13.4课题学习--最短路径问题-教学设计
13.4课题学习 最短路径问题教学设计
13.4 课题学习最短路径问题(第一课时)一、内容和内容解析1.内容利用轴对称研究某些最短路径问题。
2.内容解析最短路径问题是人教版八年级上册第十三章第四节内容,本节课以一个实际问题为载体开展对“最短路径问题”的课题研究,让学生将实际问题抽象为数学中线段之和最小问题,并建立数学模型,学会用数学的眼光观察现实世界.初步了解利用图形变换——轴对称的方法来解决最值问题,体会用数学的思维思考现实世界。
从内容上来看,在本章节之前学生已经学习了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,以及简单的轴对称知识,这为过渡到本节的学习起着铺垫作用。
本节课既轴对称知识运用的延续,从初中数学的角度来看,也是中考数学的热点问题之一,本节课的教学内容是解决中考最值综合问题的基础,具有承上启下作用。
本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。
二、目标和目标解析1.目标(1)能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。
(2)通过实际问题的提出,能够抽象为数学问题,并建立数学模型,利用所掌握的数学知识完成严谨的推理过程,然后再解决实际问题。
体会数学在实际生活中的价值。
2.目标解析达成目标 1 的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线",把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
达成目标 2 的标志是:课题学习本身是考察综合能力,注重现实背景,学生能从生活中自己发现问题,并抽象成数学模型,掌握转化的探究方法,将不熟悉的模型转化成所学过简单的数学模型,通过合作探究,解决问题。
三、教学问题诊断分析已形成的:我校八年级学生已经学习轴对称相关的简单知识,掌握了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,思维活跃,敢于尝试,具备一定的动手操作能力和小组合作意识,同时也具备一定的数学抽象能力和数学建模能力。
人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案
13. 4课题学习最短路径问题通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.重点应用所学知识解决最短路径问题.难点选择合理的方法解决问题.一、创设情境多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?二、自主探究探究一:最短路径问题的概念1.多媒体出示图①和图②,提出问题:(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.探究二:河边饮马问题多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?教师引导学生讨论,明确找点的方法.让学生对刚才的方法通过逻辑推理的方法加以证明.教师巡视指导学生的做题情况,有针对性地进行点拨.探究三:造桥选址问题多媒体出示问题2.(教材第86页)提出问题:(1)根据问题1的探讨你对这道题有什么思路和想法?(2)这个问题有什么不同?(3)要保证路径AMNB最短,应该怎样选址?学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.尝试选址作出图形.多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.根据问题1和问题2,你有什么启示?三、知识拓展已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]四、归纳总结1.本节课你学到了哪些知识?2.怎样解决最短路径问题?本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。
课题学习--最短路径问题 优秀教案
课题学习---最短路径问题游戏规则发生了变化,如图,则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到终点处?问题1:前面我们已经解决了A、B两点在直线两侧的最短问题,下面请同学们思考并尝试,若这两点居于直线的同侧,该怎样找到那样的点P,使得AP与BP的和最小?问题2:若找到了那样的点,请证明结论的正确性(化异侧为同侧)点点l求.证明:如图,在直线上取一点P质,AP=PAB=AP+PB=AP+PB.由此可知:点距离最短学以致用(将军饮马)传说在古罗马时代的亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位将军专程去拜访他,向他请教一个百思不得其解的问题.A边岸的同侧该怎样走才能使路程最短?据说当时海伦略加思索就解决了它们,你知道问题的答案吗?l小明终点现如今,将军遇到了新的问题,你能够替代海伦帮助将军解决这个问题吗?(造桥选址问题)将军从图中的A 地出发,到一条笔直的河边l 饮马,然后淌水到B 地(要求淌水的距离最短).问到河边什么地方饮马并淌水可使他所走的路线全程最短?问题3:本问题又变成了点在直线两侧的问题,但一条直线拓宽成了一条河,请同学们思考,要饮马并淌水过河,饮马点M应选在何处,才能使从A到B的路径AMNB最短?问题4:如何证明你的结论?如图,由于河岸宽度是固定的,淌水的路径最短要与河岸垂直,因此路径AMNB中的MN的长度是固定的. 因此要使AM+MN+NB的值最小,只需AM+NB的值最小即可.如图,几何画板验证,然后使用逻辑推理问题探究经验基础上,把问题引向深入,使得平移变换自然呈现,进一步体现图形变换在最短路径问题中的价值。
课题学习最短路径问题教案人教版八年级数学上册
