《反比例函数的图像和性质》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数的图象和性质》教学设计教学目标
1.知识与技能
会画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.能用反比例函数的定义和性质解决实际问题.2.过程与方法
通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.3.情感、态度与价值观
由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图象的直观教学激发学习兴趣.
教学重点难点
重点:反比例函数图象的画法及探究,反比例函数的性质的运用.
难点:反比例函数图象是平滑双曲线的理解及对图象特征的分析.
(一)创设情境,导入新课
问题:1.若y=是反比例函数,则n必须满足条件 n≠或n≠-1 .
2.用描点法画图象的步骤简单地说是列表、描点、连线.
3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.
(二)合作交流,解读探究
问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数(k 为常数且k≠0)的图象是什么样呢?
尝试用描点法来画出反比例函数的图象.
画出反比例函数y=和y=-的图象.
解:列表
描点,以表中各对应值为坐标,在直角坐标系中描出各点.
连线,用平滑的曲线把所描的点依次连接起来.
探究反比例函数y=和y= −的图象有什么共同特征?它们之间有什么关系?
做一做把y=和y= −的图象放到同一坐标系中,观察一下,看它们是否对称.归纳反比例函数y=和y= −的图象的共同特征:
(1)它们都由两条曲线组成.
(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).
(3)反比例函数的图象属于双曲线(hyperbola).
此外,y=的图象和y= −的图象关于x轴对称,也关于y轴对称.
做一做在平面直角坐标系中画出反比例函数y=和y= −的图象.
交流两个函数图象都用描点法画出?
【分析】由y=和y= −的图象及y=和y= −的图象知道,
(1)它们有什么共同特征和不同点?
(2)每个函数的图象分别位于哪几个象限?
(3)在每一个象限内,y随x的变化而如何变化?
猜想反比例函数(k≠0)的图象在哪些象限由什么因素决定?在每一个象限内,y 随x的变化情况如何?它可能与坐标轴相交吗?
【归纳】(1)反比例函数(k为常数,k≠0)的图象是双曲线.
(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.
(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.
(三)应用迁移,巩固提高
例题指出当k>0时,下列图象中哪些可能是y=kx与 (k≠0)在同一坐标系中的图象( )
【答案】 B
(四)总结反思,拓展升华
1.画反比例函数的图象.
2.反比例函数的性质.
3.反比例函数的图象在哪个象限由k决定,且y值随x值变化只能在“每一个象限内”研究.
4.在(k≠0)中,由于x≠0,同时y≠0,因此双曲线两个分支不可能到达坐标轴.反比例函数的性质及运用
(1)k的符号决定图象所在象限.
(2)在每一象限内,y随x的变化情况,在不同象限,不能运用此性质.
(3)从反比例函数的图象上任一点向一坐标轴作垂线,这一点和垂足及坐标原点所构成的三角形面积S
=│k│.
△
(4)性质与图象在涉及点的坐标,确定解析式方面的运用.