七年级数学上册 有理数的乘除法教案 新人教版
有理数的乘法教案(精选多篇)
有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。
由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。
2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。
3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。
难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。
〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。
结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。
1.4有理数的乘除法教案人教版数学七年级上册
第一章 有理数1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则学习目标:1.掌握有理数的乘法法则并能进行熟练地运算.2.掌握多个有理数相乘的积的符号法则.重点:有理数的乘法法则,多个数相乘的符号法则.难点:积的符号的确定.一、知识链接 1.计算:(1)777++= ;(2)1212121212++++= .2.将以上两个加法运算用乘法运算表示出来:3.计算:(1)3×2;(2)3×112;(3)3126⨯;(4)320.4⨯ 二、新知预习1.计算:(1)222++=(-)(-)(-) ;(2)99999++++=(-)(-)(-)(-)(-) .2.你能将上面两个算式写成乘法算式吗?3.怎样计算?(1)6×(5);(2)(4)×(5);(3)0×(5).【自主归纳】 有理数的乘法:正数乘正数,积为 数;负数乘负数,积为 数; 负数乘正数,积为 数;正数乘负数,积为 数;零与任何数相乘或任何数与零相乘结果是 .三、自学自测(1)53⨯-() (2)46⨯(-) (3)79-⨯-()()(4)0.98⨯ 2.填空(1)3的倒数是___________;34的倒数是_____________. (2)______的倒数是6;___________的倒数23-. 四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点1:有理数的乘法运算1.如图,一只蜗牛沿直线 l 爬行,它现在的位置在l 上的点O.填一填:(1)如果一只蜗牛向右爬行2cm 记为+2cm ,那么向左爬行 2cm 应记为________;(2)如果3分钟以后记为+3分钟,那么3分钟以前应记为___________.想一想:(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分后它在什么位置? 结果:3分钟后蜗牛在l 上点O____边_____ cm 处.可以表示为: .(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分后它在什么位置?结果:3分钟后蜗牛在l 上点O____边_____ cm 处.可以表示为: .(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分前它在什么位置? 结果:3分钟前蜗牛在l 上点O____边_____ cm 处.可以表示为: .(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分前它在什么位置?结果:3分钟前蜗牛在l 上点O____边_____ cm 处.可以表示为: .(5)原地不动或运动时间为零,结果是什么?结果:仍在原处,即结果都是___________,可以表示为: .根据上面结果可知:______数;负数乘负数积为______数;(同号得正)______数;正数乘负数积为______数;(异号得负)______.______.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.讨论:(1)若a <0,b >0,则ab 0 ;(2)若a <0,b <0,则ab 0 ;(3)若ab >0,则a 、b 应满足什么条件?(4)若ab <0,则a 、b 应满足什么条件?例1 计算:(1)3×(4); (2)(3)×(4).归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.例2 计算:(1)(3)×65×(59)×(41);(2)(5)×6×(54)×41 归纳:(1)几个不等于零的数相乘,积的符号由_____________决定.(2)当负因数有______个时,积为负;当负因数有______个时,积为正.(3)几个数相乘,如果其中有因数为0,那么积等于_______.探究点2:倒数例3 计算:(1) 21×2; (2)(21)×(2) . 要点归纳:有理数中仍然有:乘积是1的两个数互为倒数.思考:数a(a ≠0)的倒数是什么?探究点3:有理数的乘法的应用例4 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km ,气温的变化量为6℃,攀登3km 后,气温有什么变化?1.计算:(1)566⨯-(-)(); (2)8×(1.25). 2.填空:,一个数的倒数等于这个数本身,则这个数是 .3.已知a 与b 互为倒数,c 与d 互为相反数,m 的绝对值是4,求m ×(c +d )+a ×b -3×m 的值.4.商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?二、课堂小结1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2.几个不是零的数相乘,负因数的个数为奇数时积为负数,偶数时积为正数.3.几个数相乘若有因数为零则积为零.4.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.5.乘积是1的两个数互为倒数.2.计算: (1)221×(4); (2)(107)×(215); (3)(10.8)×(275); (4)(321)×0. 3.计算:(1)(125)×2×(8);(2)(32)×(57)×(146)×23; (3)78×(32)×(3.4)×0. 4.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km 处的气温大约是多少?参考答案自主学习一、知识链接1.(1)21 (2)602.7×3=21;12×5=60.3.(1)6. (2)92. (3)14. (4)0. 二、新知预习1.(1)6 (2)452.(2)×3=6;(9)×5=45.3.(1)30. (2)20. (3)0.【自主归纳】正 正 负 负 零三、自学自测1.(1)原式=15. (2)原式=24. (3)原式=63. (4)原式=7.2.2.(1)13 43 (2)16 32课堂探究一、要点探究填一填:(1)2cm (2)3分钟想一想:(1)右 6 (+2)×(+3)= 6 (2)左 6 (2)×(+3)= 6(3)左 6 (+2)×(3)= 6 (4)右 6 (2)×(3)=6(5)0 0×3=0;0×(-3)=0;2×0=0;(-2)×0=01.正 正2.负 负3.乘积4.零(1)< (2)> (3)a ,b 同号 (4)a ,b 异号解:(1)原式=12. (2)原式=12.解:(1)原式=89. (2)原式=6.归纳:(1)负因数的个数 (2)奇数 偶数 (3)0解:(1)原式=1. (2)原式=1.解:(6)×3=18(℃). 答:气温下降18℃.【针对训练】1. 解:(1)原式=5. (2)原式=10.2. 2 1,13.解:m×(c+d)+a×b-3×m=0+13m=13m.因为m的绝对值是4,所以m=4或4.则原式=11或13.4.解:(5)×60=300(元). 答:销售额减少300元.当堂检测1. + 90 90 + 180 180 100 1002.3.4. 解:(6)×9=54(℃);21+(54)=33(℃).答:甲地上空9km处的气温大约为33℃.第一章有理数1.4 有理数的乘除法1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用学习目标:1.掌握乘法的分配律,并能灵活的运用.2.掌握有理数乘法的运算律,并能利用运算律简化乘法运算.重点:有理数的乘法运算律及其应用.难点:分配律的运用.一、知识链接1.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘.一个数同0相乘,仍得________.2.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.3.小学学过的乘法运算律:(1)___________________________________.(2)___________________________________.(3)___________________________________.二、新知预习1.填空(1) (2)×4=_______ , 4×(2)=________.(2) [(2)×(3)]×(4)=_____×(4)=______ , (2)×[(3)×(4)]=(2)×_____=_______.(3) (6)×[4+(9)]=(6)×______=_______, (6)×4+(6)×(9)=____+____=_______;2.观察上述三组式子,你有什么发现?【自主归纳】 在有理数的范围内,乘法的交换律和结合律,以及乘法对加法的分配律仍然适用.(1)乘法交换律:两个有理数相乘,交换因数的位置,积不变.用字母表示为:ab ba =.(2)乘法结合律:对于三个有理数相乘,可以先把前面两个数相乘,再把结果与第三个数相乘;或者先把后两个数相乘,再把第一个数与所得结果相乘,积不变.用字母表示为:()()ab c a bc =.(3)乘法对加法的分配律:一个有理数与两个有理数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.三、自学自测计算:(1)44258⨯⨯(-)(-1.)(-); (2)151⨯⨯(-2)(-);(3)31()4085-⨯. 四、我的疑惑______________________________________________________________________________________________________________________________________________________二、要点探究探究点1:有理数乘法的运算律第一组:(1) 2×3=6 3×2=62×3 = 3×2(2) (3×4)×0.25=3 3×(4×0.25)=3(3×4)×0.25= 3×(4×0.25)(3) 2×(3+4)=14 2×3+2×4=142×(3+4)=2×3+2×4思考:上面每小组运算分别体现了什么运算律?第二组:(1) 5×(-6) = 30 (-6 )×5=305× (-6) = (-6) ×5(2) [3×(-4)]×(- 5)=(-12)×(-5) =603×[(-4)×(-5)]=3×20=60(3) 5×[3+(-7 )]=5×(4)=20 5×3+5×(-7 )=1535=205×[3+(-7 )] = 5×3+5×(-7 )结论:(1)第一组式子中数的范围是________;(2)第二组式子中数的范围是________;(3)比较第一组和第二组中的算式,可以发现____________________________.归纳总结1.乘法交换律:ab =ba2.乘法结合律:(ab)c = a(bc)3.乘法分配律:a(b +c)=ab +ac ,a(b +c +d )=ab +ac +ad例1 用两种方法计算:(41+6121)×12. 练一练: 计算:① (-8)×(-12)×(-0.125)×(-31 )×(-0.1) ② 60×(1- 21-31-41) ③ (-43)×(8-131 -4 ) ④ (-11)×(-52)+(-11)×2 53 +(-11)×(-51 ) 例2 下面的计算有错吗?错在哪里?(-24)×(31 - 43 + 61 - 85 ) 解:原式=-24×31-24×43+24×61-24×85 =818+415=41+4=37易错提醒:1.不要漏掉符号;2.不要漏乘.:(1) 60×(1-21-31- 41) ; (2)5(8)(7.2)( 2.5)12-⨯-⨯-⨯. (1)(-426)×251-426×749; (2)95×(-38)-95×88-95×(-26).1.计算(2)×(312),用分配律计算过程正确的是( )A.(2)×3+(2)×(12) B.(2)×3(2)×(12)C.2×3(2)×(12) D.(2)×3+2×(12)2.计算:3.计算:参考答案自主学习一、知识链接1.得正得负绝对值02.(1)运算顺序(2)得出结果3. (1)乘法交换律ab=ba (2)乘法结合律(ab)c=a(bc) (3)乘法分配律(a+b)c=ac+bc二、新知预习1.(1)8 8 (2)6 24 12 24 (3)(5)30 24 54 302.每组式子的两个结果都相同.三、自学自测(1)原式=440. (2)原式=30. (3)原式=7.课堂探究一、要点探究思考:(1)乘法交换律(2)乘法结合律(3)分配律结论:(1)正数(2)有理数(3)各运算律在有理数范围内仍然适用解:原式=1.练一练:①原式=0.4. ②原式=5. ③原式=2. ④原式=22.解:有错.正确解法为:原式=(-24)×13+(-24)×(-34)+(-24)×16+(-24)×(-58)= -8+18-4+15=21.【针对训练】1. 解:(1)原式=5. (2)原式=60.2.解:(1)原式=426000. (2)原式=9500.二、课堂小结ab=ba (ab)c=a(bc) (a+b)c=ac+bc负因数的个数奇数负偶数正0当堂检测1. A2. 解:(1)原式=8500. (2)原式=25. (3)原式=15. (4)原式=6.3. 解:(1)原式=1700. (2)原式=0. (3)原式=4.97. (4)原式=90.。
初中数学人教版(新)七年级上14有理数的乘除法教案1
初中数学人教版(新)七年级上14有理数的乘除法教案1教学目标:1.掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.2.通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.3.培养学生勇于探索积极思考的良好学习习惯.教学重点:正确应用法则进行有理数的除法运算.教学难点:灵活运用有理数除法的两种法则.教学时数:1课时.教学过程:一、复习导入.1.小学里,除法的意义是什么?它与乘法有什么关系?已知两数的积与一个因数,求另一个因数。
用除法,乘法与除法互为逆运算除以一个数等于乘以这个数的倒数.2.求下列各数的倒数:1(1)-;(2)-0.125;(3)-1.4二、互动新授.引入负数后,如何计算有理数的除法呢?例如8÷(-4).根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①1另外,我们知道,8×(-)=-2 ②41由①、②得8÷(-4)=8×(-)③4③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4,等于乘以-4的倒数-.探索:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-4)]从而得出有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:1a÷b=a·(b≠0),b其中a、b表示任意有理数(b≠0)三、范例学习。
两数相除的商仍有符号和绝对值两部分组成,由于除法可转化为乘法,因此商的符号确定与有理数乘法类似,你能否得到与有理数乘法法则类似的除法法则吗?两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.这是有理数除法法则的另一种说法,具体采用哪一种方法,灵活选用.。
七年级数学上册1.4《有理数的乘除法》教案新人教版