13.4课题学习最短路径问题【教学目标】1.知识与技能:通过对最短路径的探索,进一步理解和掌握两点之间线段最短和垂线段最短的性质.2.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径的思想方法.3.情感态度与价值观:在数学学习活动中,获得成功的体验,树立自信心.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力;难点:如何利用轴对称将最短路径问题转化为线段和最小问题.【教学方法】情境学习法、探究实践法.【教学过程】新课导入:创设情境,提出问题:问题1:如图,连接A,B两点的所有连线中,哪条最短?为什么?答:②最短,因为两点之间,线段最短问题2:如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?答:PC最短,因为垂线段最短.“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.深入学习最短路径问题.由复习相关问题入手,为后面学习做好铺垫.新课讲授:(一)牧人饮马问题问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?把实际问题抽象为数学作图问题:在直线l上求作一点C,使AC+BC最短问题.动手探究:探究1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?解:连接AB,与直线l相交于一点C.根据是“两点之间,线段最短”,可知这个交点即为所求.探究2:如果点A,B分别是直线l同侧的两个点,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探究3:你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.②AC +BC= AC +B′C = AB′,② AC′+BC′= AC′+B′C′.在②AB′C′中,AB′<AC′+B′C′,②AC +BC<AC′+BC′.即AC +BC最短.例1:如图,已知点D,点E分别是等边三角形ABC中BC,AB边的中点,AD=5,点F是AD边上的动点,求BF+EF的最小值.解:△ABC为等边三角形,点D是BC边的中点,∴AD⊥BC,AB=BC,BD=CD,∴点B与点C关于直线AD对称.∵点F 在AD 上,∴BF =CF ,∴BF +EF =CF +EF ,∴连接CE ,线段CE 的长即为BF +EF 的最小值.∵当CE ⊥AB 时,CE 最小,∴当CE ⊥AB 时,BF +EF 的最小值.∵12AB ·CE =12BC ·AD ,∴CE =AD =5, ∴BF +EF 的最小值是5.归纳结论:求线段和的最小值问题:找准对称点是关键,而后将求线段长的和转化为求某一线段的长,而再根据已知条件求解.(二)造桥选址问题活动探究:如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN .桥造在何处可使从A 到B 的路径AMNB 最短(假定河的两岸是平行的直线,桥要与河垂直)?抽象出数学习题思考:N 在直线b 的什么位置时,AM +MN +NB 最小?由于河岸宽度是固定的,因此当AM +NB 最小时,AM +MN +NB 最小.AM 沿与河岸垂直的方向平移,点M 移到点N ,点A 移到点A ′,则AA ′ = MN ,AM + NB = A ′N + NB . 这样问题就转化为:当点N 在直线b 的什么位置时, A ′N +NB 最小?如图,连接A ′B 与b 相交于N ,N 点即为所求.试说明桥建在M ′N ′上时,从A 到B 的路径AMNB 增大.(两点之间线段最短)例2:如图,荆州古城河在CC ′处直角转弯,河宽相同,从A 处到B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB 的路程最短?解:作AF ②CD ,且AF =河宽,作BG ②CE ,且BG =河宽,连接GF ,与河岸相交于E ′,D ′.作DD ′,EE ′即为桥.理由:由作图法可知,AF //DD ′,AF =DD ′,则四边形AFD ′D 为平行四边形,于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF最小.归纳结论:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.课堂练习:A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出最短路径.解:如图所示,AP+PQ+BQ最短.2.(1)如图②,在AB直线一侧C,D两点,在AB上找一点P,使C,D,P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图②,在②AOB内部有一点P,是否在OA,OB上分别存在点E,F,使得E,F,P三点组成的三角形的周长最短,找出E,F两点,并说明理由.(3)如图②,在②AOB内部有两点M,N,是否在OA,OB上分别存在点E,F,使得E,F,M,N,四点组成的四边形的周长最短,找出E,F两点,并说明理由.答案:课堂小结:说一说哪些问题是线段最短问题.说一说牧民饮马问题的解决方法和原理.说一下造桥选址类问题的解决方法和原理.作业布置:1.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)答案:A2.完成本节配套习题.【板书设计】最短路径问题的解题原理:线段公理和垂线段最短.最短路径问题的分类:饮马问题和造桥选址问题.饮马问题的解题方法:轴对称知识+线段公理.造桥选址问题的解题方法:关键是将固定线段“桥”平移.【课后反思】创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,尽可能的让学生动手实践,通过探索交流获取作图方法.。
人教版八年级上册数学 13.4 课题学习 最短路径问题13.4 课题学习 最短路径问题教学设计
13.4.课题学习《最短路径》教学设计一、教材分析1、地位作用:随着课改的深入,数学更贴近生活,更着眼于解决生产、经营中的问题,于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题。
这类问题的解答依据是“两点之间,线段最短”或“垂线段最短”,由于所给的条件的不同,解决方法和策略上又有所差别。
初中数学中路径最短问题,体现了数学来源于生活,并用数学解决现实生活问题的数学应用性。
