粗糙集理论(Rough Set Theory RST) 共39页
模糊粗糙集理论介绍和研究综述

Ξ 收稿日期:2006-03-10作者简介:姚红霞(1979-),女,硕士研究生,主要从事粗糙集理论和模糊集理论研究.【数理科学】模糊粗糙集理论介绍和研究综述Ξ姚红霞(西北师范大学数学与信息科学学院,兰州 730070)摘要:回顾了粗糙集理论,引出了模糊粗糙集的产生背景,介绍了模糊粗糙集模型的一些主要概念和性质,并给出了模糊粗糙集属性重要性的定义,探讨了模糊粗糙集合的应用和发展现状.关 键 词:粗糙集;模糊集;模糊粗糙集中图分类号:TH164 文献标识码:A 文章编号:1671-0924(2006)08-0132-04I ntroduction to and Survey for the Studies of Fuzzy R ough Sets TheoryY AO H ong-xia(Department of Mathematics and In formation Sciences ,N orthwest N ormal University ,Lanzhou 730070,China )Abstract :This paper firstly reviews the theory of rough set and brings out the generation background aboutfuzzy rough sets ,secondly ,introduces the main concept and property of fuzzy rough sets and proposes its significance ,and finally ,discusses the application and recent studies for this theory.K ey w ords :rough sets ;fuzzy sets ;fuzzy rough sets0 引言 粗糙集(R ough Sets )理论最初是由波兰数学家Z.Pawlak 于1982年[1]提出的,是一种处理不完整和不确定性知识的数学工具[1-2].经过多年的发展,该理论已被成功的用于决策支持系统、人工智能、模式识别与分类、故障检测、金融、医学、知识发现、数据挖掘和专家系统等领域.但由于其严格的等价关系,限制了粗糙模型的发展和应用.针对这个问题,Dub ois 和Prade [3-4]提出模糊粗糙集的概念,作为粗糙集的一个模糊推广.模糊集理论首先是由美国控制论专家L ・A ・扎德(L.A.Z adeh )教授于1965年[5]提出的.也是一种处理模糊和不确定性知识的数学工具,它已成功的应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面.虽然2者都可以用来处理模糊和不确定问题,但2者的着眼点不同.粗糙集理论在处理模糊和不确定性问题方面着眼于知识的粗糙性,强调的是集合对象间的不可分辨性;而模糊集在处理不确定性问题时,主要着眼于知识的模糊性,强调的是集合边界的不分明性.由于这2种理论在处理不确定和模糊问题时具有一定的相似性,因此把它们结合起来的研究前景或许更有实际价值,Dubois 和Prade 是最早研究粗糙模糊集和模糊粗糙集问题的代表人物之一.当知识库中的知识模块是清晰概念,而被近似的概念是一个模糊概念时,就得到粗糙模糊集;当知识库中的知识模块是模糊概念,而被近似的概念是模糊概念时,则可得到模糊粗糙集.粗糙模糊集是模糊粗糙集的特殊情况,因此一般只讨论模糊粗糙集.于是根据问题的实际需要,在文献[3-4]中,用论域上的模糊关系代替分明的二元关系,提出模糊粗糙集合的概念,作为粗糙集合的模糊推广.第20卷 第8期Vol.20 No.8重 庆 工 学 院 学 报Journal of Chongqing Institute of T echnology2006年8月Aug.20061 粗糙集理论的发展 自1992年在波兰召开了RS理论的第一届国际学术会议以来,现在每年都召开以RS为主题的国际会议,大大推动了RS理论的发展.参加的成员主要来自波兰、美国、加拿大、日本、俄罗斯等国家.在Pawlak粗糙集模型中,等价关系是关键概念,等价类是构成上下近似结构的构造性知识块,用任意的二元关系取代等价关系,就得到Pawlak粗糙集模型的不同推广,即一般关系下的RS模型、变精度RS模型、概率RS模型、基于随机集的RS模型[9],而且在一个分明的,自反和传递关系下,一对上下近似算子正好是一个拓扑空间的内部封闭的算子[10-12].在RS集理论中,基本的运算符是近似的.对RS理论发展的研究至少有2种方法,即构造性方法和公理化方法.在构造性方法下,论域上的二元关系、论域的划分、领域体系、布尔代数都是最原始的概念.文献[1,13-15]用这些概念构造了下近似和上近似算子,构造性方法尤其对RS的实际应用有重要的实用价值.另一方面,公理化方法,是一种研究粗糙代数结构近似的,用上下近似算子作为最初的概念,在这种方法下,用一个公理化集合刻画的近似算子和用构造性方法产生的算子是一样[15-16].比较构造性和公理化这2种方法,对分明粗糙集最典型的公理化研究是文献[15],在文献[17]中,用不同的公理化集合刻画了不同类型的粗糙集代数.2 模糊粗糙集的产生背景 粗糙集理论最初和主要的研究采用的是构造性方法.在Z.Pawlak粗糙集模型中,等价关系是关键和原始的概念.然而,等价关系是一个过于严格的条件,其限制了粗糙集模型的一些主要应用.针对这个问题,文献[12-13,18]用非等价二元关系推广了粗集近似算子,这一成果的出现,引起了学术界研究其它不同类型近似算子的热潮.另一方面,用U上的一个等价关系,在模糊关系理论下,引入上下近似,就得到了一个推广的概念,称为粗糙模糊集[4,17,19],相反的,用模糊相似关系代替等价关系,就得到模糊粗糙集合[4-8,19].因此后来有很多模糊粗糙集合的类型,如基于模糊T相似关系的一般结构[21],基于U上弱模糊划分的结构[22-23],以及基于模糊集合上的布尔子代数[7],等等.3 模糊粗糙集合的基本概念和理论3.1 等价关系下的模糊粗糙集定义定义1[9] 设(U,R)是Pawlak近似空间,R是论域U 上的一个等价关系,若A是U上的一个模糊集合,则A关于(U,R)的一对下近似A R和上近似 A R定义为U上的一对模糊集合,其隶属度函数分别定义为:A R(x)=in f{A(y)|y∈[x]R},x∈U,A R(x)=sup{A(y)|y∈[x]R},x∈U,其中[x]R为元素x在关系R下的等价类.若A R= A R,则称A是可定义的,否则称A是模糊粗糙集(Fuzzy rough set).称A R是A关于(U,R)的正域,称 A R是A关于(U,R)的负域,称 A R∩( A R)为A的边界.3.2 一般关系下的模糊粗糙集合及其属性重要性定义2[24] 称I=(U,A)是一个决策表信息系统,若有:①U是一个非空对象集合;②A={C,D}是一个有限非空属性集合,其中C是条件属性的非空集合,D是决策属性的非空集合;③对每个属性a∈A,定义了一个从U到V a的映射: a:U→V a,其中V a是属性a的值集.定义3[25] 设U是一个非空集合,称U上的模糊二元关系是相似关系,当且仅当R是:①自反的:R(x,x)=1对所有x∈U;②对称的:R(x,y)=R(y,x),对所有x,y∈U,U上的每个条件属性子集决定了一个U上的相似关系;③传递的:R(x,y)∧R(y,z)ΦR(x,z),对所有x, y,z∈U.则称R是U上的一个等价关系.在文献[4-8]中,用论域上的模糊关系代替分明的二元关系,提出了模糊粗糙集合的概念,粗糙集合研究对象是分明的等价类,而模糊粗糙集合研究对象是模糊等价类.将论域U上的元素在相似关系下划分模糊等价类,以下记论域U上的模糊关系为S,对象x和y之间的相似度记为u s(x,y)=u s(y,x),它同样满足定义3的条件,即自反性:u s(x,x)=1;对称性u s(x,y)=u s(y,x);传递性u s (x,z)Εu s(x,y)∧u s(y,z).因此对对象x∈U的等价类[x]s定义为:u[x]s(y)=u s(x,y)定义4[26] 模糊P上近似和P下近似定义为:uP X(F i)=sup x min{u Fi(x),u X(x)}Πi. uPX(F i)=in f x max{1-u Fi(x),u X(x)}Πi.其中F i是属于U/P的模糊等价类,PΑA,XΑU,u X (x)是对象x属于U上的任意模糊集合X的程度,则称序对(u P X(F i),u PX(F i))为模糊粗糙集合.由于模糊上下近似的定义和分明的定义有一些差异,个体对象的隶属度的近似不是十分有用的,由于这个原因,模糊上下近似可以定义为:uP X(x)=sup F∈U/P min(u F(x),sup y∈U min{u F(y),u x (y)})uPX(x)=sup F∈U/P min(u F(x),in f y∈U max{1-u F(y),u x (y)})定义5[26] 条件属性C关于决策属性D的正域为:uPOSC(D)(x)=sup u CX(x) X∈U/D定义6[26] 根据模糊正域的定义,可以求出模糊粗糙集合条件下决策属性D对条件属性集合C的依赖性:331姚红霞:模糊粗糙集理论介绍和研究综述γC (D)=∑x∈U uPOSC(D)(x)|U|定义7 令C和D分别为模糊粗糙集的条件属性和决策属性集,属性子集C′ΑC关于D的重要性定义为:σCD(C′)=γC(D)-γC-C′(D)特别当C′={a}时,属性a∈C关于D的重要性为σCD(a)=γC(D)-γC-{a}(D).4 模糊粗糙集属性约简 为了对模糊粗糙集合进行属性约简,必须先对属性模糊化.在粗糙集合中,属性对应的等价类是普通集合,而在模糊粗糙集合中,属性对应的等价类是模糊集,因此,往往把属性的等价类划分过程称为属性模糊化过程.在粗糙集中,每个对象属于且仅属于一个等价类,在模糊粗糙集中,每个对象可以属于多个模糊等价类.为了进行属性约简,必须求出复合属性的模糊等价类,具体模糊化的过程见文献[26].在文献[17]中给出了模糊粗糙集基于属性依赖性的属性约简的降维算法和例子,在文献[24]中研究了一种面向连续属性空间的模糊粗糙约简算法.5 模糊粗糙集发展现状 在文献[4-8]中,用论域上的模糊关系代替分明的二元关系,提出了模糊粗糙集合的概念,作为粗糙集合的模糊推广.在RS集理论中,基本的运算符是近似.对RS理论发展的研究至少有2种方法,即构造性方法和公理化方法.因此对模糊粗糙集的研究很多也是建立在这2种方法上的.在文献[17]中研究了模糊粗糙集上的一系列公理化集合,但他们的研究局限与用模糊T相似关系定义的模糊T 粗糙集上,而当模糊关系退化为分明关系时,就是一般的等价关系.然而,到目前为止,对一般关系下模糊粗糙集公理化方法的研究还不是很多,在文献[21]中给出了公理化的模糊粗糙集模型,在文献[25]中运用构造性和公理化方法,给出了模糊粗糙集研究的一般结构.在构造性方法下,基于一个任意的模糊关系定义了一对一般关系下的模糊粗糙集上下近似算子,在公理化方法下,用不同的公理集合刻画了不同类型的模糊粗糙近似算子,这些公理保证了确定类型的模糊关系的存在产生相同的算子.在文献[28]中,应用扩展原理,定义了依靠模糊关联和模糊隐含算子的模糊粗糙集合,并考虑了3个常用的算子,即S-,R-,Q L-算子,用其定义了3种类型的模糊粗糙集,并讨论了各自的性质,使其更好的用于不完全和不确定信息系统.在文献[27]中,讨论了在有限论域上模糊粗糙集模型和模糊拓扑空间之间的关系,提出了模糊拓扑空间上的T C 公理,并证明了所有基于自反和对称模糊关系的上下近似集合包含了一个满足T C公理的模糊拓扑空间,并且相反的,一个满足T C公理的模糊拓扑空间正好是在自反和对称模糊关系下的所有的上下近似集合.