有理数的乘法教学目标1.知识目标:掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算.2.能力目标:培养学生的发展、观察、归纳、猜想、验证等能力.3.情感态度:经历探索有理数乘法法则及运算律的过程.重点:有理数的乘法法则.难点:有理数的乘法法则的理解及应用.教学准备本节课采用多媒体教学,能引起学生的兴趣,产生“要学的强烈愿望.教学设计的思路清晰、符合教学规律,学生在乐趣中学会了有理数的乘法.本节课采用这种教学设计对学生理解和消化当堂课的知识点,起到了良好的教学效果.通过观察、实验、比较、概括,对提高学生分析问题和解决问题的能力有很大的突破.促进了学生自主学习的良好习惯和不断探究的思维空间.运用现代化的教学手段,把图形的“静”变“动”,增强了直观性,初步培养想象能力,同时提高课堂教学的效率.这里,数形结合这一重要数学思想方法的应用起到变抽象为直观和化难为易的作用,对今后的数学学习有深远的影响.教学过程:一.情景导入、提出问题.问题1:森林里住着一只小甲虫豆豆,每天它都要离开家去寻找食物.这一天早晨豆豆以每分钟3米的速度向东爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢?相距多少米?(动画演示)问题2:第二天,豆豆又以每分钟3米的速度向西爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢 ?相距多少米?(动画演示)2×3是小学学过的乘法,(-2)×3如何计算呢?这就是将要学习的有理数的乘法.二.分析探索、问题解决比较3×2=6,(-3)×2=-6这两个算式,有什么发现?把一个因数换成它的相反数,所得的积是原来的积的相反数.观察算式找规律3×2 = 6 ; 3×(-2)= -6 ;(-3)×(-2)=6 ;(-3)×2= -6 ;同学们觉得两个有理数相乘的结果有没有规律呢?你能通过思考发它们的规律吗?学生活动:同桌之间,前后桌之间互相讨论.(学生不可能很圆满的把法则总结全面,此时应尽可能的让学生互相补充,相互修正让学生自己来完成.教师引导学生思考 5×0,-5×0, 0×(-2)的结果是多少?三.知识理顺、得出结论.教师出示有理数乘法法则(板书):两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.师:在进行有理数乘法运算时,要注意两个方面的问题:一.确定积的符号,二.积的绝对值是两个因数绝对值的积.教法说明:教师提出尝试性问题,引导学生思考----有理数乘法的运算规律,学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结能力和口头表达能力,又使学生法则记得牢,领会的深刻.四.应用反思、拓展创新练习:1.确定下列两数的积的符号:(1)5×(-3);(2)(-4)×6 ;(3)(-7)×(-9);(4)0.5×0.7 .2.计算:(1)6×(-9);(2)(-6)×(-9);(3)(-6)×9 ;(4) 6×(-9);(5)(-6)×0 ;(6) 0×(-6).教法说明:有理数的乘法,关键是确定积的符号.为此,先编排1题进行练习,2题的目的是巩固有理数的乘法法则.例1 计算:(1)(-1/2)×1/4;(2)(-0.3)×10/7;(3)3/2×(-2/3).教法说明师生共同完成例题,教师板书再做示范,从总培养学生良好的学习习惯和严谨的作风.同学们自己编两道有理数乘法的题目,同桌交换解答.教法说明自编题活跃了课堂气氛,以便掌握学生获取知识的反馈信息,对存在问题及时补救.此外,通过自编题,来培养学生的发展思维能力,以及独立思考勇于创新的良好习惯.五、回顾交流、纳入体系学生交流总结以后,教师提出以下问题:想一想:(1)三个或三个以上不等于零的有理数相乘时,积的符号如何决定?(2)在有理数运算中,乘法的交换律、结合率以及分配率还成立吗?做一做:课本47页(做一做)、课本48页(随堂练习).六、布置作业:课本48页习题2.11.。
七年级数学上册1.4有理数的乘除法教案(新版)新人教版(1)
《乘法运算律》一、教学目标:1、在掌握有理数的乘法法则基础上,能运用乘法交换律、结合律,简化运算;2、通过探索有理数乘法运算律及其应用的过程,培养学生猜测、验证、推理等能力;3、通过运用乘法运算律来简化运算,让学生体会有理数乘法计算方法的多样化,培养学生理解的深刻性,拓展思维。
二、教学重点和难点:重点:熟练运用运算律进行计算;难点:灵活运用运算律。
三、学法指导与教学准备:问题自主探索----类比学习----学生合作交流----探索与创新四、教学过程:活动一、创设情境在小学里我们知道,数的乘法满足交换律、结合律和分配律,引进负数以后,这些运算律是否还成立呢?活动二、探索归纳(一)探究乘法交换律、结合律1、试一试:(1)任意举出两个有理数相乘的例子,并比较两个运算结果:_________×_______(2)任意选择三个有理数相乘的例子,分组先把前两个相乘或者先把后两个相乘,并比较两个运算结果:_________×_______×_______2、通过上面例子你能发现什么?请评判自己的猜想。
3、概括得出结论:通过上面例子说明有理数的乘法仍满足交换律、结合律,对于交换律,结合律不仅要会文字表达,也要会用字母表示:乘法交换律:两个数相乘,交换因数的位置,积相等乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等说明:(1)上面式子中字母a,b,c分别表示任意的一个有理数,在同一式子中,相同字母只能表示同一个数;(2)乘法的交换律,结合律可以推广到三个或三个以上的有理数相乘的情况.4、实践应用:A、加法交换律B、乘法交换律C、乘法结合律D、乘法分配律2、运用运算律不正确的是()3、课本第33页练习(1)(2)(二)探究乘法分配律1、试一试:5 ×[3 +(-7)] =____ 5 ×3 + 5 ×(-7) =____(-4) ×[(-2) - 3] =____ (- 4)×(- 2)—(- 4)× 3 =____2、通过计算你又有什么新的发现了 ?3、概括结论:乘法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加a(b + c ) =ab +ac4、实践应用:例4. 用两种方法计算:(分成两组分别用不同的方法计算,并进行比较)变式练习:(-12)活动三、展示练习,提升知识1、这个运算应用了()A、加法结合律B、乘法结合律C、乘法交换律D、乘法分配律2、用分配律计算时,计算过程正确的是()提升能力:(逆用乘法分配律)活动四、小结1、本节课你又何收获?2、你还有不懂的地方吗?3、作业:课本38页第7题(1)(2)(3)教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版七年级上册1.4有理数的乘除法教学设计
人教版七年级上册1.4有理数的乘除法教学设计一、教学目标通过本节课的学习,学生将掌握有理数的乘除法运算规律,能够灵活应用有理数的乘除法,提高有理数的运算能力。
二、教学重点和难点教学重点1.掌握有理数的乘法运算法则;2.掌握有理数的除法运算法则;3.能够适当运用知识,解决实际问题。
教学难点如何将乘除法运算规律结合实际问题进行教学,使学生能够深刻理解有理数的乘除法运算。
三、教学方法本课以示例教学为主,引导学生探究有理数的乘除法运算规律。
四、教学步骤1. 概念讲解首先讲解有理数的乘除法运算规律:两个有理数相乘,符号相同为正,符号不同为负;两个有理数相除,分子符号不变,分母相反数。
2. 案例分析接着,引导学生通过案例分析进行实际训练。
2.1 例1小明去购物需要花费-35元,他手里有3张10元的纸币和一张5元的纸币,问小明需要找回多少钱?通过讲解和引导,学生可以得出以下公式:-35 = 10 × (-3) + 5同时也可以得出结果:小明需要找回5元。
2.2 例2小王要将一根长度为3/4米的木板剪成5段,每段长度相等,问每段木板的长度应该为多少?通过讲解和引导,学生可以得出以下公式:(3/4) ÷ 5 = 3/20同时也可以得出结果:小王应该将木板剪成5段,每段长度为3/20米。
2.3 例3小李看到一个价值为-120元的物品打折40%,问小李买下这个物品需要花费多少钱?通过讲解和引导,学生可以得出以下公式:-120 × 0.4 = -48同时也可以得出结果:小李可以以-48元的价格购买这个物品。
3. 练习与展示接着,让学生用自己的笔记本或工具进行练习,并在黑板上展示自己的答案和思路。
4. 总结回顾最后,对本节课学习内容进行总结回顾,再次强调有理数的乘除法运算的规律和方法,并鼓励学生在日常生活中运用所学知识。
五、教学评价教师可以通过课堂练习,作业,小组讨论和自主探究等方式对学生进行教学评价。
新人教版七上1.4《有理数的乘除法》教案
1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。
人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)
一、教学内容
人教版七年级上册第一章《有理数》1.4有理数的乘除法。本节课将围绕以下内容展开:
1.有理数的乘法法则:同号得正,异号得负,并将绝对值相乘。
2.有理数的除法法则:同号得正,异号得负,并将绝对值相除。
3.乘除混合运算的顺序:先乘除后加减,同级从左到右。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或分享物品的情况?”(如:分水果、计算购物折扣等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘除法的奥秘。
五、教学反思
