奔驰S400 HYBRID混合动力——新技术剖析(四)
混合动力汽车构造图解(奔驰S400)
混合动力汽车构造图解(奔驰S400)混合动力汽车系统组成新款梅赛德斯-奔驰S400 hybrid基于S350研发而成,但其传动系统做出了明显改进。
改进包括进一步研发的3.5L V6汽油发动机、附加的持续通电同步电动机、为配合混合动力模块而专门设计的七挡自动变速箱、所需的动力和控制电子装置、变压器和锂离子蓄电池。
奔驰混合动力汽车系统组成▼S400 hybrid 配备了平行混合动力驱动系统。
通过该驱动系统,发动机和电动机均与驱动轮机械相连(发动机和电动机的平行连接)。
电动机和发动机所提供的功率可以进行叠加,这就意味着二者可分别保持更低的额定功率,但仅使用电动驱动系统无法驱动车辆。
奔驰S500 Plug-In Hybrid(插电式混合动力系统)的动力蓄电池相比S400 hybrid 车型容量增大了10倍,而且可以经过外部充电插座进行充电。
S500 Plug-In Hybrid车型最多可以利用电动机以纯电动模式行驶30km。
S500 Plug-In Hybrid系统组成▼1—湿式离合器(NAK);2—再生制动系统(RBS);724.2—自动变速箱;A9/5—电动制冷剂压缩机;A79/1—电动机;A100g1—高电压蓄电池;G1—车载电气系统蓄电池;M1—起动机;M276.8—发动机;M42—电动辅助油泵(集成在变速箱内);M56—真空泵(电动);N33/5—高电压正温度系数加热器;N68—电子动力转向控制单元;N82/2—蓄电池管理系统控制单元;N83/1—直流转换器控制单元;N83/5—充电装置;N129/1—功率电子装置控制单元;X58/23—充电装置供电插座混合动力汽车工作模式驱动模式▼混合动力驱动系统各种驱动模式的当前动力流可在驾驶室管理及数据系统(COMAND)显示单元上加以显示。
在驱动模式下,动力仅由发动机流向后轴。
加速模式▼在加速模式下,动力由发动机和电动机流向后轴。
高压蓄电池对电动机供电,然后由电动机产生驱动转矩,以对发动机所产生的转矩提供支持。
奔驰S400混合动力方案
Hybrid Concept inS 400 HYBRIDSystem DescriptionBild auf der Vorgabeseite in der Größe215x149 mm einfügenMercedes-Benz ServiceSystem DescriptionHybrid Concept in S 400 HYBRIDDaimler AG · Technical Information and Workshop Equipment (GSP/OI) · D-70546 StuttgartInformation and copyrightOrdering workshop informationAll printed workshop information from GSP/OI, such as Introduction intoService Manuals, System Descriptions, Function Descriptions, TechnologyGuides, Technical Data Manuals and adhesive labels, can be ordered asfollows:In GermanyFrom our GSP/OI shop on the InternetLink:http://gsp-ti-shop.deor alternativelyE-mail:customer.support@Telephone:+49-(0)1805/010-7979Fax:+49-(0)1805/010-7978Outside GermanyPlease get in touch with the contact person responsible for your market.Product portfolioComprehensive information about our full Product Portfoliocan also be found at our Internet Portal.Link:Questions and suggestionsIf you have any questions or suggestions concerning this product, please writeto us.E-mail:customer.support@Fax:+49-(0)1805/010-7978or alternativelyAddress:Daimler AGGSP/OISHPC R822, W002D-70546 Stuttgart© 2009 by Daimler AGThis document, including all its parts, is protected by copyright.Any further processing or use requires the previous written consent ofDaimler AG, Department GSP/OIS, HPC R822, W002, D-70546 Stuttgart.This applies in particular to reproduction, distribution, alteration, translation,microfilming and storage and/or processing in electronic systems, includingdatabases and online services.Image No. of title image:P00.00-4414-00Order No. of this publication:6516 1367 0204/2009Contents Preface 5OverviewIntroduction 6 Technical data 10 Block diagram 12 Display concept 14SubsystemsEngine 18 Electric motor 20 Automatic transmission 22 Electric refrigerant compressor 23 Power electronics module 24 DC/DC converter module 25 Power electronics and DC/DC converter cooling 26 High-voltage battery module 27 High-voltage battery cooling 28 Brake pedal assembly 30 RBS brake booster 31 Electric vacuum pump 32 Electrohydraulic power steering 33Operating strategyOverview 34 Driving mode 36 Torque coordination 40 Automatic engine stop 44 Automatic engine start 48 Energy management 52 Alternator interface 53System Description of Hybrid Concept in S 400 HYBRIDContentsDeceleration mode 54Regenerative braking 58Ignition ON/OFF 62Starting 63Monitoring/deactivation 64On-board electrical systemLocation of control units 66Networking of high-voltage/12 V on-boardelectrical systems 68Interlock 69Service informationDiagnosis 72Deenergization 73Working on the vehicle 74Requirements of service personnel 76Training 77Questions and answersQuestions about the hybrid drive 78AnnexAbbreviations 80Index 81Notes 82 System Description of Hybrid Concept in S 400 HYBRIDPrefaceSystem Description of Hybrid Concept in S 400 HYBRID Dear Reader,This system description presents the hybrid concept of the S 400 HYBRID from Mercedes-Benz.It allows you to familiarize yourself with the technical highlights of this new concept in advance of its market launch. This brochure primarily intended to provide information for people employed in service, mainte-nance and repair as well as for aftersales staff. It is assumed that the reader is already familiar with the Mercedes-Benz model series and major assemblies currently on the market.In terms of the contents, the emphasis in this system description is on presenting new and modified compo-nents, systems, system components and their func-tions.This system description aims to provide an overview of the technical innovations and an insight into the systems.However, this system description is not intended as a basis for repair work or technical diagnosis. For such needs, more extensive information is available in the Workshop Information System (WIS) and in the Diag-nosis Assistance System (DAS).These systems are updated on a monthly basis. There-fore, the information available there reflects the latest technical status of our vehicles.The contents of this brochure are not updated and no provision is made for supplements. We will publicize modifications and new features in the relevant WIS documents. The information presented in this system description may therefore differ from the more up-to-date information found in the WIS.All the information relating to specifications, equip-ment and options is valid as of the copy deadline in March 2009 and may therefore differ from the current production configuration.Daimler AGTechnical Information and Workshop Equipment (GSP/OI)IntroductionO v e r v i e wb System Description of Hybrid Concept in S 400 HYBRIDThe new Mercedes-Benz S 400 HYBRID is based on the S 350 but its drivetrain has undergone significant modification. The