2、目标和目标解析:(1)目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.(2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“连点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.3、教学重、难点教学重点:利用轴对称将最短路径问题转化为“连点之间,线段最短”问题教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.二、教学准备:多媒体课件、导学案三、教学过程A B C P Q山 河岸求直线同侧的两点与直线上一点所连线段的和最小的问题,要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.B分别是直线l同侧的两个点,在这时先作点B关于直线AB′的交点.两地之间有两条河,现要在两条河上各造一桥分别建在何处才能使从(假定河的两岸是平行的直线,桥要与河岸垂直)B村的距离相等,则应选择在哪建厂?B两村的水管最短,应建在什么地方?班举行文艺晚会,桌子摆成如图桌面上摆满了橘子,处的学生小明先拿橘子再拿糖果,然后到图a 图b四、反思小结布置作业)本节课研究问题的基本过程是什么?)轴对称在所研究问题中起什么作用?解决问题中,我们应用了哪些数学思想方法?。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
人教版数学八年级上册13.4课题学习最短路径问题将军饮马优秀教学案例
在本章节的学习过程中,学生将经历以下过程与方法:
1.通过小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
2.引导学生从实际问题出发,培养学生的发现问题、分析问题和解决问题的能力。
3.利用数学软件、教具等辅助工具,培养学生的动手操作能力和实际应用能力。
4.通过对最短路径问题的探讨,引导学生掌握数学建模的方法,提高学生的数学思维能力。
4.教师巡回指导,关注每个小组的学习情况,及时解答学生疑问。
(四)反思与评价
1.教师引导学生对所学知识进行总结、反思,帮助学生巩固知识点,形成知识体系。
2.鼓励学生自我评价,反思自己在解决问题过程中的优点和不足,培养学生的自我认知能力。
3.组织小组互评,让学生学会欣赏他人的优点,发现自身的不足,促进团队合作。
3.对学生提出的解决方案进行讨论、分析,找出最优解,并解释其原理。
(三)小组合作
小组合作是实现教学目标的重要途径,具体策略如下:
1.将学生分成若干小组,每组4-6人,确保组内成员在知识、能力、性格等方面具有一定的互补性。
2.各小组针对问题进行讨论、研究,共同寻找解决方案。
3.小组间进行交流、分享,互相学习,取长补短。
4.教师对学生在课堂上的表现进行评价,给予肯定和鼓励,指出需要改进的地方。
(五)作业小结
在作业小结环节,我将布置以下任务:
1.请学生运用所学知识,解决一个生活中的最短路径问题,并以作文或报告的形式提交。
2.要求学生在作业中阐述自己的思考过程、解决方案和心得体会,以提高学生的书面表达能力。
3.鼓励学生进行课后拓展,了解其他求解最短路径的方法,如:A*算法、遗传算法等,提升学生的自主学习能力。
3.小组间进行分享、交流,互相借鉴,完善各自的方法和思路。
13.4 课题学习-最短路径问题人教版数学八年级上册同步课堂教案
第十三章轴对称13.4 课题学习最短路径问题一、教学目标1.能利用轴对称、平移等变换解决简单的最短路径问题.2.体会图形的变化在解决最值问题中的作用,感受由实际问题转化为数学问题的思想.二、教学重难点重点:利用轴对称、平移等变换解决简单的最短路径问题.难点:体会图形的变化在解决最值问题中的作用.三、教学过程【新课导入】[复习导入]1.如图,连接A、B两点的所有连线中,哪条最短?你的依据是什么?(②最短,依据“两点之间,线段最短”)2.如图,P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?你的依据是什么?(PC 最短,依据“垂线段最短”)3.如图,直线l是线段AB的对称轴,C是直线l上任意一点,则AC和BC的大小关系是什么?你的依据是什么?(AC=BC.依据“线段垂直平分线上的点到线段两端点的距离相等”.)4.如图,如何做点A关于直线l的对称点?(作法:(1)过点A作直线l的垂线,垂足为O;(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点.可简记为:作垂线;取等长)教师带领学生复习与最短路径相关的知识,为本节课的学习做准备.【新知探究】知识点1牧人饮马问题[提出问题]引例如图,若点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?这里强调一下两点的位置:直线l异侧的两个点.[课件展示]教师利用多媒体展示如下动画过程:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现第3条线段很明显是最短的.依据是“两点之间,线段最短”.[提出问题]根据这个依据,你可以得到作法吗?[课件展示]教师利用多媒体展示如下作图过程:作法:连接AB,与直线l相交于一点C.点C即为所求作的点.[课件展示]教师利用多媒体展示如下问题1:问题1 如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?[提出问题]这是一个实际问题,那么我们怎样把它转化成数学问题呢?[小组讨论]学生分组讨论,教师引导学生可分别把A地、B地看成点,把笔直的河边看成直线,再用数学语言描述一下问题.学生讨论完毕,教师点名每组代表回答,教师纠错.[课件展示]教师利用多媒体展示如下转化过程:问题转化一:那么该实际问题就转化为这样的数学问题:如图,点A,B分别是直线l同侧的两个点,如何在l上找到一个点C,使得AC+CB的最小?这里注意强调点A,B的位置:是直线l同侧的两个点.[课件展示]教师利用多媒体展示如下动画:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现很难找到点的位置.[课件展示]教师利用多媒体展示如下两幅对比图:[提出问题]你能找出两幅图中,A,B两点的位置有什么不同吗?(同侧、异侧)[课件展示]教师利用多媒体展示如下动画:[提出问题]我们分析,如果我们能把点B“移”到l 的另一侧B′处,同时对于直线l 上的任一点C,都保持CB 与CB′的长度相等,就能把这个“同侧”的问题转化为“异侧”的问题. 