重庆市字水中学初2020级19—20学年度九(下)第一次质量监测数学参考答案
2019-2020学年度第二学期第一次阶段检测九年级数学试题及答案
(2)n为__________°,E组所占比例为______________________%:
(3)补全频数分布直方图;
(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有_________名.
25.如图,海岸上有AB两点,相距200米,又A、B两点观测海上一灯塔C,测得∠CAB=60°,∠CBA=45°,求灯塔C到海岸AB的距离.
26.如图,在 中, ,以 为直径的⊙ 分别交 、 于点 、 ,点 在 的延长线上,且 .
( )求证:直线 是⊙ 的切线.
( )若 , ,求直径 的长及点 到 的距离.
连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,
求矩形BFDE的面积.
23.某书店老板去批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价20元出售,很快售完.由于该书畅销,第二次购书时,每本书批发价比第一次提高了25%,他用1800元所购该书数量比第一次多20本,又按定价售出全部图书.
2019-2020学年度第二学期第一次阶段检测
九年级数学
(本试卷满分150分,考试时间120分钟 )
一、选择题(本大题共6小题,每小题3分,共18分)
1.-2的倒数是
A.2B.-2C. D.一
2.27的立方根是
A.3B.±3C.9D.±9
3.若分式 有意义,则x的取值范围是
A.x≥1B.x≠1 C.x≥一2 D.x≠一2
(1)求该书原来每本的批发价;(2)该老板这两次售书一共赚了多少钱?
重庆一中初2020级19-20学年度下期第一次定时作业数学试卷答案
C. |a|>|d|
D.b+c>0
4.若正多边形的一个内角是 150°,则该正多边形的边数是( B ).
A.6
B.12
C.16
D.18
5.在平面直角坐标系中,若点 P(x-4,3-x)在第三象限,则 x 的取值范围为( C ).
A. x<3
B. x<4
C.3<x<4
D. x>3
6.如图,四边形 ABCD 和 A′B′C′D′是以点 O 为位似中心的位似图形,若 OA:OA′=2:3, 则四边形 ABCD 与四边形 A′B′C′D′的面积比为( A ).
(7 分)
②同意,理由:如果女生 E 的仰卧起坐成绩未到达优秀,那么只有 A、D、F 三人有可
能两项测试成绩都达到优秀,这与恰有 4 个人两项成绩都达到优秀,矛盾,因此,女生
E 的一分钟仰卧起坐成绩达到了优秀.
(10 分)
22.对任意一个四位正整数数m,若其千位与百位上的数字之和为9,十位与个位上的数
(2) 求证:对于任意一个四位“重九数”m,其D(m,n)可被101整除.
(3)
对于任意一个四位“重九数”m,记
f
(m,n)u
ta ߰䅠߰
,当f (m,n)是一个完全平方数时,
且满足m>n,求满足条件的m的值.
22:解(1)1818;2736;(符合题意即可) (2 分)
(2)设四位重九数的千、百、十、个位数字分别为 a,9 a,b,9 b (1≤a≤9,1≤b≤9 ,且 a,b 均为正整数)
频数
2
m
10
6
2
1
b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,
2019-2020年九年级下学期第一次质量检测数学试题.docx
级班号封试考名姓密校学一、选择题(本大题共10 小题,每小题 3 分,共 30分.)1.3的相反数是()11A.-3B.3C.-3D.32.计算 ( x- 2)(2+ x)的结果是( )A.x24B.4 x2C.x24x 4D.x24x 43.下列函数中,自变量的取值范围是x 3 的是( )A.y x 31C.y x 3D.y1B.y3x3x4.扇形统计图中, 45°圆心角的表示的部分占总体的()A.45%B.12.5%C.25%D.30%5.反比例函数yk与一次函数 y2x1的图像的一个交点是(1,k),则k的值为() A.﹣2xB.2C.﹣3D.36.如图是一个圆锥的主视图,则该圆锥的侧面积是()A.6B.3C.15D.15427.如图,A、B、C三点在⊙O上,连接ABCO,若∠ AOC=140°,则∠ B 的度数为(). 140°. 120°.110°. 130°A B C D8.如图,把面积分别为 9 与 16 的两个等边三角形重叠,得到的两个阴影部分的面积分别为a 与 b(a< b),则 b- a 等于()A.7B.6C.5D.49.苏科版教材中有这样一句话:“一般地,如果二次函数y ax 2bx c 的图象与 x 轴有两个公共点,那么一元二次方程ax2bx c0 有两个不相等的实数根.”据此判断方21程 x -2x=x-2实数根的情况是().有三个实数根.有两个实数根.有一个实数根.无实数根A B C D10.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点 A 在 x 轴上运动时,点 C随之在 y 轴上运动.在运动过程中,点 B 到原点的最大距离是(▲ )A.6B.26C.25D.22+2二、填空题(本大题共8 小题,每小题 2 分,共 16 分,)11.无锡地表水较丰富,外来水源补给充足.市区储量为6349 万立方米,用科学计数法表示为立方米.12.分解因式 x 39x =.13.为考察甲、乙两种小麦的长势,分别从中抽取50 株小麦,测得苗高,经过数据处理,它们的平均数相同,方差分别为甲的方差 S 甲 2 15.4 ,乙的方差 S 乙 2 12 ,由此可以估计种小麦长的比较整齐.14.如图是一张简易活动餐桌,现测得OA =OB =30cm , OC =OD =50cm ,现要求桌面离地面的高度为 40cm ,那么两条桌腿的张角∠COD 的大小应为.15.如图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度 y (℉)与摄氏温度 x (℃)之间的函数关系式为.16.如图,△ 的 3 个顶点都在⊙ 上,⊙ 的直径 =2,∠ =30°,则 的长度为 .ABC O O AD ABC AC 17.如图,在矩形 中, =4, = 3,将△ 绕点 A 按逆时针方向旋转到△(点ABCDAD DCADCAEF、 、 在同一直线上),则在运动过程中所扫过的面积为.AB EAC18.对于二次函数 y = 2-3 x +2 和一次函数 =-2 +4,把函数 y = ( 2-3 +2) +(1 - )(-2+x y x t xx t x 4)(t 为常数) 称为这两个函数的“衍生二次函数”.已知不论 t 取何常数,这个函数永远经过某些 定点,则这个函数必经过的定点坐标为.三、解答题(本大题共10 小题,共 84 分.)19. (本题满分 8 分) 计算:x 2- 2x(1)2cos60 tan308x - 2(2) 1- x 2- 1 ÷x - 120. (本题满分 8 分 )x + 1- 2x - 3=1;x - 2≥ 0,(1) 解方程:(2) 解不等式组:x + 623x < 3 .21. (本题满分8 分 )如图,四边形ABCD 是菱形,点 E 在 BC 上确定一点G,使△ ABG ≌△DAF .请你写出两种确定点案的具体作法证明△ABG≌△DAF .上,GAFD B ,试在AE的方案,并就其中一种方方案一:作法:;方案二:(1)作法:.(2)证明:D CEFA B22. ( 本题满分8 分)某品牌的饼干袋里,装有动物、笑脸、数字三种花纹的饼干(除花纹外其余都相同),其中有动物花纹饼干 2 个,笑脸花纹饼干 1 个,数字花纹饼干若干个,1现从中任意拿出一个饼干是动物花纹的概率为.2(1)求口袋中数字饼干的个数;(2)小亮同学先随机拿出一个饼干吃掉,又随机拿出一个饼干吃掉,请用“树状图法”或“列表法”,求两次吃到的都是动物花纹饼干的概率.23. ( 本题满分8 分) 在某校八( 1)班组织了无锡欢乐义工活动,就该班同学参与公益活动情况作了一次调查统计.如图是一同学通过收集数据后绘制的两幅不完整的统计图.根据图中提供的信息,解答下列问题:请(1)该班共有 ______名学生,其中经常参加公益活动的有_____名学生;(2)将频数分布直方图补充完整;(3)若该校八年级有600 名学生,试估计该年级从不参加的人数.若我市八年级有21000名学生,能否由此估计出我市八年级学生从不参加的人数,为什么?(4)根据统计数据,你想对你的同学们说些什么?从不参加50%经常参加偶尔参加30%24. ( 本题满分 8 分 ) 中国派遣三艘海监船在南海保护中国渔民不受菲律宾的侵犯.在雷达显示图上,标明了三艘海监船的坐标为O(0,0)、 B(80,0)、 C(80,60),(单位:海里)三艘海监船安装有相同的探测雷达,雷达的有效探测范围是半径为r 的圆形区域(只考虑在海平面上的探测).(1)若在三艘海监船组成的△区域内没有探测盲点,则雷达的有效探测半径r至少为OBC_______海里;(2)某时刻海面上出现一艘菲律宾海警船,在海监船C测得点A位于南偏东 60°方向上,A同时在海监船 B 测得 A 位于北偏东45°方向上,海警船A正以每小时 20海里的速度向正西方向移动,我海监船B立刻向北偏东15°方向运动进行拦截,问我海监船 B 至少以多少速度才能在此方向上拦截到菲律宾海警船A?25. ( 本题满分8 分 ) 如图,在△ABC中,AB=4,AC=3,D、E分别是AB、AC上的动点,在边AC上取一点 E,使 A、 D、 E 三点组成的三角形与△ ABC相似.(1)当AD=2 时,求AE的长;(2)当AD=3 时,求AE的长;(3)通过上面两题的解答,你发现了什么?级班ADB C26 (本题满分9)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在 x 轴上,且.分AB 3,BC 2 3 ,直线 y3x2 3 经过点C,交 y 轴于点G.(1)点C、D的坐标分别是C(), D();(2)求顶点在直线y3x 2 3 上且经过点C、D的抛物线的解析式;(3)将( 2)中的抛物线沿直线y3x 23 向上平移,平移后的抛物线交y 轴于点 F ,顶点为点 E .求出当EF EG 时抛物线的解析式.27. ( 本题满分10 分 ) 学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个内角的度数分别为x°、 y°和 z°,若满足x2y 2z2,则称这个三角形为勾股三角形.(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?(2)已知某一勾股三角形的三个内角的度数从小到大依次为x °、°和°,且xy=2160,yz求 x+y 的值;(3)如图,△ABC内接于⊙O,AB= 6,AC=1+ 3,BC=2,⊙O的直径BE交AC于点D.①求证:△ ABC是勾股三角形;②求 DE的长.28. (本题满分9 分 )下面给出的三块正方形纸板的边长都是60cm,请分别按下列要求设计一种剪裁方法,折叠成一个礼品包装盒(纸板的厚度忽略不计).要求尽可能多地利用.....纸板,用虚线表示你的设计方案,并把剪裁线用实线标出.(1)包装礼盒的六个面由六个矩形组成(如图1),请画出对应的设计图.图 1(2)包装礼盒的上盖由四个全等的等腰直角三角形组成(如图2),请画出对应的设计图.图 2(3)包装礼盒的上盖是双层的,由四个全等的矩形组成(如图3),请画出对应的设计图.图 32019-2020 年九年级下学期第一次质量检测数学试题答案20.(共 8分)( 1) x 3( 2)解:①式解得: x2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分②式解得: x 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∴ 2 x 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分 21.(共 8分)答案不唯一作法一:作 AG = DF ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分明略⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. ( 共 8 分 ) ( 1) 口袋中数字 干x 个2 2 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分x1 2x 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2)画出 状 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分所有出 的 果共有 12种,两次吃到的都是 物花 干的有 2 种⋯⋯⋯⋯ 7 分所求概率 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分625.(共 8分)(1)3或8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分2 3(2)9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分4(3) 答案不唯一:当 AD9 8 分, AE 的 度有两种情形⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯426.(共 9分)(1) C (4, 2),D (1,2 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)由二次函数 称性得, 点横坐 ,令 x=,,∴ 点坐(,),∴ 抛物解析式,把点代入得,∴解析式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(3)点 E 在直上运的横坐m,∴可解析式,当 GE=EF , FG=2m, F( 0, 2m 2),代入解析式得:2m 2,解得 m=0(舍去), m=,m + m 2 =2此所求的解析式:y=(x)2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分27.(共 10分)(1)假命;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)由意可得:,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分解得: x+y=102;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(3)①明: B 作 BH ⊥ AC 于 H, AH =x,Rt△ABH 中, BH =,Rt△CBH 中,(22) +(1+x) =4,解得: x=,所以, AH =BH=,HC =1,∴∠ A=∠ABH =45 °,∴t an ∠HBC = = = ,∴∠ HBC =30°,∴∠ BCH =60°,∠ B=75 °,∴45222 +60 =75∴△ ABC 是勾股三角形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分②接 CE,∵∠ A=45°,∴∠ BEC=∠ BAC=45 °,又∵ BE 是直径,∴∠ BCE=90 °,∴BC =CE=2,D 作 DK ⊥ AB 于 K, KD =h,∵∠ EBC=45 °,∠ ABC=75 °,∴∠ ABE=30 °,∴, AK =h,∴h+h=,解得: h=,∴BD =2KD =2h=3,∴DE =BE BD =2( 3)=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分28.(共 9分)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分(注:答案不唯一,不必考取最大,只要不出在中扣一个形即可,其他答案相分)。