modifications include the further developed 3.5-liter V6 gasoline engine, the additional permanently energized synchronous motor, the 7-speed automatic transmission (7G-TRONIC) which has been specially designed to accommodate the hybrid module, the required power and control elec-tronics, the voltage converter and the lithium-ion battery.The compact hybrid module consists of a disk-shaped electric motor, which also serves as a starter and high-voltage alternator. The system has two advantages: on the one hand, it helps to save fuel and, on the other, it increases driving pleasure. One reason for this is the "boost effect", whereby the electric motor powerfully supports the combustion engine in the high-consump-tion acceleration phase. The driver benefits from the interaction of the two major assemblies in the form of an even more impressive torque curve and superior power development every time the vehicle starts off or accelerates.The hybrid module is also equipped with a convenient start-stop function which shuts off the engine when the vehicle is stopped e.g. at traffic lights. When it is time to drive on, the electric motor starts the combus-tion engine almost unnoticeably and very comfortably. This also makes a contribution to fuel economy and protecting the environment because the engine starts almost immediately with the first ignition. This means that the emissions are also minimized during the start-up phase.When the vehicle decelerates, the electric motor oper-ates as a high-voltage alternator and is able to recover braking energy through the "regenerative braking" process. In doing so, the electric motor works harmo-niously to support the engine braking effect of the combustion engine and the conventional wheel brakes in a seamless series of steps. The recovered energy is stored in a high-performance compact lithium-ion battery for later usage as required. The "major assembly coordinator" integrated in the engine control unit is responsible for managing the hybrid drive system with its energy management and torque coordination modules.i Why a hybrid?The automobiles of the future will be increasingly influenced by the following factors:•Limited natural resources•Long-term rises in energy prices•Legal stipulations on environmental compati-bility and CO 2 emissions•Changes in purchasing behavior in favor of more environmentally friendly and economical vehiclesi NoteOnly trained workshop staff (electrical technician for high-voltage on-board electrical systems in motor vehicles) may carry out work on a high-voltage on-board electrical system.IntroductionO v e r v i e wSystem Description of Hybrid Concept in S 400 HYBRID The S 400 HYBRID is equipped with a parallel hybrid drive. With this drive system, both the combustion engine and the electric motor are mechanicallyconnected to the drive wheels (parallel connection of engine and motor).The power supplied by the electric motor and the engine can be added together, which means that the individual power ratings of both can be kept lower. It is not possible to drive the vehicle solely using theelectric drive system.Overview of drive concept 112V alternator2Internal combustion engine 3Electric motor47-speed automatic transmission (7G-TRONIC)5Power electronics module 6High-voltage battery module 7DC/DCconvertermodule 812 V batteryIntroductionO v e r v i e wb System Description of Hybrid Concept in S 400 HYBRIDView of vehicle from right frontDesignationMarket launchModel designation W 221/V 221Engine TransmissionS 400 HYBRIDECE 06/2009Japan 08/2009 USA 09/2009China 09/2009221.095/221.195272.974722.950IntroductionO v e r v i e wOverview of hybrid components 1High-voltage battery module 2DC/DCconvertermodule 3Power electronics module 4Electric motor 5Pedal assembly 6RBS brake booster7Electric vacuum pump8Electric refrigerant compressor 9Low temperature cooler10Low-temperature circuit circulation pump 11Electrohydraulic power steering12Hydraulic unit with regenerative braking system control unitTechnical dataO v e r v i e wUnitS 400 HYBRIDCombustion engine Rated output at engine speed kW (hp)rpm 205 (279)6,000Rated torque at engine speed Nm rpm 3502,400 – 5,000No. of cylinders —6Displacement cm 33,498Max. rpm rpm 6,500Compression ratio —10.7:1Valves per cylinder —4Mixture formation—Microprocessor-controlled gasoline injectionwith hot film mass air flow sensorPower transmission Drive—Rear wheel drive Automatic transmission —7G-TronicElectric motor Type Permanently energized synchronous motorRated output kW (hp)15 (20)Rated torque at engine speed Nm rpm 1601,000Max. starting torque Nm 215Rated voltageVolts126Technical dataO v e r v i e wUnitS 400 HYBRIDHigh-voltage battery Type Lithium-ion battery Rated voltage V 126 (35 cells x 3.6V)Capacity Ah 7Weightkgapprox. 28Combustion engine and hybrid module combined Rated output at engine speed kW (hp)rpm 220 (299)6,000Rated torque at engine speed Nm rpm3852,400 – 4,000Performance Maximum speed km/h 250Accelerationfrom 0 to 100 km/h s 7.2Fuel consumption 1l/100 km 7.9CO 2 emissions 1g/km186Weight penalty of hybrid components Electric motor kg 20High-voltage battery kg 28Power electronics 2kg 8DC/DC converter 2kg3.21As per NEDC cycle2 Without wiring harnessTechnical dataO v e r v i e wA1Instrument cluster A1p13Multifunction displayA9/5Electric refrigerant compressor A40/3COMAND controller unit A79Electric motorA89DTR controller unit (with DISTRONIC PLUS or adaptive cruise control)A91/1Electrohydraulic power steeringA100b2High-voltage battery cell temperature sensors A100g1High-voltage battery A100s1Protection switch A101Tank leak diagnostic moduleB10/13Low-temperature circuit