那么怎么找到B′呢?(作出点B关于直线l的对称点B′,利用轴对称的性质,可以得到CB′=CB.)[课件展示]教师利用多媒体展示如下动画:此时,问题就转化为:当点C在l的什么位置时,AC+CB′最小.[学生回答]很明显,连接AB′,与l的交点即为点C.[课件展示]教师利用多媒体展示如下作图过程:作法:(1)作点B关于直线l的对称点B′;连接AB′,交直线l于点C.点C即为所求作的点.[提出问题]怎样证明点C的位置即为所求?在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.[学生思考]给学生思考时间,教师提示,蓝色的两条线段相等,绿色的两条线段相等,A、C、B在一条直线上.学生思考完毕,教师点名学生说出自己的答案,教师纠错.[课件展示]教师利用多媒体展示如下证明过程:证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.∴AC +BC=AC +B′C=AB′,∴AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC +BC<AC′+BC′.即AC +BC 最短.[归纳总结]利用”牧人饮马“模型解决最值问题的应符合的条件:(1)定直线l;(2)两定点A,B,且两定点在直线l的同侧;(3)所求作的动点C在直线l 上.解决”牧人饮马“问题的步骤:(1)找:由轴对称的性质,作其中一个定点(如B)关于直线l 的对称点(B′);(2)连:连接另外一个定点(A)与对称点(B′);(3)交:连线与直线l 的交点(C′)所在的位置即为所求作的点(C).[课件展示]教师利用多媒体展示如下例题:例1 如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,F是AD边上的动点,则BF+EF的最小值为( B )A.7.5 B.5 C.4 D.不能确定教师根据“牧人饮马”模型解决最值问题的应符合的条件,在图中依次找到定直线、两定点、一动点.【解析】∵△ABC为等边三角形,D是BC边的中点,∴点B与点C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.思考:作点E关于AD的对称点可以吗?为什么不选择这个方法?知识点2造桥选址问题[课件展示]教师利用多媒体展示如下问题1:问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)[提出问题]这是一个实际问题,我们同样需要把它转化成数学问题来解决.经过了刚才我们对问题1的转化,你能将这个实际问题转化为数学问题吗?[小组讨论]学生分组讨论,教师引导学生可分别把A地、B地和造桥的起始两个位置看成点,把河岸看成直线,再用数学语言描述一下问题.学生讨论完毕,教师点名每组代表回答,教师纠错.[课件展示]教师利用多媒体展示如下转化过程:问题转化一:该实际问题就转化为这样的数学问题:N 为直线b 上一点,且NM ⊥直线a 于点M ,当点N 在直线b 的什么位置时,AM+MN+NB 最小.[课件展示]教师利用多媒体展示如下动画:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现很难找到点的位置.此时,教师引导学生发现,桥的长度是不变的,进而可得到:问题转化二:由于河岸的宽度MN 是固定的,这样问题就转化为:当点N 在直线b 的什么位置时,AM+NB 最小.[课件展示]教师利用多媒体展示如下两幅对比图:[提出问题]你能找出这两幅图有什么不同吗?(两条直线、一条直线)[课件展示]教师利用多媒体展示如下动画:[提出问题]我们分析,如果我们能把两条直线转化成一条直线,就能把这个问题转化成“引例”的问题了.[课件展示]教师利用多媒体展示如下动画:转化成了引例中的模型该折线即为最短路径[课件展示]教师利用多媒体展示如下作图过程:作法:(1)平移点A到点A′,使AA′等于河宽;(2)连接A′B,A′B与直线b的交点,即为所求作的点N;(3)过点N作NM⊥直线a于点M.点M和点N的位置即为造桥的位置.[提出问题]怎样证明造桥位置的正确性呢?在直线b上另外任取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB <AM′+M′N′+N′B.你能完成这个证明吗?[学生思考]给学生思考时间,教师提示,蓝色的两条线段相等,绿色的两条线段相等,黄色的两条线段相等,A′、N、B在一条直线上.学生思考完毕,将解题过程写在练习本上,教师巡视,帮助有困难的学生,之后教师点名学生说出自己的答案,并纠错.[归纳总结]解决”造桥选址“问题的步骤:(1)一移;(2)二连;(3)三交;(4)四垂直.在解决最短路径问题时,我们通常利用轴对称、平移等变化把未知问题转化为容易解决的问题,从而作出最短路径的选择.【课堂小结】【课堂训练】1.如图,点A,B是直线l同侧不重合的两点,在直线l上求作一点C,使得AC+BC的长度最短.作法:①作点B关于直线l的对称点B′;②连接AB′,与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有用到的知识或方法是( D )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角2.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是( D )3.(2021•天津二模)如图所示的平面直角坐标系中,点A的坐标为(4,2),点B的坐标为(1,-3),在y轴上有一点P,使PA+PB的值最小,则点P的坐标为( D )A. (2,0) B . (-2,0) C. (0,2) D. (0,-2)【解析】如图,作B点关于y轴的对称点B',连接AB',交y轴于一点,该点即为所求的点P.过点A作x轴的垂线,交B'B的延长线于点C,则∠C=90°,设BB'交y轴于点D,则OD=|-3|=3.∵点B坐标为(1,-3) ,∴B'(-1 ,-3 ) .∵易得B'C=1+4=5,AC=2=3=5 ,∴B'C=AC.∴∠B'=45°.∴PD=B'D=1.∴OP=2 ,∴P (0,-2 ).故选D.4.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是1000米.