不可能事件。

10、基本事件:有单个样本点构成的集合称为基本事件。

11、任一随机事件都是样本空间的一个子集,该子集中任一样本点发生,则该事件发生。

利用集合论之间的关系和运算研究事件之间的关系和运算。

〔1〕事件的包含A B⊂〔2〕事件的并〔和〕A B〔3〕事件的交〔积〕A B〔4〕事件的差A B A B-=-=AB A〔5〕互不相容事件〔互斥事件〕A Bφ=〔6〕对立事件〔互逆事件〕A B Ω=,A B φ=,记B A = 〔7〕完备事件组:事件12,,,n A A A 两两互不相容,且1n A A AΩ=〔8〕事件之间的运算规律:交换律、结合律、分配率、De Morgan 定理 12、概率()1P Ω=,()0P φ=如果12,,,n A A A 两两互不相容,则112()()()()n n P A AP A P P A A A =+++如果,A B 是任意两个随机事件,则()()()P A B P A P AB -=- 如果B A ⊂,则()()()P A B P A P B -=-()()()()P A B P A P B P AB =+-()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 1111121()()()()()()(1())()nn j i j i ni n j k n i i i j k nP A AP A P A P A P A P A P A P A A A A ≤<≤=-≤<<≤=-+--+∑∑∑12、古典概型每次试验中,所有可能发生的结果只有有限个,即样本空间是有限集 每次试验中,每一个结果发生的可能性相同()A P A =包含的基本事件数试验的基本事件总数13、条件概率:()(|)()P AB P A B P B =为事件B 发生的条件下,事件A 发生的条件概率加法公式:()()()()P A B P A P B P AB =+-,若,A B 互斥,则()()()P A B P A P B =+乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==,若,A B 独立,则()()()P AB P A P B = 全概率公式:1221()()(|)()(|)()(|)n n P A P B P A B P B P A B P B P A B =+++贝叶斯公式:11()()(|)(|)()()(|)()(|)k k k n n k P AB P B P A B P B A P A P B P A B P B P A B =+=+14、事件独立:如果(|)()P B A P B =,则称事件B 对于事件A 独立,此时,事件A 对于事件B 独立,称,A B 相互独立。

概率论知识点总结

概率论知识点总结

pij pig pgj
几 乎 处 处 相 等
f(x,y) fX(x)fY(y)
7
r.v.的函数 的分布
利用事件相等则概率相等的 用分布函数法求函数的分布
概念求函数的分布律
函数(或分布密度)
二维r.v.的函数 的分布
FZ(z)P{Zz}P{g(X,Y)z}
P{Zzk} "zk的 所 有 原 像 点 概 率 之 和 "
概念 样本点、样本空间、基本事件、随机事件、必然事件、不可能事件
1o和 : AB
2o积 : AB

3o差 : AB
运算
机 及 1o包 含 : AB
关系

2o相 等 : AB
3o互 不 相 容

4o对立A
运算 性质
相 应 于 集 合 运 算 性 质 均 成 立
3
1o公理化定义: 对 样 本 空 间 中 任 意 事 件 A , 定 义 数 P ( A ) 满 足 :
pij
g( xi , yjd P{g(X ,Y ) z} dz
(在 该 导 数 连 续 点 处 )


fZ(z)f(zy,y)dy
fZ(z)f(x,zx)dx


特别 :(卷积公式)
X,Y独 立
fZ(z) fX(zy)fY(y)dy
X,Y独 立
fZ(z) fX(x)fY(zx)dx
X,Y独立
极 值
Fmax(X,Y)(z)
分 布
X,Y独立
Fmin(X,Y)(z)
8
r.v.的期望
定 义
期 望
r.v.的函 数的
期望
E(X) xk pk k1

概率论必备知识点

概率论必备知识点

概率论必备知识点概率论是一门研究随机现象数量规律的数学分支,它在各个领域都有着广泛的应用,从物理学、生物学、经济学到计算机科学等。

以下是一些概率论中的必备知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

例如,抛一枚硬币,正面朝上就是一个随机事件。

概率则是用来衡量随机事件发生可能性大小的数值。

概率的取值范围在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。

计算概率的方法有多种。

对于等可能事件,概率等于事件所包含的基本结果数除以总的基本结果数。

例如,掷一个骰子,出现点数为 3的概率就是 1/6,因为骰子共有 6 个面,每个面出现的可能性相等,而点数为 3 的只有 1 种情况。

二、古典概型古典概型是一种最简单的概率模型。

在古典概型中,试验的结果是有限的,并且每个结果出现的可能性相等。

例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率,这就是一个古典概型问题。

计算古典概型的概率,可以使用公式:P(A) = n(A) /n(Ω),其中P(A)表示事件 A 发生的概率,n(A)表示事件 A 包含的基本结果数,n(Ω)表示总的基本结果数。

三、几何概型几何概型是古典概型的推广,当试验的结果是无限的,且每个结果出现的可能性相等时,就可以使用几何概型来计算概率。

例如,在一个时间段内等待公交车,求等待时间不超过 5 分钟的概率。

在几何概型中,概率等于事件对应的区域长度(面积或体积)除以总的区域长度(面积或体积)。

四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

例如,已知今天下雨,明天晴天的概率就是一个条件概率。

条件概率的计算公式为:P(B|A) = P(AB) / P(A),其中 P(B|A)表示在事件 A 发生的条件下事件 B 发生的概率,P(AB)表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

概率知识点归纳整理总结

概率知识点归纳整理总结

概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。

样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。

事件是样本空间的一个子集,表示随机试验的一些结果。

事件的概率描述了该事件发生的可能性有多大。

2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。

3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。

4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。

5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。

6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。

概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。

排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。

组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。

2. 事件的独立性在概率论中,独立性是一个重要的概念。

事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。

在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。

3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。

随机变量可分为离散型和连续型两种。

概率论复习知识点总结

概率论复习知识点总结

C1,C2,…,Cn为n个任意常数,则
i 1
Ci Xi ~ N ( Ci i ,
i 1
n
n
i 1
2 C i i ) 2
n
作业:二、2;三、17
第3章要点
八、二维连续型随机变量函数的分布
(最大值与最小值分布)设X1,X2,…,Xn是相互独立 的 n 个随机变量,若 Y=max(X1, X2, … , Xn), Z=min(X1, X2, … , Xn), 试在以下情况下求Y和Z的分布
第4章要点
三、重要分布的期望和方差 分布 0-1分布 二项分布 B(n,p) 泊松分布 P() 均匀分布 U(a,b) 指数分布 Exp() 正态分布 N(,2)
参数
0 p1
n 1, 0 p1
数学期望
方差
p(1 p)
np (1 p )
p
np
0

(a b) 2

(b a )2 12
离散型随机变量的数学期望 E ( X ) x i pi
i 1
连续型随机变量的数学期望 E ( X )
随机变量函数的数学期望
E (Y ) E[ g( X )]




xf ( x )dx
g( x
k 1
k
) pk



g( x ) f ( x )dx
第4章要点
第1章要点
一、事件间关系和运算
子事件 A⊂B A发生必然导致B发生
事件相等 A=B
互不相容(互斥) A∩B=
A、B中其中一个发生另一个也发生
A、B不同时发生
对立(互逆) A∩B=, A∪B=Ω

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论是数学中的一个重要分支,主要研究随机现象的规律性和概率分布。

