空间解析几何基本知识

合集下载

空间解析几何知识点

空间解析几何知识点

空间解析几何知识点在数学中,解析几何是研究几何图形与代数表达式之间关系的分支学科。

解析几何广泛应用于物理、工程学和计算机图形学等领域。

而在解析几何中,空间解析几何是其中的一个重要分支,它研究的是三维空间中的几何形状和位置关系。

本文将就空间解析几何的一些重要知识点进行探讨。

一、平面与直线的表示在空间解析几何中,平面和直线是两个基本的几何概念。

我们可以通过向量和点坐标来表示平面和直线。

对于平面来说,如果已知平面上的一个点A和两个不共线的向量AB和AC,那么平面上的任意一点P都可以表示成向量AP的线性组合,即P=A+x(AB)+y(AC),其中x、y为实数。

而对于直线来说,如果已知直线上的一个点A和一个不为零的向量u,那么直线上的任意一点P都可以表示成P=A+tu,其中t 为实数。

二、平面与平面的位置关系在空间解析几何中,平面与平面的位置关系有三种情况:相交、平行和重合。

我们可以通过向量来判断平面与平面的位置关系。

如果两个平面的法向量不平行,那么它们一定相交于一条直线;如果两个平面的法向量平行但不重合,那么它们一定平行;如果两个平面的法向量相等,那么它们重合。

三、直线与直线的位置关系在空间解析几何中,直线与直线的位置关系也有三种情况:相交、平行和重合。

我们同样可以通过向量来判断直线与直线的位置关系。

如果两条直线的方向向量不平行,那么它们一定相交于一个点;如果两条直线的方向向量平行但不重合,那么它们一定平行;如果两条直线的方向向量相等,并且经过它们的一点也相等,那么它们重合。

四、平面与直线的位置关系在空间解析几何中,平面与直线的位置关系也有三种情况:相交、平行和包含。

对于平面与直线的相交关系,我们可以通过求解平面与直线的交点来判断。

如果平面与直线有且只有一个交点,那么它们相交;如果平面与直线没有交点,那么它们平行;如果平面包含直线,那么它们重合。

五、球面与直线的位置关系在空间解析几何中,球面与直线的位置关系也有三种情况:相交、不相交和切线。

7.1空间解析几何基本知识

7.1空间解析几何基本知识
8
由以上规定知道: 坐标原点O的坐标为(0, 0, 0)
z
x轴上点的坐标为(x , 0, 0)
y轴上点的坐标为(0, y, 0)
z轴上点的坐标为(0, 0, z) xy面上点的坐标为(x, y, 0) yz面上点的坐标为(0, y, z) xz面上点的坐标为(x, 0, z)
9
y x
二. 空间两点间的距离
给定空间两点 M1 ( x1 , y1 , z1 )与 M2 ( x2 , y2 , z2 ), 可证明这两点 间的距离 d 为
d M1 M 2 ( x2 x1 )2 ( y2 y1 )2 ( z2 z1 )2
这与平面解析几何中两点间的距离公式是一样的. 过 M1 , M2各作三个分别垂直于三条坐标轴的平面. 这六个平面围成一个以 M1 M 2 为对角线的长方体; (如下图)
F ( x, y, z ) 0或z f ( x, y)
……(7.1.3)
有如下关系: (1) 曲面
Σ 上的任意点 的坐标都满足方程
(7.1.3);
(2) 不在曲面
Σ 上的点的坐标都不满足方程 (7.1.3);
则称方程(7.1.3)是曲面 Σ的一般方程,而曲面 Σ 是方程(7.1.3) 的图形. (如图7.1.5)
从而所求平面方程为 得 消去D,
x y z 1 a b c
该方程称为平面的截距式, 其中 a、b 和 c 分别称为平面在 z x 轴、y 轴和 z 轴上的截距。 c 如图7.1.9 : x
O o
b
图7.1.9
y
23
a
2) 常见二次曲面及方程 (1) 球面 以定点 M0 ( x0 , y0 , z0 ) 为球心,半径为R的球面,可以看作是 动点 M ( x , y , z ) 与球心 M0 ( x0 , y0 , z的距离相等的点的轨迹 ,即 0)