在今天的课堂中,我们探讨了有理数的乘除法。我发现学生们在理解乘除法则和应用它们解决实际问题时,普遍存在一些挑战。首先,乘除法则的规律对于一些学生来说还不够清晰,尤其是负数乘以负数得正数的概念。我尝试通过举例和图示来解释这一点,但感觉还需要更多的练习来巩固这个概念。
我注意到,当涉及到混合运算时,学生往往会忽略运算的优先级,导致计算错误。这提醒我,在未来的课程中,需要更多地强调和练习运算顺序,确保学生们能够熟练掌握。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版七年级上册1.4有理数的乘除法课程设计
人教版七年级上册1.4有理数的乘除法课程设计一、课程目标1.理解有理数的乘法和除法的含义及运算法则。
2.熟练掌握有理数的乘法和除法的计算步骤。
3.能够运用乘法和除法解决生活实际问题。
4.意识到有理数运算存在的应用意义。
二、教学重难点1.教学重点:有理数的乘法和除法的计算方法。
2.教学难点:解决生活实际问题时的思维转换。
三、教学内容及教学方法1. 有理数的乘法教学内容:1.有理数的乘法表达式;2.有理数的乘法运算法则;3.有理数乘以正数的运算法则;4.有理数乘以负数的运算法则。
教学方法:讲解和练习相结合的方式。
2. 有理数的除法教学内容:1.有理数的除法表达式;2.有理数的除法运算法则;3.正数除以有理数和有理数除以正数的运算法则;4.负数除以有理数和有理数除以负数的运算法则。
教学方法:讲解和练习相结合的方式。
3. 数学模型与实际应用教学内容:1.数学模型的概念;2.数学模型在有理数乘除法中的应用;3.将数学模型应用到实际问题中;4.解决生活实际问题时的思路转换。
教学方法:讲解和案例分析相结合的方式。
四、教学过程时间内容方法课堂导入引入数学模型的概念,激发学生学习的兴趣10分钟有理数的乘法讲解乘法表达式、运算法则及乘法练习20分钟有理数的除法讲解除法表达式、运算法则及除法练习20分钟时间内容方法30分钟数学模型与实际应用分析有理数乘除法的实际应用,并解决相应的生活问题10分钟课堂小结总结课堂内容及要点,强调注意事项五、教学评估通过以下形式对学生进行教学评估:•练习题评估:教师出若干练习题,检测学生对于乘除法的掌握情况;•作业评估:布置符合实际应用的习题,检测学生运用乘除法解决生活实际问题的能力;•课堂参与评估:观察学生课堂参与情况,对积极参与的学生给予表扬。
六、教材选择本课程以人教版七年级上册有理数第一章第四节的有理数的乘法和除法为教学依据。
七、教学手段课件、白板,其他教学辅助工具视具体情况而定。
新人教七年级上册第一单元第1课时 有理数的乘法教案
新人教七年级上册第一单元1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=;(4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X 2)√(3)X 4)X 5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275.【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x-2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b-1,a b=ab-1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.2.自己操作实践如何应用计算器来计算有理数的乘法.阅读课本第37页内容,并练习用计算器来计算:(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.。
有理数的乘法教案人教版有理数的乘法教案优秀6篇
【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。
3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。
七年级数学上册 1.4 有理数的乘除法教学设计 新人教版(2021学年)
七年级数学上册 1.4 有理数的乘除法教学设计(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册1.4 有理数的乘除法教学设计(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册1.4有理数的乘除法教学设计(新版)新人教版的全部内容。
1.4 有理数的乘除法第1课时有理数的乘法(一)错误!1.经历探索有理数乘法法则的过程,掌握有理数的乘法法则.2.能够运用有理数乘法法则计算两个数的乘法.3.能说出有理数乘法的符号法则,能用例子说明法则的合理性.错误!两个有理数相乘的符号法则.错误!从不同角度概括算式的规律.错误!(设计者:)错误!错误!错误!错误!错误!错误!一、创设情景明确目标1.计算(1)2+2+2+2=(2)(-2)+(-2)+(-2)+(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、自主学习指向目标自学教材第28至30页,完成下列问题:1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0.2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.三、合作探究达成目标错误!有理数的乘法法则活动一:阅读教材第28至29页,思考:1.说一说三个“思考”中各有什么规律?2.从符号和绝对值两个角度观察教材中的算式,可以得出什么结论?3.有理数乘法法则分几种情况进行归纳的?例1 计算:(1)(-3)×9;(2)8×(-1);(3)(-\f(1,2))×(-2); (4)(-5)×(-7).【展示点评】要得到一个数的相反数,只要将它乘以-1即可.题(3)中两个因数互为倒数.【小组讨论】计算两个有理数相乘的一般步骤有哪些?法则是怎样的?【反思小结】两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0。
人教版七年级数学上1.4有理数的乘除法教学设计(5课时)
1.4 有理数的乘除法第1课时有理数的乘法教学目标:1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的水平.2.会实行有理数的乘法运算.教学重点:能按有理数乘法法则实行有理数乘法运算.教学难点:含有负因数的乘法.教与学互动设计:(一)创设情境,导入新课1.阅读课本P28思考及提出的问题.2.全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.问:法则(1)有没有把所有的有理数都包括在内?指出:正数与0相乘得0,这里规定负数与0相乘也得0.所以得法则(2):任何数与0相乘,都得0.3.通过举例,理解法则问题:由法则(1),如何计算(-5)(-3)的结果?(1)师生共同完成:(-5)(-3)……同号两数相乘……看条件(-5)×(-3)=+()……同号得正……决定符号5×3=15……把绝对值相乘……计算绝对值∴(-5)×(-3)=+15(2)分组类似(1)讨论,归纳:(-7)×4的运算过程及规律.(3)师生共同完成:有理数的乘法与小学里数的乘法在法则和方法步骤方面分别有什么联系?①符号决定以后,有理数的乘法就转化成了小学里数的乘法;②由①可见,小学里数的乘法是有理数乘法的基础.(二)合作交流,解读探究1.计算:(1)(+)×9;(2)(-)×(-2).2.练习、板演并相互纠错课本P30练习第1题.3.比较×9和(-)×(-2)的结果,得出:有理数中乘积是1的两个数互为倒数.指出:因为任何数同0相乘都不等于1,所以0没有倒数.由学生找出练习中哪些题里的两个因数互为倒数,为什么?4.分组讨论:(1)两个互为倒数的数的符号有什么特征?(2)互为倒数的两个数的绝对值有什么关系?(3)如何找一个有理数的倒数?5.课本P30例2分析题意,列算式,计算,写答案.6.练习一种水笔,甲商店每支售价2元,乙商店搞促销,每支只售1.8元.小明在甲商店买这种水笔10支,小华在乙商店也买这种水笔10支.两人所付的钱数哪个少?少多少?(三)应用迁移,巩固提升1.填空题(1)(-1)×(-)= ;(2)(+3)×(-2)= ;(3)0×(-4)= ;(4)1×(-1)= ;(5)-│-3│×(-2)= .2.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为-6℃.攀登5km后,气温有什么变化?3.在整数-5,-3,-1,2,4,6中任取三个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?(四)总结反思,拓展升华引导学生从三个方面理解本节课所学内容:1.