第一节频率特性的基本概念资料重点

合集下载

精品文档-自动控制原理(第二版)(千博)-第5章

精品文档-自动控制原理(第二版)(千博)-第5章
24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图

1第一节频率特性的基本概念newPPT课件

1第一节频率特性的基本概念newPPT课件
频率特性为:G (j)x y((jj ))(j)23 1(j)4
Rmቤተ መጻሕፍቲ ባይዱ
() G( j)
9/15/2020
8
上述分析表明,对于稳定的线性定常系统,加入一个正弦信
号,它的稳态响应是一个与输入同频率的正弦信号,稳态响
应与输入不同之处仅在于幅值和相位。其幅值放大了
A()|G(j)|倍,相位移动了() G(j)。 A() 和
() 都是频率的函数。
9/15/2020
9
定义稳态响应的幅值与输入信号的幅值之比 Ym A()|G(j)|
若系统稳定,则极点都在s左半平面。当 t,即稳态时:
e p 1 t 0 , e p 2 t 0 , , e p n t 0
ys(t)kc1ejtkc2ejt
式中,kc1, kc2 分别为:
kc1Y(s)s(j)|sjG(s)(sR m j(s) s(jj ))sjRmG2( jj)
kc2Y(s)s(j)|sjG(s)(sR m j(s) s(jj ))sjRmG 2(jj)
Y(j )Ymej(yx)A ( )ej() R (j ) R m
可见,频率特性就是输出、输入正弦函数用矢量表示时之比。
表示线性系统在稳态情况下,输出、输入正弦信号之间的数学 关系。是频率域中的数学模型。
9/15/2020
12
[结论]:当传递函数中的复变量s用jw 代替时,传递函数就转变
为频率特性。反之亦然。
y s( t) k c 1 e j t k c 2 e j t A ()R m e j( t ( )2 )j e j( t ( ))
A () R m si t n ()( Y ) m si t n ()()
式中:Rm 、Ym分别为输入、输出信号的幅值。

《频率特性》课件

《频率特性》课件

通信系统
通信系统的频率特性决定了信号传输的质量和效率,如调频(FM )和调相(PM)通信。
音频处理
在音频处理中,频率特性用于音频信号的分析、合成和编辑,实现 音频的降噪、均衡和混响效果。
振动控制
在振动控制中,频率特性用于分析机械系统的固有频率和阻尼比, 优化系统的动态性能。
02
频率特性的基础知识
傅里叶变换
解析法
总结词
利用数学解析方法直接求解系统的频 率特性。
详细描述
解析法是一种理论分析方法,通过数 学解析方法直接求解系统的频率响应 。解析法可以获得系统频率特性的精 确解,但需要较强的数学基础和技巧 。
04
频率特性的测量技术
频谱分析仪
1
频谱分析仪是一种常用的测量频率特性的工具, 它可以测量信号的幅度和频率,以及信号的谐波 失真和调制特性等参数。
要定性和性能优化的关 键因素。
要点二
详细描述
在控制系统中,系统的频率特性决定了系统的动态响应和 稳定性。通过分析控制系统的频率特性,可以了解系统的 稳定性和性能优化的潜力。此外,控制系统的频率特性也 是实现系统抗干扰和噪声抑制的重要手段。
THANKS
感谢观看
信号接收器是一种用于接收和测量信号的设备, 它可以测量信号的幅度、频率、相位等参数。
信号发生器和信号接收器通常配合使用,可以对 电子设备进行全面的测试和评估。
05
频率特性的应用实例
通信系统中的频率特性
总结词
通信系统中的频率特性是实现信号传输和接收的关键因素。
详细描述
在通信系统中,信号的传输和接收依赖于频率特性。信号的调制和解调过程需要利用不同频率的信号 特性来实现信号的频谱搬移,从而实现在信道中的有效传输。此外,频率选择性衰落和多径效应等频 率特性也影响信号的传输质量。

电气自动控制原理与系统(第三版)

电气自动控制原理与系统(第三版)

比例环节的波德图
(2)对数相频特性 由于υ(ω)=0,因此其对数相 频特性曲线是一条与横轴重合的水平线。
图4-3 比例环节 的Bode图
积分环节的波德图
1.传递函数
2.频率特性
1 G ( s) is
G( j )
1 j i
j
1
i