【解析】延长AC至点A′,使得A′C=AC,连接A′B交CD于点E,连接AE,则E即为所求的点.易得A′C=AC=BD,又AC⊥CD,BD⊥CD,∠A′EC=∠BED.∴△A′CE≌△BDE(AAS),则E是CD 的中点,∴AE=500,所以AE+BE=500+500=1000.5.(2021•江西模拟)如图,等腰三角形ABC的底边BC长为10,面积是40,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为 13 .【解析】如图,连接AD,AM.∵△ABC是等腰三角形,D是BC边的中点,BC=10,∴CD=5,AD⊥BC,∴S△ABC=BC•AD=×10×AD=40,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴MA=MC,∵MC+MD=MA+MD≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长的最小值=AD+CD=8+5=13.故答案为13.6.两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫沿着A至B的路径在地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程最短,在图中画出该点的位置.方法一:解:如图,作点C关于AB的对称点C′,连接DC′交AB于点E,则点E即为所求.方法二:解:如图,作点D关于AB的对称点D′,连接CD′,同样交AB于点E的位置,则点E即为所求.7.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?解:(1)作AF⊥CD,且AF=河宽;(2)作BG⊥CE,且BG=河宽;(3)连接GF,与河岸相交于E ′,D ′;(4)作DD′,EE′即为桥.8.(1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点.(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点.(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点.【变式】(2021•吉安模拟)如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,BC>AB,DE >AE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为 120° .【解析】如图,作A点关于BC的对称点A',关于ED的对称点A'',连接A'A'',A'A''与BC的交点即为所求的点M,A'A''与ED的交点即为所求的点N,∵∠B=∠E=90°,∴A、B、A'共线,A、E、A''共线,∴∠A'=∠A'AM,∠A''=∠NAE,∴∠A'AM+∠NAE=∠A''+∠A'=180°﹣∠BAE=180°﹣120°=∠60°,∴∠AMN+∠ANM=180°﹣∠MAN=180°﹣(120°﹣∠A'AM﹣∠NAE)=120°,故答案为120°.【教学反思】本节课我通过引例(两点在直线的异侧),让学生认识到找最短路径的根本是通过"两点之间,线段最短”找出解决问题的途径,接下来通过"牧人饮马”让学生带着兴趣进入教学。
八年级数学上册 13.4 课题学习 最短路径问题教学设计 (新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
13.4课题学习-最短路径问题 教案 2022-2023学年度人教版八年级数学上册
13.4课题学习-最短路径问题教案一、教学目标1.了解最短路径问题的基本概念和特点;2.掌握最短路径问题相关的算法和求解方法;3.能够灵活运用最短路径问题的算法解决实际问题。
二、教学重点1.最短路径问题的基本概念和特点;2.最短路径问题的相关算法和求解方法。
三、教学难点能够灵活运用最短路径问题的算法解决实际问题。
四、教学内容1. 最短路径问题的概念和特点最短路径问题是图论中的一个经典问题,主要是求解两点之间经过路径长度最短的问题。
最短路径问题的特点有:•可以用图来表示,顶点表示路径的起点和终点,边表示路径;•可以是有向图或无向图;•边上可以有权值,表示路径长度。
2. 最短路径问题的相关算法和求解方法最短路径问题有多种求解方法和算法,常用的有以下几种:2.1. 迪杰斯特拉算法迪杰斯特拉算法是一种用于求解单源最短路径问题的算法。
它的基本思想是从起点开始,逐步扩展最短路径,直到到达终点。
迪杰斯特拉算法的步骤如下:1.初始化起点到各个顶点的最短距离,起点到起点的最短距离为0,其他顶点的最短距离为无穷大;2.选择一个未访问且距离起点最近的顶点,标记为已访问;3.更新当前顶点的邻居顶点的最短距离,如果经过当前顶点到达邻居顶点的距离小于邻居顶点当前的最短距离,则更新最短距离;4.重复步骤2和步骤3,直到所有顶点都被访问。
2.2. 弗洛伊德算法弗洛伊德算法是一种用于求解多源最短路径问题的算法。
它的基本思想是通过计算任意两个顶点之间的最短路径,来得到整个图的最短路径。
弗洛伊德算法的步骤如下:1.初始化距离矩阵,如果两个顶点之间存在边,则距离为边的权值,否则距离为无穷大;2.对于每个顶点对(i, j),尝试经过某个中间顶点k来更新距离,如果从i到j的距离大于从i到k再到j的距离,则更新距离;3.重复步骤2,直到所有顶点对的最短路径都被计算。
2.3. 贝尔曼-福特算法贝尔曼-福特算法是一种用于求解单源最短路径问题的算法。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案
教学设计13.4最短路径问题永顺县溪州中学彭善玉一、教学设计思路:本节课是人民教育出版社出版九年制义务教育数学课本八年级数学《最短路径问题》,教材为我们提供了最短路径的概念和探索方法以及相应练习题。
这节课与实际生活息息相关,在内容上,它将两点之间线段最短,轴对称的性质紧密结合起来。
通过这节课的学习,可以培养学生探索与归纳能力,体会数学建模的思想,学会从复杂题目中找到原始的基本的数学模型。
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,采用了我校“六步四维一体”的教学模式,启发式、探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生是学习的主体。