有理数的乘法法则.2.多个不为0的因数相乘时,积的符号的确定.3.几个相乘的因数中,只要有一个因数为0,积就确定为0.第2课时有理数的乘法运算律教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活使用乘法运算律实行有理数的乘法运算,使之计算简便.教学重难点:熟练使用运算律实行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)2×3×4×(-5);(2)2×3×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5);(5)-1×302×(-2004)×0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提升【例1】计算(-3)××(-)×(-)×(-8)×(-1).【例2】计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0.导入运算律(1)通过计算:①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=ba;(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论、归纳出乘法结合律;(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式;(6)分组计算、比较:5×[3+(-7)]与5×3+5×(-7)的结果,讨论归纳出乘法分配律;(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.【例3】用简便方法计算:(1)(-5)×89.2×(-2);(2)(-8)×(-7.2)×(-2.5)×.【例4】用两种方法计算(+-)×12.(四)总结反思,拓展升华本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.(五)课堂跟踪反馈夯实基础1.计算题:(1)(-)××(-)×(-2);(2)6.878×(-15)+6.878×(-12)-6.878×(-37);(3)×(-16)×(-)×(-1)×8×(-0.25);(4)(-99)×36.提升能力2.若a、b、c为有理数,且│a+1│+│b+2│+│c+3│=0.求(a-1)(b+2)(c-3)的值.第3课时有理数的除法教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3(-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1);(3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第4课时有理数的运算顺序教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是()A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是()A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.。
七年级上册数学教案《有理数的乘除法》
教学设计:《有理数的乘除法》一、教学目标1.知识与技能:学生能够理解有理数乘除法的概念,掌握有理数乘除法的运算法则,包括同号相乘、异号相乘、除以一个数等于乘以这个数的倒数等,并能准确进行有理数的乘除运算。
2.过程与方法:通过实例分析和小组讨论,引导学生探究有理数乘除法的规律,培养学生的观察、归纳和推理能力;通过动手操作和合作学习,提升学生的数学实践能力和团队协作能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生勇于探索、敢于质疑的科学精神;在解题过程中,培养学生的耐心和细致,以及对待数学问题的严谨态度。
二、教学重点和难点●重点:有理数乘除法的运算法则及其应用。
●难点:异号数相乘时符号的确定,以及有理数除法转化为乘法运算的理解。
三、教学过程1. 导入新课(约5分钟)●情境导入:通过生活实例(如购物找零、温度升降倍数等)引入有理数乘除法的应用背景,激发学生兴趣。
●复习旧知:回顾有理数的概念、数轴表示及有理数的加减法,为有理数乘除法的学习做铺垫。
●明确目标:向学生明确本节课的学习目标,即掌握有理数乘除法的运算法则并能准确运算。
2. 讲授新知(约15分钟)●概念讲解:阐述有理数乘除法的定义,特别是乘法中的同号相乘、异号相乘规则和除法转化为乘法的原则。
●示例演示:通过具体例题展示有理数乘除法的计算过程,特别强调符号的处理和运算顺序。
●归纳总结:引导学生归纳有理数乘除法的运算法则,形成系统性的知识网络。
3. 合作探究(约15分钟)●分组探究:将学生分为若干小组,每组分配不同的有理数乘除法题目进行探究。
●小组讨论:鼓励学生相互交流解题思路,讨论解题过程中遇到的困难和解决方法。
●汇报分享:各组选派代表分享探究成果,全班共同讨论和纠正可能的错误。
4. 巩固练习(约10分钟)●课堂练习:设计一系列有层次的练习题,包括基础题、提高题和拓展题,要求学生独立完成。
●即时反馈:教师巡视指导,及时纠正学生的错误,并解答疑惑。
人教新版(2024)七年级数学上册-2.2.1 有理数的乘法(教案)
2.2.1有理数的乘法第1课时【教学目标】1.理解有理数的乘法法则.2.能利用乘法法则熟练进行有理数的乘法运算.3.理解倒数的意义,会求一个有理数的倒数.4.在经历探究有理数乘法法则的过程中,通过观察、分析、归纳、概括,得出有理数乘法的规律,建立数感和符号感;体验数形结合思想、分类讨论思想、归纳法在数学中的应用.【教学重点难点】重点:有理数的符号法则.难点:利用法则熟练进行有理数的乘法运算.【教学过程】一、创设情境前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:1.2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2×3=2+2+2.2.请将(-2)+(-2)+(-2)写成乘法算式.答案:(-2)+(-2)+(-2)=(-2)×3.我们已经熟悉正数和0的乘法运算,但是在实际问题中还会遇到超出正数范围的乘法运算,它怎么计算呢?这就是我们今天要研究的有理数的乘法.二、探究归纳探究点1:有理数的乘法运算问题1:一只蜗牛,沿一条东西方向的跑道,以每分钟3分米的速度一直向东爬行.记蜗牛原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它位于这一点的哪个方向?相距多少米?分别用算式表示.填一填:(1)如果这只蜗牛向右爬行2厘米记为+2厘米,那么向左爬行2厘米应记为.(2)如果3分钟后记为+3分钟,那么3分钟前应记为.追问1:观察下面的四个乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,积逐次递减3.追问2:观察下面的三个乘法算式,说明以上规律在引入负数后是否仍然成立?(结合蜗牛1分钟前、2分钟前、3分钟前的位置思考) 3×(-1)=-3;3×(-2)=-6;3×(-3)=-9.问题2:两只小虫,在同一地点O处,它们沿一条东西方向的跑道爬行.若一只分别以每分钟3米、2米、1米、0米的速度向东爬行3分钟,另一只分别以每分钟1米、2米、3米的速度向西爬行3分钟,那么它们爬行后的位置分别在这一点的哪个方向?相距多少米?追问1:观察下面的算式,你又能发现什么规律吗?3×3=9,2×3=6,1×3=3,0×3=0.师生活动:规律是随着前一乘数逐次递减1,积逐次递减3.追问2:要使这个规律在引入负数后仍成立,那么应有(-1)×3=-3;(-2)×3=-6;(-3)×3=-9.追问3:从符号和绝对值两个角度观察上述算式,你发现有什么规律?【归纳总结】①从符号角度观察,可归纳积的特点是:正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积为负数.②从绝对值角度观察,可归纳积的特点是:积的绝对值等于各乘数绝对值的积.问题3:一只小虫,沿一条东西方向的跑道,以每分钟3米的速度一直向西爬行.记小虫原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它分别位于这一点的哪个方向?相距多少米?追问1:利用上面归纳的结论计算下面的算式,你发现什么规律?(-3)×3=-9,(-3)×2=-6,(-3)×1=-3,(-3)×0=0.师生活动:规律:随着后一乘数逐次递减1,积逐次增加3.追问2:按照上述规律,下面的空格可以各填什么数,从中可以归纳出什么结论?