即在所有自反和对称模糊关系下的集合和所有满足T C公理的模糊拓扑空间之间,存在一个一对一的关系.但这只是在有限论域情况下的结论,在无限论域上的还不确定成立,需要进一步探讨.粗糙集理论已经被广泛和成功的应用许多领域,主要是由于它能发现隐藏在数据中的事实,而不需要额外的如专家系统或者阈值之类的信息,能在无监督条件下,挖掘出数据库里的最小知识表示.但粗糙理论在应用过程中,主要的载体是信息表,信息表中的对象是处理和挖掘的对象,而信息表中的对象的属性值要么是分明的,或者是实值的,虽然连续的属性值可以通过属性离散化方法离散,但势必会丢失一些重要信息,而且在粗糙理论下,无法判断2个属性值是相似的,或者在某种扩展意义下是相同的.因此,针对这个问题,文献[29-30]用模糊粗糙集来解决这些不确定问题,并将这个理论用于网络数据分类和挖掘上,收到了很好的效果.文献[26]将其进行了推广和完善.目前,国外学者主要从不同角度考虑模糊粗糙集的性质,根据模糊集近似推理方式的不同,主要形成了从3种不同角度研究的模糊粗糙集:基于形式逻辑的模糊粗糙集,基于三角模的模糊粗糙集,基于-截集的模糊粗糙集.6 模糊粗糙集发展展望 虽然模糊粗糙集已经发展了十几年,但作为一种理论,它还有很多的不完善,尤其是目前研究属性约简的算法还是相当少,而属性约简在实际生活中具有重要的意义.今后,模糊粗糙集还有很大的发展空间,它可能更广泛的应用于数据挖掘,知识发现等重要领域.参考文献:[1] Pawlak Z.R ough[J].International Journal of C omputerand in formation Science,1982,11:341-356.[2] Pawlak Z.R ough sets:theoretical aspects of reas oning aboutdata[M].Boston:K luwer Academic Publishers,1991:66-90.[3] Dubois D,Prade H.R ough fuzzy sets and fuzzy rough sets[J].International Journal of G eneral System,1990,17:191-208.[4] Dubois D,Prade H.Putting rough sets and fuzzy sets to2gether[C]∥S lowinski R,Intelligent Decision Support.[S.l.]:K luwer Academic,D ordrecht,1992:203-232. [5] Z adeh L A.Fuzzy sets[J].In formation and C ontrol,1965(8):338-353.[6] Nakamura A.Fuzzy rough sets[J].N ote on Multiple-Val2ued Logic in Japan,1988,9(8):1-8.[7] Nanda S.fuzzy rough sets[J].Fuzzy Sets and Systems,1992(45):157-160.[8] Thiele H.on the definition of m odel operators in fuzzy logic[C]∥Proc.IS M V L-93.Sacramento,C A:[s.n.],1993:62-67.431重庆工学院学报[9] 张文修.粗糙集理论与方法[M].北京:科学出版社,2001.[10]K ortelainen J.on the relationship beween m odified sets,topological spaces and rough sets[J].Fuzzy Sets and Sys2tem,1994(61):91-95.[11]Y ao Y Y.T w o views of the theory of rough sets in finiteuni2verses[J].InternetJ.Approx.Reas ons,1996(15):291-317.[12]Y ao Y Y,Lin T Y.G eneralization of rough sets using m odallogics[J].Intell.Automat.S oft C omputer,1996(2):103-120.[13]K ryszkiewicz M.R ough set approach to incomplete in forma2tion systems[J].In formation Sciences,1998(112):39-49.[14]P omykala J A.Approximation operations in Approximationspaces[J].Bullerin of the P olish Academy of sciences:Mathmatics,1987(35):653-662.[15]Y ao Y Y.C onstrctive and algebraic methods of the theory ofrough sets[J].Journal of In formation Sciences,1998(109):21-27.[16]Lin T Y,Liu Q.R ough approximate operators:axiomaticrough sets theory[M]∥Z iarko W,R ough Sets,Fuzzy Setsand K nowledge Discovery.Berlin:S pringer,1994:256-260.[17]Pal S K.R oughness of a fuzzy set[J].In formation Sciences,1996(93):235-246.[18]Y ao Y Y.Relational interpretations of neighborhood opera2tors and rough set approximation operators[J].In formationSciences,1998(111):239-259.[19]Chakrabarty K,Biswas R,Nanda S.Fuzziness in rough sets[J].Fuzzy Sets And Systems,2000(110):247-251. [20]Y ao Y Y.C ombination of rough and fuzzy sets based on-level sets[C]∥Lin T Y,Cercone N.R ough Sets and DataMining:Analysis for Imprecise Data.Boston:K luwer Aca2demic Publishers,1997:301-321.[21]M orsi N N,Y akout M M.Axiomatics for fuzzy rough sets[J].Fuzzy sets And Systemss,1998(100):327-342. [22]Bodjanova S.Approximation of a fuzzy concepts in decisionmaking[J].Fuzzy Ses and Systems,1997(85):23-29.[23]K uncheva L I.Fuzzy rough sets:Application to feature selec2tion[J].Fuzzy Sets and System,1992(51):147-153. [24]聂作先,刘建成.一种面向连续属性空间的模糊粗糙约简[J].计算机工程,2005,31(6):88-90.[25]WeiZhi Wu,JuSheng Mi,WenX iu Zhang.G eneralized fuzzyrough sets[J].In formation Sciences,2003(151):263-282.[26]Richard Jensen,Qiang Shen.Fuzzy rough attribute reductinwith application to web categ orization[J].Fuzzy sets andSystem,2004(141):469-485.[27]K eyun Qin,Zheng Pei.On the topological properties of fuzzyrough sets[J].Fuzzy Sets and System,2005(151)601-613.[28]K erre E,E tienne A.Anna Maria Radzikowska[J].C om2parative study of fuzzy rough sets,2002(126):137-155.[29]Jensen R,Shen Q.A rough set-aided system for s ortingWWW bookmarks[M]∥Zhong N.Web Intelligence:Re2search and Development.[S.l.]:[s.n.],2001:95-105.[30]Jensen R,Shen Q.Fuzzy-rough sets for descriptive dimen2sionality reduction[C]∥Proc,11th Internat.C on f.onFuzzy Systems.[S.l.]:[s.n.],2002,29-34.(责任编辑 刘 舸)(上接第129页)systems with product recovery[J].C omputers&IndustrialEngineering,2004,46:431-441.[4] 陈秋双,刘东红.再制造系统的库存控制研究[J].南开大学学报:自然科学版,2003,36(3):67-72. [5] Inderfurth K.Optimal policies in hybrid manu facturing/re2manu facturing systems with product substitution[J].Inter2 national Journal of Production economics,2004,90:325-343.[6] 赵昱卿,王东,奚立峰.制造与再制造决策的优化[J].工业工程与管理,2003,8(2):18-21.[7] 厉以宁.西方经济学[M].北京:高等教育出版社,2000,33-37.[8] Petruzzi N,Dada M.Pricing and the new-vendor problem:A review with extension[J].Operations Research,1999,47(2):183-194.[9] Jinn-Tsair T eng,Chun-T ao Chang.Economic productionquantity m odels for deteriorating items with price and stock-dependent demand[J].C omputers&operations research, 2005(32):297-308.[10]G upate D,Arthur V H,T atiana Bouzdine-Chameeva.Apricing m odel for clearing end-of-seas on retail inventory [J].European Journal of Operational Research,2006(170):518-540.(责任编辑 刘 舸)531姚红霞:模糊粗糙集理论介绍和研究综述。
粗糙集理论RS