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想证明,使学生在自主探索和合作交流中理解和掌握本节课的内容。
利用课件、微课、几何画板辅助教学,适时呈现问题情景,以丰富学生的感性与理性认识,增强直观效果,提高课堂效率。
二、教学目标1、知识与技能:(1)理解并掌握平面内位于直线同侧两个点,如何在直线上找到一个点,使得两点到直线上这点距离之和最小问题。
(2)能利用轴对称解决实际问题中的最短路径问题。
(3)通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。
2、过程与方法:(1)通过自主画图,小组讨论,共同比较等教学活动,探索与轴对称有关的最短路径问题,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过几何画板把抽象问题具体化,直观地观察、分析把折线问题转化直线问题,体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
在解决问题的过程中渗透“化归”的思想,(3)能够倾听其他同学的发言,并能把自己的想法与其他同学交流,体会合作学习的过程与方法,感受合作的愉快。
人教版八年级上册13.4课题学习-最短路径问题教案
课题:13.4课题学习最短路径问题教学内容最短路径问题教学目标知识与技能:通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想和方法.情感、态度与价值观:在数学教学活动中获得成功的体验,树立自信心,激发学生的学习兴趣,让学生感受数学与现实生活的密切联系.教学重点应用所学知识解决最短路径问题.教学难点选择合理的方法解决问题.教学方法合作交流,讲练结合.教学准备多媒体课件,三角板.教学过程设计设计意图教学过程一、复习引入(1)两点所连的线中,最短.(2)连接直线外一点与已知直线上各点的所有线段中,最短.我们研究过以上这两个问题,我们称它们为最短路径问题.同学们通过讨论下面两个问题,可以体会如何运用所学知识选择最短路径.(揭示课题)二、新知探究问题1首先我们来研究河边饮马问题.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?连接AB,与直线l相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.【思考】如果点A,B分别是直线l同侧的两个点,又应该如何解决?复习旧知,为新课学习提供理论依据.讨论交流.(1)牧马人到笔直的河边饮马,河边可以近似看成一条直线,假设到C点饮马,要保证所走的路径最短和哪些线段有关?(2)要利用我们学过的哪些知识?要经过怎样的图形变换转移到一条线段上?分组交流合作,在小组内达成共识的基础上,推选代表进行板演.幻灯片演示画法,指导学生证明AB'=AC+BC.(B,B'两点关于直线l对称)如果在直线上另外任取一点C',连接AC',BC',B'C'.怎样证明AC+CB<AC'+C'B?讨论交流完成.【总结方法】找出其中某一点关于直线的对称点,连接对称点与另一点,与直线的交点即为所求,证明时要利用三角形三边的关系来证明.(造桥选址问题)如图所示,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)我们可以把河的两岸看成两条平行线a和b,思考:(1)要保证路径最短就是要使哪些线段的和最小?(2)无论点M,N在什么位置,MN的长度是否发生变化?为什么?合作交流.结合学生讨论的结果,强调MN为定值,问题的关键就是要保证AM+NB的和最小.阅读教材第87页,合作交流思路展示教材图13.4 - 9的证明过程.证明AM+MN+NB<AM'+M'N'+N'B.证明:因为A'B<A'N'+N'B,所以A'N+NB<AM'+N'B.又因为AM=A'N,所以AM+NB<A'M+N'B.又MN=M'N',所以AM+MN+NB<AM'+M'N'+N'B.三、课堂小结最短路径问题,常用的方法是借助轴对称的知识转化,利用“两点之间,线段最短”来求线段和的最小值,从而解决最短路径问题.四、课堂练习1.如图所示,直线m表示一条河,点M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是()解析:作点M关于直线m的对称点P',连接NP'交直线m 于P.根据两点之间,线段最短,可知选项D铺设的管道最短.故选D.2.如图(1)所示,在旷野上,一个人骑着马从A到B,半路上他必须先到河岸l的P点让马饮水,然后再到河岸m的Q点让马再次饮水,最后到达B点,他应该如何选择饮马地点P,Q,才能使所走路程AP+PQ+QB为最短(假设河岸l,m为直线)?(1)(2)解:如图(2)所示,作A点关于直线l的对称点A',B点关于直。
13.4课题学习 最短路径问题 教学设计
素养
目标
通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短的公理和三角形两边之和大于第三边的垂线段最短的定理。
运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想方法。
在数学学习活动中获得成功的体验,树立自信心,激发学生的学习兴趣,让学生感受到数学与现实生活的密切联系。
布置任务,复习知识点
为课堂上涉及知识点做知识储备
新课导入(疑)
一.温故知新
问题1.“孝”是中华民族的传统美德,一代代的中国人应该将它传承下去。晴空万里的一天,何将军从军营(点A)出发,到一条笔直的市集(直线l)买礼品,然后到父母家(点B),何将军到市集的什么地方买礼品,可使所走的路径最短?(假设选中的最佳位置刚好能买到礼品)
生自己读题完成题目,并先行自我归纳模型特点、作图方法、证明思路。
1.设置问题:
(1)让生在学案上作图,用点P表示具体位置;
(2)说出这样的作图依据;
(3)简要证明为何最短?
2.分析这样的模型特点:
两个定点在直线异侧,一个动点在直线上。
3.归纳此模型的作图方法、依据、证明思路。
以学生学过的知识为基础引入课题,培养学生的学习兴趣.
再动手作图,做出最短路径。
归纳总结此模型与上述模型的异同,得到作图方法。
5.在学案上作图,并证明路径最短,可以小组合作。
由平移性质可知,AM=A'N,AA'=MN=M'N',AM'=A'N'.