在现实生活中,概率论广泛应用于统计学、金融、工程、生物学等领域。

下面将对概率论中的一些重要知识点进行总结。

一、基本概念1. 样本空间:随机试验所有可能结果的集合。

2. 随机事件:样本空间中的一个子集。

3. 概率:随机事件发生的可能性大小,用P(A)表示。

4. 事件的互斥与对立:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。

二、概率的性质1. 非负性:概率值始终大于等于0。

2. 规范性:样本空间的概率为1。

3. 可数可加性:如果事件A和事件B互斥,则P(A∪B) = P(A) + P(B)。

4. 加法定理:P(A∪B) = P(A) + P(B) - P(A∩B)。

三、条件概率1. 定义:在事件B发生的条件下,事件A发生的概率。

2. 计算公式:P(A|B) = P(A∩B) / P(B)。

3. 乘法公式:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)。

四、独立事件1. 定义:事件A发生与否不受事件B发生与否的影响。

2. 判别条件:P(A∩B) = P(A) * P(B)。

五、全概率公式与贝叶斯定理1. 全概率公式:设事件B1、B2、...、Bn为样本空间的一个划分,即B1∪B2∪...∪Bn = S,且P(Bi) > 0,有P(A) = ∑P(A|Bi) * P(Bi)。

2. 贝叶斯定理:在全概率公式的基础上,可以得到P(Bi|A) = P(A|Bi) * P(Bi) / ∑P(A|Bi) * P(Bi)。

六、随机变量与概率分布1. 随机变量:将数学状态与随机事件的结果联系起来的变量。

2. 离散型随机变量与连续型随机变量。

3. 概率分布:描述随机变量各个取值的概率情况。

4. 均匀分布、正态分布、泊松分布等。

七、大数定律与中心极限定理1. 大数定律:随着试验次数的增加,样本均值趋于总体均值。

概率论高数知识点总结大全

概率论高数知识点总结大全

概率论高数知识点总结大全1.概率的基本定义概率是指其中一事件在所有可能事件中出现的可能性大小。

事件的概率通常用P(A)表示,其中A为其中一事件。

概率的取值范围是0到1之间,概率为0表示事件不可能发生,概率为1表示事件必定发生。

2.随机变量随机变量是指在随机现象中所能观测到的数值。

它有两种类型:离散型随机变量和连续型随机变量。

离散型随机变量的取值是有限个或可列个,而连续型随机变量的取值是一个区间。

3.概率分布概率分布是指随机变量取值的可能性及其对应的概率。

对于离散型随机变量,概率分布通常用概率质量函数(probability mass function)表示;对于连续型随机变量,概率分布通常用概率密度函数(probability density function)表示。

4.期望值期望值是随机变量的平均值,它表示了其中一事件发生的长期平均情况。

对于离散型随机变量,期望值的计算公式为E(X) = Σx P(X=x);对于连续型随机变量,期望值的计算公式为E(X) = ∫x f(x) dx,其中f(x)是概率密度函数。

5.方差和标准差方差是随机变量分布与其期望值之间的差异程度,它的计算公式为Var(X) = E[(X-E(X))^2]。

标准差是方差的平方根,它度量了随机变量的变异程度。

6.协方差和相关系数协方差用于度量两个随机变量之间的线性相关程度,它的计算公式为Cov(X,Y) = E[(X-E(X))(Y-E(Y))]。

相关系数是协方差的标准化形式,它的计算公式为ρ(X,Y) = Cov(X,Y) / (σ(X)σ(Y)),其中σ(X)和σ(Y)分别是X和Y的标准差。

7.常见概率分布常见的离散型概率分布包括伯努利分布、二项分布、泊松分布等;常见的连续型概率分布包括均匀分布、正态分布、指数分布等。

8.大数定律和中心极限定理大数定律表明,随着样本规模的增大,样本平均值趋近于总体平均值;中心极限定理表明,当样本规模足够大时,样本平均值的分布接近于正态分布。

概率论知识点总结归纳

概率论知识点总结归纳

概率论知识点总结归纳概率论是一门研究随机现象数量规律的数学学科,它在许多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