空间解析几何知识点

空间解析几何知识点

空间解析几何知识点1. 空间直角坐标系- 定义:由三条互相垂直的直线(x轴、y轴、z轴)确定的坐标系。

- 坐标表示:任意一点P的坐标表示为(x, y, z)。

- 距离公式:两点P1(x1, y1, z1)和P2(x2, y2, z2)之间的距离为√((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)。

2. 向量及其运算- 向量定义:具有大小和方向的量。

- 向量表示:向量a表示为a = (a1, a2, a3)。

- 向量加法:a + b = (a1+b1, a2+b2, a3+b3)。

- 向量数乘:k * a = (ka1, ka2, ka3)。

- 向量点积:a · b = a1b1 + a2b2 + a3b3。

- 向量叉积:a × b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 -a2b1)。

- 向量模:|a| = √(a1^2 + a2^2 + a3^2)。

- 向量方向余弦:向量a的方向余弦为(a1/|a|, a2/|a|, a3/|a|)。

3. 平面方程- 点法式:A(x-x0) + B(y-y0) + C(z-z0) = 0,其中A、B、C为平面的法向量,(x0, y0, z0)为平面上一点。

- 两点式:(y-y1)/(x-x1) = (y2-y1)/(x2-x1),表示过两点P1(x1, y1, z1)和P2(x2, y2, z2)的平面。

- 一般式:Ax + By + Cz + D = 0。

4. 直线方程- 参数式:x = x0 + at, y = y0 + bt, z = z0 + ct,其中(x0,y0, z0)为直线上一点,(a, b, c)为直线的方向向量,t为参数。

- 一般式:Ax + By + Cz + D = 0。

- 点向式:(x-x0)/a = (y-y0)/b = (z-z0)/c,其中(x0, y0, z0)为直线上一点,(a, b, c)为直线的方向向量。

空间解析几何基本概念

空间解析几何基本概念

空间解析几何基本概念空间解析几何是数学中一个重要的分支,它研究的对象是三维空间中的几何图形和几何问题。

在进行空间解析几何的学习和研究之前,我们需要先了解一些基本概念。

一、坐标系空间解析几何中常用的坐标系有直角坐标系和极坐标系两种。

直角坐标系由三个相互垂直的坐标轴构成,通常用x、y、z表示。

极坐标系则由原点、极径和极角组成,极径表示点到原点的距离,极角表示点与正x轴的夹角。

二、点、直线和平面在空间解析几何中,点是最基本的图形概念,用坐标表示为(x,y,z)。

直线可以通过两点或参数方程表示,例如直线L可以表示为:L: {(x,y,z) | x=x0+at, y=y0+bt, z=z0+ct},其中a、b、c为实数,(x0,y0,z0)为直线上的一点。

平面可以通过三点或参数方程表示,例如平面P可以表示为:P: { (x,y,z) | Ax+By+Cz+D=0 },其中A、B、C、D为实数。

三、距离和中点在空间解析几何中,点与点之间的距离可以通过勾股定理计算:d(P_1, P_2) = √((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2),其中P_1(x_1, y_1, z_1)和P_2(x_2, y_2, z_2)为两点的坐标。