1
i
e
j
π 2
(4-10) (4-11) (4-12)
• 对比积分环节对数频率特性公式可知,它们之间仅 差一个负号,因此它们的Bode图对称于横轴。即对 数幅频特性L(ω )为一条斜率为20dB/dec的直线。 当τ d=1时(理想微分环节),该直线通过横轴 ω =1处。 • 当τ d≠1时,该直线通过横轴ω =1/τ d处。由于对 数相频特性φ (ω )=π /2,因此对数相频特性曲 线是一条通过纵轴φ (ω )=π /2处、与横轴平行 的直线。
惯性环节的波德图
惯性环节相移计算表
ωτ 0.1 0.25 -14.1 0.4 0.5 1.0 -45 2.0 2.5 4.0 10.0 -84.3 相移/(°) -5.7 -21.8 -26.6 -63.4 -68.2 -75.9
第四章自动控制系统的频域分析法
主要内容
• • • • • • • 第一节 频率特性的基本概念 第二节 典型环节的博德图 第三节 控制系统开环博德图的绘制 第四节 对数频率稳定判据与稳定裕量 第五节 典型系统的开环博德图与频域指标 第六节 开环频率特性与阶跃响应之间的关系 本章小结
电气自动控制原理与系统 第3版
惯性环节的波德图
惯性环节对数幅频特性误差修正表
τω 误差/dB 0.1 -0.04 0.25 -0.32 0.4 -0.65 0.5 -1.0 1.0 -3.0 2.0 -1.0 2.5 -0.65 4.0 -0.32 10.0 -0.04

自动控制第四章

自动控制第四章

Nyquist步骤:1 2 3 频率特性
幅频 G ( jw ) =
1 1+w 2T 2
w 0,幅值,相角
w ,幅值,相角
与实轴或虚轴的交点
幅相特性(Nyquist)
Re
相频 G( jw)=-arctg(wT)
2 wn ⑹ 振荡环节 G( s) 2 2 s 2wn s w n w 2 1 ( ) wn U (w ) w 2 2 w 2 2 [1 ( ) ] 4 ( ) wn wn w 2 wn V (w ) w 2 2 w 2 [1 ( ) ] 4 2 ( ) wn wn
一、典型环节的奈氏图
⑴ 比例环节 G( s) K ⑵ 微分环节 G( s ) s
1 ⑶ 积分环节 G ( s ) s
G( jw ) K G ( jw ) jw
幅值相角
G K G 0 G w G 90 G 1 w G 90
G 1
奈氏图
1 G( jw ) jw
0.237 76
G
G ( j )
2(2 j ) 0 j 0 0 90 2 2 2
证明:惯性环节 G ( jw )
G ( jw )
1 1 jwT的幅相特性为半圆
1 1 jw T X jY 2 2 1 jw T 1 w T
G( j 0.6) 0.92 j 0.27 0.959 16.4 G( j1) 0.8 j 0.4 0.804 26.6 G( j 2) 0.5 j 0.5 0.707 45 G( j 4) 0.2 j 0.4 0.447 63.4 G( j8) = 0.06 - j 0.24

频率特性的基本概念

频率特性的基本概念

•表1-1 RC网络的幅频特性和相频0.707 0.45 0.196 0
() 0
45 63.4 78.69 90
图1-2 RC网络的幅频和相频特性 图1-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包括对数幅频特性 和对数相频特性两条曲线,其中,幅频特性曲线可以表示 一个线性系统或环节对不同频率正弦输入信号的稳态增益; 而相频特性曲线则可以表示一个线性系统或环节对不同频 率正弦输入信号的相位差。对数频率特性图通常绘制在半 对数坐标纸上,也称单对数坐标纸。
(3)利用对数运算可以将幅值的乘除运算化为加减运算, 并可以用简便的方法绘制近似的对数频率幅相特性,从而 大大简化系统频率特性的绘制过程。
自动控制原理
来求取。 (3)通过实验所测数据,进行分析求取。
G( j) G(s) s j
1.2频率特性的图形表示方法
频率特性函数最常用的两种图形表示 方法,分别为极坐标图和对数频率特 性图。
极坐标图,又称奈奎斯特图、幅相频 率特性图,其特点是将频率 作为参 变量。
当正弦信号的频率 由0 变化时, 系统频率特性向量的幅值和相位也随 之作相应的变化,其端点在复平面上 移动而形成的轨迹曲线称为幅相曲线, 其中曲线上的箭头表示频率增大的方 向。
自动控制原理
频率特性的基本概念
1.1频率特性的定义 频率特性反映了系统的频率响应与正弦
输入信号之间的关系。
图1-1 RC网络
控制系统频率特性的求解方法具有如下三种途径: (1)根据已知的系统方程,输入正弦函数求出其稳态解, 而后求解输出稳态分量和输入正弦信号的复数比。 (2)根椐系统传递函数,利用表达式
对数幅频特性图是表示环节的对数幅值 L() 20lg A()和频率 的关系曲线。