AM+MN+BN转化为AA'+A'B,而AM'+M'N'+BN'转化为AA'+A'N'+BN'
人教版数学八年级上册13.4课题学习最短路径问题微课说课稿
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、情境教学和合作学习。选择这些方法的理论依据如下:
1.启发式教学:这种方法鼓励学生主动思考、探究和解决问题,有助于培养学生的创新能力和解决问题的能力。通过提问、讨论等方式,引导学生从已知知识中发现规律,逐步深入理解新知识。
2.增强学生运用数学知识解决实际问题的意识,提高学生的应用能力;
3.培养学生的团队合作精神,让学生在合作交流中学会倾听、尊重他人。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点为:
1.最短路径问题的概念及其求解方法;
2.欧几里得算法和迪杰斯特拉算法的应用。
教学难点为:
1.求解最短路径的算法过程,特别是迪杰斯特拉算法的理解和运用;
(二)学习障碍
学生在学习本节课之前,已经掌握了线段的性质、两点间的距离公式、勾股定理等前置知识。但在学习过程中,可能存在以下障碍:
1.对最短路径问题的概念理解不够深入,难以将实际问题抽象为数学模型;
2.欧几里得算法和迪杰斯特拉算法的过程较为复杂,理解起来有一定难度;
3.在解决实际问题时,可能不知道如何选择合适的方法求解。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂教学中,通过提问、讨论等方式,引导学生主动思考、表达观点。教师给予及时反馈,激发学生的学习兴趣和动机。
2.生生互动:将学生分成小组,针对最短路径问题进行讨论、交流。小组成员分工合作,共同完成探究任务,提高团队合作能力。
3.课堂小结:组织学生进行课堂小结,分享学习心得和成果。教师对学生的表现给予评价,鼓励优秀学生,激发学生的学习积极性。
13.4课题学习 最短路径问题 教案 人教版八年级数学上册
课题 13.4 课题学习 最短路径问题课型 新授课教师版本人教版八年级上册教 学 设 计教学目标1.能利用轴对称解决简单的最短路径问题.2.体会图形的变化在解决最短路径问题中的作用,感悟转化思想.3.让学生体验在数学学习活动中充满了探索与创造,在探索中学会与人合作、交流; 在探索中体验成功的快乐,增强学好数学的信心。
教学重点 体会图形的变化在解决最短路径问题中的作用,感悟转化思想 教学难点 利用轴对称解决简单的最短路径问题. 教学方法 探索式合作教学法 教学用具 多媒体辅助教学教学过程教师活动学生活动 设计意图 创设情境激趣引入相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边饮马,然后到B 地.到河边什么地方饮马可使他所走的路径最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.提出问题:(1)故事中涉及最短路径问题,我们已经学习了哪两种最短路径问题?(2)如图,连接A 、B 两点的所有连线中,哪条最短?(3)2.如图,点P 是直线l 外一点,点P 与该直线l 上各点连接的所有线段中,哪条最短?学生思考教师展示问题,并观察图片,获得感性认识在教师的引导下回顾旧知识从生活中问题出发,唤起学生的学习兴趣及探索欲望.体会数学知识来源于实践,又服务于实践为本节课的学习打下知识基础。
问题引导探究新知探究点1 异侧两点到直线上一点的最短路径问题1.现在假设点A,B 分别是直线 异侧的两个点,如何在 上找到一个点,使得这个点到点A ,点B 的距离的和最短?方法总结:简记:一连二找点探究点2 将军饮马问题1.如图,将军从A 地出发,到一条笔直的河边l 饮马,然后到B 地,将军到河边的什么地方饮马,可使所走的路径最短?提出问题:(1)请你将实际问题简化为数学模型(2)饮马的位置有几种选择?(3)所走路径用符号语言表述2.猜测点C 在直线 的什么位置可使路径最短方法总结:简记:一作二连三找点3.你能用所学的知识证明上图中你所作的点C 使AC +BC 最短吗?以口诀的形式展示作图方法,加深学生对问题一作图的理解记忆。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
13.4课题学习最短路径问题(教案)2022秋八年级上册初二数学人教版(安徽)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与最短路径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用图示和模型来演示Dijkstra算法的执行过程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了最短路径的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对最短路径问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我发现学生们对于最短路径问题的兴趣还是比较高的。在导入新课的时候,通过提问的方式,大家都能积极参与进来,分享自己在生活中遇到的最短路径问题。这为接下来的新课讲授奠定了良好的基础。
在新课讲授环节,我尽量用简单明了的语言解释了最短路径的基本概念,并通过案例分析,让学生们看到了这个知识点的实际应用。不过,我也注意到,对于Dijkstra算法这一部分,学生们理解起来还是有一定难度的。在今后的教学中,我需要在这一部分多花一些时间,用更直观的方式,比如图解或者动画演示,来帮助学生更好地理解这个算法的原理和步骤。
3.增强学生的空间观念,通过实践活动,培养其在现实情境中运用几何知识进行观察、分析和解决问题的能力。
4.培养学生的数据分析素养,使其能够对实际问题进行合理的数据整理和分析,为求解最短路径提供依据。
5.激发学生的创新意识,鼓励其在解决最短路径问题时,积极探索多种可能,优化解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4课题学习
最短路径问题
教学内容解析:
本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。
教学目标设置:
1、能利用轴对称解决简单的最短路径问题
2、在谈最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。
教学重点难点:
重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
学生学情分析:
1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。
此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。
2、学生已经学习过“两点之间,线段最短。
”以及“垂线段最短”。
以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。
教学策略分析:
最短路径问题从本质上说是最值问题,作为八年级学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值
问题,更会感到陌生,无从下手。
解答“当点A、B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。
在证明“最短”时,需要在直线上任取一点(与所求做的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法,一些学生想不到。
教学时,教师可以让学生首先思考“直线l异侧的两点,与直线l上的点的和最小”为学生搭建桥梁,在证明最短时,教师要适时点拨学生,让学生体会任意的作用。
教学条件分析:
在初次解决问题时,学生出现了多种方法,通过测量,发现利用轴对称将同侧两点转化为异侧两点求得的线段和比较短;进而利用几何画板通过动画演示,实验验证了结论的一般性;最后通过逻辑推理证明。
教具准备:直尺、几何画板,ppt
教学过程:
环节教师活动学生活动设计意图
一
复习引入1.【问题】:看到图片,回忆如
何用学过的数学知识解释这个
问题?