直线上的两点的中点可以通过坐标的平均值计算得到。

四、向量向量是空间解析几何中的重要概念,它可以表示有方向和大小的量。

向量由起点和终点表示,可以用坐标表示为一个有序三元组。

向量的运算包括加法、减法、数量乘法和点乘法。

两个向量的加法等于它们对应坐标的相加,减法等于相减。

数量乘法将向量的大小与一个实数相乘,结果是一个新的向量。

点乘法可以用来判断两个向量是否垂直,它的结果为零表示两个向量垂直。

五、投影在空间解析几何中,投影是指点在坐标轴或平面上的影子。

点在坐标轴上的投影可以通过坐标的部分表示,例如点P的x轴投影为(x, 0,0)。

点在平面上的投影可以通过垂直于平面的直线与平面的交点来表示。

空间解析几何

空间解析几何

空间解析几何空间解析几何是三维空间中研究点、线、面等几何对象的数学分支。

通过坐标系和向量等数学工具,可以描述和分析三维空间中的几何形状、位置关系和运动方式。

本文将介绍空间解析几何的基本概念、坐标系、向量运算和几何性质,并应用于实际问题。

一、空间解析几何的基本概念在空间解析几何中,我们首先需要了解点、直线、平面和空间的基本概念。

1. 点:点是空间中最基本的几何对象,用坐标表示。

在三维空间中,一个点可以由三个坐标确定,分别表示其在x轴、y轴和z轴上的位置。

2. 直线:直线是由无数个点组成的,在空间中没有宽度和厚度。

直线可以由一个点和一个方向向量确定,或者由两个不重合的点确定。

3. 平面:平面是由无数个点组成的,在空间中有宽度但没有厚度。

平面可以由一个点和两个不共线的方向向量确定,或者由三个不共线的点确定。

4. 空间:空间是由所有的点组成的,是点的集合。

在空间中,我们可以研究点、直线、平面和它们之间的相互关系。

二、空间解析几何的坐标系为了方便描述和计算,在空间解析几何中常常使用坐标系来表示点、向量和几何对象。

常用的坐标系有直角坐标系和柱面坐标系。

1. 直角坐标系:直角坐标系由三个相互垂直的坐标轴构成,分别是x轴、y轴和z轴。

在直角坐标系中,点的坐标表示为(x, y, z),它们分别表示点在x轴、y轴和z轴上的投影长度。

2. 柱面坐标系:柱面坐标系由极径、极角和高度构成。

极径表示点到z轴的距离,极角表示点在xy平面上的投影与x轴正半轴之间的夹角,高度表示点在z轴上的投影长度。

三、空间解析几何的向量运算在空间解析几何中,向量是一个有大小和方向的量。

向量可以表示位移、速度、力等物理量,也可以用来表示线段、直线、平面等几何对象。

1. 向量的表示:在空间解析几何中,向量通常用有序数组表示,如a = (a₁, a₂, a₃)。

其中,a₁、a₂和a₃分别表示向量在x轴、y轴和z轴上的分量。

2. 向量的运算:空间解析几何中的向量运算包括加法、减法、数乘和点乘等。

空间解析几何基础

空间解析几何基础

空间解析几何基础空间解析几何是数学中一个重要的分支,它研究了在三维空间中点、直线、平面和曲线的性质和相互关系。

本文将介绍空间解析几何的基础概念和常见问题的解决方法,帮助读者掌握这一领域的基本知识。

一、点的表示和坐标系在空间解析几何中,点的位置通常通过坐标来表示。

我们常用的坐标系是三维直角坐标系,它由三个相互垂直的坐标轴组成,分别记为x 轴、y轴和z轴。

一个点的坐标可以用一个有序数对(x, y, z)来表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影,z表示点在z轴上的投影。

二、直线的表示和性质在空间解析几何中,直线可以通过两点或者一点和方向向量来表示。

假设直线上有两点A和B,我们可以通过将这两点的坐标代入参数方程:x = xA + t(xB - xA)y = yA + t(yB - yA)z = zA + t(zB - zA)其中t为参数,可以取任意实数。

由参数方程可以得到直线的一些性质,比如两点确定一条直线以及直线上所有点的坐标满足参数方程。

三、平面的表示和性质与直线类似,平面可以通过三点或者一个点和两个方向向量来表示。

假设平面上有三点A、B和C,我们可以通过将这三点的坐标代入方程:Ax(x - xA) + Ay(y - yA) + Az(z - zA) = 0其中Ax、Ay和Az分别表示平面的法向量的分量,(x, y, z)为平面上任意一点的坐标。

由方程可以得到平面的一些性质,比如平面上的所有点的坐标满足平面方程。

四、空间图形的距离和角度在空间解析几何中,我们常常需要计算点到点、点到直线、点到平面和直线间的距离,以及直线与平面的夹角。

这些计算可以通过向量的方法进行。

点P到直线L的距离可以通过向量PA与直线的方向向量的叉乘来计算,即:d = |PA × n| / |n|其中n为直线L的方向向量,|·|表示向量的模。

类似地,点P到平面的距离可以通过向量PA与平面的法向量的点积来计算,即:d = |PA · n| / |n|两条直线的夹角可以通过它们的方向向量的夹角来计算,即:cosθ = |n₁ · n₂| / (|n₁| |n₂|)其中n₁和n₂分别为两条直线的方向向量,θ为夹角。

第一节 空间解析几何的基本知识.