自动控制原理 第五章第一节频率特性的基本概念

自动控制原理 第五章第一节频率特性的基本概念

《自动控制原理》第五章线性系统的频域分析与校正西北工业大学自动化学院1.频率特性的基本概念2. 幅相频率特性(Nyquist图)3. 对数频率特性(Bode图)4.频域稳定判据5. 稳定裕度6. 利用开环频率特性分析系统的性能7.利用闭环频率特性分析系统的性能8.频率法串联校正频域分析法特点(1)研究稳态正弦响应的幅值和相角随输入信号频率的变化规律(2)由开环频率特性研究闭环系统的性能(3)图解分析法(4)有一定的近似性5.1 频率特性的基本概念RC 电路如图所示,u r (t )=A sin ωt , 求u c (t )=?建模[]r c=+CR 1U s U ()1()()CR 1c r U s G s ==U s s +例1 r c=+R u i u c=C i u r c c=+CR u u u 频率响应()()()c r s s =====+++T CR 111T CR 1T 11TU G s U s s s 0122222()c +=⋅=+++++1T 1T 1T C A ωC s C U s s s s s ωω02222lim →−==++1T T T 1T s A A C s ωωωω222=+1T A C ωω122-=+T 1T A C ωω222222222222()c ⎡⎤=⋅+⋅−⋅⎢⎥+++++++⎣⎦T 11T 1T 1T 1T 1T 1T A A s U s s s s ωωωωωωωωωRC 电路如图所示,u r (t )=A sin ωt , 求u c (t )=?例1 []T 2222T ()sin cos cos sin 1T 1Tt c A A u t e t t ωωαωαωω−=+⋅−⋅++22−=++T T 1Tt A e ωω频率响应:线性系统稳态正弦响应的幅值、相角随输入频率的变化规律。

22()sin(-arctan T)1T s A c t t ωωω=+()sin r t A tω=RC 电路频率特性G (j ω)的定义:()()()=∠j j j G G G ωωω()sin r t A t ω=22()sin(-arctan T)1T s A c t t ωωω=+22()()()==+s 1j 1T c t G r t ωωs ()()()arctan ∠=∠−∠=−j T G c t r t ωω幅频特性相频特性频率特性的获取方法:()()==j j s G G s ωω=−221arctan T 1T ωω∠+=∠++111j T 1j T ωω1=1+j T ωj 1T 1s ωs =+()sin r t A t ω=22()sin(-arctan T)1T s A c t t ωωω=+系统模型间的关系总结()()()=∠j j j G G G ωωωs 22()()()==+1j 1T c t G r t ωωs ()()()∠=∠−∠=−j arctan T G c t r t ωωG(j ω)的定义:G(j ω)的获取方法:()()==j j s G G s ωω感谢聆听,下节再见。

第一节频率特性的基本概念

第一节频率特性的基本概念
此外,在验证推导出的传递函数的正确性时,也往往用它 所对应的频率特性同测试结果相比较来判断。
2019/9/29
频率分析法--频率特性的基本概念
11
定义稳态响应的幅值与输入信号的幅值之比 Cm A( ) | G( j ) |
为系统的幅频特性,它描述系统对不同频率输Rm入信号在稳态时
的放大特性;
定义稳态响应与正弦输入信号的相位差() G( j) 为系统
的相频特性,它描述系统的稳态响应对不同频率输入信号的相
频率特性与传递函数的关系为:
G( j ) G(s) |s j
由于这种简单关系的存在,频率响应法和利用传递函数的时域 法在数学上是等价的。
2019/9/29
频率分析法--频率特性的基本概念
13
[结论]:当传递函数中的复变量s用 j代替时,传递函数就转变
为频率特性。反之亦然。
到目前为止,我们已学习过的线性系统的数学模型有以下
u i(t)
R C
u o(t)
G(s) Ui (s) 1 Uo (s) Ts 1
式中,T=RC,为电路的时间常数,单位为s。
若向电路输入一个振幅为Ui、角频率为ω的正弦信号,即 ui (t) Ui sin t (5-1)
当初始条件为0时,输出电压的拉氏变换为
U
o
(s)