RS理论一、定义:粗糙集理论,是继概率论、模糊集、证据理论之后的又一个处理不确定性的数学工具。
它是当前国际上人工智能理论及其应用领域中的研究热点之一。
在自然科学、社会科学和工程技术的很多领域中,都不同程度地涉及到对不确定因素和对不完备(imperfect) 信息的处理。
从实际系统中采集到的数据常常包含着噪声,不够精确甚至不完整,对这些信息进行合适地处理,常常有助于相关实际系统问题的解决。
二、对比的理论:模糊集和基于概率方法的证据理论是处理不确定信息的两种方法,已应用于一些实际领域。
但这些方法有时需要一些数据的附加信息或先验知识,如模糊隶属函数、基本概率指派函数和有关统计概率分布等,而这些信息有时并不容易得到。
概率与统计、证据理论:理论上还难以令人信服,不能处理模糊和不完整的数据。
模糊集合理论:能处理模糊类数据,但要提供隶属函数(先验知识)。
RS理论与其他处理不确定和不精确问题理论的最显著的区别是:它无需提供问题所需处理的数据集合之外的任何先验信息,所以对问题的不确定性的描述或处理可以说是比较客观的。
由于这个理论未能包含处理不精确或不确定原始数据的机制,所以这个理论与概率论、模糊数学和证据理论等其他处理不确定或不精确问题的理论有很强的互补性。
三、不足:粗糙集理论还处在继续发展之中,尚有一些理论上的问题需要解决,诸如用于不精确推理的粗糙逻辑(Rough logic) 方法,粗糙集理论与非标准分析(Nonstandard analysis) 和非参数化统计(Nonparametric statistics)等之间的关系等。
四、由来:1982年波兰学者Z. Paw lak 提出了粗糙集理论——它是一种刻画不完整性和不确定性的数学工具,能有效地分析不精确,不一致(inconsistent)、不完整(incomplete) 等各种不完备的信息,还可以对数据进行分析和推理,从中发现隐含的知识,揭示潜在的规律。
粗糙集理论介绍