第一节 空间解析几何的基本知识.
(2) p 0, q 0 时, z 0
曲面在 xOy 平面上方
z y
x
当 x 0, y 0 时, z 0
曲面通过坐标原点,我们把坐标原点叫 做椭圆抛物线的顶点
• M2
Q Ny
M1M2 x2 x1 2 y2 y1 2 z2 z1 2 .
空间两点间距离公式
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
例 1 求证以M1(4,3,1)、M 2 (7,1,2)、M 3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
2、球心在点 M0 ( x0 , y0 , z0 )、半径为 R的球面
方程.
解 设M( x, y, z)是球面上任一点,
根据题意有
| MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
特殊地:球心在原点时方程为 x2 y2 z2 R2

yoz面

xoy面

x

z zox 面

o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
空间的点M 11 有序数组( x, y, z)
特殊点的表示: 坐标轴上的点 P, Q, R, 坐标面上的点 A, B, C, O(0,0,0)
z
R(0,0, z)
B(0, y, z)
C( x,o, z)
o x P( x,0,0)
• x y 0 表示母线平行于
z 轴的平面. (且 z 轴在平面上)
z
o y
x
z
o y
x
一般地,在三维空间

空间解析几何

空间解析几何

空间解析几何空间解析几何是数学中的一个重要分支,它研究的是三维空间中的几何图形和其性质。

本文将介绍空间解析几何的基本概念、常见图形以及解析方法,帮助读者更好地理解和应用空间解析几何。

一、基本概念在空间解析几何中,我们使用坐标系来描述点、直线、平面等几何对象。

一般常用的坐标系有直角坐标系和柱面坐标系。

直角坐标系中,我们使用三个坐标轴x、y、z来确定一个点的位置。

柱面坐标系中,我们使用极坐标和一个垂直轴来确定一个点的位置。

通过坐标系,我们可以得到点的坐标、距离和角度等信息。

二、常见图形1. 点:空间中的一个点可以通过其坐标表示。

例如,点A(2,3,4)表示空间中的一个点,它的x坐标为2,y坐标为3,z坐标为4。

2. 直线:空间中两个不重合的点可以确定一条直线。

直线可以用参数方程、对称式、一般式等形式表示。

3. 平面:平面是由三个不共线的点所确定的。

平面可以用一般式、点法式等形式表示。

4. 球:由空间中的一个固定点和到该点距离等于定值的所有点构成的集合称为球。

5. 圆柱体:由一个闭合的曲线和平行于该曲线的直线段所围成的曲面称为圆柱体。

圆柱体可以通过其底面半径、高和母线方程等参数表示。

三、解析方法在空间解析几何中,我们可以使用向量、点法式、平面截距式等方法来求解各种几何问题。

1. 向量:向量是空间解析几何中一个重要的工具。

它可以用来表示线段、直线的方向和长度等信息。

通过向量,我们可以进行向量加法、减法、内积、外积等运算,用来求解直线的夹角、垂直平分线等问题。

2. 点法式:点法式是求解平面方程的一种方法。

它通过平面上的一点和法向量来表示平面的方程。

利用点法式,我们可以求解平面的交点、两平面的夹角等问题。

3. 平面截距式:平面截距式可以用来表示平面上与坐标轴相交的三个截距,通过截距可以确定平面的位置和方程。

我们可以利用平面截距式来求解平面的方程、直线与平面的交点等问题。

通过以上的解析方法,我们可以将空间解析几何中的各种问题转化为代数方程或方程组求解,从而得到几何图形的性质和关系。

空间解析几何基础知识总结

空间解析几何基础知识总结

(10) (11)
∫ sec x tan xdx = sec x + C ∫ csc x cot xdx =
x x e dx = e +C ∫
( 5)
( 6)

1 dx = arcsin x + C 2 1− x
− csc x + C
∫ cos xdx = sin x + C
(12)
x a +C (13) ∫ a x dx = ln a
连续,则积分上限的函数 Φ( x ) =
x 1 1 arctan dx = +C ∫ a2 + x 2 a a
( 21)

x−a 1 1 dx = ln | | +C 2 2 x −a 2a x+a
( 22)
a+ x 1 1 dx = ln | ∫ a 2 − x 2 2a a − x | + C
( 23)