1 Ts
U 1
s j

RmG( j )
2j
2019/9/29
频率分析法--频率特性的基本概念
10
而 G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )

第六章 控制系统的频率特性

第六章 控制系统的频率特性

第六章 控制系统的频率特性采用频率特性法原因: (1) (2) (3)第一节 频率特性的基本概念一.概念 1.频率响应:指控制系统对正弦输入信号的稳态正弦输出响应。

例:如图所示的机械系统,K 为弹簧刚度系数,单位N/m ,C 是阻尼系数,单位m/s.N,当输入力为正弦信号f(t)=Fsinwt 时,求其位移x(t)的稳态响应解:列写力平衡方程)()()(t f t kx dtt dx C =+其传递函数为:11111)()()(+=+=+==Ts K s KC K K Cs s F s X s Gx (t )tF t f ωsin )(=22)(ωω+=s F s F输出位移)()()(s F s G s X =2232122111ωωω++++=+⋅+=s K s K Ts k s F s KCKTt e T KF T T arctg t T K Ft x -++-+=22221)sin(1)(ωωωωω上式中第一项为稳态分量,第二项为瞬态分量,当时间t 趋向于无穷大时为零。

系统稳态输出为:)](sin[)](sin[)()sin(1)(22ωϕωωϕωωωωω+=+⋅=-+=t X t F A T arctg t T K Ft x其幅值为:2)(11)()(ωωωT K F X A FA X +===相位为:T arctg ωωϕ-=)(从上式的推导可以看出,频率响应是时间响应的一种特例。

正弦输入引起的稳态输出是频率相同的正弦信号,输入输出幅值成比例)(ωA ,相位)(ωϕ都是频率ω的函数,而且与系统的参数c,k 有关。

二 频率特性及其求解方法 1.频率特性:指线性系统或环节在正弦函数作用下,稳态输出与输入幅值比)(ωA 和相位差)(ωϕ随输入频率的变化关系。

用)(ωj G 表示。

)()]([)(Im Im )()()(ωϕωωϕωωωj tj t j eA eF eX t f t x j G ===+2)(11)()(ωωωT K F X j G A +===T arctg j G ωωωϕ-=∠=)()()(ωj G 称为系统的频率特性,其模)(ωA 称为系统的幅频特性,相位差)(ωϕ称为相频特性2.频率特性求解 (1)根据已知系统的微分方程或传递函数,输入用正弦函数代入,求其稳态解,取输出和输入的复数比(2)根据传递函数来求取 (3)通过实验测得令传递函数中的ωj s =则得到频率表达式)(ωj G ,又由于)(ωj G 是一个复变函数,可在复平面上用复数表示,分解为实部和虚部,即:)()()()()(w j e w A w jV w U jw G ϕ=+=)(cos )()(w w A w U ϕ= )(sin )()(w w A w V ϕ=)()()(22w V w U w A += )()()(w U w V arctg w =ϕ例:某闭环系统传递函数为237)(+=s s G ,当输入为)4532sin(71 +t 时,试求系统稳态输出。

理解频率特性的概念(精)

理解频率特性的概念(精)
A( ) 20 lg 1 T 2 2
A( )
1 W (s) Ts 1 1 W ( j ) j
1
对数幅频特性:L( ) 20 lg
惯性环节W(jω)
W(s) =
φ(ω) = -tg-10.5 ω
1 0.5s+1 A(ω)=
1 0.25 ω2+1
ω
0 0
1
0.5
0.97
1
2
4
5
8
20
φ o(
ω) A(ω)
-14.5 -26.6 -45 -63.4 -68.2 -76 -84
0.89 0.71 0.45 0.37 0.24 0.05
Re[G(jω)] 1 j Im[G(jω)]
0
惯性环节L(ω)
1 ① W(s)= 0.5s+1
L(ω)dB 40 26dB 20
L(ω)dB 40 20 0dB -20 -40
0.1 0.2
1
2
10 20
ω 100
[-40]
1 20 lg Am 20 lg 8.14dB 2 2 1
r n 1 2 1.92
2
振荡环节再分析
L(ω)dB
1 20 lg 2 (0<ξ <0.707) 2 1
0.1 0.2
-40
三、微分环节 纯微分环节的传递函数: 频率特性: 幅频特性: 相频特性:
W ( s) s
W ( j ) j e
j