2019-2020重庆市中考数学一模试卷(及答案)
解析:A 【解析】 【分析】
依据 AB / /CD , EFC 40 ,即可得到 BAF 40 , BAE 140 ,再根据 AG 平 分 BAF ,可得 BAG 70 ,进而得出 GAF 70 40 110 .
连结 BF 交 AC 于点 M,连结 DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB 垂直
平分 OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是
()
A.4 个
B.3 个
C.2 个
D.1 个
12.如图,点 P 是矩形 ABCD 的对角线 AC 上一点,过点 P 作 EF∥BC,分别交 AB,CD 于 E、
25.修建隧道可以方便出行.如图: A , B 两地被大山阻隔,由 A 地到 B 地需要爬坡到山
顶 C 地,再下坡到 B 地.若打通穿山隧道,建成直达 A , B 两地的公路,可以缩短从 A 地 到 B 地的路程.已知:从 A 到 C 坡面的坡度 i 1: 3 ,从 B 到 C 坡面的坡角 CBA 45 , BC 4 2 公里.
吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________
元.(按每吨运费 20 元计算)
20.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2 的值为__________.
三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为 30 元/件的文化衫,根据 以往的销售经验,他整理出这种文化衫的售价 y1(元/件),销量 y2(件)与第 x(1≤x<90)天的 函数图象如图所示(销售利润=(售价-成本)×销量). (1)求 y1 与 y2 的函数解析式. (2)求每天的销售利润 W 与 x 的函数解析式. (3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?
2019-2020年九年级数学下学期第一次质量检测试题(I)
O C
A
图1
B图2 D
23.(本题满分 10 分) 如图, AB是⊙ O的直径, BC是⊙ O的切线,弦 AD的延长线交直线
( 1)若 AB =10,∠ ACB=60°,求 BD的长; ( 2)若点 E 是线段 BC的中点,求证: DE是⊙ O的切线.
2019-2020 年九年级数学下学期第一次质量检测试题 (I)
(满分: 150 分;考试时间: 120 分钟)
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.每小题只有一个正确的选项,请在
答.题.的相应位置作题) 1. -3 的相反数是……………………………………………………………………
()
A. -3 B. 3 C. D .
2.下列汽车标志中,可以看作中心对称图形的是………………………………
.( )
3.下列运算正确的是……………………………………………………………
()
A. B . C. D .
4.如图所示几何体的主视图是 ………………………………………………… ( )
5.为了解本地区老年人一年中生病次数,下列样本抽取方式最合理的是
..(
)
A.到公园调查 100 名晨练老人 B .到医院调查 100 名老年病人
C.到某小区调查 10 名老年居民
D.利用户籍资料,按规则抽查 10%老年人
6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花
果,质量只有 0.000 000 076 克.将 0.000 000 076 用科学记数法表示为…… (
14.如图,四边形 ABCD是⊙ O的内接四边形,若∠ A =75°,则∠ C =_______°.
2019-2020年九年级数学第一次质量预测参考答案及评分标准
2019-2020年九年级数学第一次质量预测参考答案及评分标准说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分) 题号 1 2 3 4 5 6 答案BDCBCB二、填空题(每小题3分,共27分) 题号 7 89 10 11 12 13 14 15答案21,021==x x12 120°113012.x y =⎧⎨=-⎩,<13416.解:原式=21(2)(2)2a a a a -++-+ ………………………………3分=1122a a +++ ………………………………5分 =22a +. ………………………………6分不妨取a = 0, 当a = 0时,得22a +=1. ……………………8分(说明:若取a = ±2,则扣2分)17.解:是假命题. ………………………1分添加 AB =ED . ………………………3分 证明:因为FB =CE ,所以BC =EF . ………………………………4分 又AC =DF ,AB =ED ,所以△ABC ≌△DEF . …………………………7分 所以∠ABC =∠DEF . ………………………………8分 所以AB//ED . ………………………9分 (其它方法参照上述标准对应给分)18.解:(1) 全班人数是50人; ………………………2分 (2)图略.捐款10~15元的有20人,捐款20~25元的有10人.a =20,b =30; ………………………6分 (3) ∵900÷50×1200=21600(元),∴估计全校学生大约能捐21600元. ……9分 19.解:把点A (1,2)代入双曲线的表达式得n =2, ……………………2分 所以双曲线的表达式为y =x2, ………………………3分 ∵AD 垂直平分OB , ∴点B 的坐标为(2,0). ………………………6分 把A (1,2),B (2,0)代入直线y =mx +b 得直线的表达式为y =-2x +4. ……9分 20.解:在Rt ABF △中,37300sin 37ABAFB AB AF ∠===≈°,,500,°……2分 tan 37ABBF =≈400°, ………………………………4分BC EF BF CE ∴∥,∥,四边形BCEF 为平行四边形.400CE BF ∴==,160BC EF ==. ………………………………5分 在Rt CDE △中,53DCE ∠=°,CD DE ⊥,37CED ∴∠=°,cos37320DE CE =≈·°, …………………………6分 sin37240CD CE =︒≈·, ………………………………7分∴增加的路程=()()AF EF DE AB BC DC ++-++(500160320)++≈-(300160240)280++=(米).答:王强同学上学的路程因改道增加了280米. ………………………………9分21. (1) 猜想AB =BC . ……………………1分理由:过D 点作D M⊥BC ,垂足为点M,则∠DMC =90°. 可得四边形AB MD 是矩形, 则AB =DM . ∵△DCE 是等边三角形,∴DE = DC = CE , 且∠DCE =∠CED =∠CDE = 60°. ∵∠DCB =75°,∴∠BCE =∠DCB -∠DCE =75°- 60°=15°. …………………………3分 而∠CDM = 90°-75°=15°, ∴∠CDM =∠BCE .在△DMC 和△CBE 中,∠CDM =∠BCE ,∠DMC =∠CBE = 90°,DC = CE , ∴△D MC ≌△CBE ,则D M = BC . ……………………5分 ∴AB = BC . …………………………6分 (2)△BAF 为等边三角形. 理由:∵∠FBC = 30º,∴∠ABF = 60º. ∵∠FBC =30º,∠DCB =75º,∴∠BFC =75º,故BC = BF .∵AB = BC ,故AB = BF . ………………………8分 而∠ABF = 60º ,∴AB = BF = F A .∴△BAF 为等边三角形. ………………………………10分22.解:(1)依题意知,当销售单价定为x 元时,年销售量减少110(x -100)万件, y =20-110(x -100)= -110x +30 . 由题意,得z =(30-110x )(x -40) -500-1500=-110x 2+34x -3200.即z 与x 之间的函数关系是z = -110x 2+34x -3200. …………………4分(2)∵z =-110x 2+34x -3200=-110(x -170)2-310.∴当x =170时, z 取最大值为-310,即当z 取最大值-310万元时,销售单价应定为170元. …………………6分 到第一年年底公司还差310万元才能收回全部投资,所以此时公司是亏损了.…7分 (3) 由题意知,第二年的销售单价定为x 元时,年获利为:AB C DE F Mz =(30-110x )(x -40) -310=-110x 2+34x -1510. 当z =1130时, 即1130=-110x 2+34x -1510, 整理得x 2-340x+26400=0,解得: x 1=120, x 2=220. ……9分 函数z =-110x 2+34x -1510的图象大致如图所示, 由图象可以看出:当120≤x ≤220时, z ≥1130.故第二年的销售单价应确定在不低于120元且不高于220元的范围内. ……10分23. 解:(1)由题意得B (3,1).直线经过点B (3,1)时,b =52. 直线经过点C (0,1)时,b =1. 所以b 的取值范围为: 1<b <52. ……………………3分 (2)①若直线与折线OAB 的交点E 在OA 上时,即1<b ≤32,如图1. 此时E (2b ,0).∴S =12OE ·CO =12×2b ×1=b . …… ……5分 ②若直线与折线OAB 的交点E 在BA 上时,即32<b <52,如图2.此时E (3,32b -),D (2b -2,1). ∴S =S 矩形ABCO -(S △OCD +S △OAE +S △DBE )= 3-[12(2b -2)×1+12×3×(32b -)+12×(5-2b )·(52b -)] =252b b -. 1130170 120 220Oz/万元1380x /元∴ 2312535222b b S b b b ⎧<≤⎪⎪=⎨⎪-<<⎪⎩ ……8分(3)54. ………………………………11分 (理由如下:如图3,设O 1A 1与CB 相交于点M ,OA 与C 1B 1相交于点N ,则矩形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积.由题意知,DM ∥NE ,DN ∥ME ,∴四边形DNEM 为平行四边形. 根据轴对称性质知,平行四边形DNEM 为菱形. 过点D 作DH ⊥OA ,垂足为H ,由题易知,R (0,b ),E (2b ,0),∴tan ∠DEH =12,DH =1,∴HE =2, 设菱形DNEM 的边长为a ,则在Rt △DHN 中,由勾股定理知:222(2)1a a =-+,∴54a =. ∴S 四边形DNEM =NE ·DH =54. ∴矩形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积不发生变化, 面积始终为54.)。
2020届初三中考数学一诊联考试卷含答案解析 (重庆)
2020届**市初三中考一诊联考试卷数 学注意事项: 1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如图,将△ABC 绕点C 顺时针旋转36°,点B 的对应点为点E ,点A 的对应点为点D ,此时点E 恰好落在边AC 上时,连接AD ,若AB =BC ,AC =2,则AB 的长度是( )A 51B .1C 51- D .322.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A.(2018+6723,0)B.(2019+6733,0)C.(40352+6723,32)D.(2020+6743,0)3.如图,在平面直角坐标系xOy中,直线y=3x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°,得到△CBD,若点B的坐标为(4,0),则点C的坐标为()A.(﹣2,3B.(﹣4,3C.(﹣3,2)D.(﹣34)4.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.155.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A.众数是110B.方差是16C.平均数是109.5D.中位数是1096.如图,在平面直角坐标系中,第二象限内的点P是反比例函数y=k x(k≠0)图象上的一点,过点P作P A⊥x轴于点A,点B为AO的中点若△P AB 的面积为3,则k的值为()A.6B.﹣6C.12D.﹣127.如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为23,则a的值是()A.﹣2B.﹣2C.﹣23D.﹣22 8.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.19.按如图所示的运算程序,当输出的y值为0时,x的值是()A.1B.2C.1±D.2±10.下列的几何图形中,一定是轴对称图形的有()A.5个B.4个C.3个D.2个二、填空题(共4题,每题4分,共16分)1192x-x的取值范围是_____.12.已知(a2)21b+=0,则ba=_____.13.下列函数:①y=﹣2x;②y=﹣3x﹣1;③y=6x;④y=2x;⑤y=3x(x<0),在自变量的取值范围内,自变量越大,函数值越小的函数是_____(填序号).14.函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是_____.三、解答题(共6题,总分54分)15.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.16.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.17.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BC,若cos∠CAD=45,⊙O的半径为5,求CD、AE的值.18.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG ∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.19.体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.。