1 x dx = arcsin + C 2 2 a a −x
(3) 简单无理函数的积分
讨论类型: R( x , ax + b )
n
ax + b R( x , ) cx + e
n
解决方法: 作代换去掉根号.
令t = ax + b;
n
ax + b ; 令t = n cx + e
定积分
问题1:
曲边梯形的面积
问题2:
变速直线运动的路程
存在定理
定积分 的性质
定积分
广义积分
定积分的 计算法
牛顿-莱布尼茨公式

b
a
f ( x )dx = F ( b ) − F (a )

空间解析几何

空间解析几何

空间解析几何空间解析几何是数学中的一个分支,主要研究点、线、面在三维空间中的位置关系和运动规律。

通过坐标系和向量的表示方法,可以对三维空间中的几何问题进行分析和解决。

本文将从坐标系的建立、向量和点的运算以及空间图形的性质等几个方面介绍空间解析几何的基本概念和方法。

一、坐标系的建立在空间解析几何中,我们常常使用三维直角坐标系来描述点的位置。

三维直角坐标系由三个互相垂直的坐标轴x、y和z组成,它们的交点O称为坐标原点。

我们可以通过确定原点O和三个坐标轴的方向来确定一个三维坐标系。

在三维直角坐标系中,每个点的位置都可以通过它到三个坐标轴的垂直距离来表示。

二、向量的表示与运算向量是空间解析几何中的重要概念,它不仅可以表示空间中的位移和运动方向,还可以表示线段和有向线段。

在三维空间中,向量可以用一组有序的实数表示。

常用的向量表示方法有点表示法、坐标表示法和分量表示法。

1. 点表示法:在空间中,一个点可以用大写字母表示,如A、B、C 等。

2. 坐标表示法:对于给定的三维直角坐标系,我们可以通过一个有序的三元组(x, y, z)来表示一个点P的坐标。

3. 分量表示法:给定一组基向量i、j和k。

对于向量a,我们可以将其表示为各个分量与基向量之积的和,即a = xi + yj + zk,其中x、y和z分别为向量a在x轴、y轴和z轴上的投影长度。

在空间解析几何中,向量之间可以进行加法、减法和数量乘法等运算。

这些运算遵循一定的规律,使得向量能够描述和计算空间中的相对位置和方向。

三、点和直线的运算在空间解析几何中,点和直线是两个基本的几何要素。

点是空间中的一个位置,用坐标表示;直线是由无数个点连成的轨迹,可以用不同的参数方程、对称方程或一般方程来表示。

1. 点的运算:两个点之间可以计算距离和中点。

- 距离公式:设点A(x₁, y₁, z₁)和点B(x₂, y₂, z₂),则AB的距离为√((x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²)。