下面将对概率论中的一些重要知识点进行总结归纳。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

例如,掷骰子出现的点数就是一个随机事件。

2、样本空间样本空间是指随机试验的所有可能结果组成的集合。

3、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。

4、概率的定义概率是对随机事件发生可能性大小的度量。

概率的古典定义适用于等可能概型,几何概型则通过几何度量来计算概率。

5、概率的性质包括非负性、规范性和可加性。

二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率。

2、乘法公式用于计算两个事件同时发生的概率。

三、全概率公式与贝叶斯公式1、全概率公式如果事件组构成一个完备事件组,那么对于任意一个事件,可以通过全概率公式计算其概率。

2、贝叶斯公式在已知结果的情况下,反推导致这个结果的某个原因的概率。

四、随机变量及其分布1、随机变量用来表示随机现象结果的变量。

2、离散型随机变量取值可以一一列举的随机变量,常见的离散型随机变量分布有二项分布、泊松分布等。

3、连续型随机变量取值充满某个区间的随机变量,其概率通过概率密度函数来描述。

常见的连续型随机变量分布有正态分布、均匀分布等。

五、期望与方差1、期望反映随机变量取值的平均水平。

2、方差描述随机变量取值的离散程度。

六、协方差与相关系数1、协方差衡量两个随机变量之间的线性关系程度。

2、相关系数是标准化后的协方差,取值范围在-1 到 1 之间。

七、大数定律与中心极限定理1、大数定律说明在大量重复试验中,随机变量的平均值趋近于其期望值。

2、中心极限定理当样本量足够大时,独立同分布的随机变量之和近似服从正态分布。

在学习概率论的过程中,需要理解各个概念的含义,掌握相关的公式和定理,并通过大量的练习来加深对知识点的理解和应用。

概率论必备知识点

概率论必备知识点

概率论与数理统计知识点:第一章 随机事件及其概率1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为E .1) 试验可在相同的条件下重复进行;2) 每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果; 3) 每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为e .(3)随机事件:在一次试验中可能出现也可能不出现的事件称为随机事件,简称事件,常用A 、B 、C 等大写字母表示;可表述为样本空间中样本点的某个集合,分为复合事件和简单事件,还有必然事件(记为Ω)和不可能事件(记为Φ). 2、事件的关系与运算(1)包含关系与相等:“事件A 发生必导致B 发生”,记为B A ⊂或A B ⊃;B A B A ⊂⇔=且A B ⊂.(2)和事件(并):“事件A 与B 至少有一个发生”,记为B A ⋃. (3)积事件(交):“ 事件A 与B 同时发生”,记为B A ⋂或AB .(4)差事件、对立事件(余事件):“事件A 发生而B 不发生”,记为A -B 称为A 与B 的差事件;B B =-Ω称为B 的对立事件;易知:B A B A =-.(5)互不相容性:φ=AB ;B A 、互为对立事件Ω=⋃⇔B A 且Φ=AB . (6)事件的运算法则:1) 交换律:A B B A ⋃=⋃,BA AB = ; 2) 结合律:C B A C B A ⋃⋃=⋃⋃)()(,)()(BC A C AB =; 3) 分配律:BC AC C B A ⋃=⋃)(,))(()(C B C A C AB ⋃⋃=⋃;4) 对偶(De Morgan)律:B A B A =⋃,B A AB ⋃=,可推广kkkkkkkkAA A A ==,.3、频率与概率(1)频率的定义:事件A 在n 次重复试验中出现A n 次,则比值nn A称为事件A 在n 次重复试验中出现的频率,记为)(A f n ,即n n A f An =)(. (2)统计概率:当∞→n 时,频率)()(A P nnA f A n →=.当n 很大时,)()(A f P A P n ≈=称为事件A 的统计概率.(3)古典概率:若试验的基本事件数为有限个,且每个事件发生的可能性相等,则试验对应古典概型(等可能概型),事件A 发生的概率为:nA k n k A A P )()(==中样本点总数中所含样本点数Ω=.(4)几何概率:若试验基本事件数无限,随机点落在某区域g 的概率与区域g 的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则试验对应几何概型,“在区域Ω中随机地取一点落在区域g 中”这一事件g A 发生的概率为:的测度的测度=Ωg A P g )(.(5)概率的公理化定义:设(F ,Ω)为可测空间,在事件域F 上定义一个实值函数),(A P F A ∈,满足:1) 非负性:0)(≥A P ,对任意F A ∈;2) 规范性:1)(=ΩP ;3) 可列可加性:若有一列,,2,1, =∈i F A i i Φ=j i A A ,使得∑∞=∞==11)()(j jj jA P A P ,则称),(A P F A ∈为σ域F 上的概率测度,简称“概率”. 4、概率的基本性质(1)不可能事件概率零:)(ΦP =0.(2)有限可加性:设n A A A ,,,21 是n 个两两互不相容的事件,即j i A A =Φ,(j i ≠)n j i ,2,1,,=,则有)(21n A A A P ⋃⋃⋃ =)(1A P +)()(2n A P A P ++ .(3)单调不减性:若事件B ⊃A ,则P (B )≥P (A ),且P (B -A )=P (B )-P (A ).(4)互补性:P (A )=1-P (A ),且P (A )≤1.(5)加法公式:对任意两事件B A 、,有=⋃)(B A P )()(B P A P +-)(AB P ;此性质可推广到任意n 个事件n A A A ,,,21 的情形.(6)可分性:对任意两事件B A 、,有)()()(B A P AB P A P +=. 5、条件概率与乘法公式(1)条件概率:设B A 、是Ω中的两个事件,即F B A ∈、,则)()()|(A P AB P A B P =称为事件A 发生的条件下事件B 发生的条件概率.(2)乘法公式:设F B A ⊂、,则)|()()|()()(B A P B P A B P A P AB P == 称为事件A 、B 的概率乘法公式.6、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ,),,2,1(n i =,则对任何事件F B ∈,有∑=ni iiA B P A P B P 1)|()()(=,称为全概率公式.(2)贝叶斯(Bayes)公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ),,2,1(n i =,则对任何事件F B ∈,有),,1(,)|()()|()()|(1n j A B P A P A B P A P B A P ni iij j j ==∑=,称为贝叶斯公式或逆概率公式. 7、事件的独立性(1)两事件的独立:设),,(P F Ω为一概率空间,事件F B A ∈、,且0)(>A P ,若)|()(A B P B P =,则称事件A 与B 相互独立;等价于:)()()(B P A P AB P =.(2)多个事件的独立:设n A A A ,,,21 是n 个事件,如果对任意的)1(n k k ≤<,任意的n i i i k ≤<<<≤ 211,具有等式)()()()(2121k k i i i i i i A P A P A P A A A P =,称n 个事件n A A A ,,,21 相互独立. 8、贝努里(Bernoulli)概型(1)只有两个可能结果的试验称为贝努里试验,常记为E .E 也叫做“成功—失败”试验,“成功”的概率常用)(A P p =表示,其中A =“成功”.(2)把E 重复独立地进行n 次,所得的试验称为n 重贝努里试验,记为nE . (3)把E 重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为∞E .以上三种贝努里试验统称为贝努里概型.(4)nE 中成功k 次的概率是:)0(,)1(n k q p C p p C k n k k n k n k k n ≤≤=---其中1=+q p .第二章 随机变量及其分布1、随机变量设Ω是随机试验的样本空间,如果对于试验的每一个可能结果Ω∈ω,都有唯一的实数)(ωX 与之对应,则称)(ωX 为定义在Ω上的随机变量,简记为X .随机变量通常用大写字母Z Y X 、、等表示. 2、分布函数及其性质设X 为随机变量,x 为任意实数,函数)}({)(+∞<<-∞≤=x x X P x F 称为随机变量X 的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质: (1))(1)(0+∞<<-∞≤≤x x F ; (2)如果21x x <,则)()(21x F x F ≤; (3))(x F 为右连续,即)()0(x F x F =+; (4)1)(lim ,0)(lim ==+∞→-∞→x F x F x x ;(5))()(}{}{}{121221x F x F x X P x X P x X x P -=≤-≤=≤<. 3、离散型随机变量及其概率分布如果随机变量X 只能取有限个或可列个可能值,则称X 为离散型随机变量.如果X 的一切可能值为 ,,21x x ,并且X 取k x 的概率为k p ,则称),3,2,1}({ ===k x X P p k k 为离散型随机变量X 的概率函数(概率分布或分布律).列成表格形式,也称为分布列(表2-1): 表2-1其中1,0=≥∑iii pp .常见的离散型随机变量的分布有: (1)0-1分布,记为)10(~-X ,概率函数10,1,0,)1(}{1<<=-==-p k p p k X P k k ;(2)二项分布,记为),(~p n B X ,概率函数10,,,1,0,)1(}{<<=-==-p n k p p C k X P k n kk n ;(3)泊松分布,记为)(~λP X ,概率函数0,,1,0,!}{>===-λλλ k k e k X P k ;泊松定理 设0>λ是一常数,n 是任意正整数,设λ=n np ,则对于任一固定的非负整数k ,有!)1(lim k e p p C k kn n k nkn n λλ--∞→=-.当n 很大且p 很小时,二项分布可以用泊松分布近似代替,即!)1(k e p p C k kn k k nλλ--≈-,其中np =λ.(4)超几何分布,记为),,(~N M n H X ,概率函数),min(,,1,0,}{M n k C C C k X P nNk n MN k M ===--,其中M N n 、、为正整数,且N n N M ≤≤,.当N 很大,且Nn p =较小时,有k n k k n nN k n MN k M p p C C C C ----≈)1(.] (5)几何分布,记为)(~p G X ,概率函数10,,1,0,)1(}{1<<=-==-p k p p k X P k .4、连续型随机变量及其概率分布如果对于随机变量X 的分布函数)(x F ,存在非负函数)(x f ,使对于任一实数x ,有⎰∞-=xdt t f x F )()(,则称X 为连续型随机变量.