重庆市渝中区2019-2020学年中考数学第一次调研试卷含解析
重庆市渝中区2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,直线y =kx+b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <02.下面的几何体中,主(正)视图为三角形的是( )A .B .C .D .3.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π- C .2-8π D .324π- 4.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A .B .C .D .5.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为( ) A .1.23×106B .1.23×107C .0.123×107D .12.3×1056.下列图案是轴对称图形的是( )A .B .C .D .7.如图1,点E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿BE→ED→DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ 是等腰三角形;②S △ABE =48cm 2;③14<t <22时,y=110﹣1t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤当△BPQ 与△BEA 相似时,t=14.1.其中正确结论的序号是( )A .①④⑤B .①②④C .①③④D .①③⑤8.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π9.|﹣3|的值是( ) A .3B .13C .﹣3D .﹣1310.方程x (x -2)+x -2=0的两个根为( ) A .10x =,22x =B .10x =,22x =-C .11x =- ,22x =D .11x =-, 22x =-11.一元二次方程4x 2﹣2x+14=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断12.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.14.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.15.分解因式:2m 2-8=_______________.16.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.17.如图AB 是O e 直径,C 、D 、E 为圆周上的点,则C D ∠+∠=______.18.已知点A ,B 的坐标分别为(﹣2,3)、(1,﹣2),将线段AB 平移,得到线段A′B′,其中点A 与点A′对应,点B 与点B′对应,若点A′的坐标为(2,﹣3),则点B′的坐标为________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里. (1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?20.(6分)解方程式:1x2-- 3 =x12x--21.(6分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.22.(8分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-1100x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳1100x2元的附加费,月利润为W外(元).(1)若只在国内销售,当x=1000(件)时,y=(元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.23.(8分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6 7 8y/cm 0 1.6 2.5 3.3 4.0 4.7 5.8 5.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.24.(10分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.25.(10分)如图,抛物线y =ax 2+bx ﹣2经过点A (4,0),B (1,0).(1)求出抛物线的解析式;(2)点D 是直线AC 上方的抛物线上的一点,求△DCA 面积的最大值;(3)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.26.(12分)如图1,四边形ABCD 中,AB BC ⊥,//AD BC ,点P 为DC 上一点,且AP AB =,分别过点A 和点C 作直线BP 的垂线,垂足为点E 和点F .()1证明:ABE V ∽BCF V ; ()2若34AB BC =,求BPCF的值; ()3如图2,若AB BC =,设DAP ∠的平分线AG 交直线BP 于.G 当1CF =,74PD PC=时,求线段AG的长.27.(12分)已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.2.C【解析】【分析】【详解】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.3.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABEV-S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE V −S EBF 扇形 =1×2−12×1×1−245(2)3=-24π⨯π故选B. 【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式 4.A 【解析】 【分析】根据左视图的概念得出各选项几何体的左视图即可判断. 【详解】解:A 选项几何体的左视图为;B 选项几何体的左视图为;C 选项几何体的左视图为;D 选项几何体的左视图为;故选:A . 【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念. 5.A 【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1230000这个数用科学记数法可以表示为61.2310.⨯故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 6.C 【解析】解:A .此图形不是轴对称图形,不合题意; B .此图形不是轴对称图形,不合题意; C .此图形是轴对称图形,符合题意; D .此图形不是轴对称图形,不合题意. 故选C . 7.D 【解析】 【分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可. 【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4 故①正确 则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形 此时,满足条件的点有4个,故④错误. ∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似 由已知,PQ=22﹣t∴当AB PQ AE BC=或AB BCAE PQ =时,△BPQ 与△BEA 相似 分别将数值代入822610t -=或810622t=-, 解得t=13214(舍去)或t=14.1故⑤正确 故选:D . 【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角 形判定,应用了分类讨论和数形结合的数学思想. 8.D 【解析】 【分析】如图,连接OD .根据折叠的性质、圆的性质推知△ODB 是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式180n rl π= 来求»AD 的长 【详解】解:如图,连接OD . 解:如图,连接OD .根据折叠的性质知,OB=DB . 又∵OD=OB ,∴OD=OB=DB ,即△ODB 是等边三角形, ∴∠DOB=60°. ∵∠AOB=110°,∴∠AOD=∠AOB-∠DOB=50°, ∴»AD 的长为5018180π⨯ =5π.故选D . 【点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处. 9.A 【解析】分析:根据绝对值的定义回答即可. 详解:负数的绝对值等于它的相反数,3 3.-=故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数. 10.C 【解析】 【分析】根据因式分解法,可得答案. 【详解】解:因式分解,得(x-2)(x+1)=0, 于是,得x-2=0或x+1=0, 解得x 1=-1,x 2=2, 故选:C . 【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键. 11.B 【解析】 【分析】 【详解】试题解析:在方程4x 2﹣2x+ =0中,△=(﹣2)2﹣4×4×14=0, ∴一元二次方程4x 2﹣2x+14=0有两个相等的实数根. 故选B .考点:根的判别式. 12.C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.25【解析】 【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率. 【详解】 解:列表如下:所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种, 则P (恰好是两个连续整数)=82.205= 故答案为25. 【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比. 14.四丈五尺 【解析】 【分析】根据同一时刻物高与影长成正比可得出结论. 【详解】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴x 15=1.50.5, 解得x=45(尺). 故答案为:四丈五尺. 【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键. 15.2(m+2)(m-2) 【解析】 【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式. 【详解】 2m 2-8, =2(m 2-4), =2(m+2)(m-2) 【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解. 16.π﹣1. 【解析】 【分析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得. 【详解】连接CD ,作DM ⊥BC ,DN ⊥AC .∵CA=CB ,∠ACB=90°,点D 为AB 的中点,∴DC=12AB=1,四边形DMCN 是正方形, 则扇形FDE 的面积是:2902360π⨯=π. ∵CA=CB ,∠ACB=90°,点D 为AB 的中点,∴CD 平分∠BCA . 又∵DM ⊥BC ,DN ⊥AC ,∴DM=DN .∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.90°【解析】【分析】连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故答案为:90°.【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.(5,﹣8)【解析】【分析】各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B′的坐标.【详解】由A(-2,3)的对应点A′的坐标为(2,-13),坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,∴点B′的横坐标为1+4=5;纵坐标为-2-6=-8;即所求点B′的坐标为(5,-8).故答案为(5,-8)【点睛】此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】【分析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.20.x=3【解析】【分析】先去分母,再解方程,然后验根.【详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【点睛】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.21.(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.试题解析:(1)证明:∵,∴.∵CD平分,BC=BD,∴,.∴.∴∥.∴.∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴.∵,可得.∴在Rt△CEB中,∠CEB=90°,由勾股定理得∴.∵,∠EFC =∠BFD,∴△EFC∽△BFD.∴.∴.∴BF=1.考点:切线的判定,相似三角形,勾股定理22.(1)140;(2)W内=-1100x2+130x,W外=-1100x2+(150-a)x;(3)a=1.【解析】试题分析:(1)将x=1000代入函数关系式求得y,;(2)根据等量关系“利润=销售额﹣成本”“利润=销售额﹣成本﹣附加费”列出函数关系式; (3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.试题解析:(1)x=1000,y=-1100×1000+150=140;(2)W内=(y-1)x=(-1100x+150-1)x=-1100x2+130x.W外=(150-a)x-1100x2=-1100x2+(150-a)x;(3)W内=-1100x2+130x=-1100(x-6500)2+2,由W外=-1100x2+(150-a)x得:W外最大值为:(750-5a)2,所以:(750-5a)2=2.解得a=280或a=1.经检验,a=280不合题意,舍去,∴a=1.考点:二次函数的应用.23.(1)5.3(2)见解析(3)2.5或6.9【解析】【分析】(1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE 为非负数,函数为分段函数.【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y=()()28048248x xx x⎧-+≤≤⎪⎨-≤≤⎪⎩与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE.故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.24.(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.25.(1)y=﹣12x2+52x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】【分析】(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.【详解】(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,则当t=2时,△DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此时P(2,1);②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合题意,舍去)∴当1<m<4时,P(2,1);类似地可求出当m>4时,P(5,﹣2);当m<1时,P(﹣3,﹣14),综上所述,符合条件的点P 为(2,1)或(5,﹣2)或(﹣3,﹣14).【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.26.(1)证明见解析;(2)32BP CF =;(3)3AG =. 【解析】【分析】 ()1由余角的性质可得ABE BCF ∠∠=,即可证ABE V ∽BCF V ;()2由相似三角形的性质可得AB BE 3BC CF 4==,由等腰三角形的性质可得BP 2BE =,即可求BP CF 的值;()3由题意可证DPH V ∽CPB V ,可得HP PD 7BP PC 4==,可求AE 2=,由等腰三角形的性质可得AE 平分BAP ∠,可证1EAG BAH 452∠∠==o ,可得AEG V 是等腰直角三角形,即可求AG 的长. 【详解】证明:()1AB BC ⊥Q , ABE FBC 90∠∠∴+=o又CF BF ⊥Q ,BCF FBC 90∠∠∴+=oABE BCF ∠∠∴=又AEB BFC 90∠∠==o Q ,ABE ∴V ∽BCF V()2ABE QV ∽BCF V ,AB BE 3BC CF 4∴== 又AP AB =Q ,AE BF ⊥,BP 2BE ∴=BP 2BE 3CF CF 2∴== ()3如图,延长AD 与BG 的延长线交于H 点AD //BC Q ,DPH ∴V ∽CPB V∴HP PD 7BP PC 4== AB BC =Q ,由()1可知ABE V ≌BCF VCF BE EP 1∴===,BP 2∴=, 代入上式可得7HP 2=,79HE 122=+= ABE QV ∽HAE V ,BE AE AE HE ∴=,1AE 9AE 2=, ∴32AE 2= AP AB =Q ,AE BF ⊥,AE ∴平分BAP ∠又AG Q 平分DAP ∠,1EAG BAH 452∠∠∴==o , AEG ∴V 是等腰直角三角形. ∴AG 2AE 3==.【点睛】本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.27. (1)证明见解析;(2)2m =或4m =.【解析】【分析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯-V 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-. ∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 的关系是解答此题的关键.。
2019-2020学年重庆市九年级下期中数学试卷及答案解析
.
23.(10分)重庆一中开学初在重百商场第一次购进A、B两种品牌的足球,购买A品牌足球花费了3200元,购买B品牌足球花费了2400元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌的足球多花20元.
A.60B.70C.80D.90
11.(4分)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y= 上,顶点B在反比例函数y= 上,点C在x轴的正半轴上,则平行四边形OABC的面积是( )
A. B. C.4D.6
12.(4分)若数a使关于x的不等式组 恰有3个整数解,且使关于y的分式方程 =3的解为整数,则符合条件的所有整数a的和为( )
A.2B.4C.9D.11
8.(4分)下列四个命题中,真命题有( )
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个B.2个C.3个D.4个
9.(4分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=59°,则∠P的度数为( )
18.(4分)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有件玩具.
三.解答题(共7小题,满分70分,每小题10分)
19.(10分)计算:
(1)(a﹣b)2﹣a(a+b);
(2) .
20.(10分)如图,△ABC中,AB=AC,AD、CE是高,连接DE.
(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;
2019-2020重庆市中考数学一模试卷带答案
2019-2020重庆市中考数学一模试卷带答案一、选择题1.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形 2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数 3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60° 4.下表是某学习小组一次数学测验的成绩统计表:已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( )A .80分B .85分C .90分D .80分和90分5.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元A .8B .16C .24D .326.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩8.方程21(2)04m x -+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠9.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A.B.C.D.10.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠11.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.15.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.16.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.18.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.19.10a b b --=,则1a +=__.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表: 中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值. 23.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD . 求证:BC=ED .24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕∆,连接DE.点C逆时针方向旋转60°得到BCE∆是等边三角形;(1)如图1,求证:CDE(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.5.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.6.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.8.B解析:B【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()214204m ∆=--⨯≥, 解得m ≤52且m ≠2. 故选B .9.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.10.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.11.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 12.A解析:A【解析】【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB ≌△OEB 得△EOB ≌△CMB ;③先证△BEF 是等边三角形得出BF=EF ,再证▱DEBF 得出DE=BF ,所以得DE=EF ;④由②可知△BCM ≌△BEO ,则面积相等,△AOE 和△BEO 属于等高的两个三角形,其面积比就等于两底的比,即S △AOE :S △BOE =AE :BE ,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE ,得出结论S △AOE :S △BOE =AE :BE=1:2.【详解】试题分析:①∵矩形ABCD 中,O 为AC 中点, ∴OB=OC , ∵∠COB=60°, ∴△OBC 是等边三角形, ∴OB=BC ,∵FO=FC , ∴FB 垂直平分OC , 故①正确;②∵FB 垂直平分OC , ∴△CMB ≌△OMB , ∵OA=OC ,∠FOC=∠EOA ,∠DCO=∠BAO , ∴△FOC ≌△EOA ,∴FO=EO , 易得OB ⊥EF , ∴△OMB ≌△OEB , ∴△EOB ≌△CMB , 故②正确;③由△OMB ≌△OEB ≌△CMB 得∠1=∠2=∠3=30°,BF=BE , ∴△BEF 是等边三角形, ∴BF=EF ,∵DF ∥BE 且DF=BE , ∴四边形DEBF 是平行四边形, ∴DE=BF , ∴DE=EF , 故③正确;④在直角△BOE 中∵∠3=30°, ∴BE=2OE , ∵∠OAE=∠AOE=30°, ∴AE=OE , ∴BE=2AE ,∴S △AOE :S △BOE =1:2,又∵FM:BM=1:3,∴S △BCM =34 S △BCF =34S △BOE ∴S △AOE :S △BCM =2:3故④正确; 所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.16.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=OA=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.19.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】b﹣1|=0,又∵0a b -≥,|1|0b -≥, ∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:516. 【解析】【分析】【详解】 画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)11x -;(2)1 【解析】【分析】(1)根据分式四则混合运算的运算法则,把A 式进行化简即可.(2)首先求出不等式组的解集,然后根据x 为整数求出x 的值,再把求出的x 的值代入化简后的A 式进行计算即可.【详解】 (1)原式=2(1)(1)(1)1x x x x x +-+--=111x x x x +---=11x x x +--=11x - (2)不等式组的解集为1≤x <3∵x 为整数,∴x =1或x =2,①当x =1时,∵x ﹣1≠0,∴A =11x -中x ≠1, ∴当x =1时,A =11x -无意义. ②当x =2时,A =11x -=1=12-1考点:分式的化简求值、一元一次不等式组.23.见解析【解析】【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.24.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.25.(1)详见解析;(2)存在,3;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC 是等边三角形可得∠DCB=60°,CD=CE ,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE 是等边三角形,由此可得DE=CD ,因此当CD ⊥AB 时,CD 最短,则DE 最短,结合△ABC 是等边三角形,AC=4即可求得此时DE=CD=23 (3)由题意需分0≤t <6,6<t <10和t >10三种情况讨论,①当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,由此可知:此时若△DBE 是直角三角形,则∠BED=90°;②当6<t <10s 时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE 不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t 的值了. 试题解析:(1)∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