粗糙集理论介绍面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的学问?我们如何将所学到的学问去粗取精?什么是对事物的粗线条描述什么是细线条描述?粗糙集合论Pl答了上面的这些问题。
要想了解粗糙集合论的思想,我们先要了解一下什么叫做学问?假设有8个积木构成了一个集合A,我们记:A={xl,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,根据颜色的不同,我们能够把这积累木分成Rl={红,黄,兰} 三个大类,那么全部红颜色的积木构成集合Xl = {xl,x2,x6},黄颜色的积木构成集合X2={x3,x4},兰颜色的积木是:X3={x5,x7,x8}o根据颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必定属于且仅属于一个分类),那么我们就说颜色属性就是一种学问。
在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个学问,假如还有其他的属性,比如还有外形R2={三角,方块,圆形},大小R3={大,中,小},这样加上Rl 属性对A 构成的划分分别为:A/R1={X1 ,X2,X3}={(X1 ,x2,x6},{x3,x4)4x5,x7,x8},(颜色分类) A∕R2={Yl,Y2,Y3}={{xl,x2},{x5,x8},{x3,x4,x6,x7}}(外形分类)A∕R3={Z1,Z2,Z3)={{x1,x2,x5},{x6,x8},{x3,x4,x7}}(大小分类) 上面这些全部的分类合在•起就形成了•个基本的学问库。
那么这个基本学问库能表示什么概念呢?除了红的{xl,x2,x6}、大的{xl,x2,x5}、三角形的{xl,x2)这样的概念以外还可以表达例如大的且是三角形的{xl,x2,x5}∩{xl,x2)={xl,x2}, 大三角{xl,x2,x5}∩{xl,x2}={xl,x2},兰色的小的圆形({x5,x7,x8)∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7},兰色的或者中的积木{x5,x7,x8} U {x6,x8)={×5,x6,x7,x8}β而类似这样的概念可以通过求交运算得到,比如Xl与Yl的交就表示红色的三角。
粗糙集理论——精选推荐

粗糙集理论
粗糙集理论
1 粗糙集的基本概念
在粗糙集理论中,我们把知识看做是⼀种能被⽤于分类对象的能⼒。
其中对象可以代表现实世界中的任意事物,包括物品、属性、概念等。
即:知识需要同现实世界中特定环境的确定对象相关联,这⼀集合称为论域。
知识与概念
令U为包含若⼲对象的⾮空有限集,也即论域,在论域中,称任意集合为⼀个概念或范畴。
特别地,我们把空集也视为⼀个概念,称之为空概念。
⽽由任意个这样的X组成的⼦集簇形成了U中抽象知识,简称为知识。
知识库
在给定论域中,任意选择⼀个等价关系集R,我们可以得到⼀个⼆元组K=<U,R>,称这样的⼆元组视为⼀个知识库(近似空间)。
在论域中,任何等价关系都能导出⼀个对论域的划分,从⽽形成了⼀个知识库。
由此,每个知识库就能够与论域中的某个等价类⼀⼀对应。
不可分辨(不可区分/不分明)关系
在给定的论域U上,任意选择⼀个等价关系集R和R的⼦集,且,则P中所有等价关系的交集依然是论域U中的等价关系,称该等价关系为P 的不可分辨关系,记作IND(P)。
并且
:表⽰⾮空⼦族集所产⽣的不分明关系IND(P)的所有等价类关系的集合,⼜称该知识为知识库K=<U,R>中关于P-基本知识(P-基本集)集合的上下近似
上近似包含了所有那些可能是属于X的元素,下近似包含了所有使⽤知识R可确切分类到X的元素。
在给定的知识库K=<U,R>中,任意选择集合,可以定于X关于知识R的上下近似。
粗糙集

粗糙集(Rough Set)理论是由波兰数学家Pawlak在1982年提出的一种数据分析理论,常用于处理模糊和不精确的问题。
RS可以从大量的数据中挖掘潜在的、有利用价值的知识,它与概率方法、模糊集方法和证据理论方法等其他处理不确定性问题理论的最显著的区别在于:它无需提供问题所需处理的数据集合之外的任何先验信息(即无需指定隶属度或隶属函数)。
粗糙集是提供了严格的数学理论方法。
它把知识理解为对对象的分类能力。
它包含了知识的一种形式模型,这种模型将知识定义为不可区分关系的一个族集。
在信息检索过程中,由于文档中存在大量的多义和近义现象,导致不确定性出现,这将影响检索的性能。
为此采用基于互信息的粗糙集理论来处理这类不确定性问题。
动态约简技术探讨:利用标准的粗糙集方法来产生约简,即直接在原决策表的基础上计算所有的约简集,然后利用这些约简计算决策规则集合来分类未知对象。
这种方法对于未知对象的分类不总是足够充分的,因为该方法没有考虑到约简集的属性部分可能是混乱、不规则的。
动态约简是来自于在决策表的众多随机采样的子表中具有最大的出现频率的约简,在此意义上来说,利用动态约简来分类位置对象是最为稳定、可靠的。
经典粗糙集理论是建立在对象空间的等价类之上,采用上近似、下近似和边界的概念来分析对象的空间中不能由等价关系定义的子集的性质,是一种利用三值逻辑处理不精确或不完全信息的形式化方法。
有“智慧”,实际上是它们将外部环境和内部状态的传感信号分类,得出可能的情况,并由此支配行动,知识直接与真实或抽象世界有关的不同分类模式联系在一起。
因此,任何一个物种都是由一些知识来描述,对物种可以产生不同的分类。
从而如何在知识库中进行本质特征提取,发现最简决策表及最简分类规则集成为知识描述的关键。
从理论上看,智能信息处理的重要任务就是要从大量观察和实验数据中获取知识、表达知识、推理决策规则,特别是对于不精确、不完整的知识。
RS是处理不精确信息的有力工具。
如何使用粗糙集理论进行时间序列分析与预测