2.这样的问题,我们称为“最
短路径”问题。
1、两点之间,线段最短。
2、两边之和大于第三边。
从学生已经学
过的知识入
手,为进一步
丰富、完善知
识结构做铺
垫。
二探究1.探究一:
【故事引入】:唐朝诗人李颀在
《古从军行》中写道:“白日登
山望峰火,黄昏饮马傍交河.”
诗中就隐含着一个有趣的数学
认真读题,仔细思考。
从异侧问题入
手,由简到难,
逐步深入。
新知问题,古时候有位将军,每天
从军营回家,都要经过一条笔
直的小河。
而将军的马每天要
到河边喝水,那么问题来了,
问题:怎样走才能使总路程最
短呢?
将实际问题中的“地点”
“河”抽象为数学中的
“点”“线”,把实际问题
抽象线段和最小问题。
二探究新知2.探究二:
【变换情境】:后来将军把家搬
到了河的对面,若还是要带马
先到河边喝水,然后再回家,
应该怎样走,才能使总路程最
短呢?
(1)【转化】:你能将实际问题
抽象为数学问题吗?
(2)【展示】:
让学生猜想,并画出图形。
巡视发现学生不同的作法(尽
可能多),分别展示各小组的作
法。
给予学生一定的提示。
【回答】:学生思考并回
答,如何将实际问题转化
为数学问题。
已知:直线L和同侧两点
A、B
求作:直线L上一点C,
使C满足AC+BC的值最
小。
【学生展示】:
作法1:
作法2::
作法3:
学生主动探
索,充分发挥
学生的主动
性。
展示多种方
法,产生思维
冲突,引发学
生进一步探究
的学习欲望。
(3)【度量】:如何才能判断哪种猜想是正确的呢?(测量一下)在几何画板中分别度量出AC,BC的长度,并计算AC+BC。
让学生观察数值如何变化。
并反思各自的作法是否正确。
【学生反思】:第1种作法是利用“垂线段最短”,得到AC最短,利用“两点之间线段最短”,得到BC最短,但不能确定AC+BC是最短的。
第2种作法只能说明在河l上取一点,到A、B两地的距离相等,也就是AC =BC。
不能说明AC+BC最短
第3种作法应该是正确的。
二探究新知3.解决问题
【追问】用第3种作法的同学,
你们是怎样想到作点B关于直
线L的对称点的?为什么要作
对称点?
如果做点B关于直线L的
对称点,就是把点B移到
了另一侧,而且满足了BC
=BC’。
其实直线L上所
有点到B和B’的距离都
相等。
也可是根据垂直平分线
的性质,L就是线段BB’
的垂直平分线,而垂直平
分线上的点到线段两个
端点的距离相等。
利用轴对称将同侧线段
和最短转化为异侧线段
和最短问题。
借助轴对
称,把折线转化为线段的
长来求解。
让学生进一步
体会做法的正
确性,提高逻
辑思维能力。
让学生在反思
的过程中,体
会轴对称的作
用,感悟转化
思想,丰富数
学活动经验。
五
范例分析1.【问题】:如图,一个旅游船
从大桥AB的P处前往山脚下的
Q处接游客,然后将游客送往河
岸BC上,再回到P处,请画出
旅游船的最短路径。
在具体问题中
实践已有模
型,固化已有
模型。
为进一
步丰富、完善
知识结构做铺
垫。
六巩固练习1.【题目】:如图,直线l是
一条河,P、Q为河同侧的
两地,欲在l上某处修建一
个水泵站M,分别向P、Q
两地供水,四种方案中铺设
管道最短的是()
2.【题目】:如图,在直角三
角形ABC中,角A=30度,
角C为直角,且BC=1,MN
为AC的垂直平分线,设P
为直线MN上任一点,PB+PC
的最小值为
3.如图,正方形ABCD边长为
8,M在BC上,BM=2,N
为AC上的一动点,则BN+MN
的最小值为
将军饮马模型的直接应
用。
习题难度,由
易到难,逐步
深入。
让学生
进一步巩固解
决最短路径问
题的基本策略
和基本方法。
七课堂小结1.【问题】:本节课研究问题的
基本过程是什么?
当我们遇到一个实际问题,首
先,我们要将实际问题变成一
个数学问题(群答),也就是抽
象成一个数学模型,这样可以
帮助我们进行实验观察,进而
运用合情推理得到一个猜想,
然后我们可以通过严谨的逻辑
证明,验证猜想,从而得出结
论,最后再将结论运用到实际
问题里。
我们要先将实际问题变
成一个数学问题,然后观
察实验,提出猜想,之后
通过证明,验证猜想,从
而得出结论,最后再将结
论运用到实际问题里。
培养学生总结
在课题学习的
基本思路。
目标检测设计:
题目1、(课后练习)课本93页,第15题。
设计意图:
本题难度适中,适合作为课后练习,是学生跳一跳能摘到的果子,达到复习本节课知识方法,又为后续学习打下基础。
题目2、(拓广探索)在∠AOB 内有一点P ,在射线OA 上找一点M ,在射线OB 上找一点N ,使PMN 的周长最短。
设计意图:
学以致用,并且有提高和挑战,作两次轴对称。
在解决最短路径问题时,通常利用轴对称将同侧转化为异侧问题,化折线为直线,从而作出最短路径的选择。
2.【问题】:轴对称在所研究问题中起什么作用?
利用轴对称主要是进行问题的转化,它其实是起到了一个桥梁的作用,同时也体现了我们数学学习中的转化思想。
转化作用。