K12重庆市初2020级初三下一学月数学参考答案
K12重庆市2019-2020学年下期第一学月考试九年级数学参考答案BDBCC DABBA CC13. 4+.14. x≥﹣1且x≠0.15.﹣4.16..17. 2.5. 18. 2.19. 解:(1)原式=÷=•……………………………………….3分==;……………………………………………………5分(2),②×2﹣①得:3y=﹣15,解得:y=﹣5,……………………………………………8分把y=﹣5代入①得:x=5,则方程组的解为.……………………………..10分20.证明:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,……………………………………………………3分∴AF=CF=CE=AE,∴四边形AECF是菱形;……………………………………..5分(2)如图,∵AB=8,AF=AE=EC=10,∴BE===6,∴BC=16,∴AC===8,……………………8分∵AO=CO,∠ABC=90°,∴BO=AC=4.………………………………………….10分21.解:(1)∵乙店C组数据:78,76,69,62,69,71,80,69,73,79,75,∴乙组数据中心C组中有11人,按照从小到大排列是:62,69,69,69,71,73,75,76,78,79,80,∴扇形统计图A组学生对应的圆心角的度数为:360°×=12°,A组学生有30﹣11﹣30×(10%+20%+30%)=1(人),B组有学生:30×30%=9(人),∴中位数a是C组的第5个数和第6个数的中位数,即a=(71+73)÷2=72,∵样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件,乙的极差是86,∴极差b=86+2=88,故答案为:12°,72,88;…………………………………………………3分(2)乙店门店的销售人员上月的业绩更好,理由:由表格可知,两个销售人员的平均数相同,众数相同,但是乙的中位数高于甲,说明乙店门店的销售人员上月的业绩更好;………………………………6分(3)600×=180(人),答:该公司能评为“优秀销售员”的有180人.…………………………….10分22.解:(1)当x≥2时,y=x+|x﹣2|=x+x﹣2=2x﹣2,当x<2时,y=x+|x﹣2|=x+2﹣x=2,故答案为:2x﹣2,2;……………………………………….2分(2)当x≥2时,y=2x﹣2过点(2,2),(3,4),函数y=x+|x﹣2|的图象如右图1所示;……………………………………..4分(3)由图象可知,当x>2时,y随x的增大而增大,故答案为:当x>2时,y随x的增大而增大;……………………………….6分(4)∵y=ax+1的函数图象一定过点(0,1)∴当y=ax+1中的a=2时,直线y=ax+1与直线y=x+|x﹣2|有一个交点,当a≥2或a<0时,y=ax+1与y=x+|x﹣2|有一个交点,…………………….10分当直线y=ax+1过点(2,2)时,2=2a+1,得a=0.5,故当0≤a<0.5时,y=ax+1与y=x+|x﹣2|没有交点,当a=0.5时,y=ax+1与y=x+|x﹣2|有一个交点,由上可得,关于x的方程ax+1=x+|x﹣2|有两个实数根,实数a的取值范围是:0.5<a<2,故答案为:0.5<a<2.24.解:(1)由题意得,总利润为:3000×2m+1.5×(﹣3000)﹣5400=6000m+﹣9900;………………………………………..4分(2)设第一批进货单价为m元/千克,由题意得,××2+××(m﹣0.2+0.6)﹣5000=4000, (6)分解得:m=1.2,……………………………..8分经检验:m=1.2是原分式方程的解,且符合题意.…………………….9分则售价为:2m=2.4.答:第一批大米中优等品的售价是2.4元.…………………………..10分24.解:(1)根据题意得:1000d+100c+10b+a;故答案为:1000d+100c+10b+a;…………………………………..2分(2)定值为8,M的十位数字为:×[10(c﹣1)+100﹣10b]=c﹣b﹣1+10,M百位数字为:×[100(b﹣1)﹣100c]=b﹣1﹣c,∴c﹣b﹣1+10+b﹣1﹣c=8,则定值为8;…………………………………..4分(3)M的千位、N的千位为4,M的个位、N的个位为6,∴a﹣d=4,例如5861﹣1685=4167;4716+4176=8892.…………………………..10分25.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣)代入得a•1•(﹣3)=﹣,解得a=,所以抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣x﹣;……………..3分(2)①作DE⊥x轴于E,如图1,∵DE∥OT,∴△AOT∽△AED,∴==,即==,解得AE=5,OT=DE,∴OE=4,当x=4时,y=x2﹣x﹣=×16﹣4﹣=,∴D(4,),∴DE=,∴OT=DE=,∴T(0,);……………………………………6分②过点P作PF∥AT交y轴于F,如图2,当直线PF与抛物线只有一个公共点P时,点P到直线AT的距离最大,此时△ATP的面积的最大,S△APT=,设T(0,t),∵PF∥AT,∴S△AFT=S△APT=,∴•1•TF=,解得TF=,∴OF=TF﹣OT=﹣t,∴F(0,t﹣),设直线AT的解析式为y=kx+t,把A(﹣1,0)代入得﹣k+t=0,解得k=t,∴直线AT的解析式为y=tx+t,∵直线PF与直线AT平行,∴直线PF的解析式为y=tx+t﹣,列方程组,消去y得到x2﹣(t+1)x+3﹣t=0,△=(t+1)2﹣4••(3﹣t)=0,整理得t2+4t﹣5=0,解得t1=1,t2=﹣5(舍去),∴T点坐标为(0,1).……………………………………………10分26.证明:(1)如图1,∵AC=EC,F是AE的中点,∴CF⊥AE,∴∠AFC=90°,∵四边形ABCD是矩形,AD=DC,∴矩形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠AFC=∠ABC,∵∠AMF=∠BMC,∴∠EAB=∠MCB,∵∠ABE=∠ABC=90°,∴△AEB≌△CMB(ASA),∴BE=BM;…………………………………………….2分(2)①如图2,连接BF并延长交直线AD于M,∵F是AE的中点,∴AF=EF,∵四边形ABCD是矩形,∴AD∥BC,AC=BD,∴∠M=∠FBE,∵∠AFM=∠EFB,∴△AMF≌△EBF(AAS),∴FM=BF,AM=BE,∵AD=BC,∴AD+AM=BC+BE,即DM=CE,∵AC=CE,∴EC=DM=AC=BD,∴△DMB是等腰三角形,∵F是BM的中点,∴DF平分∠BDM,∵∠BDF=30°,∴∠BDM=60°,∴△BDM是等边三角形,∴∠M=60°,在Rt△BCD中,∠BDC=90°﹣60°=30°,∴∠DBC=60°,∵OB=OC,∴∠DBC=∠OCB=60°,∴△ACE为等边三角形,………………………………………..5分②在△OHD中,∠HOD=∠BOC=60°,∴∠OHD=90°,设OH=x,则OD=2x,BD=4x,BC=2x,∴DH=x,AH=x,DC=AB=2x,Rt△ABC中,∠ACE=60°,∴∠BAC=30°,∴cos30°=,AG==x,∴BG=AB﹣AG=2x﹣x=x,∴S四边形GBOH=S△DGB﹣S△OHD,=BG•AD﹣OH•DH,=•x•2x﹣•x•x=,解得:x2=9,x=±3,∴BC=2x=6,BG=×3=4,由勾股定理得:CG===2.…………………..8分。
2019-2020学年重庆市九年级(下)期中数学试卷(附答案详解)
2019-2020学年重庆市九年级(下)期中数学试卷一、选择题(本大题共12小题,共48.0分)1.−6的绝对值等于()A. −6B. 6C. −16D. 162.太阳半径约为696000km,将696000用科学记数法表示为()A. 696×103B. 69.6×104C. 6.96×105D. 0.696×1063.下列运算正确的是()A. a+2a=2a2 B. (−2ab2)2=4a2b4 C. (a−3)2=a2−9D. a6÷a3=a24.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.5.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间6.若x=−13,y=4,则代数式3x+y−3的值为()A. −6B. 0C. 2D. 67.要使分式4x−3有意义,x应满足的条件是()A. x>3B. x=3C. x<3D. x≠38.若△ABC∽△DEF,相似比为3:2,则对应边的中线比为()A. 3:2B. 3:5C. 9:4D. 4:99.如图,边长为4的正方形ABCD外切于圆O,则阴影部分面积为()A. 2π−4B. 2π+4C. 15D. 1410.下列图形是轴对称图形的是()A. B.C. D. D11.如图,下列四个图形中的菱形个数分别为3、7、13……,按此规律下去,第9个图形中的菱形个数为()A. 73B. 81C. 91D. 10912.若数a使关于x的分式方程2x−1+a1−x=4的解为正数,且使关于y的不等式组{y+23−y2>12(y−a)≤0的解集为y<−2,则符合条件的所有整数a的和为()A. 10B. 12C. 14D. 16二、填空题(本大题共6小题,共24.0分)13.单项式5mn2的次数______.14.如图,△ABC中,D是BC上一点,AC=AD=DB,∠DAC=80°,则∠B=______度.15.如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=______.16.已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.17.如果关于x的一元二次方程x2−3x−k=0有两个实根,那么k的取值范围是______.18.已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc<0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有____.三、解答题(本大题共8小题,共78.0分)19.(1)化简:(2+a)(2−a)+(a+1)2;(2)化简:a2−4a ÷(1−2a).20.如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,D是AB的中点,AE//CD,AC//ED,求证:四边形ACDE 是菱形.21.某校1200名学生参加了一场“安全知识”问答竞赛活动,为了解笔试情况,随机抽查了部分学生的得分情况,整理并制作了如图所示的图表(部分未完成),请根据图表提供的信息,解答下列问题:(Ⅰ)本次调查的样本容量为______.(Ⅱ)在表中,m=______,n=______.(Ⅲ)补全频数颁分布直方图;(Ⅳ)如果比赛成绩80分以上(含80分)为优秀,本次竞赛中笔试成绩为优秀的大约有多少名学生?22.如图,已知反比例函数y=k的图象与一次函数y=x+bx的图象交于点A(1,4),点B(−4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.(1)求甲、乙两种货车每辆车可装多少箱生姜?(2)如果这批生姜有1520箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了40箱,其它装满,求甲、乙两种货车各有多少辆?24.在四边形ABCD中,E为BC边中点.已知:如图,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌△AFE;(2)AD=AB+CD.25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s),当F(s)+F(t)=18时,求k的最大值.F(t)x2−2x上一点A作x轴的平行线,交抛物线于另一点B,交26.如图,过抛物线y=14y轴于点C,已知点A的横坐标为−2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.答案和解析1.【答案】B【解析】解:|−6|=6,故选:B.根据一个负数的绝对值是它的相反数进行解答即可.本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.【答案】C【解析】【分析】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为:6.96×105.故选C.3.【答案】B【解析】【分析】本题考查了合并同类项、积的乘方、完全平方公式及同底数幂的除法,熟记法则并根据法则计算是解题关键.根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等于平方和减积的二倍,可得答案.【解答】解:A、a+2a=3a,故A错误;B、(−2ab2)2=4a2b4,故B正确;C、(a−3)2=a2−6a+9,故C错误;D、a6÷a3=a3,故D错误;故选:B.4.【答案】C【解析】解:根据图形可得主视图为:故选:C.根据几何体的三视图,即可解答.本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.5.【答案】B【解析】解:∵3<√10<4,∴4<√10+1<5,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<√10<4是解题关键,又利用了不等式的性质.6.