如何使用粗糙集理论进行时间序列分析与预测粗糙集理论(rough set theory)是一种用于处理不确定性和模糊性的数学工具,它可以应用于各种领域,包括时间序列分析与预测。
本文将探讨如何使用粗糙集理论进行时间序列分析与预测。
首先,我们需要了解粗糙集理论的基本概念。
粗糙集理论是由波兰学者Pawlak 于1982年提出的,它基于信息系统的概念,将不确定性的数据集划分为精确和粗略两部分。
在时间序列分析中,我们可以将时间序列看作是一个信息系统,其中每个时间点的数据可以被视为一个属性。
在进行时间序列分析之前,我们需要对数据进行预处理。
这包括数据清洗、平滑和规范化等步骤。
数据清洗可以去除异常值和缺失值,以确保数据的完整性和准确性。
平滑可以使数据变得更加平稳,有利于后续的分析和预测。
规范化可以将不同尺度的数据转化为相同的范围,以便比较和分析。
接下来,我们可以利用粗糙集理论进行特征选择。
特征选择是指从原始数据中选择最具有代表性和相关性的特征,以减少数据的维度和复杂度。
在时间序列分析中,特征选择可以帮助我们找到最重要的时间点或时间段,并排除那些对分析和预测没有帮助的特征。
在进行特征选择之后,我们可以利用粗糙集理论进行特征约简。
特征约简是指通过删除冗余和无关的特征,使得数据集的规模和复杂度减小,同时保持数据集的信息内容。
通过特征约简,我们可以获得更简洁和高效的数据集,从而提高时间序列分析和预测的准确性和效率。
在特征约简之后,我们可以利用粗糙集理论进行规则提取。
规则提取是指从数据集中提取出一些具有潜在规律和趋势的规则,以帮助我们理解和预测时间序列的变化。
通过规则提取,我们可以发现时间序列中的一些重要特征和规律,从而为未来的预测提供参考和依据。
最后,我们可以利用粗糙集理论进行时间序列的预测。
时间序列的预测是指根据过去的数据和趋势,对未来的数据进行推测和预测。
通过粗糙集理论,我们可以建立时间序列的模型和规则,从而进行准确和可靠的预测。
粗糙集理论l

粗糙集理论粗糙集理论作为一种数据分析处理理论,是在1982年以波兰数学家Z.Pawlak为代表的研究者在研究不精确、不确定性及不完全知识表示和分类的基础上,首次提出了粗糙集理论。
最开始由于语言的问题,该理论创立之初只有东欧国家的一些学者研究和应用它,后来才受到国际上数学界和计算机界的重视。
在1991年,Pawlak出版了《粗糙集—关于数据推理的理论》这本专著,从此粗糙集理论及其应用的研究进入了一个新的阶段,1992年关于粗糙集理论的第一届国际学术会议在波兰召开,这次会议着重讨论了集合近似定义的基本思想及其应用和粗糙集合环境下的机器学习基础研究,从此每年都会召开一次以粗糙集理论为主题的国际研讨会,从而推动了粗糙集理论的拓展和应用。
1995年ACM将粗糙集理论列为新兴的计算机科学的研究课题。
粗集理论作为智能计算的科学研究,无论是在理论方面还是在应用实践方面都取得了很大的进展,已经在人工智能、知识与数据发现、模式识别与分类、故障检测等方面得到了较为成功的应用,展示了它光明的前景。
粗集理论不仅为信息科学和认知科学提供了新的科学逻辑和研究方法,而且为智能信息处理提供了有效的处理技术。
目前粗糙集理论已成为国内外人工智能领域中一个较新的学术热点,引起了越来越多科研人员的关注。
资料个人收集整理,勿做商业用途粗糙集合论回答了,面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识;如何将所学到的知识去粗取精;什么是对事物的粗线条描述什么是细线条描述。
要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?资料个人收集整理,勿做商业用途在粗糙集理论中,“知识”被认为是一种分类能力。
人们的行为是基于分辨现实的或抽象的对象的能力。
所谓知识,就是论域U的子集为U上的概念,并约定空集⌀也是一个概念,则概念的族集称为U上的知识。
;而知识的族集构成关于U的知识库。
其中U味所讨论对象的非空有限集合。
所谓基本知识,就是论域U,等价关系族R,P⊆R且P≠⌀,则不可区分关系的所有等价类的集合,即商集。
粗糙集理论

BX { x1 , x 3 , x 4 , x 5 , x 8 , x 9 }
; }=
BN B ( X )
=
BX BX
x1 , x 3 , x 4 , x 5 , x 8 , x 9
}-{
x1 , x 3 , x 4 , x 9
{ x 5 , x 8 }。因为 BX 义的。
BX
,即 BN
4
5
从表 4 可见,当去掉属性 a2 或 a3 时,基本集个数减少, 而去掉属性 a1 时,基本集数目不变。说明属性 a1 是冗 余的,而属性 a 2 和 a3 则是独立的。所以,仅仅使用属 性 a 2 和 a3 ,便可以区分出 5 个基本集,可获得于原始 信息系统相同的信息系统。
2012-5-29
a 1 2 2 1 1
2
a
3
3 1 3 4 2
9
2012-5-29
例 3 : 如果仅考虑表 1 所示信息系统的属性子集
B { a 1 , a 2 }, 则
B 所对应的不可辨识关系 Ind ( B ) 导
出的等价类 U / Ind ( B ) 如表 3 所示。其中的每一行是一 个 B 的基本集。
表 3:关于属性子集 B { a 1 , a 2 } 的基本集 U B a
1
a2
{ { { {
x1 , x 3 , x 9 }
x 2 , x 7 , x 10 }
x4 }
2 3 2 1
1 2 2 1
x5 , x6 , x8
}
2012-5-29
10
下近似和上近似
上、下近似(Low er and U pper approxi ati m ons)是用 粗糙集理论进行数据分析的两个关键概念。设信息系统
粗糙集理论方法及其应用ppt课件

粗糙集概念示意图
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
2 粗粗糙糙集集理理论论思思想想
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
2.3 粗糙近似
定义 给定一个知识表示系统 S (U, A,V, f ) , P A,X U ,x U ,集合 X 关于 I 的下近似、 上近似、负区及边界区分别为
apr (X ) {x U : I(x) X} p
aprP (X ) {x U : I(x) X }
neg p ( X ) {x U : I (x) X }
2.2 不可分辨关系 (Indiscribility relation)
❖ 不可分辨关系是一个等 价关系(自反 的、对称 的、传递的)。
❖ 包含对象x的等价类 记为I(x)。等价类与知 识粒度的表达相对应, 它是粗糙集主要概念, 如近似、依赖及约简等, 定义的基础
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
决策属性(D)
U
a1
a2
a3
d
n1
High
Low
Low
Low
n2
Medium
High
Low
High
n3
High
High
High
High
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
粗糙集理论简介