(-3)×(-1)=;(-3)×(-2)=;(-3)×(-3)=.【归纳总结】负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.问题4:你能从中归纳有理数乘法的法则吗?(也就是结果的符号怎么定?绝对值怎么算?)有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.符号表示如下:设a,b为正有理数,c为任意有理数,则(+a)×(+b)=a×b,(-a)×(-b)=a×b,(-a)×(+b)=-(a×b),(+a)×(-b)=-(a×b),c×0=0,0×c=0.显然,两个有理数相乘,积是一个有理数.问题5:讨论,进一步深化理解有理数乘法的符号法则.(1)若a<0,b>0,则ab0.(2)若a<0,b<0,则ab0.(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?【典例剖析】例1:教材P39【例1】归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.【解题反思】观察T(1)8×(-1)=-8.你有什么发现?结论:一个数同-1相乘,得原数的相反数.【针对性训练】教材P40练习T1探究点2:倒数问题1:观察例1T(2),有什么特点?要点归纳:有理数中仍然有:乘积是1的两个数互为倒数.问题2:数a(a≠0)的倒数是什么?在这里为什么规定a≠0?【针对训练】教材P40练习T3.【典例剖析】例2:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1 km气温的变化量为-6 ℃,攀登3 km后,气温有什么变化?【针对性训练】教材P40练习T2【解题反思】利用有理数乘法解决实际问题,先要把实际问题转化为数学问题,建立有理数乘法算式,再根据有理数乘法的法则进行计算得出结论.三、检测反馈1.一个有理数与其相反数的积()A.符号必定为正B.符号必定为负C.一定不大于零D.一定不小于零2.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数3.填空:(1)-7的倒数是,它的相反数是,它的绝对值是 .(2)-225的倒数是 ,-2.5的倒数是 . (3)倒数等于它本身的有理数是 .4.计算:(1)212×(-4).(2)(-710)×(-521). (3)(-10.8)×(-527).(4)(-312)×0. 四、交流反思1.有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.2.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.3.乘积是1的两个数互为倒数.五、布置作业P47T1,2,3六、板书设计七、教学反思本节课通过比较数字算式蕴含的规律性,类比发现有理数乘法法则,教学中,应该让学生推敲与比较这些算式,发现其中存在的规律,并会从符号、绝对值两个方面描述这种规律,体会有理数乘法法则的合理性.有理数乘法法则涉及运算结果的符号与绝对值两个方面,因此,学生在初期进行有理数乘法运算时,要求他们从这两个方面分层次、有步骤地思考,即先考虑两个乘数的符号,然后决定积的符号,再考虑两个乘数的绝对值,进而决定积的绝对值大小.第2课时【教学目标】1.掌握乘法的分配律,并能灵活地运用.2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.3.经历探索积的符号的过程,锻炼学生观察、分析、总结的能力.【教学重点难点】重点:熟练进行多个有理数的乘法运算,探索有理数的乘法运算律并熟练运用运算律进行计算.难点:有理数的乘法运算律的正确、灵活运用.【教学过程】一、创设情境温故而知新你会计算下列各题吗?试试看!(1)5×(-6).(2)(-6)×5.(3)[3×(-4)]×(-5).(4)3×[(-4)×(-5)].师:那么多个有理数相乘应如何进行?【通过简单的旧知识复习,让学生快速进入学习情境,引出课题,激发学生的学习兴趣】二、探究归纳探究点1:乘法的运算律问题1:比较创设情境中的结果,你有什么发现?追问:请再举几个例子验证你的发现.问题2:计算过程能够使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?【归纳总结】乘法交换律:两个数相乘,交换乘数的位置,积不变.ab=ba.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.(ab)c=a(bc).(推广:abc=(ab)c=a(bc)=(ac)b)师生活动:教师解释用公式表示的形式中:这里的a,b可以取任意的有理数,讲解“a×b→a•b→ab”的过程.这也是培养学生的符号意识、抽象思维的机会.问题3:计算:(1)5×[3+(-7)];(2)5×3+5×(-7).追问:你有什么发现?请再举几个例子验证你的发现.从上述的计算中,你能得出什么结论?【归纳总结】分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.【典例剖析】例1:教材P41【例3】比较T(2)两种解法,它们在运算顺序上有什么区别?解法二运用了什么运算律?哪种解法运算简便?找出错误,并改正.特别提醒:1.不要漏掉符号.2.不要漏乘.注意:1.乘法的交换律、结合律只涉及一种运算,而分配律要涉及两种运算.2.分配律还可写成:a×b+a×c=a×(b+c),利用它有时也可以简化计算.3.字母a ,b ,c 可以表示正数、负数,也可以表示零,即a ,b ,c 可以表示任意有理数.【针对性训练】教材P43练习T1探究点2:多个有理数相乘问题4:改变例3(1)的乘积式子中某些乘数的符号,得到下列的一些式子.它们的积是正的还是负的?2×3×(-0.5)×(-7);2×(-3)×(-0.5)×(-7);(-2)×(-3)×(-0.5)×(-7);师:请注意观察这3个式子,积的符号与哪种因数的个数有关系?积的绝对值与各因数的绝对值的积有什么关系?要点归纳:1.几个不是0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数.积的绝对值是各个乘数的绝对值的积.2.几个数相乘,如果其中有乘数为0,那么积等于0.【典例剖析】例2:计算:(1)(-2)×6×(-2)×(-7).(2) (-313)×(-0.12)×(-214)×3313. (3)2 0112 012×(-0.359 8)×793×(-14)×0×(-2 0137964). 【思路点拨】观察乘数中有无0→有0则积为0,无0则先确定积的符号→再计算绝对值.【自主解答】(1)(-2)×6×(-2)×(-7)=-2×6×2×7=-168.(2) (-313)×(-0.12)×(-214)×3313. =-103×325×94×1003=-30.(3)原式=0.【总结提升】多个有理数乘法的运算步骤1.观察乘数中有没有0,若有,则积等于0.2.若乘数中没有0,观察负的乘数的个数,确定积的符号.3.各乘数的绝对值的积即为积的绝对值.【针对性训练】教材P43练习T2三、检测反馈1.4个有理数相乘,积的符号是负号,则这四个有理数中,正数有( )A.1个或3个B.1个或2个C.2个或4个D.3个或4个2.若两个有理数的和与它们的积都是正数,则这两个数 ( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数3.计算(-2)×(3-12),用分配律计算过程正确的是 ( )A.(-2)×3+(-2)×(-12) B.(-2)×3-(-2)×(-12)C.2×3-(-2)×(-12) D.(-2)×3+2×(-12) 4.计算:(1)(-85)×(-25)×(-4).(2)(910-115)×30. (3)(-78)×15×(-117). (4)(-65)×(-23)+(-65)×(+173). 5.(1)(-100)×(310-12+15-0.1). (2)(-78)×15×(-117). (3)(910-115)×30. (4)992425×(-25). (5)(-7)×(42.07)+(-2.07)×(-7).四、本课小结项目内容 乘法的运算律 (1)乘法交换律: . (2)乘法结合律: .(3)乘法对加法的分配律: .多个有 理数 相乘几个不为0的数相乘,积的符号由 决定.当负因数有 个时,积为 .当负因数有 个时,积为 .几个数相乘,其中有一个因数为0,积就为 . 五、布置作业P48T4,5六、板书设计七、教学反思1.在使用有理数乘法的三条运算律时,与加法的运算律一样,一定要注意将有理数的符号进行整体的移动,不能将符号丢掉或弄错.两个或三个有理数相乘的运算律,可以推广到三个以上有理数相乘的情况,通过编制若干个具体的非零有理数相乘的练习题,引导学生加深对多个有理数相乘时可以使用交换律、结合律、分配律的理解.2.有理数乘法的三条运算律,通常需要综合和同时使用,还可以从正、反两个方向应用,进而可以使有理数乘法运算更快捷、更准确.特别是乘法的分配律,涉及有理数的乘法、加法两种运算.正向运用去掉了括号,逆向运用提取了公因数,因此,乘法的分配律有着广泛的应用.教材例3就是乘法分配律正向运用提高运算速度和准确率的例子.乘法分配律逆向运用可以变和为积,使得运算简便,可以应用于以后要学习的合并同类项、代数式化简等问题.因此,要通过编制一些正、反向使用的练习题,让学生体会学习乘法运算律的必要性,争取让学生能够熟练、灵活地应用乘法的运算律.。