temperature sensor B37Accelerator pedal sensor CAN BInterior CAN CAN C Drivetrain CAN CAN D Diagnostic CAN CAN E Chassis CAN CAN F Central CANCAN H Vehicle dynamics CAN CAN I Drivetrain sensor CAN K88Pyrotechnical separatorK108Circulation pump relay 1 (power electronics)K108/1Circulation pump relay 2 (power electronics)L6/1Left front rpm sensor L6/2Right front rpm sensor L6/3Left rear rpm sensor L6/4Right rear rpm sensorTechnical dataO v e r v i e wM13/8Circulation pump 1 (power electronics)M3Fuel pumpM13/9Circulation pump 2 (power electronics)M42Additional electric transmission oil pump N2/7Restraint systems control unit N3/10ME-SFI [ME] control unitN10/1Front SAM control unit with fuse and relay moduleN22/1AAC [KLA] control unitN30/6Regenerative braking system (RBS) control unit N62/1Radar sensors control unit (SGR)(with DISTRONIC PLUS or adaptive cruise control)N73EZS control unitN82/2 Battery management system control unit (BMS)N83/1 DC/DC converter control unit N89 Additional transmission oil pump control unit N93Central gateway control unit N118Fuel pump control unitN129/1Power electronics control unit S9/3Hybrid brake light switchS62/51Hybrid engine hood contact switch X11/4Data link connector Y3/8Electric controller unit (VGS)Y130Engine oil pump valveDisplay conceptO v e r v i e wThe current power flows of the various driving modes of the hybrid drive can be displayed on the display unit of the COMAND system.In driving mode , power flows only from the combus-tion engine to the rear axle.In acceleration mode , power flows from the combus-tion engine and from the electric motor to the rear axle. The high-voltage battery supplies power to the electric motor, which then generates drive torque to support the torque produced by the combustionengine.Acceleration modeDriving modeDisplay conceptO v e r v i e wIn alternator mode , power flows from the rear axle to the electric motor. The kinetic energy of the vehicle is converted into electrical energy by the electric motor. The electric motor acts as a high-voltage alternator and charges the high-voltage battery.Alternator modeDisplay conceptO v e r v i e wA consumption bar chart shows the fuel consumption and the electrical energy generated.Display of fuel consumption and energy balanceA Fuel consumption over last 15 minB Display of energy recovered by high-voltage battery in last 15 minDisplay conceptO v e r v i e wThe energy flows during the various operating modes and the current charge level of the high-voltage battery can also be displayed on the instrument cluster.The message "READY" is output as soon as the hybrid drive system is operational.When the ECO start-stop function is available, the green READY indicator lights up.When the ECO start-stop function is temporarilyunavailable, the yellow READY indicator lights up.i Charge indicatorThe charge level of the high-voltage battery shown on the instrument cluster and COMAND system is an adjusted figure which only represents the battery capacity which is actually available. The actual charge level of the high-voltage battery in terms of the SOC (State of Charge) can be read out via the Diagnosis Assistance System (DAS).Instrument cluster displaysEngineS u b s y s t e m sEngine 272.974 has been modified and optimized for the hybrid drive. The output has been increased by 5kW through the use of new cylinder heads, modified camshafts with a different camshaft control system and different pistons.The use of the Atkinson principle increases thethermal efficiency and lowers specific fuel consump-tion. This improves consumption under partial-load conditions.The rotor of the electric motor is connected directly to the crankshaft and positioned between the engine andautomatic transmission.View of engine from right rear 1Electrical plug connection 2UVW screw connection A79Electric motorL20Rotor position sensori NoteThe Atkinson principle optimizes the valve timing by briefly opening the intake valves between the intake and compression phase. This makes the expansion phase longer than the compression phase.EngineS u b s y s t e m sPerformance graph A Combustion engine output B Maximum combined output(electric motor and combustion engine)CMaximum boost outputTorque diagramA Combustion engine torqueB Maximum combined torque(electric motor and combustion engine)C Maximum boost torqueElectric motorS u b s y s t e m sThe disk-shaped electric motor is a permanently ener-gized synchronous motor which is installed between the combustion engine and automatic transmission. It performs the function of a starter and high-voltage alternator. This design is also referred to as an inte-grated starter-alternator.The electric motor acts as a damping element to reduce drive/torsional vibrations. Depending on the operating mode, the electric motor can apply torque in the direction of rotation of the crankshaft in order to start the combustion engine (drive mode ) or apply torque in the opposite direction to the rotation of the crankshaft in order to charge the high-voltage battery (alternator mode ). During start-off, the electric motor supports the combustion engine (boost mode) and, during brake application, part of the braking energy is converted into electrical energy (regenerative braking).Switching between the individual operating modes (motor mode/alternator mode) is controlled by the power electronics control unit. The power electronics are connected to the three power connections of the electric motor by three busbars. The three-phase currents are regulated depending on the operating mode and rotor position. These phase currents generate a magnetic field which, together with the field of