仅使用第一个属性进行划分的情形. 正区域为空. 蓝色区域为负区域.
使用两个属性进行划分的情况
加入第二个属性
负区域
正区域(下近似)
边界区域
上近似
综合表示
Rough Set 的应用
(一)知识发现
RD {(x, y); gk (x) gk (y)(k q)} 是按照决策集D产生的
X1
正常
是
否
x2
高
是
是
x3
高
是
是
x4
正常
否
否
x5
高
否
否
x6
高
否
是
x7
高
否
是
x8
正常
否
否
取B为各种属性组合, 则得到不同等价类取B=A,则等价 类为:{{x1},{x2,x3},{x4,x8},{x5,x6,x7}}
基本概念(三) 上下近似
X U 它在关系 RB下的上下近似集 RB(X ) {x;[x]B X} 为 X 的下近似集
粗糙集理论的基本概念
不可区分关系/等价类. 上近似和下近似.
基本概念(一) 信息系统
称为(U, A,F,D,G) 一个信息系统, 其中 为对象集, U {x1,x2,...xn} 为属性集, A {a1,a2,...ap} 为决策集, D {d1,d2,...dq} F 为U 和 A的关系集, F { f j : j p} G 为U 和 D的关系集, G {g j : j q}
求约简是属性选择问题. 约简有各种各样的标 准(保持属性集合分类能力不变,保证分布函数 不变, 保证决策上下近似不变.etc) 协调集与约简
RB(X ) {x;[x]B X }为 X 的上近似集 如果上下近似是相等的, 则这是一个精确集合, 否则它是一个粗糙集, 其中下近似称为该概念 的正区域, 上下近似的差称为边界.上近似以外 的区域称为负区域.
《粗糙集理论简介》课件

05
粗糙集的应用实例
数据挖掘中的粗糙集应用
分类
利用粗糙集理论对数据进行分类,通过确定数据的属性重要性和 类别关系,实现高效准确的分类。
聚类
通过粗糙集理论,可以发现数据中的相似性和差异性,从而将数 据分成不同的聚类。
关联规则挖掘
利用粗糙集理论,可以发现数据集中项之间的有趣关系和关联规 则。
机器学习中的粗糙集应用
粗糙集的补运算
总结词
粗糙集的补运算是指求一个集合的所有 可能补集的运算。
VS
详细描述
补运算在粗糙集理论中用于确定一个集合 的所有可能补集。补集是指不属于该集合 的所有元素组成的集合。通过补运算,我 们可以了解一个集合之外的所有可能性, 这在处理不确定性和模糊性时非常重要。
04
粗糙集的扩展理论
决策粗糙集
多维粗糙集
多维粗糙集是粗糙集理论在多维空间下的扩展,它考虑了多个属性或特征对数据 分类的影响。多维粗糙集可以更准确地描述多维数据的分类和聚类问题,因此在 处理多特征和多属性问题时具有更大的优势。
多维粗糙集的主要概念包括多维下近似、多维上近似、多维边界等,通过这些概 念可以度量多维数据的不确定性,从而为多维分类和聚类提供支持。
决策分析
粗糙集理论可以用于决策支持系 统,通过建立决策模型来分析不 确定性和模糊性条件下的最优决 策。
知识获取
粗糙集理论可以用于从数据中提 取隐含的知识和规则,尤其在处 理不完整和不精确信息时具有显 著效果。
02
粗糙集的基本概念
知识的分类
知识表达
通过数据表中的属性值来表达知识,将对象进 行分类。
概率粗糙集
概率粗糙集是粗糙集理论在概率框架下的扩展,它引入了 概率测度的概念,用于描述数据的不确定性。概率粗糙集 可以更准确地描述数据的不确定性和随机性,因此在处理 不确定性和随机性问题时具有更大的灵活性。
粗糙集理论

粗糙集理论及其应用发展一、粗糙集的产生与发展粗糙集(Roughsets)理论是由波兰数学家Z. Pawlak在1982年提出的,该理论是一种刻画不完整性和不确定性的数学工具,能有效地分析和处理不精确、不一致、不完整等各种不完备信息,并从中发现隐含的知识,揭示潜在的规律。
1992年至今,每年都召开以RS为主题的国际会议,推动了RS理论的拓展和应用。
国际上成立了粗糙集学术研究会,参加的成员来自波兰、美国、加拿大、日本、挪威、俄罗斯、乌克兰和印度等国家。
目前,粗糙集这一新的数学理论已经成为信息科学领域的研究热点之一,它在机器学习、知识获取、决策分析、过程控制等许多领域得到了广泛的应用。
粗糙集首先从新的视角对知识进行了定义。
把知识看作是关于论域的划分,从而认为知识是具有粒度〔granularity〕的。
认为知识的不精确性是由知识粒度太大引起的。
为处理数据〔特别是带噪声、不精确或不完全数据〕分类问题提供了一套严密的数学工具,使得对知识能够进行严密的分析和操作。
又由于数据挖掘的深入研究和一些成功的商业运作,使得粗糙集理论和数据挖掘有了天然的联系,粗糙集在知识上的定义、属性约简、规则提取等理论,使得数据库上的数据挖掘有了深刻理论基础,从而为数据挖掘提供了一种崭新的工具。
粗糙集不仅自己可以独特的挖掘知识,而且可以和其他的数据挖掘算法结合起来,从而产生了学多混合数据挖掘算法,大大开拓了数据挖掘的算法和技术,丰富了数据挖掘的工具。
除了研究,人们也在积极寻找粗糙集在数据挖掘中的应用,如RSES系统,该系统是基于粗糙集理论上研制的数据挖掘系统,里面提供了粗糙集的属性约简算法和规则提取,可以找到最佳约简集和近似约简集,并可以提出规则。
另外,还有,Regina大学开发的KDD-R系统,被广泛用于医疗诊断、电信业等领域。
还有美国Kansas大学开发的LERS(Learningfrom Examples based on RS)系统,在医疗诊断、社区规划、全球气象研究等方面都有应用。
粗糙集理论的基本概念ppt文档

方 形
x
,
2
x
6
;
三
角
形
x
,
3
x
,
4
x
,
7
x
8
。
按 体 积 分 类 : 大
x
,
2
x
,
7
x8
;
小
x1,
x
,
3
x
,
4
x
,
5
x
6
。
换 言 之 , 三 个 属 性 定 义 了 三 个 等 价 关 系 : 颜 色 R1,
形
状
R
,
2
体
积
R
,
3
通
过
这
些
等
价
关
系
,
可
以
得
到
下
面
用集合表示的论域的不同划分。
在粗糙集理论中,主要讨论的是那些 能够在论域U上形成划分或覆盖的知识。
我们知道U的划分{X1, X2,…, Xn}与U上 的等价关系R一一对应,即给定U的一个划 分{X1, X2,…, Xn}等同于给定U上的一个等 价关系R,从数学的角度讲,关系的表示和 处理比分类的表示和处理简单得多,因此,
我们通常用等价关系或关系来表示分类及知 识。因此知识也可以定义为,设R是U上的 一个等价关系,U/R ={X1, X2,…, Xn} 表示 R产生的分类,称为关于U的一个知识。
这就意味着可以用不同的属性集对论域的对象进行
描述,以表达关于论域完全相同的知识。如果 IND(S1)IND(S2),我们称知识库K1(知识S1)比 知识库K1(知识S2)更精细,或者说K2(知识S2) 比K1(知识S1)更粗糙。当S1比S2更精细时,我们 也称S1为S2的转化,或S2为S1的泛化。泛化意味着 将某些范畴组合在一起,而特化则是将范畴分割成
粗糙集理论