函数)(x f称为X 的概率密度函数.概率密度函数具有以下性质:(1)0)(≥x f ; (2)1)(=⎰+∞∞-dt t f ;(3)⎰=≤<21)(}{21x x dt t f x X x P ; (4)0}{1==x X P ;(5)如果)(x f 在x 处连续,则)()(x f x F ='. 常见的连续型随机变量的分布有:(1)均匀分布,记为),(~b a U X ,概率密度为⎪⎩⎪⎨⎧≤≤-=其它,0,,1)(b x a a b x f .相应的分布函数为⎪⎩⎪⎨⎧>≤≤--<=b x b x a a b a x a x x F ,1,,0)(;(2)指数分布,记为)(~λE X ,概率密度为⎩⎨⎧≥=-其它,0,0,)(x e x f λλ.相应的分布函数为⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ; (3)正态分布,记为),(~2σμN X ,概率密度为+∞<<-∞=--X ex f x ,21)(222)(σμπ,相应的分布函数为⎰∞---=xx dt ex F 222)(21)(σμπ;当1,0==σμ时,即)1,0(~N X 时,称X 服从标准正态分布.这时分别用)(x ϕ和)(x Φ表示X 的密度函数和分布函数,即⎰∞---=Φ=x t x dt e x ex 222221)(,21)(ππϕ.具有性质:)(1)(x x Φ-=-Φ.一般正态分布),(~2σμN X 的分布函数)(x F 与标准正态分布的分布函数)(x Φ有关系:)()(σμ-Φ=x x F .5、随机变量函数的分布(1)离散型随机变量函数的分布设X 为离散型随机变量,其分布列为(表2-2): 表2-2则)(X g Y =任为离散型随机变量,其分布列为(表2-3): 表2-3i y 有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设X 为离散型随机变量,概率密度为)(x f X ,则)(X g Y =的概率密度有两种方法可求.1)定理法:若)(x g y =在X 的取值区间内有连续导数)(x g ',且)(x g 单调时,)(X g Y =是连续型随机变量,其概率密度为⎩⎨⎧<<'=其它,0,)()]([)(βαy y h y h f y f X Y . 其中)()}.(),(max{)},(),(min{y h g g g g +∞-∞=+∞-∞=βα是)(x g 的反函数.2)分布函数法:先求)(X g Y =的分布函数∑⎰∆=≤=≤=k y xY k dx x fy X g P y Y P y F )()(})({}{)(,然后求])([)('=y F y f Y Y .第三章 多维随机变量及其分布1、二维随机变量及其联合分布函数设X ,Y 为随机变量,则称它们的有序数组(Y X ,)为二维随机变量. 设(Y X ,)为二维随机变量,对于任意实数x 、y ,称二元函数},{),(y Y x X P y x F ≤≤=为(Y X ,)的联合分布函数.联合分布函数具有以下基本性质: (1)),(y x F 是变量x 或y 的非减函数; (2)1),(0≤≤y x F 且1),(0),(0),(0),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F , , ,;(3)),(y x F 关于x 右连续,关于y 也右连续;(4)对任意点),(),,(2211y x y x ,若2121,y y x x <<,则0),(),(),(),(11211222≥+--y x F y x F y x F y x F .上式表示随机点),(Y X 落在区域],[2121y Y y x X x ≤<≤<内的概率为:},{2121y Y y x X x P ≤<≤<.2、二维离散型随机变量及其联合分布律如果二维随机变量),(Y X 所有可能取值是有限对或可列对,则称),(Y X 为二维离散型随机变量.设),(Y X 为二维离散型随机变量,它的所有可能取值为 ,2,1,),,(=j i y x j i 将),2,1,(},{ ====j i p y Y x X P ij j i 或表3.1称为),(Y X 的联合分布律.表3.1联合分布律具有下列性质:(1)0≥ij p ;(2)111=∑∑∞=∞=i j ijp.3、二维连续型随机变量及其概率密度函数如果存在一个非负函数),(y x p ,使得二维随机变量),(Y X 的分布函数),(y x F 对任意实数y x ,有 ⎰⎰∞-∞-=x ydy dx y x p y x F ),(),(,则称),(Y X 是二维连续型随机变量,称),(y x p 为),(Y X 的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)对一切实数y x ,,有0),(≥y x p ; (2)1),(=⎰⎰+∞∞-+∞∞-dy dx y x p ;(3)在任意平面域D 上,),(Y X 取值的概率⎰⎰=∈Ddxdy y x p D Y X P ),(}),{(;(4)如果),(y x p 在),(y x 处连续,则),(),(2y x p yx y x F =∂∂∂. 4、二维随机变量的边缘分布设),(Y X 为二维随机变量,则称},{)(+∞<<-∞≤=Y x X P x F X ,},{)(y Y X P y F Y ≤+∞<<-∞=分别为),(Y X 关于X 和关于Y 的边缘分布函数.当),(Y X 为离散型随机变量,则称),2,1(),2,1(1.1. ====∑∑∞=∞=j p p i p p i ij j j ij i 分别为),(Y X 关于X 和关于Y的边缘分布律.当),(Y X 为连续型随机变量,则称⎰⎰+∞∞-+∞∞-==dx y x p y p dy y x p x p Y X ),()(,),()( 分别为),(Y X 关于X 和关于Y 的边缘密度函数.5、二维随机变量的条件分布(1)离散型随机变量的条件分布设),(Y X 为二维离散型随机变量,其联合分布律和边缘分布律分别为),2,1,(}{,}{,},{.. ========j i p y Y P p x X P p y Y x X P j j i i ij j i ,则当j 固定,且0}{.>==j j p y Y P 时,称,2,1,}{},{}|{.========i p p y Y P y Y x X P y Y x X P jij j j i j i 为j y Y =条件下随机变量X的条件分布律.同理,有 ,2,1,}|{.====j p p x X y Y P i ij i j(2)连续型随机变量的条件分布设),(Y X 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:)(),(),,(y p x p y x p Y X .则当0)(>y p Y 时,在),(y x p 和)(x p X 的连续点处,),(Y X 在条件y Y =下,X 的条件概率密度函数为:)(),()|(|y p y x p y x p Y Y X =.同理,有)(),()|(|x p y x p y x p X X Y =.6、随机变量的独立性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ⋅=则称随机变量X 与Y 相互独立.设),(Y X 为二维离散型随机变量,X 与Y 相互独立的充要条件是),2,1,(.. ==j i p p p j i ij .设),(Y X 为二维连续型随机变量,X 与Y 相互独立的充要条件是对任何实数y x ,,有)()(),(y p x p y x p Y X =.7、两个随机变量函数的分布设二维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ϕ=是Y X ,的函数,则Z 的分布函数为dxdy y x p z F zy x Z ⎰⎰≤=),(),()(ϕ.(1)Y X Z +=的分布若),(Y X 为离散型随机变量,联合分布律为ij p ,则Z 的概率函数为:∑-=ii k i k Z x z x p z P ),()(或∑-=jj k j k Z y z y p z P ),()(.若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:dy y y z p dx x z x p z p Z ⎰⎰+∞∞-+∞∞--=-=),(),()(.(2)YXZ =的分布 若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:⎰+∞∞-=dy y yz p y z p Z ),()(.第四章 随机变量的数字特征1、随机变量的数学期望设离散型随机变量X 的分布律为 ,2,1,}{===k p x X P k k ,如果级数∑∞=1k k kp x绝对收敛,则称级数的和为随机变量X 的数学期望.设连续型随机变量X 的密度函数为)(x p ,如果广义积分⎰+∞∞-dx x xp )(绝对收敛,则称此积分值⎰+∞∞-=dx x xp X E )()(为随机变量X 的数学期望.数学期望有如下性质:(1)设C 是常数,则C C E =)(; (2)设C 是常数,则)()(X CE CX E =;(3)若21X X 、是随机变量,则)()()(2121X E X E X X E +=+; 对任意n 个随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E +++=+++ ;(4)若21X X 、相互独立,则)()()(2121X E X E X X E =; 对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E =.2、随机变量函数的数学期望设离散型随机变量X 的分布律为 ,2,1,}{===k p x X P k k ,则X 的函数)(X g Y =的数学期望为 2,1,)()]([1==∑∞=k p x g x g E k k k ,式中级数绝对收敛.设连续型随机变量X 的密度函数为)(x p ,则X 的函数)(X g Y =的数学期望为⎰+∞∞-=dx x p x g x g E )()()]([,式中积分绝对收敛.3、随机变量的方差设X 是一个随机变量,则})]({[)()(2X E X E X Var X D -==称为X 的方差.)()(X X D σ=称为X 的标准差或均方差.计算方差也常用公式22)]([)()(X E X E X D -=. 方差具有如下性质:(1)设C 是常数,则0)(=C D ;(2)设C 是常数,则)()(2X D C CX D =;(3)若21X X 、相互独立,则)()()(2121X D X D X X D +=+; 对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X D X D X D X X X D +++=+++ ;(4)0)(=X D 的充要条件是:存在常数C ,使))((1}{X E C C X P ===. 