the rotor, generates torque to produce rota-tional movement.Sectional view 1Stator carrier2Rotor with increment ring and position sensor track 3Intermediatehousing 4Stator with coils5Electric screw connection and temperature sensor couplingL20Rotor position sensorElectric motorS u b s y s t e m sInformation about the current rotor position isrequired in order to regulate the electric motor. For this purpose, the rotor position sensor supplies an amplitude signal even when the electric motor is stationary and forwards this to the power electronics control unit so that angle can be calculated and the rotational speed derived from this. A temperature sensor integrated in the stator winding records the temperature of the winding and transmits this to the power electronics control unit as a voltage signal. If a certain temperature threshold is exceeded, appropriate power limitation functions are activated in the power electronics in order to protect the electricmotor from overheating.Exploded view 1Stator with coils1/1Electric screw connection and temperature sensor coupling 2Stator carrier3Rotor with increment ring and position sensor track 4Intermediatehousing B70Crankshaft Hall sensor L20Rotor position sensorAutomatic transmissionS u b s y s t e m sThe S 400 HYBRID is equipped with a 7-speed auto-matic transmission (7G-TRONIC). The transmission has been modified for the hybrid drive system. Along with new software for transmission control, an addi-tional electric transmission oil pump is also installed.It is necessary to ensure that oil continues to be supplied to the transmission hydraulics when the engine is off or being restarted as part of the start-stop function in order to prevent any delay between the driver's request to start off and the point when the vehicle actually starts to move.For this reason, the additional electric transmission oil pump supplies oil for the transmission control system when the internal transmission oil pump is shut off because the combustion engine has also beenswitched off.Sectional view of automatic transmission 1Carrierring2Internal transmission oil pump3Additional electric transmission oil pump (M42)Electric refrigerant compressorS u b s y s t e m sIn order to provide adequate cooling output even when the engine has been automatically stopped, the drive system for the refrigerant compressor has to be separated from the combustion engine to provide independent climate control for the vehicle interior and independent cooling for the high-voltage battery. This is achieved by means of an electrically driven refrigerant compressor. This cooling system only operates as required and thus also helps to optimize fuel consumption.The electric refrigerant compressor draws in and compresses the refrigerant (R134a) and pumps the refrigerant through the system. Depending on the evaporator temperature, the electric refrigerant compressor is steplessly regulated by the AAC [KLA] control unit from 800 to 9,000 rpm.The electric refrigerant compressor consists of the following three main groups:•Control unit with integrated power electronics (1)•Electric motor (2)•Spiral compressor (3)The control unit of the electric refrigerant compressor regulates the speed of the electric motor and the quantity of refrigerant. The electric motor drives the spiral compressor. This consists of two spiral coils nested inside each other, whereby the first coil is permanently attached to the housing and the second moves in a circular pattern inside the first. The spiral coils thus touch each other at several points and form a number of chambers of ever decreasing size within the coils. The refrigerant is thus compressed and moves towards the center of these chambers, whereit then exits the spiral in compressed form.View of refrigerant compressor 1Control unit 2Electric motor 3SpiralcompressorPower electronics moduleS u b s y s t e m sThe power electronics control unit is integrated in the power electronics module. This is positioned on the right underneath the exhaust manifold. It is fitted with a heat shield to protect it against thermal radiation.The power electronics control unit supplies the elec-tric motor with three-phase AC voltage upon request. It monitors the temperature of the electric motor as well as performing diagnosis and providing forecastsof the available torque to the ME-SFI [ME] control unit.Design of power electronics module 1Power electronics module212 V plug connection for power electronics control unit 3High-voltage line to high-voltage batteryA Coolant inlet BCoolantoutletDC/DC converter moduleS u b s y s t e m sThe DC voltage converter (DC/DC converter) is located in the right front wheel well. It generates a high DC voltage and a 12 V DC voltage and also allows the exchange of energy between the high-voltage on-board electrical system and the 12 V on-board elec-trical system. High-voltage is converted into 12 V orvice versa.Design of DC/DC converter module 1DC/DC convertermodule2High-voltage plug connection (high-voltage battery)312 V plug connection for DC/DC converter control unit 4Circuit 30 screw connection A Coolant inlet BCoolantoutleti NoteSince battery energy is exchanged between the 12V on-board electrical system and the high-voltage on-board electrical system, it is possible to jump start the vehicle with a 12V jumper cable with the ignition switched on. In other words, a separate high-voltage charger is not required to start the vehicle if the battery has been discharged.Power electronics and DC/DC converter coolingS u b s y s t e m sThe power electronics module and the DC/DC converter module have a common low-temperaturecooling system which