定义六
,R是一个等价关系,称 RX={ x |x U |,且[x]R X } 为集合X的R下近似集; 称 RX={ x |x U |,且[x]R X} 为集合X的R上近似集; 称集合 BNR ( X ) RX RX 为X的R边界域; 称 POSR (X)=RX 为X的R正域; 称 NEGR (X)=U-RX 为X的R负域。
©
第11章
粗糙集理论: 13
上、下近似集
给定论域U,一族等价关系R将U划分为互不相交的 基本等价类U/R。令 XgU为R上的一个等价关系。 当能表达成某些基本等价类的并集时,称为可定义 的;否则称为不可定义的。R可定义集能在这个知 识库中被精确地定义,所以又称为R精确集。 R不可定义集不能在这个知识库中被精确定义,只 能通过集合逼近的方式来刻画,因此也称为R粗糙 集 (Roughset)。
©
第11章
粗糙集理论: 12
定义五 设U是一个论域,R是U上的等价关系,U/R 表示U上由R导出的所有等价类。 [ x]R 表示包含元素x∈U的R等价类。一个知识库就是 一个关系系统K ={U ,P},其中U是论域,P是U上的 一个等价类簇。如果 Q P 且 Q ,则 Q (Q的 所有等价类的交也是一个等价关系),称Q为不可分 辨关系,记作IND(Q)。
粗糙集理论
粗糙集的基本概念 知识表达 粗糙集在数据预处理中的应用
©
第11章
粗糙集理论: 1
粗糙集理论是由波兰华沙理工大学 Pawlak 教 授于 20 世纪 80 年代初提出的一种研究不完整、 不确定知识和数据的表达、学习、归纳的理 论方法,它是一种刻画不完整性和不确定性 的数学工具,能有效地分析不精确、不一致 (inconslsteni)、不完整 (incomPlete) 等各 种不完备的信息,还可以对数据进行分析和 推理,从中发现隐含的知识,揭示潜在的规 律。
粗糙集理论资料

粗糙集理论的提出(续3)
粗糙集理论中的一些基本观点
“概念”就是对象的集合 “知识”就是将对象进行分类的能力(“各从其类”) “知识” 是关于对象的属性、特征或描述的刻划 不可区分关系表明两个对象具有相同的信息 提出上近似集、下近似集、分类质量等概念 ……
1.2.2 粗糙集理论的发展历程
1.2
粗糙集理论概述
1.2.1 粗糙集理论的提出
自然界中大部分事物所呈现的信息都是:
◆ ◆
不完整的、不确定的、模糊的和含糊的 经典逻辑无法准确、圆满地描述和解决
粗糙集理论主要是为了描述并处理“含糊”信息。
粗糙集理论的提出(续1)
“含糊”(Vague) 1904年谓词逻辑创始人G. Frege (弗雷格)首次提出 将含糊性归结到 “边界线区域”(Boundary region) 在全域上存在一些个体,它既不能被分类到某一个 子集上,也不能被分类到该子集的补集上 …… “模糊集”(Fuzzy Sets) 1965年美国数学家L. A. Zadeh首次提出 无法解决G. Frege提出的“含糊”问题 未给出计算含糊元素数目的数学公式 ……
1.1 Rough sets的快速入门方法
认真研读Rough Sets Theory的创始人、波兰数学家Z. Pawlak于1982年发表的第一篇论文“Rough Sets”。
【注】:最好直接阅读英文论文原文。
研读王珏等人1996年在《模式识别与人工智能》上发 表的关于Rough Sets理论及其应用的综述性文章。 参考李德毅的《不确定性人工智能》、杨善林的《智 能决策方法与智能决策支持系统》 参考史忠植编著的《高级人工智能》、《知识发现》 等教材中讨论粗糙集的有关章节。
粗糙集理论第1章

绪论●20世纪80年代,波兰数学家Z.Pawlak提出粗糙集理论概率论(Probabilistic Theory)刻画概念发生的随机性(Stochastic),模糊集理论(Fuzzy Set Theory)刻画概念的模糊性(Vagueness),刻画概念的粗糙性(Coarseness),即分类能力(Classification Ability)。
粗糙集理论简称为粗集理论,粗糙集,或粗集。
●一个概念越粗糙,其分类能力越差,分类得到的对象组的颗粒(granularity)越大(越粗),对象之间的可辨识性(discernibility)越差。
相反地,一个概念越精细(fine),其分类能力越强,分类所得的对象组的颗粒越小,对象之间的可辨识性越好。
●例子图像的分辨率刻画了图像质量的粗糙程度,类似粗糙集刻画了知识或概念的粗糙程度。
图像中的分辨率越高,图像的可辨识性就越好,反之就越差。
像素灰度刻画了图像黑白的不同程度,类似模糊集刻画了概念的模糊性。
而图像上的内容则反映了某个物体出现的随机性。
第一章 知识有关知识的理论已有长远和丰富的历史,Pawlak 提议把粗集理论作为讨论知识的理论框架,特别在关注不精确知识的时候。
本章对“知识”这一术语给出形式化的定义,并讨论了它的一些基本特性。
粗集理论对知识的基本看法:知识是人类关于事物之分类能力的深层次刻画。
论域(universe of discourse ):真实世界或抽象世界被称为论域.定义1.1 设论域U 是非空有限集合,U 中元素是论域中感兴趣的对象。
对∀X ⊆ U ,称其为U 的一个概念或范畴(category )。
称U 的任意概念簇为U 的抽象知识或知识。
为便于形式推理,允许空集 ∅ 作为一个概念。
本书我们的主要兴趣在于形成某论域的一个划分(partition )或分类(classification )的概念。
(在本书中有:划分分类,划分与分类是两个等价的概念)定义1.2 U 为论域,若概念簇C = {X i | X i ⊆U ,X i ≠ ∅,i = 1,2,…,n} 满足:⑴ 对于i ,j = 1,2,…,n ,i≠j ,X i ∩X j = ∅⑵ 1 ni i X U == 则称C 为U 的一个划分或分类。
粗糙集理论(Rough Set Theory RST)