2
A( ) ) 20 lg
对数幅频特性:
纯微分环节的奈氏图
纯微分环节的Bode图
wj曲线与10的等n圆相交表明在这个频率处闭环系统的相角为10依此类推得闭环相频特对于二阶系统其频域性能指标和时域性能指标之间有着严格的数学关系二阶系统的闭环传递函数为系统的闭环频率特性为系统的闭环幅频特性为系统的闭环相频特性为58系统动态特性和闭环频率的关系arctg谐振峰值mr和时域超调量之间的关系二阶系统的超调量谐振峰值mr由此可看出谐振峰值mr仅与阻尼比有关超调量也仅取决于阻尼比越小mr增加的越快这时超调量也很大超40一般这样的系统不符和瞬态响应指标的要求当040707时mr与的变化趋势基本一致此时谐振峰值mr1230系统响应结果较满意0707时无谐振峰值mr与的对应关系不再存在通常设计时取在04至07之间与峰值时间tp的关系tp与之积为由此可看出当为常数时谐振频率与峰值时间tp成反比与ts之积为由此可看出当阻尼比给定后闭环截止频率频域分析法是一种图解分析法频率特性是系统的一种数学模型

5.1 频率特性的基本概念

5.1  频率特性的基本概念

第5章 频率响应分析法在第三章中,介绍了控制系统的时域分析法。

利用微分方程式求解系统时域响应,可以看出输出量随时间的变化,比较直观。

但是用解析方法求解系统的时域响应比较麻烦,系统越复杂,微分方程的阶次越高,求解就越加困难。

因此,发展了其它一些分析控制系统的方法,其中频率响应分析法就是研究控制系统的一种广为采用的工程方法。

根据系统的频率特性能间接地揭示系统的动态特性和稳态特性,可以简单迅速地判断某些环节或者参数对系统动态特性和稳态特性的影响,并能指明改进系统的方向。

频率响应分析法具有以下特点:(1)频率特性物理意义明确,控制系统及其元部件的频率特性可以用分析法和实验方法来确定,并可用多种形式的曲线表示,利于采用图解法进行系统分析与综合。

(2)对于一阶系统和二阶系统,频域性能指标和时域性能指标有确定的对应关系;对于高阶系统,两者也存在近似对应关系。

(3)应用频域稳定性判据,可以根据系统的开环频率特性研究闭环系统的稳定性,而不必求解系统的闭环特征方程式。

(4)控制系统的频域设计可以兼顾动态响应和噪声抑制两方面的要求。

(5)频率响应分析法不仅适用于线性定常系统,还可以推广应用于某些非线性系统。

本章介绍频率特性的基本概念、典型环节和系统的频率特性、频率域稳定判据、系统的相对稳定性、系统的闭环频率特性和系统性能的频域分析方法。

5.1 频率特性的基本概念5.1.1 频率特性的定义首先我们用一个简单的电路说明频率特性的基本概念。

图5-1所示电路为一个RC 网络,其微分方程为122u u dtdu T =+ (5-1) 式中RC T =。

网络的传递函数为11)()()(12+==Ts s U s U s G (5-2)若电路的输入为正弦电压,即t A u ωs i n 1=则由式(5-2)可得221211)(11)(ωω+⋅+=+=s A Ts s U Ts s U对上式进行拉普拉斯反变换,可得电容两端的输出电压为)arctan sin(1122222T t TA e T T A u T t ωωωωω-+++=- 上式中第一项是输出电压的瞬态分量,第二项是稳态分量。