is separate from the coolingsystem of the combustion engine. This low-tempera-ture cooling system protects the power electronics module and the DC/DC converter module fromdamage due to overheating. The ME-SFI [ME] control unit records the coolant temperature in the power electronics cooling system by means of the voltage signal from the low-temperature circuit temperature sensor.Depending on the coolant temperature, the ME-SFI [ME] control unit actuates circulation pump relay 1 and circulation pump 1 is switched on. Circulation pump 2 is switched on via circulation pump relay 2. Circulation pump relay 2 is actuated by circuit 15 when the ignition is switched on.The coolant flows through the DC/DC converter module and the power electronics module andabsorbs thermal energy from these components. The coolant then flows through the low-temperature cooler, where it is cooled by the airstream and flowsback to circulation pump 1.Schematic illustration of power electronics cooling circuit 1Expansion tank2Low-temperature cooler 3Power electronics module 4DC/DC converter moduleB10/13Low-temperature circuit temperature sensor M13/8Circulation pump 1M13/9Circulation pump 2AFeed to low-temperature cooler, coolant temperature very high B High coolant temperature C Medium coolant temperature D Return from low-temperature cooler,coolant temperature lowHigh-voltage battery moduleS u b s y s t e m sThe high-voltage battery module is located at the rear of the engine compartment on the right. It protects the high-voltage battery from external heat and provides physical stability. The high-voltage battery module incorporates the high-voltage battery, the battery management system (BMS) control unit and theprotection switch. Refrigerant lines and electrical lines (high-voltage/12 V) can be connected to the high-voltage battery module. The high-voltage battery is a lithium-ion battery, which stores energy for the elec-tric motor.The advantages compared to nickel metal hydride batteries are:•Greater electrical efficiency•Higher energy density and thus lower weight and more compact dimensions The high-voltage battery is connected to the 12 V on-board electrical system via the DC/DC converter so that it can provide support to the 12 V on-board elec-trical system if necessary. The protection switch is actuated by the battery management system (BMS) control unit and internally isolates the high-voltage battery positive and negative terminals from the high-voltage on-board electrical system.Sectional view of high-voltage battery module 112 V plug connection for battery management system control unit2Refrigerant line connections3High-voltage plug connection (power electronics, electric refrigerant compressor)4High-voltage plug connection (DC/DC converter)5Protection switch6Blow-off fitting with membrane and bursting diskA100 High-voltage battery module A100g1High-voltage batteryN82/2Battery management system (BMS) control unitHigh-voltage battery coolingS u b s y s t e m sThe operating temperature of the high-voltage battery must be within a certain range in order to ensure that the charging capacity, number of charging cycles and life expectancy of the high-voltage battery are opti-mized.The battery management system (BMS) control unit evaluates the data from the high-voltage battery cell temperature sensors in order to determine the current high-voltage battery temperature and, if necessary, requests cooling output via the ME-SFI [ME] control unit. The battery management system (BMS) control unit sends the request for cooling to the ME-SFI [ME] control unit via the drive train sensor CAN. This compares the request against the targets of the energy management system and allows actuation of the electric refrigerant compressor.Electric refrigerant compressor actuation is allowed depending on the charge level of the high-voltage battery and the maximum tolerable dischargevoltages/currents. Actuation is first allowed after the vehicle is started with the key and this permission is withdrawn when circuit 15 is switched off.If the energy management system allows actuation, this information is transmitted by the ME-SFI [ME] control unit to the central gateway control unit via the chassis CAN together with the request for cooling output. This approval is forwarded to the AAC [KLA] control unit on the interior CAN, which actuates the electric refrigerant compressor via the CAN network.The air conditioning shutoff valve is opened and the refrigerant flows through the evaporator integrated in the high-voltage battery module. Thermal energy is extracted from the high-voltage battery and battery management system (BMS) control unit.The cooling output is largely dependent on the actua-tion level of the electric refrigerant compressor. When the engine is idling or has been stopped automatically, the output of the electric refrigerant compressor is limited to a maximum of 2kW.The output of the electric refrigerant compressor can also be temporarily (<10 s) reduced right down to 0kW if rapid acceleration is required.。
奔驰S500Hybrid混合动力汽车技术特点
奔驰S500Hybrid混合动力汽车技术特点陈鸣洲;夏征;付贻玮;宋建桐【摘要】S500Hybrid是奔驰首款插电式混合动力汽车,它体现了奔驰未来在插电式混合动力汽车的特点,文章介绍了奔驰S500Hybrid的自动启动和自动停止,以及混合动力系统工作模式.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)001【总页数】2页(P1-2)【关键词】奔驰;混合动力;电驱动【作者】陈鸣洲;夏征;付贻玮;宋建桐【作者单位】北京电子科技职业学院汽车工程学院,北京100176;中油管道检测技术有限责任公司,河北廊坊065000;北京电子科技职业学院汽车工程学院,北京100176;北京电子科技职业学院汽车工程学院,北京100176【正文语种】中文【中图分类】U464.1CLC NO: U464.1 Document Code: A Article ID: 1671-7988 (2017)01-01-02 随着传统燃料的不断消耗,新能源汽车的发展已经是世界各个国家、汽车企业都要面对新的难题、挑战及机遇[1,2]。
目前大部分的汽车企业都陆续推出了自己的混合动力汽车,奔驰作为百年的高档汽车品牌之一,在推出S300、S400等弱混合动力汽车之后,推出了奔驰S500Hybrid插电式混合动力汽车。