人教版七年级数学上册有理数的乘除法教学设计
1.利用实际问题导入:教师展示一个关于物品价格计算的问题,例如,“小明去超市购物,购买了3件衣服和4本书,每件衣服的价格是120元,每本书的价格是25元。请计算小明购买这些物品一共需要支付多少钱?”通过这个例子,引导学生思考如何进行有理数的乘法运算。
2.引导学生回顾小学学过的乘法运算,为新课的学习做好铺垫。
4.通过具体例题,讲解负数除法的运算规则,使学生掌握有理数除法的运算方法。
(三)学生小组讨论
1.教师将学生分成小组,每组讨论以下问题:
a.有理数乘法的运算规律是什么?
b.负数乘以正数和负数的结果是什么?
c.有理数除法的运算规律是什么?
d.负数除以正数和负数的结果是什么?
2.各小组派代表分享讨论成果,教师进行点评和补充。
2.探究阶段:
a.采用小组合作学习,引导学生探讨有理数乘除法的运算规律,从具体实例中抽象出数学规律。
b.通过师生互动,总结有理数乘除法的运算步骤,明确正负数乘除法的运算规则。
c.设计具有挑战性的问题,引导学生深入思考,突破难点。
3.应用阶段:
a.设计不同类型的例题,使学生在实际操作中巩固所学知识,提高运算能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,使其认识到数学在生活中的重要作用。
2.培养学生严谨的学习态度和良好的学习习惯,使其能够认真对待每一次运算。
3.培养学生的合作意识和团队精神,使其在小组讨论和合作探究中学会倾听、尊重他人意见。
4.引导学生树立正确的价值观,认识到数学知识的学习不仅仅是为了应付考试,更是为了解决实际问题,提高自身素质。
二、学情分析
七年级学生在学习了有理数的加法和减法的基础上,开始接触有理数的乘除法。这个阶段的学生在认知发展上正处于从具体形象思维向抽象逻辑思维过渡的关键时期,因此,对乘除法运算的理解和掌握需要借助具体实例和操作活动。学生在小学阶段已经具备了一定的乘除法运算基础,但面对有理数的乘除法,特别是负数的运算,可能会出现概念混淆、运算错误等问题。此外,学生的个体差异较大,学习兴趣和运算能力参差不齐。因此,在教学过程中,要关注学生的个体差异,采用分层教学和差异化指导,使每位学生能够在原有基础上得到提高。同时,注重激发学生的学习兴趣,引导他们通过自主探究、合作交流等方式,深入理解有理数乘除法的运算规律,提高运算技巧和解决问题的能力。
《有理数的乘除法》的教案
《有理数的乘除法》的教案有理数的乘除法一、教学目标知识与技能:①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。
②会进行有理数乘法运算。
③了解有理数的倒数定义,会求一个数的倒数。
过程与方法:①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。
②提高学生的运算能力情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、教学重点和难点重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;难点:有理数乘法中的符号法则.三、教学过程(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。
4天后,甲、乙水库各自水位的总变化量是多少?如果用正号表示水位的上升、用负号表示水位的下降。
那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法(二)学生探索新知,归纳法则学生分为四个小组活动,进行乘法法则的探索设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:(1)向右爬行,3分钟后的位置?(2)向左爬行,3分钟后的位置?(3)向右爬行,3分钟前的位置?(4)向左爬行,3分钟前的位置?(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。
为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。
(1) 情形一:蜗牛在现在位置的右边6㎝处。
式子表示为:(+2)(+3)=+6数轴表示如右:(2)情形二:蜗牛在现在位置的左边6㎝处。
式子表示为: (-2)3=-6数轴表示如右:(3)情形三:蜗牛在现在位置的左边6㎝处。
七年级数学上册人教版1.4有理数的乘除法教学设计
(二)讲授新知
1.讲解有理数乘法法则:教师以具体例子讲解有理数乘法的运算规律,强调同号得正、异号得负的原则。通过举例说明,让学生理解并掌握乘法运算的规律。
2.讲解有理数除法法则:教师引导学生理解除以一个数等于乘以这个数的倒数,讲解有理数除法的运算规律。同时,强调除数为零的情况,让学生避免在运算中犯错。
-利用直观教具和实际例题,帮助学生形象地理解有理数乘除法的运算规律。
-设计互动式教学活动,如小组合作、角色扮演等,增强学生的参与感和合作意识。
2.教学步骤:
-引入新课:通过生活实例,让学生感受乘除法在实际生活中的应用,激发学习兴趣。
-基本概念:讲解有理数乘除法的定义和性质,让学生通过例题和练习加深理解。
-解题技巧:教授有理数乘除法的运算技巧,如交叉相乘法、倒数法等,提高学生的运算速度和准确性。
-应用拓展:结合实际问题,让学生运用所学乘除法知识解决具体问题,提升学生的数学应用能力。
-归纳总结:引导学生总结有理数乘除法的学习要点,巩固所学知识。
3.教学策略:
-针对不同学生的学习需求,提供分层次的练习题,使每个学生都能在适合自己的难度上得到锻炼和提高。
七年级的学生在数学学习上已经具备了一定的基础,掌握了有理数的加法和减法运算,但对于乘除法运算还相对陌生。在此基础上,学生对于有理数乘除法的概念和运算规律可能存在理解上的困难。此外,学生在解决实际问题时,可能难以将乘除法运算与实际问题结合起来,缺乏运用乘除法解决问题的能力。因此,在教学过程中,应注重以下几点:
3.教师点评:教师针对学生的总结和分享进行点评,鼓励优秀表现,对不足之处给予指导和鼓励。
人教版七年级上数学《 有理数的乘除法》教案
《有理数的乘除法》教案【教学目标】1.掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
2.能理解乘除法运算的算理,能解决一些实际问题。
【教学重点与难点】重点:掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
难点:正确理解乘除法运算的算理,能解决一些实际问题。
【教具和多媒体资源】教具:黑板、粉笔、计算机、投影仪等。
多媒体资源:PPT课件、实物投影仪等。
【教学方法】1.通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.通过反馈与纠正,及时发现和纠正学生在学习过程中的错误和不足,提高学习效果。
【教学过程】1.导入新课:通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.探究新知:通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.巩固练习:通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.拓展延伸:通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.课堂小结:通过回顾本节课所学知识,让学生总结有理数乘除法运算的要点和方法。
6.布置作业:通过布置作业,让学生进一步巩固所学知识。
【教学评价】1.对学生的参与程度进行评价。
2.对学生的学习成果进行评价。
3.对学生的学习态度和学习习惯进行评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘除法
经历探索有理数乘法法则过程 , 掌握有理数的乘法法则会运用法则进行有理数的乘法。
重点 :
应用法则正确地进行有理数乘法运算 .