【答案】B【解析】解:∵x=−1,y=4,3)+4−3=0.∴代数式3x+y−3=3×(−13故选:B.直接将x,y的值代入求出答案.此题主要考查了代数式求值,正确计算是解题关键.7.【答案】D有意义,【解析】解:当x−3≠0时,分式4x−3有意义,即当x≠3时,分式4x−3故选:D.根据分式有意义的条件:分母≠0,列式解出即可.本题考查的知识点为:分式有意义,分母不为0.8.【答案】A【解析】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为3:2,∴△ABC与△DEF对应边上中线的比是3:2,故选:A.相似三角形对应边上中线的比等于相似比,根据以上性质得出即可.本题考查了相似三角形的性质的应用,能理解相似三角形的性质是解此题的关键,注意:相似三角形对应边上中线的比等于相似比.9.【答案】B【解析】解:如图,连接HO,延长HO交BC于点P,∵正方形ABCD外切于⊙O,∴∠A=∠B=∠AHP=90°,∴四边形AHPB为矩形,∴∠OPB=90°,又∠OFB=90°,∴点P与点F重合则HF为⊙O的直径,同理EG为⊙O的直径,由∠D=∠OGD=∠OHD=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFBE、四边形OEAH均为正方形,∴DH=DG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√GC2+CF2=√22+22=2√2,S⊙O+S△HGF则阴影部分面积=12=12⋅π⋅22+12×2√2×2√2=2π+4,故选:B.连接HO,延长HO交CB于点P,证四边形AHPB为矩形知HF为⊙O的直径,同理得EG为⊙O的直径,再证四边形DGOH、四边形OGCF、四边形OFBE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,根据阴影部分面积=12S⊙O+S△HGF可得答案.本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.10.【答案】C【解析】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意;故选:C.利用轴对称图形定义进行分析即可.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.11.【答案】C【解析】解:观察图形的变化可知:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,所以第n个图形中菱形的个数为:n2+n+1;所以第9个图形中菱形的个数92+9+1=91.故选:C.根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.12.【答案】A【解析】【分析】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<−2,得出−2≤a<6且a≠2是解题的关键.根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<−2,即可得出a≥−2,进而得出−2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程2x−1+a1−x=4的解为x=6−a4且x≠1,∵关于x的分式方程2x−1+a1−x=4的解为正数,∴6−a4>0且6−a4≠1,∴a<6且a≠2.{y+23−y2>1①2(y−a)≤0②,解不等式①得:y<−2;解不等式②得:y≤a.∵关于y的不等式组{y+23−y2>12(y−a)≤0的解集为y<−2,∴a≥−2.∴−2≤a<6且a≠2.∵a为整数,∴a=−2、−1、0、1、3、4、5,(−2)+(−1)+0+1+3+4+5=10.故选:A.13.【答案】3【解析】解:单项式5mn2的次数是:1+2=3.故答案是:3.根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.14.【答案】25【解析】解:如图,∵AC=AD,∠DAC=80°,∴∠ADC=∠C=50°,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=25°.故答案为:25.根据等腰三角形的性质得到∠ADC=50°,再根据三角形外角的性质和等腰三角形的性质可求∠B的度数.本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.15.【答案】34【解析】解:∵直角△ABC中,CD是斜边AB上的中线,∴AB=2CD=2×2=4,则cosA=ACAB =34.故答案是:34.首先根据直角三角形斜边上的中线等于斜边的一半,即可求得AB的长,然后利用余弦函数的定义求解.本题考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,以及三角函数的定义,求得AB的长是关键.16.【答案】9【解析】解:根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为:9.本题考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数((或最中间两个数的平均数).先根据平均数的定义求出x的值,再根据中位数的定义进行解答即可.17.【答案】k≥−94【解析】解:由题意知△=(−3)2−4×1×(−k)≥0,,解得:k≥−94故答案为:k≥−9,4根据方程有实数根结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.18.【答案】①④【解析】【分析】本题考查了二次函数图象与系数的关系,二次函数的性质,二次函数的最值.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】=1>0,解:①由图象可知:a<0,c>0,∵−b2a∴b=−2a,b>0,∴abc<0,故此选项正确;②当x=−1时,y=a−b+c=0,故a+c=b,故此选项错误;③当x=3时,y=9a+3b+c=0,∴9a−6a+c=0,得3a+c=0,故此选项错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=m≠1时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b)(其中m≠1),故此选项正确.故①④正确.故答案为:①④.19.【答案】解:(1)原式=4−a2+a2+2a+1=2a+5;(2)原式=(a+2)(a−2)a ÷a−2a=(a+2)(a−2)a⋅aa−2=a+2.【解析】(1)先利用平方差公式和完全平方公式计算,再合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则、平方差公式、完全平方公式.20.【答案】证明:∵AE//CD,AC//ED,∴四边形ACDE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=12AB=AD,∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∴△ACD为等边三角形,∴AC=CD,∴平行四边形ACDE是菱形.【解析】根据直角三角形斜边上的中线的性质和等边三角形的判定定理推知△ACD为等边三角形,则平行四边形ACDE是菱形.本题考查了菱形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质,证明四边形ACDE是平行四边形是解决问题的关键.21.【答案】解:(Ⅰ)300;(Ⅱ)120,0.3;(Ⅲ)补全直方图如下:(Ⅳ)本次竞赛中笔试成绩为优秀的学生大约有1200×(0.4+0.2)=720人.【解析】解:(Ⅰ)本次调查的样本容量为30÷0.1=300,故答案为:300;(Ⅱ)m=300×0.4=120、n=90÷300=0.3,故答案为:120、0.3;(Ⅲ)见答案;(Ⅳ)见答案.【分析】(Ⅰ)用第一组的频数除以频率即可求出样本容量;(Ⅱ)用样本容量乘以第三组的频率,用第二组的频数除以样本容量即可求出答案;(Ⅲ)根据m的值即可把直方图补充完整;(Ⅳ)用总人数乘以后两组数的频率之和即可得出答案.此题考查了频率分布直方图、频率分布表,关键是读懂频数分布直方图和统计表,能获取有关信息,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【答案】解:(1)把A点(1,4)分别代入反比例函数y=k,一次函数y=x+b,x得k=1×4,1+b=4,解得k=4,b=3,∵点B(−4,n)也在反比例函数y=4的图象上,x∴n=4=−1;−4(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5;(3)∵B(−4,−1),A(1,4),∴根据图象可知:当x>1或−4<x<0时,一次函数值大于反比例函数值.【解析】(1)把点A坐标分别代入反比例函数y=kx,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.23.【答案】解:(1)设乙种货车每辆车可装x箱生姜,则甲种货车每辆车可装(x+20)箱生姜,依题意,得:1000x+20=800x,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+20=100.答:甲种货车每辆车可装100箱生姜,乙种货车每辆车可装80箱生姜.(2)设甲种货车有m辆,则乙种货车有(16−m)辆,依题意,得:100m+80(16−m−1)+40=1520,解得:m=14,∴16−m=2.答:甲种货车有14辆,乙种货车有2辆.【解析】(1)设乙种货车每辆车可装x箱生姜,则甲种货车每辆车可装(x+20)箱生姜,根据甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲种货车有m辆,则乙种货车有(16−m)辆,根据货物的总箱数=每辆车可装的箱数×车的辆数,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.【答案】(1)证明:∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,{AB=AF∠BAE=∠FAE AE=AE,∴△ABE≌△AFE(SAS);(2)证明:由(1)知,△ABE≌△AFE,∴EB=EF,∠AEB=∠AEF,∵∠BEC=180°,∠AED=90°,∴∠AEB+∠DEC=90°,∠AEF+∠DEF=90°,∴∠DEC=∠DEF,∵点E为BC的中点,∴EB=EC,∴EF=EC,在△ECD和△EFD中,{EC=EF∠DEC=∠DEF ED=ED,∴△ECD≌△EFD(SAS),∴DC=DF,∵AD=AF+DF,AB=AF,∴AD=AB+CD.【解析】(1)根据AE平分∠BAD,可以得到∠BAE=∠FAE.然后根据SAS即可得到△ABE≌AFE;(2)根据(1)中的结论,可以得到EB=EF,∠AEB=∠AEF,再根据∠AED=90°,可以得到∠DEC=∠DEF,然后根据点E为BC的中点,即可得到EC=EF,再根据SAS即可得到△ECD≌△EFD,从而可以得到DF=DC,然后即可证明结论成立.本题考查全等三角形的判定与性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.【答案】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F(s)=(302+10x +230+x +100x +23)÷111=x +5,F(t)=(510+y +100y +51+105+10y)÷111=y +6.∵F(t)+F(s)=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴{x =1y =6或{x =2y =5或{x =3y =4或{x =4y =3或{x =5y =2或{x =6y =1. ∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5.∴{x =1y =6或{x =4y =3或{x =5y =2, ∴{F (s )=6F (t )=12或{F (s )=9F (t )=9或{F (s )=10F (t )=8, ∴k =F(s)F(t)=12或k =F(s)F(t)=1或k =F(s)F(t)=54,∴k 的最大值为54.【解析】本题考查了因式分解的应用以及二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s =100x +32、t =150+y 结合F(s)+F(t)=18,找出关于x 、y 的二元一次方程.(1)根据F(n)的定义式,分别将n =243和n =617代入F(n)中,即可求出结论;(2)由s =100x +32、t =150+y 结合F(s)+F(t)=18,即可得出关于x 、y 的二元一次方程,解之即可得出x 、y 的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k =F(s)F(t)中,找出最大值即可. 26.【答案】解:(1)由题意A(−2,5),对称轴x =−−22×14=4,∵A 、B 关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB−OD=√52+102−5=5√5−5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE=√OD2−OE2=√52−42=3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4−x)2+22,∴x=52,∴P(52,5),∴直线PD的解析式为y=−43x+253.【解析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB−OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE=√OD2−OE2=√52−42=3,求出P、D的坐标即可解决问题;本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.第21页,共21页。
2019-2020学年度人教版九年级第二学期第一阶段学业质量监测数学试卷(含答案)