对于奔驰来说,这是真正意义上的首款新能源汽车,从电动辅助提速转变为了电动驱动,其具有大容量的高压蓄电池和充电借口。
由于S500Hybrid应用了插电式混合动力驱动技术,混合动力车辆装配了高压系统电压为140V。
发动机电控燃油喷射系统和点火系统的能源管理模块将高压转变为12V电压。
因此,电控燃油喷射系统和点火系统要通过传动系统局域网与发电机进行通信。
当发动机关闭时,12V电仍由高压蓄电池供电,当发动机运转时,有电机供电。
如果电力电子控制单元提供的能量无法满足现有能量要求,则发电机将开启。
在传动系统控制单元中有一个能源管理模块,它负责协调混合动力系统的能量传输,并根据电气因素创建蓄电池管理系统控制单元、电力电子控制单元和电动制冷剂压缩机的接口,为此通过CAN网络与所有相关控制单元传送信息。
奔驰s400hybrid混合动力故障检测
奔驰s400hybrid混合动⼒故障检测奔驰s400hybrid混合动⼒故障检测摘要随着现今社会能源⽇益紧张、空⽓⽇渐污浊的情况下,⼈们越来越注重⾃⼰⽣活的环境质量好坏,⽽混合动⼒汽车⼀种节能,低碳排放的交通⼯具,因此在不久将来其⼀定会成为消费者热衷的车型,然⽽由于混合动⼒汽车的复杂程度较传统汽车相⽐有较⼤的难度,因此其检测维修也对维修⼈员提出较⾼要求,本⽂对混合动⼒汽车的检测与维修进⾏了简单的概述,并对奔驰s400hybrid车型的检测与维修⽅法进⾏简单的介绍。
关键词:驰s400hybrid;混合动⼒汽车;检测;维修⽬录1.引⾔ (3)2 混合动⼒汽车概述 (4)2.1 混合动⼒汽车概念 (4)2.2 混合动⼒汽车的特点 (4)2.3 混合动⼒汽车的分类 (5)3 混合动⼒汽车故障诊断概述 (6)3.1 汽车故障诊断的定义 (6)3.2 汽车故障诊断的⽅法及特点 (6)4 混合动⼒汽车各动⼒元件的故障诊断 (7)4.1 发动机的故障诊断 (7)4.1.1 发动机故障诊断技术的应⽤ (7)4.1.2 发动机的故障分类和分析 (8)5.奔驰s400hybrid混合动⼒汽车故障的检测 (9)5.1奔驰s400hybrid混合动⼒汽车检测维修需注意的事项 (10)5.2 奔驰s400hybrid混合动⼒汽车动⼒控制系统检测与维修 (10)5.3 奔驰s400hybrid混合动⼒汽车电池系统的检修 (10)6.结语 (11)参考⽂献 (12)1.引⾔汽车故障诊断与检测技术是随着汽车的发展从⽆到有逐渐发展起来的⼀门技术。
国外的⼀些发达国家,早在 20 世纪 40~50年代就发展成为以故障诊断和性能调试为主的单项检测技术。
进⼊ 60 年代后,故障诊断与检测技术获得较⼤的发展,逐渐将单项检测技术联线建站(出现汽车检测站),演变成为既能进⾏维修诊断,⼜能进⾏安全环保检测的综合检测技术。
随着电⼦技术的发展, 70 年代出现了检测控制⾃动化、数据采集⾃动化、数据处理⾃动化、检测结果⾃动打印的现代故障检测技术,检测效率极⾼。
系统描述 S 400 Hybrid中的混合动力方案 [型号221]_cn
S 400 HYBRID 的混合动力概念系统说明6高压蓄电池模块7 DC/DC 转换器模块8 12 伏蓄电池HYBRID车辆的右前视图驱动模式加速模式发电机模式A 过去15 分钟的燃油消耗量B 高压蓄电池在过去15 分钟回收能量的显示电动机的转子与曲轴直接相连,并位于发动机与自动变速箱之间。
发动机右后视图电气插头连接2 UVW 螺纹连接A79 电动机L20 转子位置传感器B 最大综合扭矩(电动机和内燃机)C 最大升压扭矩C 最大升压输出功率5 电气螺纹连接和温度传感器连接器L20 转子位置传感器2 内部变速箱油泵3 辅助电动变速箱油泵(M42)1 控制单元2 电动机3 螺旋压缩机A 冷却液进口B 冷却液出口伏的直流电压,并实现高压车载电气系统与12 伏车载电气系统之间的12 伏电压之间可以双向转换。
转换器模块的设计高电压插头连接(高压蓄电池)转换器控制单元的12 伏插头连接4 电路30 的螺纹连接A 冷却液进口B 冷却液出口12 伏车载电气系统与高压车载电气系统之间会交换蓄电池能量,因此,在点火接通的情12 伏跨接电缆对车辆进行跨接起动。
换言之,如果蓄电池已经放电,则不需要电力电子和DC/DC 转换器冷却电力电子冷却回路的示意图1 膨胀水箱2 低温冷却器3 电力电子模块B10/13 低温回路温度传感器M13/8 循环泵1M13/9 循环泵2A 对低温冷却器供给,冷却液温度非常高B 冷却液温度较高C 冷却液温度适中D 自低温冷却器回流,冷却液温度较低电动制冷剂压缩机)4 高电压插头连接(DC/DC 转换器)5 保护开关A100 高压蓄电池模块A100g1 高压蓄电池N82/2 蓄电池管理系统(BMS)控制单元高压蓄电池冷却5 后排空调系统蒸发器(装配后排空调系统)B10/11 后排空调系统蒸发器温度传感器(装配后排空调系统)B12 制冷剂压力传感器Y19/1 高压蓄电池冷却切断阀Y67 后排空调系统制冷剂切断阀(装配后排空调系统)A 高压,气态B 高压,液态C 低压,液态D 低压,气态B37/1 踏板角度传感器S9/3 混合动力制动灯开关Y113 踏板阻力模拟器阀A7/7b1 RBS 膜片行程传感器A7/7b3 RBS 真空传感器S11 制动液指示开关2 真空出口连接3 电动机4 泵单元1 电气插头连接A91/1 电液动力转向机构t 时间v 车速–曲轴的动能作用在电动机转子上。
腾讯试驾奔驰S400 HYBRID
带头大哥腾讯试驾奔驰S400 HYBRID 2010年10月26日11:16腾讯汽车张洋我要评论(0)字号:T|T[导读]我们经常说“坐奔驰”,这个奔驰指的就是S级,只有你真正体会过S级以后你才会明白什么是真正的奔驰,那种沉稳、气质、舒适的完美结合就连其最有力的竞争对手都无法超越的。
[腾讯汽车试驾]如今是谁统领着豪华车市场的头把交椅,我敢肯定的说是奔驰,确切说是奔驰S级。
就这个人们称作“大奔”的车型拥有非同寻常的销量,它提供的不仅仅是舒适和外表更多的是一种内涵,它已经成为身份的象征。
腾讯试驾奔驰S级400 HYBRID腾讯试驾奔驰S400 HYBRID就连奔驰S级的对手都不得不承认的是奔驰S级在市场中的老大地位,销量似乎更可以证明这一切。
无论在什么场合,奔驰总是豪华车的代言词,也许还有其他豪华品牌,但市场最认同的无疑还是这个三叉星标志的德国牌子。
腾讯试驾奔驰S400 HYBRID在目前中国在售的奔驰当中有一款与众不同的车型那就是S400,它是目前德系豪华品牌轿车当中唯一能够买到的混合动力车型。
它的出现也打破了日系车垄断混合动力市场的局面,当然对于那些有钱人而言,是否能够认识到购买混合动力车型的重要性,这就是另外一回事了。
腾讯试驾奔驰S400 HYBRID腾讯试驾奔驰S400 HYBRID腾讯试驾奔驰S400 HYBRIDS400系列于去年上市,本次推出的隶属奔驰S级的第九代车型。
从2006年推出至今在经过去年的小改款之后,目前在国内销售车型包括S300、S350、S400 Hybrid 、S500、S600、S65 AMG等。
由于国内的奔驰S级均已经是加长版本,所以在轴距以及车长上均占有较为明显的优势。
目前来自中高级车型对于轴距长度的穷追猛打,有些让行政级轿车感到压力,不过行政级轿车拥有更加明显的优势。
腾讯试驾奔驰S400 HYBRID腾讯试驾奔驰S400 HYBRID腾讯试驾奔驰S400 HYBRID无论车头还是车尾,奔驰S级的造型都是经典的,不可复制的。
奔驰S400混合动力系统简介
混合动力系统的几种工作模式
• 助力功能(加速模式) 起步和加速时,电动机为内燃机提供助力。 能量流箭头为红色。
混合动力系统的几种工作模式
混合动力系统的几种工作模式
• 驾驶模式(驱动模式) 内燃机对车辆进行驱动。 能量流箭头为白色。
混合动力系统“READY指示灯”概述
混合动力系统“READY指示灯”概述
S400混合动力系统部件概述
DC/DC 转换器模块 N83/1
3 DC/DC 转换器模块 N83/1 3/1 高电压插头连接 3/2 DC/DC 转换器控制单元的插头连接 4 电路 30 的螺纹连接 A 冷却液入口 B 冷却液回流
S400混合动力系统部件概述
• DC/DC 转换器模块位于右前轮罩的后部。 • DC/DC 转换器控制单元是一个双向直流变压器,
• 通过仪表多功能显示屏观察车载电源能量 储备状况:使用多功能方向盘上的 或 箭 头按钮选择里程菜单。使用多功能方向盘 上的 或 箭头按钮选择混合动力菜单。
混合动力系统电量显示功能
混合动力系统电量显示功能
• 通过COMAND系统“车辆”菜单中选择 “混合动力系统”子菜单观察车载电源能 量储备状况:
S400混合动力车型概述
S 400 HYBRID展现了豪 华性、动力性能、安全性和 环境保护之间的和谐统一。
S400混合动力车型概述
• 车辆型号 221.095/.195 • 发动机型号名称 272.974 • 变速箱型号名称 722.950
混合动力系统电量显示功能
• 在日常使用或维护时可通过操作仪表盘多 功能显示屏或COMAND中央显示屏相关菜 单来读取当前的车载电源能量储备状况。
• 混合制动灯开关S9/3将制动踏板的促动信号传送 到再生制动系统控制单元N30/6。
奔驰s400混合动力介绍(上)
(、S 4库丨 Database栏目编辑:刘玺 lx@.林宇清(本刊编委会委员}曾在福建奔驰汽车有限公司担任经销商技术支持,,取得了奔驰厂家的最高等 级技术资质诊断技师认证(CDT ),并积累了众多疑难故障案例和较为全面的 诊断思路。
目前就职于云度新能源汽车股份有限公司,担任质量改进工程师。
奔驰S 400混合动力介绍(上)♦文/福建林宇清梅赛德斯-奔驰S 400 HYBRID 基于上一代S 350(即221车 型)研发而成,本文通过新旧两款S 400车型简要说明该混合动力 概念及其工作原理。
一、221车型混合动力概念车型的S 400 HYBRID 技术,奠定了梅赛德斯-奔驰混合动力的基础,是本文的重点介绍部分,通过以下几个方面来阐述。
1.驱动系统组成S 400H YB RID 配备了平行混合动力驱动系统,包括272混 合动力发动机和高电压系统,其中,高压电系统由电力电子控制 单元、电动机、高压蓄电池模块、蓄电池管理系统(BMS )控制单 元和DC /DC 转换器组成(图1)。
图2驱动概念1.高压蓄电池;2.D C /D C 转换器;3.电力电子模块;4.电动机;5.油门踏板;(S .制动助力器;7.真空泵;8.电动压缩机;9.冷却器;10.冷却液循环泵; j l .电动助力泵;12制动液压单元。
图1混合动力部件通过该驱动系统,内燃机、电动机和驱动轮通过刚性相连 (图2),其中,发动机和电动机提供的功率可以组合在一起,但 车辆无法完全通过电子驱动系统驱动。
2.高压部件介绍根据前述的高压电系统组成部件,如下逐一进行介绍。
⑴高压蓄电池位于引擎室右后侧(图3),内部由35块锂离子电池组成,每 块电池的电压均在3.2 ~ 4.1 V 之间,这样,高压蓄电池会储存电图3高压蓄电池能并以约120V 的电压为所有高压系统部件供电。
所有的锂电池 由蓄电池管理系统(BMS )控制单元根据传感器和CAN 信号进行管 理。
KERS动能回收系统
轮旋转,将电能转化为机械能(相当于化学电池
的充电过程)。当赛车通过弯心、全油门出弯时, 飞轮内部的电机立即切换到发电机模式,飞轮带 动发电机旋转,将存储的机械能通过电能的形式, 把能量反向输送给尾部的电机(相当于电池的放 电过程)。此时,尾部电机立即切换到电动机状 态,电能驱动电动机旋转,其输出的动力与V8 引擎的动力汇聚后,传递给后轴。这便是是威廉 姆斯的电驱飞轮KERS的整个工作过程。
二机械飞轮KERS系统
FB公司飞轮动能回收系统技术参数预览
技术方案:飞轮动能回收系统
技术原理:通过飞轮存储并释放能量 飞轮材质:钢/碳纤维 飞轮质量:5KG 飞轮转速:64500转/分 最大功率:60KW(FIA规定上限) 最大扭矩:130牛.米(理论) 最大能储:400千焦 系统总重:24KG 系统体积:13升 系统效率:65~70%
安装位置: 在安装上真正有“选择权”的是集成度不高的 电池-电机和电驱飞轮这两种方案。在F1赛车上 有两种安装方式: 第一种方式是:将驱动电机像机械飞轮那样,安装在变
速箱的动力输出端。电池则摆放在油箱附近,这种安装方式 的特点是:兼顾了配重的要求,同时对油箱附近的空间要求 较小。
第二种方式是:将驱动电机安装在发动机曲轴的另一端,
KERS动能 回收系统
燕山大学 kangxiurui S11080204021
KERS动能回收系统
动能回收系统KERS(Kinetic Energy Recovery Systems) ,是FIA在F1赛车上使用的一项新技术。 基础原理:通过技术手段将车身制动能量存储起来,并
在赛车加速过程中将其作为辅助动力释放用。
碎裂的情况,需要一个非常坚固的结 构来包容飞轮。
S400混合动力-高压电
3 3/1 3/2 的连接器 4 A
B
DC/DC变换器模块 高压连接器(高压蓄电池) 12伏DC/DC变换器控制单元
电路30的螺纹接线端子 冷却液进口 冷却液出口
12V can线接头
防冻液
工作温度:40℃--60 ℃
正极柱离地小,要有保护帽,帽里 涂有保护蜡,避免氧化,电阻过大, 出现烧蚀。
车辆中的7项高压安全措施
你想感受电压和电流吗?