空间解析几何知识点总结

空间解析几何知识点总结

空间解析几何知识点总结
空间解析几何是解析几何的一个重要分支,它研究的是三维空间中点、直线、平面等几何对象的性质和相互关系。

以下是空间解析几何的一些重要知识点总结:
1. 空间直角坐标系,空间解析几何的基础是空间直角坐标系,通常用三个相互垂直的坐标轴来表示三维空间中的点的位置。

2. 点的坐标,在空间直角坐标系中,点的位置可以用三个坐标(x, y, z)来表示,其中x、y、z分别代表点在x轴、y轴、z轴上的投影长度。

3. 点的距离公式,两点在空间中的距离可以通过三维空间中的距离公式来计算,即d = √((x2-x1)² + (y2-y1)² + (z2-
z1)²)。

4. 向量的运算,空间解析几何中,向量是一个重要的概念,它可以表示空间中的位移和方向。

向量的加法、减法、数量积和向量积是空间解析几何中常见的运算。

5. 空间直线的方程,空间直线可以用参数方程、对称方程和一般方程来表示,这些方程形式各有特点,可以根据具体问题的需要选择合适的表示形式。

6. 空间平面的方程,空间平面可以用点法式方程、一般方程等形式来表示,点法式方程可以直观地表示平面的法向量和过某一点的特点。

7. 空间几何体的性质,空间解析几何还涉及到一些空间几何体的性质,如球、圆柱、圆锥等的方程和性质。

8. 空间解析几何与其它学科的应用,空间解析几何在物理学、工程学、计算机图形学等领域有着广泛的应用,例如在三维建模、空间定位、运动轨迹分析等方面发挥着重要作用。

以上是空间解析几何的一些重要知识点总结,希望对你有所帮助。

如果你还有其他问题,可以继续问我。

空间解析几何基本知识《微积分》

空间解析几何基本知识《微积分》
2 2
39
例3. 求坐标面 xoz 上的双曲线 轴和 z 轴旋转一周所生成的旋转曲面方程. 解:绕 x 轴旋转 所成曲面方程为
分别绕 x
x y z 1 2 2 a c 绕 z 轴旋转所成曲面方程为
2 2 2
z
x y z 2 1 2 a c 这两种曲面都叫做旋转双曲面.
2 2 2
x
y
7-1 空间解析几何基本知识
1
第七章 第一节 空间解析几何基本知识
一、空间直角坐标系
二、曲面及其方程的概念 三、几种常见的曲面及其方程
2
复习
1.空间直角坐标系

z 轴(竖轴)
z zox 面

yoz面

xoy面


o
y



y轴(纵轴)
x
x轴(横轴)
3
复习
2.平面基本方程: 一般式 截距式 3.平面一般方程 Ax By Cz D 0 ( A2 B2 C 2 0) 的几种特殊情况: (1) D 0, 平面A x + B y + C z = 0通过坐标原点;
y
7
一般的 (1) 定义 平行于定直线并沿定曲线C 移动的直线L所 形成的曲面称为柱面.
这条定曲线C 叫
柱面的准线,动
直线L 叫柱面的 母线. 观察柱面的形 成过程: C
8
三、柱面
(1) 定义 平行于定直线并沿定曲线C 移动的直线L所 形成的曲面称为柱面. 这条定曲线C 叫 柱面的准线,动
直线L 叫柱面的
x2 y2 4
y x 1
以 z 轴为中心轴的圆 柱面
平行于 z 轴的平面

空间解析几何基础知识

空间解析几何基础知识

空间解析几何基础知识空间解析几何是数学中的一个重要分支,它研究了空间中的点、直线、平面以及它们之间的关系和性质。

在几何学中,空间解析几何被广泛应用于解决实际问题和推导几何定理。

本文将介绍空间解析几何的基础知识,包括坐标系、向量以及距离和中点公式。

一、坐标系在空间解析几何中,我们通常使用笛卡尔坐标系来描述点的位置。

笛卡尔坐标系由三个相互垂直的坐标轴构成,分别是x轴、y轴和z轴。

我们可以用三个实数(x,y,z)来表示一个点在三维空间中的位置,这个点的坐标就是该点相对于坐标系原点在各个轴上的投影长度。

通过坐标系,我们可以方便地描述点、直线和平面的位置和方向。

二、向量向量是空间解析几何中的重要概念,它可以表示有大小和方向的量。

在三维空间中,一个向量可以用三个实数(a,b,c)表示。

当我们把坐标系的原点平移到另一个点时,两点之间的位移就可以用一个向量来表示。

向量的加法和减法可以通过对应分量的运算得到,而向量的数乘可以将向量的每个分量乘以一个实数。

向量的长度称为向量的模,它可以由勾股定理求得。

三、距离和中点公式在空间解析几何中,我们经常需要计算点与点之间的距离。

对于平面上的两点A(x1,y1)和B(x2,y2),我们可以利用勾股定理求得它们之间的距离d的公式为:d = √((x2-x1)^2 + (y2-y1)^2)而在空间中的两点A(x1,y1,z1)和B(x2,y2,z2)之间的距离d的公式为:d = √((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)除了计算距离,我们还可以通过点A和点B的坐标求得它们连线上的中点C的坐标。

对于平面上的两点A(x1,y1)和B(x2,y2),中点C的坐标是:C = ((x1+x2)/2, (y1+y2)/2)而在空间中的两点A(x1,y1,z1)和B(x2,y2,z2)之间的中点C的坐标是:C = ((x1+x2)/2, (y1+y2)/2, (z1+z2)/2)总结:通过学习空间解析几何的基础知识,我们可以更好地理解和应用几何学中的概念和定理。