控制系统的频率特性

控制系统的频率特性

第四章控制系统的频率特性本章要点本章主要介绍自动控制系统频域性能分析方法。

内容包括频率特性的基本概念,典型环节及控制系统Bode图的绘制,用频域法对控制系统性能的分析。

用时域分析法分析系统的性能比较直观,便于人们理解和接受。

但它必须直接或间接地求解控制系统的微分方程,这对高阶系统来说是相当复杂的。

特别是当需要分析某个参数改变对系统性能的影响时,需反复重新计算,而且还无法确切了解参数变化量对系统性能影响的程度。

而频率特性不但可以用图解的方法分析系统的各种性能,而且还能分析有关参数对系统性能的影响,工程上具有很大的实用意义。

第一节频率特性的基本概念一、频率特性的定义频率特性是控制系统的又一种数学模型,它是系统(或元件)对不同频率正弦输入信号的响应特性。

对线性系统,若输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但是输出信号的幅值和相位一般不同于输入量,如图4-1。

若设输入量为r(t)=A r sin(ωt+υr)其输出量为c(t)=A c sin(ωt+υc)若保持输入信号的幅值A r不变,改变输入信号的角频率ω,则输出信号的角频率也变化,并且输出信号的幅值和相位也随之变化。

横坐标表示角频率ω,单位为弧度/秒(rad/s),按lgω均匀分度,但对ω而言是不均匀的,纵坐标表示υ(ω),单位为度(o),均匀分度,如图4-4所示。

图4-3 Bode图坐标系2)对数相频特性υ(ω) υ(ω)为一条-90o 的水平直线。

如图4-5所示。

图4-5 积分环节的Bode图2)对数相频特性υ(ω) υ(ω)为一条90o 的水平直线。

图4-6 理想微分环节的Bode图点,然后用一条光滑曲线与渐近线连接起来,就得到精确曲线。

图4-7 惯性环节的Bode图图4-8 比例微分环节的Bo0de图nω图4-9 振荡环节的Bode图计算表明,在ω=ωn处,当0.4<ξ<0.7时,误差小于3dB,可以不对渐近线进行修正;但当ξ<0.4或ξ>0.7时,误差较大,必须对渐近线进行修正。

2.9.1频率特性的概念

2.9.1频率特性的概念

教学内容2.9放大电路的频率特性2.9.1 频率特性的基本概念
2.9.2 三极管的高频小信号模型及高频参数
2.9.3 放大电路高频区频率特性
2.9.4 放大电路低频区频率特性
基本概念
◆频率特性、幅频特性、相频特性
◆频率失真、幅频失真、相频失真
◆线性失真、非线性失真
◆高频区/中频区/低频区增益
◆上限截止频率、下限截止频率
2.9.1频率特性的基本概念
1、频率特性的定义
放大电路的放大倍数与输入信号频率之间的关系。

u u ()() ()
A f A f f ϕ=∠幅频特性相频特性幅频失真相频失真
频率特性u i ω
ω13ω1
合成波ω
ω13ω1
合成波
u o 线性失真电路中线性电抗元件引起的
2、频率失真
2.9.1
频率特性的基本概念
(2)内因:放大电路中有电抗器件。