方法1:去科技馆,用手触摸静电球。 方法2:将打火机的芯取出,电击自己 方法3:将电脑外置音箱接通,拿住正负极,调节音
量大小,因人而异。 (MBCL老师推荐,请三思而后行)
对身体有害电流
4个强度级别表明与 电击持续时间有关 的危险请大小。 据此,电流在达到 约30毫安以后有致 命的风险。
*采用永久磁铁的同步电动机 *外置转子
*安装在发动机和自动变速箱的变 矩器之间 *转速低于100 转每分时不会产生 临界接触电压
1
带有定子支撑的定子
1/1
电连接器
2
中间凸缘
3
带增量环的转子
4
中间外壳
B70
曲轴霍尔传感器
L20
转子位置传感器
电源电子装置
*使三相电动机在高电压直流车载电气系统上 工作的变换器 *集成的AC/DC变换器 *一秒内自放电 (电荷有存储电压功能,1秒 放出余下的点,防止手触的危险)
灯
泡
12 伏;10 瓦;0.8安
12
U 400
电的危害
由于以下原因,电会给人们造成伤害:
∗ 电流通过人体会造成电击效果
电流
∗ 电弧
∗ 副效应(将人击倒)
心脏纤颤 循环系统问题
最终是电流伤害的我们!
奔驰轿车Hybrid技术讲解
1.Hybrid是混合动力的意思,表示你看到的奔驰S400LHybrid 是油电混合动力车型Blue Efficiency(环保高效动力)2.BlueEFFICIENCY综合环保科技整合了包括优化引擎技术、降低车身重量、减小风阻、减小摩擦阻力等一系列旨在降低能量损耗、提升燃油效率的手段。
它所运用的CGI涡轮增压缸内直喷发动机更是在提高车辆动力性的同时,提升了燃油使用效率,从而降低油耗并减少二氧化碳排放量,达到了节油与环保的双重功效。
3.CGI:Stratified-Charged Gasoline Injection(缸内直喷系统),CGI 缸内直喷涡轮增压引擎它拥有着媲美柴油引擎的扭矩表现与燃油经济性,更保有汽油引擎高转速马力延展的优势4./bbs/viewthread.php?tid=12247740&extra=&page=1原帖由wizard于10-05-22 11:30 发表咨询两个E300的问题。
1.E300的C/S模式是不是就是换档时间的延迟?没任何别的区别?2.E300的DIRECT CONTROL底盘和C的敏捷悬挂有啥区别?1.E300 S为运动驾驶模式C为舒适,经济驾驶模式C模式优势在于换挡缓和,平稳性好,升档早低速不易打滑!S模式运动感好!换挡是否延时更具您急加油还是缓加油!缓加提前急加滞我试个先,为什么同排量的引擎,BMW的比奔驰的数据强?奔驰引擎刷ECU,什么情况下不影响原厂保修?奥迪,BMW几乎全系都厂GPS配置,北奔C在产3年了为什么还未开发安装GPS?国产北奔已在产多年,为什么维修 ...1.两种车设计风格不同,引擎属于汽车的动力源,奔驰设计相对而言保守,但奔驰现对于宝马而言高速加速性能很强。
数据相对来说还是的靠您自己实际去操控一下体检试驾!每个人都会对两款车又有不大一样的见解!个人见解2.在四S店里不可以,都会有影响!因为保修数据会发给中国奔驰保修部或北京奔驰保修部,能查出数据偏差。
奔驰混合动力S400 Hybrid原厂培训手册
车型名称 W 221/V 221 221.095/221.195
发动机
变速箱
S 400 HYBRID
ECE 2009 年 6 月 日本 2009 年 8 月 美国 2009 年 9 月 中国 2009 年 9 月
272.974
722.950
8
b S 400 HYBRID 混合动力概念的系统说明
– 经许 许 录 术状态 –
加速模式
14
b S 400 HYBRID 混合动力概念的系统说明
12
b S 400 HYBRID 混合动力概念的系统说明
– 经许 许 录 术状态 –
M13/8 M3 M13/9 M42 N2/7 N3/10 N10/1 N22/1 N30/6 N62/1
循环泵 1 (电力电子) 燃油泵 循环泵 2 (电力电子) 辅助电动变速箱油泵 防护装置控制单元 ME-SFI [ME]控制单元 带保险丝和继电器模块的前侧 SAM 控制单元 KLA 控制单元 再生制动系统 (RBS)控制单元 雷达传感器控制单元 (SGR) (装配增强型限距控制系统或自动智能巡航 控制)
S 400 HYBRID 混合动力概念的系统说明 b
– 经许 许 录 术状态 –
13
概述
技术数据
概述
显示概念
混合动力驱动系统各种驱动模式的当前动力流可 在驾驶室管理及数据系统 (COMAND)显示单元 上加以显示。 在驱动模式下,动力仅由内燃机流向后轴。
驱动模式
在加速模式下,动力由内燃机和电动机流向后 轴。高压蓄电池对电动机供电,然后由电动机产 生驱动扭矩,以对内燃机所产生的扭矩提供支 持。
S 400 HYBRID (221)
Daimler AG, GSP/OI, HPC R 822, D-70546 Stuttgart
电动汽车作业三 0805030219 杨端奎
作业三题目:奔驰S400 HYBRID混合动力轿车的技术进展德国豪华汽车生产商梅赛德斯-奔驰日前推出了首款混合动力轿车,这也是世界首款量产的锂电池混合动力豪华车。
这款混合动力车属于梅赛德斯-奔驰S级,被命名为“梅赛德斯-奔驰S400 HYBRID”。
奔驰在技术上的创新从来都不会终止,无论从安全、舒适、动力,还是环保与节能上,都成绩斐然,随着S400 HYBRID的出现将为全球汽车工业重新树立环保豪华车的新标杆。