粗糙集理论(Rough Set Theory)
T1
N Y Y N
T2
Y N Y Y
T3
Normal Normal High Low
智能决策方法
粗糙集理论(Rough Set Theory: RST)
电子商务研究所
粗糙集理论(Rough Set Theory)
2016/9/3
1
智能决策方法
预备知识——相关名词解释
论域:研究对象的全体成员构成的集合,一般用字母U表示; 若XU,则称X是U的子集
隶属度:描述一个对象x与某个子集X之间的隶属程度,一 般用符号表示, 若xX, 则=1; 若 x X ,则=0;
i 1 i 1 n
n
i
i
n F的近似质量:近似质量给出了能正确分类 Card R X i 的百分数。这是一个非常重要的特征数字,它 R ( F ) i 1 CardU 反映了两种分类F和R之间的关系。如果将R看 作决策表中的条件属性集,F看成决策属性集, 近似质量反映了两者之间的依赖关系。
p6
粗糙集理论(Rough Set Theory)
N
Y
High
2016/9/3
Y
8
智能决策方法
粗糙集理论的经典模型——信息系统与知识
A的任何一个子集B确定一个U上的二元关系IND(B):对 于任意aB,xIND(B)ya(x)=a(y);x, yU;a(x)表示对 象x的a属性值。则称IND(B)为不可分辨关系(?)。 IND(B)是等价关系,IND(B)的所有等价类的集合记为U/B (称为知识B),含有元素x的等价类记为B(x)或[x]B,同 一等价类中的元素是不可分辨的,称IND(B)等价类为初 等集(范畴),它是知识库的基本结构单元即概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U T1 T2 T3
E
p1 N Y Normal Y
X1=[p1]=[p4]=[p6]={p1, p4, p6}为U
p2 Y N Normal Y
关于T1的一个等价类 X2=[p2]=[p3]=[p5]={p2, p3, p5}为U
p3 Y Y High Y
关于T1的另一个等价类(T1有多少 p4 N Y Low N
对于任意xU,均有x R x(自反性)
对于任意x, yU,x R y↔y R x(对称性)
对于任意x, y, zU,x R y ∧ y R z→x R z(传递性)
等价类:若R是U上的一个等价关系,对于任意xU,称集合
[x]={y| y R x, y U}为U关于R的一个等价类,记为[x]R。设X1, X2, …, Xn是U关于R的所有等价类,则有: Xi∩Xj=φ(i≠j,i, j=1,2,…,n) X1∪X2∪…∪Xn=U 划分:所有等价类的集合称为U关于R的商集,它构成了U的一
p3 Y Y p4 N Y p5 Y N
Normal High Low
Normal
p6 N Y
High
企业资源管理研究中心( AMT )(Rough Set Theory)
2019年11月 22日
E Y Y Y N N Y
8
智能决策方法
粗糙集理论的经典模型——信息系统与知识
A的任何一个子集B确定一个U上的二元关系IND(B):对 于任意aB,xIND(B)ya(x)=a(y);x, yU;a(x)表示对 象x的a属性值。则称IND(B)为不可分辨关系(?)。
企业资源管理研究中心( AMT )(Rough Set Theory)
2019年11月
22日
6
智能决策方法
粗糙集理论的经典模型——基本思想
知识是主体对论域中的客体进行分类的能力,分类能力越 强,主体所具备知识的可靠度越高
分类能力受主体分辨能力的影响,因此分类具有近似性 (粗糙集)
影响分类能力的因素(在信息系统中常描述为属性)很多, 不同的因素重要程度不同,其中某些因素起决定性作用 (属性重要性:属性约简)
IND(B)是等价关系,IND(B)的所有等价类的集合记为U/B
(称为知识B),含有元素x的等价类记为B(x)或[x]B,同
一等价类中的元素是不可分辨的,称IND(B)等价类为初 等集(范畴),它是知识库的基本结构单元即概念。
设R是由属性集A的子集诱导的论域U上的等价关系族,则 称R为U上的一个知识库,记为K=(U, R)。
个划分,记为U/R。
概念:具有相同特征值的一群对象称为一个概念(一个等价类 就是一个概念)
企业资源管理研究中心( AMT )(Rough Set Theory)
2019年11月
22日
3
智能决策方法
预备知识——相关名词解释
pi T1 pj iif v(pi, T1)=v(pj, T1),则 T1是U上的一个等价关系(类似地 可以定义T2, T3, E)
种取值就有多少个等价类) 显然 X1∩X2=φ; X1∪X2=U
p5 Y N Normal N
商集U/T1={X1, X2}
企业资源管理研究中心( AMT )(Rough Set Theory)
p6 N Y High Y
2019年11月
22日
4
智能决策方法
预备知识——成员
集合成员:明确的隶属关系 模糊成员:概念模糊(如青年)导致成员模糊 粗糙成员:概念清晰(如感冒),成员模糊(是否感冒不清
智能决策方法
粗糙集理论(Rough Set Theory: RST)
电子商务研究所
企业资源管理研究中心( AMT )(Rough Set Theory)2019年11月22日1智能决策方法
预备知识——相关名词解释
论域:研究对象的全体成员构成的集合,一般用字母U表示; 若XU,则称X是U的子集
隶属度:描述一个对象x与某个子集X之间的隶属程度,一
集合U是论域,A为关于U的属性集,V Va aA
,Va表示属
性a的值域,映射f: U×A→V表示对xU,aA,有:
f(x, a)V。
决策表:若属性集合A可进 U T1 T2
T3
一步分为两个属性子集的并: p1 N Y Normal
条件属性集C和决策属性集D, p2 Y N
A=C∪D,C∩D=φ,则信息 系统也被称为决策表。
Pawlak Z., Rough sets. International Journal of Computer and Information Sciences, 1982(11): 341-356
Pawlak Z., Rough set—Theoretical Aspects of Reasoning about Data, Dordrecht, Boston, London: Kluwer Academic Publishers,1991
般用符号表示,
若xX, 则=1;
若 xX ,则=0; 其他: 0<<1;(常用某个函数加以描述,称为隶属度函
数)
高斯函数
企业资源管理研究中心( AMT )(Rough Set Theory)
2019年11月
22日
2
智能决策方法
预备知识——相关名词解释
等价关系:R是U上的一个等价关系,当且仅当
楚),具有概率特征(隶属函数),但不是概率问题,只是由 于根据可用知识无法得到准确结论。
企业资源管理研究中心( AMT )(Rough Set Theory)
2019年11月
22日
5
智能决策方法
粗糙集理论的经典模型——RST的提出
粗糙集理论由Pawlak提出[1982,1991]。粗糙集理论反映了 人们以不完全信息或知识去处理一些不可分辨现象的能力, 或依据观察、度量到某些不精确的结果而进行分类数据的 能力。
具有相同属性的实体,属性取值的不同对分类能力也产生 影响 (值重要性:值约简)
属性之间存在某种依赖关系(决策规则)
企业资源管理研究中心( AMT )(Rough Set Theory)
2019年11月
22日
7
智能决策方法
粗糙集理论的经典模型——信息系统与知识
信息系统I可以定义为四元组<U, A, V, f>,其中有限非空