4、几种常见分布的数学期望与方差(1))1()(,)().10(~p p X D p X E X -==-; (2))1()(,)().,(~p np X D np X E p n B X -==; (3))1())(()(,)().,,(~2---==N N n N M N nM X D N nM X E N M n H X ; (4)λλλπ==)(,)().(~X D X E X ;(5)2/)1()(,/1)().(~p p X D p X E p G X -==; (6)12/)()(,2/)()().,(~2a b X D b a X E b a U X -=+=; (7)2/1)(,/1)().(~λλλ==X D X E e X ; (8)22)(,)().,(~σμσμ==X D X E N X . 5、矩设X 是随机变量,则 ,2,1),(==k X E k k α称为X 的k 阶原点矩.如果)(X E 存在,则 ,2,1},)]({[=-=k X E X E k k μ称为X 的k 阶中心矩. 设),(Y X 是二维随机变量,则 ,2,1,),(==l k Y X E l k kl α称为),(Y X 的l k +阶混合原点矩; ,2,1,},)]([)]({[=-⋅-=l k Y E Y X E X E l k kl μ称为),(Y X 的l k +阶混合中心矩.5、二维随机变量的数字特征(1) ),(Y X 的数学期望)](),([),(Y E X E Y X E =;若),(Y X 是离散型随机变量,则∑∑∞=∞==11)(i j ijipx X E ,∑∑∞=∞==11)(i j ijipy Y E .若),(Y X 是连续型随机变量,则⎰⎰+∞∞-+∞∞-=dxdy y x xp X E ),()(,⎰⎰+∞∞-+∞∞-=dxdy y x yp Y E ),()(.这里,级数与积分都是绝对收敛的.(2)),(Y X 的方差)](),([),(Y D X D Y X D =若),(Y X 是离散型随机变量,则∑∑∞=∞=-=112)]([)(i j ij ip X E xX D ,∑∑∞=∞=-=112)]([)(i j ij i p Y E y Y D .若),(Y X 是连续型随机变量,则⎰⎰+∞∞-+∞∞--=dxdy y x p X E x X D ),()]([)(2,⎰⎰+∞∞-+∞∞--=dxdy y x p Y E y Y D ),()]([)(2.这里,级数与积分都是绝对收敛的.6、协方差与相关系数随机变量),(Y X 的协方差为)]}()][({[),cov(Y E Y X E X E Y X --=.它是1+1阶混合中心矩,有计算公式:)()()(),cov(Y E X E XY E Y X -=.随机变量),(Y X 的相关系数为DYDX Y X XY ),cov(=ρ.相关系数具有如下性质: (1)1≤XY ρ;(2)⇔=1XY ρ存在常数b a ,,使}{b aX Y P +==1,即X 与Y 以概率1线性相关; (3)若Y X ,独立,则0=XY ρ,即Y X ,不相关.反之,不一定成立.第五章 大数定律和中心极限定理1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22}{εσεμ≤≥-X P 或221}{εσεμ-><-X P 成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<-∑=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性. 3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n Xn XY ni ini in ∑∑==-=-=11)(的分布函数)(x F n 满足⎰∞--∞→∞→=≤=xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2=≠=i X D i i σ .记 ∑==ni inB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→-∑=++ni ii nX E Bδδμ, 则随机变量nni ini ini i ni i ni in B X X D X E XZ ∑∑∑∑∑=====-=-=11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰∑∑∞--==∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n ni i n i i n n n dt e x B X x F 2/11221lim )(lim πμ.当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni in B N XN Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n n dt e x p np np P 2/221)1(lim πη.第六章 数理统计的基本概念1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量. 2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值 ∑==ni i X n X 11;(2)样本方差 ][11)(11122122∑∑==--=--=ni in i i X n X n X X n S ; (3)样本标准差 2S S =;(4)样本k 阶原点矩 ,2,1,11==∑=k X n A n i ki k ;(5)样本k 阶中心矩 ,2,1,)(11=-=∑=k X X n B k ni i k .2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(nk k n x x x x x nkx x x n x x x F 为经验分布函数(或样本分布函数). 3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,则统计量∑==ni i X 122χ服从自由度为n 的2χ分布,记作)(~22n χχ.(2)t 分布 设)1,0(~N X ,)(~2n Y χ,且Y X ,相互独立,则随机变量nY X t /=服从自由度为n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布 设)(~12n X χ,)(~22n Y χ,且Y X ,相互独立,则随机变量21//n Y n X F =服从自由度为),(21n n 的F 分布,记作),(~21n n F F . 4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ或)1,0(~/2N nX U σμ-=;(2)样本方差)1(~)1(222--n S n χσ;(3)统计量)1(~/--n t nS X μ.设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本,2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量)1,0(~//)()(22212121N n n Y X σσμμ+---;(2)当21σσ=时,统计量)2(~/2/1)()(212121-+⋅+---n n t S n n Y X wμμ,其中2)1()1(21222211-+-+-=n n S n S n S w ; (3)统计量 )1,1(~//2122222121--n n F S S σσ; (4)统计量),(~/)(/)(2112221222112121n n F n n yx n j jn i i⋅--∑∑==σμσμ.第七章 参数估计1、参数的点估计及其求法根据总体X 的一个样本来估计参数的真值称为参数的点估计. (1)估计量根据总体X 的一个样本n X X X ,,,21 构造的用其观察值来估计参数θ真值的统计量),,,(ˆ21n X X X θ称为估计量,),,,(ˆ21nx x x θ称为估计值. (2)矩估计法用样本矩作为相应的总体矩估计来求出估计量的方法.其思想是:如果总体中有k 个未知参数,可以用前k 阶样本矩估计相应的前k 阶总体矩,然后利用未知参数与总体矩的函数关系,求出参数的估计量.(3)极大似然估计法设总体X 的密度函数为),(θx p ,其中θ为未知参数, n X X X ,,,21 是取自总体X 的样本,n x x x ,,,21 为一组样本观测值,则总体X 的联合密度函数称为似然函数,记作∏==n i i x p L 1),(θ,取对数 ∑==ni i x p L 1),(ln ln θ,由0ln =θd Ld ,求得似然函数L 的极大值θˆ,即为未知参数θ的极大似然估计.其思想是:在已知总体X 概率分布时,对总体进行n 次观测,得到一个样本,选取概率最大的θ值θˆ作为未知参数θ的真值的估计是最合理的. (4)估计量的优劣标准1)无偏性.设)ˆ(),,,,(ˆˆ21θθθE X X X n=存在,且θθ=)ˆ(E ,则称值θˆ是θ的无偏估计量.否则称为有偏估计量.2)有效性.设1ˆθ和2ˆθ均为参数θ的无偏估计量,如果)ˆ()ˆ(21θθD D <,则称估计量1ˆθ比2ˆθ有效. 3)一致性(相合性).设θˆ为θ的估计量,θˆ与样本容量n 有关,记为nθθˆˆ=,对于任意给定的0>ε,都有 1}ˆ{lim =<-∞→εθθnn P ,则称θˆ为参数θ的一致估计量.2、参数的区间估计设总体X 的分布);(θx F 中含有未知参数θ,若存在样本的两个函数),,,(21n X X X θ和),,,(21n X X X θ,使对于给定的)10(<<αα,有αθθθ-=<<1}{P ,则随机区间(θθ,)称为参数θ的置信度为α-1的双侧置信区间.若有αθθ-=<1}{P 或αθθ-=<1}{P ,则定义),(∞θ或),(θ-∞为θ的置信度为α-1的单侧置信区间.(1)单个正态总体均值与方差的置信区间(见表7-1) 表7-1(2)两个正态总体均值差与方差比的置信区间(见表7-2)表7-2第八章 假设检验1、假设检验的基本概念 (1)假设检验对总体的分布提出某种假设,然后利用样本所提供的信息,根据概率论的原理对假设作出“接受”还是“拒绝”的判断,这一类统计推断问题统称为假设检验. 假设检验所依据的原则是:小概率事件在一次试验中是不该发生的. (2)两类错误在根据样本作推断时,由于样本的随机性,难免会作出错误的决定.当原假设0H 为真时,而作出拒绝0H 的判断,称为犯第一类错误;当原假设0H 不真时,而作出接受0H 的判断,称为犯第二类错误.控制犯第一类错误的概率不大于一个较小的数)10(<<αα称为检验的显著性水平. (3)假设检验的基本步骤 1)建立原假设0H ;2)根据检验对象,构造合适的统计量;3)求出在假设0H 成立的条件下,该统计量服从的概率分布; 4)选择显著性水平α,确定临界值;5)根据样本值计算统计量的观察值,由此作出接受或拒绝0H 的结论. 2、单个正态总体的假设检验 设总体),(~2σμN X .关于均值μ的检验(见表8-1) 表8-1(2)关于方差2σ的检验(见表8-2)表8-13、两个正态总体的假设检验设总体),(~211σμN X ,样本容量为1n ;),(~222σμN Y ,样本容量为2n . (1)两个正态总体均值的检验(见表8-3) 表8-3(2)两个正态总体方差的检验(见表8-4)。