2019-2020学年度九年级第二学期第一阶段学业质量监测数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效. 一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.计算(a 2)3÷(a 2)2的结果是 A .aB .a 2C .a 3D .a 42.2018年南京市地区生产总值,连跨4个千亿台阶、达到1 171 500 000 000元,成为全国第11个突破万亿规模的城市.用科学记数法表示1 171 500 000 000是 A .0.11715×1013B .1.1715×1011C .1.1715×1012D .1.1715×10133.小明参加射击比赛,10次射击的成绩如下:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩 A .平均数变大,方差不变B .平均数不变,方差不变C .平均数不变,方差变大D .平均数不变,方差变小4.数轴上的A 、B 、C 三点所表示的数分别为a 、b 、1,且│a -1│+│b -1│=│a -b │, 则下列选项中,满足A 、B 、C 三点位置关系的数轴为 A .B .C .D .5.如图,在Rt △ABC 中,∠C =90°,∠A >∠B ,则下列结论正确的是A .sin A <sinB B .cos A <cos BC .tan A <tan BD .sin A <cos A6.如图,在平面直角坐标系xOy 中,点A 、C 、F 在坐标轴上,E 是OA 的中点,四边形AOCB 是矩形,四边形BDEF 是正方形,若点C 的坐标为(3,0),则点D 的坐标为 A .(1,2.5)B .(1,1+3)C .(1,3)D .(3-1,1+3)二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷...相应位置....上)ACB(第5题) (第6题)A B C a b1 a b 1 a b 1 ab1ACB A7.-2的相反数是 ▲ ;-2的绝对值是 ▲ .8.若式子x +1在实数范围内有意义,则x 的取值范围是 ▲ . 9.计算 327-8×12的结果是 ▲ . 10.分解因式6a 2b -9ab 2-a 3的结果是 ▲ .11.已知反比例函数y =kx 的图像经过点(-3,-1),则k = ▲ .12.设x 1、x 2是方程x 2-mx +3=0的两个根,且x 1=1,则m -x 2= ▲ .13.如图,⊙O 的半径为6,AB 是⊙O 的弦,半径OC ⊥AB ,D 是⊙O 上一点,∠CDB =22.5°,则AB = ▲ .14.如图,正六边形ABCDEF 内接于⊙O ,顺次连接正六边形ABCDEF 各边的中点G 、H 、I 、J 、K 、L ,则S 六边形ABCDEFS 六边形GHIJKL= ▲ .15.如图,四边形ABCD 是菱形,以DC 为边在菱形的外部作正三角形CDE ,连接AE 、BD ,AE 与BD 相交于点F ,则∠AFB = ▲ °.16.如图,矩形ABCD 中,AB =5,BC =8,点P 在AB 上,AP =1.将矩形ABCD 沿CP 折叠,点B 落在点B ′处,B ′P 、B ′C 分别与AD 交于点E 、F ,则EF = ▲ .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧3x ≥x +2,4x -2<x +4.18.(6分)计算⎝⎛⎭⎫1+1x ÷x 2-1x .19.(8分)已知二次函数y =(x -m )2+2(x -m )(m 为常数).(1)求证:不论m 为何值,该函数的图像与x 轴总有两个不同的公共点; (2)当m 取什么值时,该函数的图像关于y 轴对称?20.(8分)如图,在“飞镖形”ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.A BCDEFB ′ P(第16题)(第20题)C ABFDEGH (第14题)(第15题)ABC DE F (第13题)(1)求证:四边形EFGH 是平行四边形;(2)“飞镖形”ABCD 满足条件 ▲ 时,四边形EFGH 是菱形.21.(8分)某中学九年级男生共250人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.设学生引体向上测试成绩为x (单位:个).学校规定:当0≤x <2时成绩等级为不及格,当2≤x <4时成绩等级为及格,当4≤x <6时成绩等级为良好,当x ≥6时成绩等级为优秀.样本中引体向上成绩优秀的人数占30%,成绩为1个和2个的人数相同.(1)补全统计图;(2)估计全校九年级男生引体向上测试不及格的人数.22.(8分)把3颗算珠放在计数器的3根插棒上构成一个数字,例如,如图摆放的算珠表示数300.现将3颗算珠任意摆放在这3根插棒上.(1)若构成的数是两位数,则十位数字为1的概率为 ▲ ; (2)求构成的数是三位数的概率.(第22题)抽取的九年级男生引体向上测试成绩统计图/个(第21题)23.(8分)如图,一辆轿车在经过某路口的感应线B 和C 处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC 为6 m ,在感应线B 、C 两处测得电子警察A 的仰角分别为∠ABD =18°,∠ACD =14°.求电子警察安装在悬臂灯杆上的高度AD 的长.(参考数据:sin14°≈0.242,cos14°≈0.97,tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)24.(8分)某校为迎接市中学生田径运动会,计划由八年级(1)班的3个小组制作240面彩旗,后因1个小组另有任务,其余2个小组的每名学生要比原计划多做4面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?25.(8分)如图,在□ABCD 中,过A 、B 、C 三点的⊙O 交AD 于点E ,连接BE 、CE ,BE =BC . (1)求证△BEC ∽△CED ;(2)若BC =10,DE =3.6,求⊙O 的半径.26.(9分)换个角度看问题. 【原题重现】(第23题)ABCD(第25题)【问题再研】若设慢车行驶的时间为x (h ),慢车与甲地的距离为s 1(km ),第一列快车与甲地的距离为s 2(km ),第二列快车与甲地的距离为s 3 (km ),根据原题中所给信息解决下列问题: (1)在同一直角坐标系中,分别画出s 1、s 2与x 之间的函数图像; (2)求s 3与x 之间的函数表达式; (3)求原题的答案.27.(11分)数学概念在两个等腰三角形中,如果其中一个三角形的底边长和底角的度数分别等于另一个三角形的腰长和顶角的度数,那么称这两个等腰三角形互为姊妹三角形. 概念理解(1)如图①,在△ABC 中,AB =AC ,请用直尺和圆规作出它的姊妹三角形(保留作图痕迹,不写作法).特例分析(2)①在△ABC 中,AB =AC ,∠A =30°,BC =6-2,求它的姊妹三角形的顶角的度数和腰长;②如图②,在△ABC 中,AB =AC ,D 是AC 上一点,连接BD .若△ABC 与△ABD 互为姊妹三角形,且△ABC ∽△BCD ,则∠A = ▲ °. 深入研究(3)下列关于姊妹三角形的结论: ①每一个等腰三角形都有姊妹三角形;②等腰三角形的姊妹三角形是锐角三角形;③如果两个等腰三角形互为姊妹三角形,那么这两个三角形可能全等;④如果一个等腰三角形存在两个不同的姊妹三角形,那么这两个三角形也一定互为姊妹三角形. 其中所有正确结论的序号是 ▲ .D ABC②ABC①参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(每小题2分,共20分) 7.2;2 8.x ≥-1 9.1 10.-a (a -3b )2 11.3 12.113.6 214.4315.60 16.3512三、解答题(本大题共11小题,共计88分) 17.(本题6分)解: 解不等式①,得x ≥1. ························································································ 2分解不等式②,得x <2. ························································································ 4分 所以,不等式组的解集是1≤x <2. ······································································· 6分18.(本题6分)解:⎝⎛⎭⎫1+1x ÷x 2-1x .=⎝⎛⎭⎫x x +1x ÷(x +1)(x -1)x ·························································································· 2分=x +1x ·x(x +1)(x -1) ··························································································· 4分=1x -1. ············································································································ 6分19.(本题8分)解法一:(1)令y =0,(x -m )(x -m +2)=0. ······································································· 1分解这个方程,得x 1=m ,x 2=m -2. ································································· 3分 因为m ≠m -2,所以不论m 为何值,该方程总有两个不相等的实数根. ·················· 4分 不论m 为何值,该函数的图像与x 轴总有两个不同的公共点. ······························· 5分 (2)因为函数的图像关于y 轴对称,所以m -2+m =0. ······················································································ 7分 解这个方程,得m =1.所以m 的值为1. ························································································· 8分解法二:(1)令y =0,即(x -m )2+2(x -m )=0. ··································································· 1分x 2-(2m -2)x +m 2-2m =0.因为a =1,b =-(2m -2),c =m 2-2m ,所以b 2-4ac =[-(2m -2)]2-4(m 2-2m )=4>0. ················································ 3分 所以不论m 为何值,该方程总有两个不相等的实数根.········································ 4分 不论m 为何值,该函数的图像与x 轴总有两个不同的公共点. ······························· 5分 (2)因为函数的图像关于y 轴对称, 所以-b2a =0即--(2m -2) 2=0. ····················· 7分 解这个方程,得m =1.所以m 的值为1. ························································································· 8分20.(本题8分)(1)证明: 连接AC . ····························································································· 1分∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点. ∴EF 、GH 分别是△ABC 、△ACD 的中位线.∴EF ∥AC ,EF =12AC ,GH ∥AC ,GH =12AC . ······ 3分∴EF =GH ,EF ∥GH . ··································· 5分 ∴四边形EFGH 是平行四边形. ························· 6分(2)AC =BD . ······································································································· 8分21.(本题8分)解:(1)1个和2个人数均为4个. ··············································································· 4分 (2)250×1+450=25(人).答:全校九年级男生引体向上测试不及格的人数为25人. ··········································· 8分22.(本题8分)解:(1)37. ·············································································································· 2分(2)将3颗算珠任意摆放在3根插棒上,所有可能出现的结果有:(百,百,百)、(百,百,十)、(百,百,个)、(百,十,百)、(百,十,十)、(百,十,个)、(百,个,百)、(百,个,十)、(百,个,个)、(十,百,百)、……、(十、个、个)、(个、百、百)、……、(个,个,个),共有27种,它们出现的可能性相同.所有的结果中,满足“构成的数是三位数”(记为事件A )的结果有19种,所以P(A )=1927. ··········· 8分23.