难点 :
两负数相乘 , 积的符号为正与负数相加 , 和的符号混淆 .
教学过程 :
一引入新课
我们已经学习了有理数的加法运算和减法运算 , 今天我们开始有理数的乘法运算 .
在小学 , 我们学习了有理数及零的乘法运算 , 引入负数后怎样进行有理数的乘法运算 .
二新授 :
如图 :1.4-1 一只蜗牛沿直线入爬行 , 它现在的位置恰在 L 上的点 O
•如果蜗牛一直以每分 2cm 速度向右爬行 ,3 分钟后它在什么位置 ?
•如果蜗牛一直以每分钟 2cm 的速度向左爬行 ,3 分钟后它在什么位置 ?
•如果蜗牛一直以每分 2cm 的速度向右爬行 ,3 分钟它在什么位置 ?
•如果蜗牛一直以每分 2cm 的速度向左爬行 ,3 分钟后它在什么位置 ?
学生归纳 :
两个有理数相乘 , 积仍然由符号和绝对值两部组成 ,(1)(4)式都是同号两数相乘积为正,(2)(3)式是异号两数相乘积为负,(1)-(4)式中的积的绝对值都是这两个因数绝对值的积.
也就是 :两数相乘,同号为正,异号为负,并把绝对值相乘.
引例 :计算:
(1)(-3)*9 (2)(-1/2)*(-2)
(3)0*(-90/7)*(+25.3) (4)5/3*(-6/5)
三 .巩固练习:
四 .小结:
1.强调运用法则进行有理数乘法.
2.比较有理数乘法与加法法则的区别.
五 .作业:
第二课时有理数乘法
教学目标:
•会确定多个因数相乘时,积的符号,并会用法则进行多个因数的乘积运算
•会利用计算器进行多个因数的乘积运算
重点:
会用法则进行多个因数的乘积运算
难点:
积的符号的确定
教学过程:
•复习提问:
•叙述有理数乘法法则
1)|-5| * (-2)
2)(-1/7) * (-9)
3)0 * (-99.9)
二.新知识
1.例:计算1)(-3) * 5/6 * (-9/5) * (-1/4)
2)(-5) * 6 * (-4/5) * 1/4
3)0 * (-2/7) * (-3/5) * (-9/8)
通过例题的解答归纳:几个数相乘,如果其中有因数为0,这是因为任何数同零相乘都得0.多个不是0的有理数相乘,由负因数的个数决定积的符号
•介绍用计算器进行有理数乘法运算
例:用计算器计算(-51) * (-14)
方法一:用(-)键
步骤:(-)51 * (-)14=
方法二:用+/-键
步骤:(+/-)51 * (+/-)14=
五.巩固练习课本40页.41页练习题
六.小结在运算时,注意分清类型,准确运用法则
七.作业:
第三课时有理数乘法的运算
教学目标:
1 会用乘法的三个运算侓进行乘法的简化运算
2 会进行乘法及加法的混合运算
重点:会运用乘法运算侓进行乘法运算
难点:灵活运用运算进行乘法运算
教学过程:
一、复习提问
1 有理数的乘法法则是什么?
2 在小学里正有理数乘法有哪些运算侓?
二、新授
在小学里,数的乘法满足交换侓,如 8*3=3*8 还满足结合侓,如( 4*6 ) *3=4* ( 6*3 ),引入负数后,乘法交换侓、结合侓是否还成立?如: 5* ( -6 )与( -6*5 )[3* ( -4 ) ]* ( -5 )与
3*[ ( -4 ) * ( -5 ) ] 学生亲身尝试感受定律的存在,既:乘法交换侓: ab=ba 乘法结合侓:(ab)c=a(bc) 乘法分配侓:a(b+c)=ab+ac 例:用两种方法计算( 1/4+1/6-1/2 ) *12
例:计算 1. ( -370 ) * ( -1/4 ) +0.25*24.5+ ( -11/5 ) * ( -25% )
2.899/9* ( -9/10 )
三、巩固练习 .
四、小结:
运算中要注意定侓的灵活使用,寻求最佳的解题方法,从而减小计算量。
五、作业、
第四课时有理数的除法
教学目标:
1 、掌握有理数除法法则,会进行有理数的除法运算以及分数的化简。
2 、用过学习有理数除法法则,体会转化理想,会将乘除混合运算统一为乘法运算。
重点:正确应用法则进行有理数的乘法运算。
难点:灵活运用有理数出发的两种法则。
教学过程:
一、复习提问
1 、小学里,除法的意义是什么?它与乘法有什么关系?
2 、求下列各数的倒数。
( 1 ) -2/5 ( 2 ) -0.125 ( 3 ) -10/7
二、新授、
引入负数后,如何计算有理数的除法呢?
如: 8/ ( -4 ) = ?
探索:两数相除的商仍有符号和绝对值两部分组成,由于除法可转化为乘法,因此商符号的确定与有理数乘法类似,你能否得到有理数乘法法则类似的除法法则吗?
两数相除,同号得(),异号得(),并把绝对值(),零除法任何有个不等号的数,都得()。
1 、例:计算
( 1 )( -36 ) /9 ( 2 )( -12/25 ) / ( -2/5 )
2 、例:化简下列分数
( 1 )( -12 ) /3 ( 2 ) -45/-12
3 、例:计算
( 1 )( -40/7 ) / ( -5 )( 2 ) -2.5/ ( 5/8 ) * ( -1/4 )
三、巩固练习:
四、小结:
学生归纳除法法则与乘法法则的区别与联系,体会转化思想。
五、作业:。