概率论知识点总结

概率论知识点总结

概率论知识点总结引言概率论是数学中的一个分支,研究随机事件的发生规律以及概率的计算与推理。

本文旨在对概率论的主要知识点进行总结。

基本概念1. 随机试验:具有相同的条件,可以重复进行,结果不确定的试验。

2. 样本空间:随机试验所有可能结果的集合。

3. 随机事件:样本空间的子集。

4. 事件的概率:事件发生的可能性大小。

5. 事件的互斥与独立:互斥事件指的是两个事件不能同时发生,独立事件指的是两个事件的发生不会相互影响。

6. 条件概率:在已知某个事件发生的条件下,另一个事件发生的概率。

概率计算方法1. 古典概型:所有可能的结果都是等可能发生的。

2. 几何概型:通过几何形状的性质计算概率。

3. 组合分析:使用组合数学的方法计算概率。

4. 频率方法:根据大量实验结果的统计规律计算概率。

5. 条件概率计算:根据已知条件和基本概率计算条件概率。

概率分布1. 离散型随机变量:只能取到有限个或可列个数值的随机变量。

2. 连续型随机变量:在某一区间内可以取到任意值的随机变量。

3. 期望值和方差:用于衡量随机变量的平均值和离散程度。

4. 二项分布:描述了重复进行相同试验并且每次试验只有两个可能结果的概率分布。

5. 正态分布:在统计学和自然科学研究中广泛应用的分布。

统计推断1. 参数估计:根据样本数据估计总体分布的未知参数。

2. 假设检验:根据样本数据判断总体分布的某个假设是否成立。

应用领域概率论在各个领域都有广泛的应用,包括金融、保险、工程、生物学、医学等。

结论概率论作为一门基础数学学科,具有重要的理论和实践意义。

通过研究概率论可以更好地理解和应用随机事件的规律,为各行各业的决策提供支持。

以上是对概率论的一个简要总结,希望对您有所帮助。

概率论知识点

概率论知识点
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
若事件、相互独立,则可得到与、与、与也都相互独立。
必然事件和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:

(完整版)概率论知识点总结

(完整版)概率论知识点总结

概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件:在试验中必然出现的事情,记为Ω。

样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。

相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。

事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。

记为 A ∪B 。

事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。

事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。

用交并补可以表示为B A B A =-。

互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。

互斥时B A ⋃可记为A +B 。

对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。

对立事件的性质:Ω=⋃Φ=⋂B A B A ,。

事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

概率论知识点

概率论知识点

概率论主要知识点 ch 11.事件之间的关系与运算,互不相容事件、对立事件; 2.概率的公理化定义和概率的性质;(公式的应用:)AB (P )B (P )A (P )B A (P -+=⋃)C (P )B (P )A (P )C B A (P ++=⋃⋃)ABC (P )BC (P )AC (P )AB (P +---)3.古典概型的定义和概率的计算;基本事件总数中包含的基本事件个数A nr )A (P ==4.条件概率和三大公式应用;(1)乘法公式)|()()(B A P B P AB P =;)|()|()()(111211-=n n n A A A P A A P A P A A P(2)全概率公式 ∑==n1i i i)B |A (P )B(P )A (P (核心是全概率公式)(3)贝叶斯公式∑===n1i i ij j j j )B |A (P )B(P )B |A (P )B (P )A (P )AB (P )A |B (P5.独立性和贝努利试验和二项概率。