(本题8分)解:设电子警察安装在悬臂灯杆上的高度AD 的长为x m .CABF D E GH在Rt △ADB 中,tan ∠ABD =AD BD, ········································································· 1分 ∴ BD =AD tan ∠ABD =xtan18° . ················································································· 2分在Rt △ACD 中,tan ∠ACD =AD CD, ··········································································· 3分 ∴ CD =AD tan ∠ACD =xtan14° . ················································································· 4分∵ BC =CD -BD , ∴x tan14°-xtan18°=6. ∴ 4x -4013x =6. ·································································································· 6分解这个方程,得x =6.5. ······················································································· 7分 答:电子警察安装在悬臂灯杆上的高度AD 的长为6.5 m . ············································ 8分24.(本题8分)解:设每个小组有学生x 名. ························································································ 1分根据题意,得2402x -2403x =4.··················································································· 4分解这个方程,得x =10. ························································································ 6分 经检验,x =10是原方程的根. ··············································································· 7分 答:每个小组有学生10名.··················································································· 8分 (说明:如果学生只设了未知数,没有用未知数表示相关量不给分)25.(本题8分)解:(1)证明:∵BE =BC ,∴∠BEC =∠BCE . ······································ 1分 ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠BCE =∠DEC ,∠A +∠D =180°.∴∠BEC =∠DEC . ······················································································ 2分 ∵四边形ABCD 内接于⊙O , ∴∠A +∠BCE =180°.∴∠BCE =∠D . ·························································································· 3分 ∴△BEC ∽△CED . ······················································································ 4分 (2)过点O 作OF ⊥CE ,垂足为F ,连接OC . ∴CF =12CE . ······························································································ 5分∴直线OF 垂直平分CE . ∵BE =BC ,∴直线OF 经过点B .∵△BEC ∽△CED ,又由(1)可知CE =CD , ∴BC CE =CE DE. ∵BC =10,DE =3.6,∴CE =CD =6. ··························································································· 6分 ∴CF =12CE =3.设⊙O 的半径为r .易得BF =BC 2-CF 2=91,OF =91-r . 在Rt △OCF 中,OF 2+CF 2=OC 2,∴(91-r )2+9=r 2. ···················································································· 7分 ∴r =509191. ······························································································ 8分26.(本题9分)解:(1)s 1、s 2与x 之间的函数图像如图所示.····································· 4分(21············································ 5分当x =4.5时,s 1=562.5,设s 3与x 之间的函数表达式为s 3=150x +b . 当x =4.5时,s 3=562.5,s 3=150x -112.5. ···························································································· 7分 (3)根据题意,当s 3=0时,x =0.75. ······································································· 8分所以第二列快车比第一列快车晚出发0.75小时.···················································· 9分27.(本题11分)解:(1)如图,△DEF 即为所求.····································· 2分EFABC D。
重庆一中初2020级(初三)2019-2020学年度(下)“一模”考试数学试题
A.等腰三角形的高线、中线、角平分线互相重合
B.同旁内角互补,两直线平行
C.角平分线上的点到这个角两边的距离相等
D.对角线相等且互相平分的四边形是矩形
D.16b2 D. 65
6 .估计 (2 15
3)
1
的值应在(
▲
)
3
4 题图
A.2 和 3 之间
B. 3 和 4 之间
C.4 和 5 之间
D.5 和 6 之间
一点,把 CDE 沿 DE 翻折,点 C 落在 C' 处, EC' 与 AB 交于点 F ,连接 BC' .当 FA 4 时, BC' EA 3
的长为( ▲ )
A. 6 5 5
B. 6 10
C. 5 5
D. 6 2
第 2页 共 8页
12.如图,在平面直角坐标系内,矩形 OABC 的顶点 O 与原点重合,点 A 在第二象限,点 B 和点 C 在第一象限,对角线 OB 的中点为点 D ,且点 D , C 在反比例函数 y k (k 0) 的图像上,若点 B 的纵坐标为 4 ,且 x
16.如图,在 RtAOB 中,ABO 90 ,将 RtAOB 绕点 O 顺时针旋转120 得 RtCOD ,已知 AB 1, 那么图中阴影部分的面积为 ▲ (结果保留 ).
16 题图
17 题图
17.一日早晨,小光准备沿自家门前的公路骑自行车锻炼身体,出发前给爸爸打电话得知爸爸正在同一公 路旁的鲜丰蔬菜基地,已装车完毕正准备前往与家方向相反的幸福农贸市场.于是他们同时出发以各自的
bx
c(a
0) 的顶点坐标为
b 2a
,
4ac 4a
b2
,对称轴为直线
重庆市字水中学初2020级数学测试(一)答案
D. —
12
4. 抛物线y=2(x + 3)2 -1可以由抛物线y=2x2 平移而得到, 下列平移正确的是c
2、 b丿 1.^ c
b)
A. 先向左平移 3 个单位长度,然后向上平移 1 个单位
8. 先向左平移3个单位长度,然后向下平移1个单位
、c. 先向右平移 3 个单位长度,然后向上平移 1 个单位
r 知当商家将此种商品销售单价分别定为55 元或 75 元时,他每月均可获得销售利润 1800 元;当商家将此
种商品销售单价定为80 元时,他每月可获得销 -利润 1550 元,则y与 x的函数关系式是( 1).)
'-A. y=-(x-60)2 +1825
L&.1四 . 和瓜y=-2(x-60) +1850
'D. 先向右平移 3 个单位长度,然后向下平移 1 个单位
- c c� 5.
在同一坐标系中,二次函数y=ax2 +b
与
一
次函数y=-bx+a
的图象可能是 y
y
让豕冲
1 』^”“
a�o
{ 1,4!0
x
x
』 ^V o b 7 o
x
^ .上 4
. ._1 b V
'\A·
\. B.
C.
'-. D.
6. 记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关千x的二次函数 . 已
重庆市字水中学初2020级数学测试(一)答案
一、选择题: (本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为A、 B 、 C 、 D的四个答案,其中只有 一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.
重庆市字水中学初2020级数学测试(一)
2 种前年购置的数量增加了 a% ,于是今年的总花费比前年增加了 2 a% .求 a 的值.
23
24.在平面直角坐标系 xOy 中,抛物线 y ax2 bx 1 与 y 轴交于点 A,将点 A向右平移 2 个单位长度,得
△A′OB′处,此时线段 A′B′与 BO 的交点 E 为 BO 的中点,则线段 B′E 的长度为
()
A. 3 5
B. 9 5 5
C. 6 5 5
D. 3 5 5
12 题图
第 2页(共 8 页)
二、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答.题.卡.中对应的横线上.
y3 y1 y2 ;其中正确的结论有( )
A.1个
B. 2 个
C. 3 个
D. 4 个
9.如图,在平面直角坐标系中,点 Am, 6 、B 3, n 均在反比例函数 y k k 0 的图象上.若 AOB
x
的面积为 8 ,则 k 的值为( )
A. 3
B. 6
C. 9
D.12
)
D.102
第 1页(共 8 页)
8.二次函数 y ax2 bx c a 0 的部分图象如图所示,对称轴为直线 x 3 ,下列结论:① abc 0 ;
2
② a+b+c 0 ;③ b2 4ac=0 ;④若点 2,y1 、 1,y2 、 3,y3 都在此二次函数图象上,则有
A. y x 602 +1825
B. y 2 x 602 +1850
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市字水中学初2020级19—20学年度九(下)第一次质量监测
数学参考答案及评分标准
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D .的四个答案,其中只有一个是正确的,请将答题卡...
上题号右侧正确答案所对应的方框涂黑.
1-5 ABACC 6-10 BCDAD 11-12 CA
二、填空题(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题..卡.
中对应的横线上. 13.1 14.2 15.101
16.04≠≤a a 且 17.400 17.8:7
三、解答题(本大题共10个小题,每小题7分,共70分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.
19.(1)222b ab a ++- 5分 (2)11+-a a
10分
20.(1)连接AO,证明∠O AC =90° 4分(2)2 7分 (3)3
834π+
10分 21.(1)a=40,b=94,c=90和96 6分
(2)八年级学生掌握自我防护知识较好,七、八年级学生的竞赛成绩平均分相同,均为92,八年级学生竞赛成绩的中位数94,高于七年级学生竞赛成绩的中位数93.(比较众数亦可); 8分
(3)468人 10分
22.(1)交点(-1,2),函数22+=x y 的对称轴是直线为x =-2. 2分
(2)将函数x y 2=的图象向下平移2个单位得到函数函数22-=x y 的图象,将函数x y 2=的图象向左平移2个单位得到函数22+=x y |的图象. 4分
(3)画图略(描点法和平移法均可), 8分 x 的取值范围是53
7≤≤x . 10分 23.解:(1)设如果不加以控制每轮传染中平均一人传染x 人则:
225)1(2=+x ,解得16,1421-==x x (舍去) 答:略 4分 (2)5400)7
51(%)101(14%)]101(14225225[%)101(14225225=-⨯-⨯-⨯++-⨯+a a a 8分
设m a m a 100,%==则,整理得:0511********=+-m m
解得:)(280512010)51280)(120(21舍去,,==∴=--m m m m 5100==∴m a 答:a 的值为5 10分
24.(1)322+--=x x y 2分
(2)(-4,-5),(1,0) 6分
(3)存在,M 的坐标是)6,1(),6,1(),1,1(),0,1(----- 10分
25.(1)(a +b )2=a 2+2ab +b 2 ; a 2﹣b 2=(a +b )(a ﹣b ) , 数形结合 3分
(2)5
56 6分 (3)2 10分
26.解:(1)13=DE 4分
(2)法一:延长EF 交CD 于点M,
证明△CEF ≌△CMF,
得到CE=CM=CB=AD
证明△AEF ≌△DMF,
得到DF=AF,AE=DM
∴AD=BC=CM=2DF,
∵AE=2AG
∴AG DF CD 22+=. 10分
法二:延长CF 、BE 交于点N 可证明.
其他方法参照给分.
(3)最小值为:105+。