3、产生频率失真的原因
①耦合电容:
是人为引入的,
电容值较大,有几微法到几十微法;输入电容与输入信号串联,输出电容与输出端串联在电路中。

(1)外因:输入信号一般不是单一频率的正弦信号。

电容分为两类:
②极间电容:是随着三极管的制造产生的电容效应,
电容值较小,只有几皮法到几十皮法;分别是相当于并联在发射结和集电结上。

有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同之处仅在于幅值和相位。其幅值放大了 A() | G( j) | 倍, 相位移动了 () G( j) 。 A( ) 和 ( ) 都是频率的函数。
Monday, October 19, 2020
7
定义稳态响应的幅值与输入信号的幅值之比 Cm A( ) | G( j ) |
为系统的幅频特性,它描述系统对不同频率输Rm入信号在稳态时
A() P2 () Q2 ()
() tg 1 Q() P( )
频率特性与传递函数的关系为:
G( j ) G(s) |s j
由于这种简单关系的存在,频率响应法和利用传递函数的时域 法在数学上是等价的。
Monday, October 19, 2020
9
[结论]:当传递函数中的复变量s用 j代替时,传递函数就转变
第五章 控制系统的频率法分析
Monday, October 19, 2020
1
本章主要内容
频率特性的基本概念 频率特性的对数坐标图 频率特性的极坐标图 奈魁斯特稳定判据 稳定裕度 闭环系统的性能分析
Monday, October 19, 2020
2
第一节 频率特性的基本概念
Monday, October 19, 2020
为频率特性。反之亦然。
到目前为止,我们已学习过的线性系统的数学模型有以下
几种:微分方程、传递函数、脉冲响应函数和频率特性。它们
之间的关系如下: 微分方程
j d
dt
频率特性
s d dt
传递函数
s j
L{g(t)} L1{G(s)}
脉冲函数
Monday, October 19, 2020
10
从另一方面,若线性系统在正弦信号输入作用下,在稳态 情况下,输入输出都是正弦函数,可用矢量表示:
s j
RmG( j )
2j
Monday, October 19, 2020
6
而 G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
kc1
Rm 2j
R( j ) Rme jx ,C( j ) Cme jy C( j ) Cm e j( y x ) A( )e j ( ) R( j ) Rm
可见,频率特性就是输出、输入正弦函数用矢量表示时之比。
表示线性系统在稳态情况下,输出、输入正弦信号之间的数学 关系。是频率域中的数学模型。
Monday, October 19, 2020
3
考察一个系统的好坏,通常用阶跃输入下系统的阶跃响应 来分析系统的动态性能和稳态性能。
有时也用正弦波输入时系统的响应来分析,但这种响应并 不是单看某一个频率正弦波输入时的瞬态响应,而是考察频率 由低到高无数个正弦波输入下所对应的每个输出的稳态响应。 因此,这种响应也叫频率响应。
频率响应尽管不如阶跃响应那样直观,但同样间接地表示 了系统的特性。频率响应法是分析和设计系统的一个既方便又 有效的工具。
G( j) P() jQ() 这里 P() Re[G( j)] 和 Q() Im[G( j)] 分别称为系统的实
频特性和虚频特性。
Monday, October 19, 2020
8
幅频特性、相频特性和实频特性、虚频特性之间具有下列
关系:
Байду номын сангаасP() A() cos()
Q() A() sin()
e p1t 0, e p2t 0,..., e pnt 0
cs (t) kc1e jt kc2e jt
式中,kc1, kc2 分别为:
kc1
C(s)(s
j
)
|s
j
G(
s)
(
Rm ( s j
s )(s
j ) j
)
s j
RmG( 2j
j )
kc2
C(s)(s
j ) |s j
G(s) Rm(s j) (s j)(s j)
11
[例子]:设传递函数为:G(s)
y(s) x(s)
s2
1 3s
4
微分方程为:y(t)
x(t)
d2 dt 2
1 3 d
dt
, 4
d 2 y(t) dt 2
3 dy(t) dt
4 y(t)
x(t)
频率特性为:G( j)
式中, p j , j 1,2,..., n为极点。
若: r(t)
Rm sint,则R(s)
Rm s2 2
(s
Rm j)(s
j )
则:C(s)
N (s)R(s)
N (s)
Rm
(s p1)(s p2 )...(s pn ) (s p1)(s p2 )...(s pn ) (s j )(s j )
k1 k2 ... kn kc1 kc2
s p1 s p2
s pn s j s j
Monday, October 19, 2020
5
拉氏反变换为: c(t) k1e p1t k2e p2t ... kne pnt kc1e jt kc2e jt
若系统稳定,则极点都在s左半平面。当 t ,即稳态时:
A( )e j ( ) , kc2
Rm 2j
A( )e j ( )
cs (t)
kc1e jt
kc2e jt
A( ) Rm
e j(t ( ))
e j(t ( )) 2j
A()Rm sin(t ()) Cm sin(t ())
式中:Rm 、Cm分别为输入输出信号的幅值。
上述分析表明,对于稳定的线性定常系统,加入一个正弦信号, 它的稳态响应是一个与输入同频率的正弦信号,稳态响应与输入
的放大特性;
定义稳态响应与正弦输入信号的相位差() G( j) 为系统
的相频特性,它描述系统的稳态响应对不同频率输入信号的相
位移特性;
幅频特性和相频特性可在复平面上构成一个完整的向量G( j), G( j) A()e j() ,它也是 的函数。G( j) 称为频率特性。
还可将 G( j )写成复数形式,即
Monday, October 19, 2020
4
一、频率特性的定义: 系统的频率响应定义为系统在正弦作用下稳态响应的振幅、
相位与所加正弦作用的频率之间的依赖关系。
对于一般的线性定常系统,系统的输入和输出分别为r(t)和 c(t),系统的传递函数为G(s)。
G(s) C(s)
N (s)
R(s) (s p1)( s p2 )...( s pn )
相关文档
最新文档