kn k k nn )p 1(p C )k (P --= Ch21. 离散型随机变量及其分布律、分布函数; 2. 几种重要的离散型随机变量:(1)二项分布:)p 1q (n ,2,1,0k qp C )k X (P kn kkn -====-(2)泊松分布:)0(,2,1,0k e !k )k X (P k>===-λλλ(3)超几何分布:n ,2,1,0k CC C )k X (P n Nkn MN kM ==--(4)几何分布: ,2,1k p q )k X (P 1k ===-3. 随机变量的分布函数:)x X (P )x (F ≤=及其性质: 4.连续型随机变量的密度函数及其性质:⎰+∞∞-=≥1dx )x (f )2(;0)x (f )1('()()..;()()x F x f x a e F x f x dx -∞==⎰(主要是变上限的分段函数的积分)5. 几种重要的连续型随机变量的密度函数:⎪⎩⎪⎨⎧<<-=其它:均匀分布0b x a a b 1)x (f )1( 记为]b ,a [U ~X⎩⎨⎧≤>=-0x 0x e )x (f )2(x λλ指数分布: 记为)(~λπX222)x (e21)x ()3(σμσπϕ--=正态分布: 记为),(~2σμN X6. 关于标准正态分布的结论: ⎰+∞∞-=1dx )x ()1(ϕ21)0()2(=Φ)0x ()x (1)x ()3(>-=-ΦΦ)x ()x X (P )x X (P ),(N ~X )4(2σμΦσμσμσμ-=-≤-=≤7.一维随机变量的函数的分布(1)公式法:X~)x (f X ,设)x (g 处处可导且0)x ('g >或0)x ('g <,则)X (g Y =的分布密度为⎩⎨⎧<<=其它y |)y ('h |)]y (h [f )y (f X Y βα特别地,2X Y =的分布密度为:⎪⎩⎪⎨⎧≤>-+==0y 0y )]y (f )y (f [y21)y ('F )y (f X X Y Y (2)分布函数法:)y )X (g (P )y (F ≤=ch31. 二维离散型随机变量及其分布律、分布函数; 2. 二维均匀分布 3.二维正态分布 ]}V UV 2U [)1(21exp{121)y ,x (f 222221+----=ρρρσπσ(+∞<<∞-+∞<<∞-y ,x ) 其中11x U σμ-=,22y V σμ-=,则称(X,Y)服从二维正态分布.记为 )Y ,X (~);,,(N 22;11ρσμσμ 4.边缘分布关于X 的边缘分布:⋅∞====∑i 1j iji P P}x X {P ;关于Y 的边缘分布为 ∑∞=∙===1}{i j ij j P P y Y P5.对于连续型随机变量: ⎰+∞∞-=dy )y ,x (f )x (f X 为(X,Y)关于X 的边缘密度函数。

概率论知识点

概率论知识点

概率论知识点概率论是数学的一个分支,研究的是随机事件的发生规律和概率性质。

在现实生活中,概率论的应用广泛,涵盖了统计学、经济学、计算机科学等各个领域。

本文将介绍概率论的一些基本概念和常见应用。

一、基本概念1. 随机事件:随机事件是指在一次试验中可能发生的事件,具有不确定性和不可预测性。

例如,抛一枚硬币的正反面结果就是一个随机事件。

2. 样本空间:样本空间是指一次随机试验中所有可能结果的集合。

以掷一枚骰子为例,样本空间就是{1, 2, 3, 4, 5, 6}。

3. 事件:事件是样本空间的一个子集,表示一些可能的结果的集合。

例如,掷一枚骰子得到的结果是偶数的事件就是{2, 4, 6}。

4. 概率:概率是描述事件发生可能性大小的数值,范围在0到1之间。

概率越大,事件发生的可能性越高。

例如,正常情况下抛一枚硬币出现正面和反面的概率都是1/2。

二、常见应用1. 条件概率:条件概率是指在一定条件下,某一事件发生的概率。

以抽取一张扑克牌为例,已知抽到一张红心牌的条件下,再次抽到红心牌的概率就是条件概率。

条件概率的计算公式为P(A|B) = P(A∩B) /P(B),其中A和B为事件。

2. 独立事件:独立事件是指两个事件之间互不影响,一个事件的发生与另一个事件的发生无关。

例如,抛一枚硬币与掷一颗骰子的结果无关。

若事件A和B是独立事件,那么P(A∩B) = P(A) × P(B)。

3. 期望值:期望值是对某个随机变量的平均数的度量。

在离散型随机变量的情况下,期望值的计算公式为E(X) = Σ(x×P(X=x)),其中x为可能的取值,P(X=x)为该取值的概率。

4. 正态分布:正态分布是概率论中最重要的分布之一,也称为高斯分布。

在统计学中,很多现象都符合正态分布,例如人的身高、智商等。

正态分布的概率密度函数为f(x) = 1 / (σ√(2π)) × exp(-(x-μ)² / (2σ²)),其中μ为均值,σ为标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论总结目录一、前五章总结第一章随机事件与概率 (1)第二章随机变量及其分布 (5)第三章多维随机变量及其分布…………………10第四章随机变量得数字特征……………………13第五章极限定理………………………………。

18二、学习概率论这门课得心得体会 (20)一、前五章总结第一章随机事件与概率第一节:1、、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性得试验或观察称为随机试验,简称为试验,常用E表示。

在一次试验中,可能出现也可能不出现得事情(结果)称为随机事件,简称为事件、不可能事件:在试验中不可能出现得事情,记为Ф。

必然事件:在试验中必然出现得事情,记为S或Ω。

2、我们把随机试验得每个基本结果称为样本点,记作e 或ω、全体样本点得集合称为样本空间. 样本空间用S或Ω表示。

一个随机事件就就是样本空间得一个子集。

基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含得一个样本点出现。

事件间得关系及运算,就就是集合间得关系与运算。

3、定义:事件得包含与相等若事件A发生必然导致事件B发生,则称B包含A,记为B⊃A或A⊂B。

若A⊂B且A⊃B则称事件A与事件B相等,记为A=B。

定义:与事件“事件A与事件B至少有一个发生”就是一事件,称此事件为事件A与事件B得与事件、记为A∪B。

用集合表示为: A∪B={e|e∈A,或e∈B}、定义:积事件ﻭ称事件“事件A与事件B都发生”为A与B得积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。

定义:差事件称“事件A发生而事件B不发生,这一事件为事件A与事件B得差事件,记为A-B,用集合表示为 A—B={e|e∈A,e∉B} 。

定义:互不相容事件或互斥事件ﻭ如果A,B两事件不能同时发生,即AB=Φ ,则称事件A与事件B就是互不相容事件或互斥事件。

定义6:逆事件/对立事件称事件“A不发生"为事件A得逆事件,记为Ā。

A与Ā满足:A ∪Ā= S,且AĀ=Φ。

运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪CA(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)德摩根律:小结:事件得关系、运算与运算法则可概括为四种关系:包含、相等、对立、互不相容;四种运算:与、积、差、逆;四个运算法则:交换律、结合律、分配律、对偶律、第二节:1、设试验E就是古典概型, 其样本空间S由n个样本点组成 , 事件A由k个样本点组成. 则定义事件A得概率为:P(A)=k/n=A包含得样本点数/S中得样本点数、2、几何概率:设事件A就是S得某个区域,它得面积为μ(A),则向区域S上随机投掷一点,该点落在区域A得概率为:P(A)=μ(A)/μ(S)假如样本空间S可用一线段,或空间中某个区域表示,并且向S上随机投掷一点得含义如前述,则事件A得概率仍可用(*)式确定,只不过把理解为长度或体积即可、概率得性质:(1)P(φ)=0,(2)(3)(4) 若A⊂B,则P(B-A)=P(B)-P(A), P(B) ≥ P(A)、第四节:条件概率:在事件B发生得条件下,事件A发生得概率称为A对B得条件概率,记作P(A|B).而条件概率P(A|B)就是在原条件下又添加“B发生"这个条件时A发生得可能性大小,即P(A|B)仍就是概率、乘法公式: 若P(B)>0,则P(AB)=P(B)P(A|B)P(A)>0,则P(AB)=P(A)P(B|A)全概率公式:设A1,A2,…,A n就是试验E得样本空间Ω得一个划分,且P(Ai)〉0,i =1,2,…,n, B就是任一事件, 则贝叶斯公式:设A1,A2,…,An就是试验E得样本空间Ω得一个划分,且P(Ai)〉0,i =1,2,…,n, B就是任一事件且P(B)>0, 则第五节 :若两事件A、B满足P(AB)= P(A) P(B) 则称A、B独立,或称A、B相互独立.将两事件独立得定义推广到三个事件:对于三个事件A、B、C,若P(AC)=P(A)P(C) P(AB)= P(A)P(B)P(ABC)= P(A)P(B)P(C) P(BC)=P(B)P(C) 四个等式同时成立,则称事件A、B、C相互独立.第六节:定理对于n重贝努利试验,事件A在n次试验中出现k次得概率为总结:1.条件概率就是概率论中得重要概念,其与独立性有密切得关系,在不具有独立性得场合,它将扮演主要得角色、2.乘法公式、全概公式、贝叶斯公式在概率论得计算中经常使用,请牢固掌握。