新款奔驰 S400 HYBRID是基于S350而又有重大的改变。
其改变包括了改进的3.5L的V6汽油发动机和新增加的电子电机,为协调hybrid模块的需要而改进的7速自动变速器,电压转换器和锂电子电池。
紧凑的Hybrid模块由碟盘式的电子电机组成,其主要有启动机和高压发电机。
此系统有两个优点:一省油,二增加驾驶娱乐。
其原因在于:第一,电子电机在高消耗的加速阶段为发动机提供相应的动力,驾驶员从发动机和电子电机这两个主要的部件中协调获得动力。
此Hybrid模块同样装备有Start-stop功能,此功能在车辆停止的时候,例如在交通灯状态下,自动熄火。
当它需要驾驶时,电子电机自动启动发动机而不会让使用者感觉到。
当车辆减速时,电子电机起高电压发电机的作用,而且能够通过“再生制动”过程恢复制动能量。
2009年夏季投放市场的奔驰S400 HYBRID是梅赛德斯-奔驰的首款混合动力轿车,其搭载带有紧凑混合动力模块的增强型3.5 L V6汽油发动机。
该款车型的发动机可产生205 kW的输出功率,电动机可产生15 kW的功率和160 N?m的起动扭矩,这使得发动机实现了220 kW的综合功率和385 N?m的最大综合扭矩。
该车按照新欧洲行驶循环工况(NEDC)测量的综合燃油消耗量为7.9 L/100 km,CO2排放量仅为186 g/km。
采用混合动力驱动技术使该车的动力性与环保性的矛盾得到化解,打破了只有小排量汽车才能实现环境保护的定论。
奔驰S400混合动力系统介绍20
S 400 HYBRID
S400混合动力车型概述
S 400 HYBRID于2009年夏季开始投放 市场,是梅赛德斯-奔驰的首款混合动力驱 动轿车,也是全球配备火花点火发动机的 最经济的豪华型轿车,其发动机为带有紧 凑混合动力模块的增强型V6汽油发动机。
S400混合动力车型概述
S400混合动力系统部件概述
DC/DC 转换器模块 N83/1
3 DC/DC 转换器模块 N83/1 3/1 高电压插头连接 3/2 DC/DC 转换器控制单元的插头连接 4 电路 30 的螺纹连接 A 冷却液入口 B 冷却液回流
S400混合动力系统部件概述
• DC/DC 转换器模块位于右前轮罩的后部。 • DC/DC 转换器控制单元是一个双向直流变压器,
• 通过仪表多功能显示屏观察车载电源能量 储备状况:使用多功能方向盘上的 或 箭 头按钮选择里程菜单。使用多功能方向盘 上的 或 箭头按钮选择混合动力菜单。
混合动力系统电量显示功能
混合动力系统电量显示功能
• 通过COMAND系统“车辆”菜单中选择 “混合动力系统”子菜单观察车载电源能 量储备状况:
• DC/AC控制模块是高电压线束的部件,其中包括 高电压保险丝盒 F70和相关的高压导线。如果线 束中的其中一个部件发生故障,则必须更换所有 部件。
• DC/AC控制单元通过三相交流电压促动电动机 (A79)。
• 电力电子控制单元通过传动系统CAN I 与车辆的 控制器区域网络CAN相连,并与其它控制单元交 换数据。
S400混合动力车型概述
S 400 HYBRID展现了豪 华性、动力性能、安全性和 环境保护之间的和谐统一。
S400混合动力车型概述
HYBRID 以实用为导向的混合动力技术
HYBRID:以实用为导向的混合动力技术时间:2010-03-26 00:21出处:爱卡汽车【转载】(有1个网友参与评论)字号:小大作为“通往零排放之路”的第二个阶段,梅赛德斯-奔驰开发了以实用为导向的模块化混合动力系统,以进一步提升车辆动力系统在日常使用中的工作效率。
其标准部件能够根据性能和应用范围,提供众多的扩展方式:不同水平的混合动力模块、以及能够适应最大排量汽油机和柴油机的蓄电池。
与发动机一样,所有混合动力模块都兼容7G-TRONIC7速自动变速器。
而在此基础上,无论是弱混合动力,还是可以通过全电力运行的强混合动力,梅赛德斯-奔驰均力求完美。
插电式混合动力代表了混合动力技术发展的下一个阶段。
在插电式混合动力中,蓄电池可以通过普通家用插座进行充电,从而增加车辆在电力驱动下行驶的里程。
通过混合动力模块化系统,梅赛德斯-奔驰在环保技术、车辆行驶经济性、安全性和乘坐舒适性方面树立了行业新标准。
从2009年夏季开始,梅赛德斯-奔驰成为第一家提供混合动力轿车(S 400 HYBRID)的欧洲汽车制造商。
作为第一款应用最先进锂离子电池技术的量产型混合动力轿车,S 400 HYBRID被称为全球最节油的汽油发动机豪华轿车。
S 500插电式混合动力轿车展现了梅赛德斯-奔驰模块化混合动力系统的领先成就。
这款车在完全电动驱动的情况下可以行驶30公里,实现完全的零排放行驶,其标准油耗仅为3.2升/100公里,二氧化碳排放量仅为74克/公里。
在缔造出色的燃油经济性的同时,S 500插电式混合动力轿车亦秉承了传统S级轿车的顶级舒适性、安全性和优越的动力性能。
在V6汽油直喷发动机、混合动力模块、以及高压锂离子电池组的共同作用下,S 500插电式混合动力轿车从0-100公里/小时的加速时间仅为5.5秒。
S 500插电式混合动力轿车的创新性驱动系统将在下一代S级之中面市。
此外,在刚刚结束的日内瓦车展中,梅赛德斯-奔驰的首款柴油混合动力车E 300 BlueTEC HYBRID首度揭下神秘面纱。