3.独立性就是概率论中得最重要概念之一,亦就是概率论特有得概念,应正确理解并应用于概率得计算。

4.贝努利概型就是概率论中得最重要得概型之一,在应用上相当广泛。

第二章:随机变量及其分布1 、随机变量:分为离散型随机变量与连续型随机变量。

分布函数:设 X就是一个r、v,x为一个任意实数,称函数F(X)=P(X≤x)为X得分布函数。

X得分布函数就是F(x)记作X ~F(x)或F X(x).如果将X瞧作数轴上随机点得坐标,那么分布函数F(x) 得值就表示X落在区间 (x≤X)、3、离散型随机变量及其分布定义1 :设xk(k=1,2, …)就是离散型随机变量X所取得一切可能值,称等式P(X=x k)=PK,为离散型随机变量X得概率函数或分布律,也称概率分布、其中PK,≥0;ΣP k=1分布律与分布函数得关系:(1)已知随机变量X得分布律,可求出X得分布函数:①设一离散型随机变量X得分布律为ﻭP{X=x k}=pk (k=1,2,…)ﻭ由概率得可列可加性可得X得分布函数为②已知随机变量X得分布律, 亦可求任意随机事件得概率。

(2)已知随机变量X得分布函数,可求出X得分布律:一、三种常用离散型随机变量得分布、 1(0-1)分布:设随机变量X只可能取0与1两个值,它得分布律为P{X=k}=pk(1—p)1—k , k=0,1。

(0<p<1)则称X服从(0-1)分布,记为X~(0—1)分布。

(0—1)分布得分布律用表格表示为:X 0 1P 1-p p易求得其分布函数为2、二项分布(binomial distribution):定义:若离散型随机变量X得分布律为其中0<p<1,q=1—p,则称X服从参数为n,p得二项分布,记为X~B(n,p)、4、泊松分布得定义及图形特点设随机变量X所有可能取得值为0 , 1 , 2 , … , 且概率分布为:其中入>0就是常数,则称X 服从参数为入得泊松分布,记作X~P(入)、、连续型随机变量1概率密度f(x)得性质(1)f(x)≥0(2)(3).X落在区间(x1,x2)得概率几何意义:X落在区间(x1,x2)得概率P{x1<X≤x2}等于区间(x1,x2)上曲线y=f(x)之下得曲边梯形得面积.(4)。

若f(x)在点x处连续,则有F′(x)=f(x)。

.概率密度f(x)与分布函数F(x)得关系:(1)若连续型随机变量X具有概率密度f(x),则它得分布函数为(2)若连续型随机变量X得分布函数为F(x),那么它得概率密度为f(x)=F′(x)。

注意:对于F(x)不可导得点x处,f(x)在该点x处得函数值可任意给出。

三种重要得连续型分布:1.均匀分布(Uniform Distribution) 设连续随机变量X具有概率密度则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)。

若X~U(a,b),则容易计算出X得分布函数为2。

指数分布入〉0则称X服从参数为入得指数分布。

常简记为X~E( 入)指数分布得分布函数为指数分布得一个重要特性就是”无记忆性”、设随机变量X满足:对于任意得s〉o,t>0,有则称随机变量X具有无记忆性、3、正态分布若r。

v X得概率密度为其中μ与都就是常数, 任意,μ〉0,则称X服从参数为μ与得正态分布. 记作f (x)所确定得曲线叫作正态曲线.得正态分布称为标准正态分布.标准正态分布得重要性在于,任何一个一般得正态分布都可以通过线性变换转化为标准正态分布.随机变量函数得分布设X为连续型随机变量,具有概率密度f x(x),求Y=g(X) (g连续)得概率密度。

1。

一般方法——分布函数法可先求出Y得分布函数F Y(y):因为FY(y)=P{Y≤y}=P{g(X)≤y},设ly={x|g(x)≤y}则再由F Y(y)进一步求出Y得概率密度2、设连续型随机变量X得密度函数为 X(x), y=f(x)连续, 求Y= f(X)得密度函数得方法有三种:(1)分布函数法;(2)若y=f(x)严格单调,其反函数有连续导函数,则ﻭ可用公式法;(3)若y=g(x)在不相重叠得区间I1,I2,…上逐段严格单调,其反函数分别为h 1(y), h2(y), …,且h '1(y), h'2(y),ﻭ …,均为连续函数,则Y= g(X)就是连续型随机变量,ﻭ 其密度函数为对于连续型随机变量,在求Y =g (X ) 得分布时,关键得一步就是把事件 { g(X)≤ y } 转化为X 在一定范围内取值得形式,从而可以利用 X 得分布来求 P { g (X )≤ y }、。

第三章 、多维随机变量。

分布函数得性质对于任意固定得y, 对于任意固定得x,离散型随机变量得分布、连续型随机变量及其概率密度 性质 .,),(},{)}(){(),( :,,,),( 的联合分布函数和量或称为随机变的分布函数称为二维随机变量二元函数对于任意实数是二维随机变量设Y X Y X y Y x X P y Y x X P y x F y x Y X ≤≤=≤≤= ),,(),(,,),(11212o y x F y x F x x y y x y x F ≥>时当意固定的即对于任的不减函数和是变量,0),(lim ),(==-∞-∞→y x F y F x ,0),(lim ),(==-∞-∞→y x F x F y ,0),(lim ),(==-∞-∞-∞→-∞→y x F F y x .1),(lim ),(==+∞+∞+∞→+∞→y x F F y x .,),(,)0,(),(,),0(),(3o 也右连续关于右连续关于即y x y x F y x F y x F y x F y x F +=+=,,),,(),,(421212211o y y x x y x y x <<对于任意.0),(),(),(),( 21111222≥-+-y x F y x F y x F y x F 有. ,),( ,,2,1,,},{,,2,1,),,(),(的联合分布律和或随机变量的分布律变量称此为二维离散型随机记值为所有可能取的设二维离散型随机变量Y X Y X j i p y Y x X P j i y x Y X ij j i j i =====.1,011=≥∑∑∞=∞=i j ij ij p p 其中.1),(d d ),()2(=∞∞=⎰⎰∞+∞-∞+∞-F y x y x f .d d ),(}),{(⎰⎰=∈G y x y x f G Y X P .),(),(,),(),()4(2y x f y x y x F y x y x f =∂∂∂则有连续在若边缘分布 1离散型随机变量得边缘分布律连续型随机变量得边缘分布 随机变量得独立性: 两个随机变量函数得分布 一、 离散型随机变量函数得分布 二、 连续型随机变量函数得分布 第四章、、随机变量得数字特征随机变量得数学期望 E (X )就是一个实数,而非变量,它就是一种加权平均,与一般得平均值不同 , 它从本质上体现了随机变量 X 取可能值得真正得平均值, 也称均值。

相关文档
最新文档