空间解析几何总结

空间解析几何总结

空间解析几何总结引言空间解析几何是高中数学中的一个重要内容,主要研究平面和直线在空间中的位置关系和相互作用。

通过学习空间解析几何,我们可以对几何问题进行更深入的分析和解决。

本文将对空间解析几何的基本概念、常用方法和应用进行总结,以帮助读者更好地理解和掌握这一内容。

一、空间直角坐标系空间直角坐标系是空间解析几何的基础,它通过在空间中引入三个互相垂直的坐标轴来描述点的位置。

我们通常将这三个坐标轴分别用x、y和z表示,并将它们的交点作为原点O。

利用空间直角坐标系,我们可以用三个实数(x,y,z)表示空间中的点P。

其中,x称为点P在x轴上的坐标,y称为点P在y轴上的坐标,z称为点P在z轴上的坐标。

二、空间点的坐标表示在空间直角坐标系中,点P的坐标可以用三个实数(x,y,z)表示。

这个表示方法称为点P的坐标表示。

对于给定的坐标系,它是唯一确定的。

空间点的坐标表示具有以下性质:1.两个点相等的充分必要条件是它们的坐标相等。

2.对于空间中的任意点P,它与原点O之间的距离可以用下式表示:d= √(x² + y² + z²)。

三、空间点的向量表示在空间解析几何中,我们常常使用向量表示空间中的点和线段。

对于空间中的任意两个点A和B,我们可以定义一个有方向的线段AB,并用向量→AB表示。

空间点的向量表示具有以下性质:1.两个点相等的充分必要条件是它们的向量表示相等。

2.空间中任意两点A(x₁, y₁, z₁)和B(x₂, y₂, z₂)之间的向量→AB可以表示为→AB = (x₂ - x₁)i + (y₂ - y₁)j + (z₂ - z₁)k。

其中i、j、k分别是x、y、z轴的单位向量。

四、空间直线的方向向量和参数方程空间直线是空间解析几何中的一个重要概念,它是满足一定条件的空间中的点的集合。

在理解空间直线之前,我们需要先了解空间直线的方向向量。

对于空间直线l,设A(x₁, y₁, z₁)和B(x₂, y₂, z₂)是l上的两个不同点,则向量→AB称为直线l的方向向量。

空间解析几何基础

空间解析几何基础

空间解析几何基础空间解析几何是数学中的一个重要分支,它描述了空间中点、直线、平面的性质和它们之间的关系。

本文将介绍空间解析几何的基本概念和应用,帮助读者更好地理解这一领域的知识。

一、空间直角坐标系空间解析几何中使用的坐标系是三维直角坐标系,它由三个互相垂直的坐标轴组成:x轴、y轴和z轴。

一般情况下,我们将x轴水平向右延伸,将y轴水平向上延伸,将z轴垂直向上延伸。

在这个坐标系中,每个点都可以用三个坐标值表示,分别代表其在x、y、z轴上的距离。

二、空间中的点和向量在空间解析几何中,点是最基本的概念之一。

一个点可以用它在空间直角坐标系中的坐标表示。

例如,点P的坐标可以表示为P(x,y,z)。

除了点,向量也是空间解析几何中的重要概念。

向量可以表示从一个点到另一个点的有向线段。

向量的表示方式有多种,其中一种常用的表示方式是向量的起点坐标和终点坐标。

例如,向量AB可以表示为⃗AB。

三、空间中的直线直线是空间解析几何中的另一个重要概念。

空间中的直线可以用一般式方程、点向式方程或者参数方程来表示。

1. 一般式方程一般式方程表示为Ax + By + Cz + D = 0,其中A、B、C和D为常数。

这种表示方式可以方便地表示直线在空间直角坐标系中的位置。

2. 点向式方程点向式方程表示为⃗r = ⃗a + t⃗v,其中⃗r为直线上的任意点,⃗a为直线上的已知点,⃗v为直线的方向向量,t为参数。

这种表示方式更加灵活,可以方便地描述直线上的任意点。

3. 参数方程参数方程表示为x = x0 + at,y = y0 + bt,z = z0 + ct,其中x0、y0、z0为直线上的已知点,a、b、c为参数。

这种表示方式可以将直线的方程分解为三个分量方程,容易进行计算和推导。

四、空间中的平面平面是空间解析几何中的另一个重要概念。

和直线一样,平面可以用不同的方程表示。

1. 一般式方程一般式方程表示为Ax + By + Cz + D = 0,其中A、B、C和D为常数。

空间解析几何基础知识 介绍

空间解析几何基础知识 介绍

3º 二次曲面
z
x2 y2 z2 2 2 1 2 a b c4) 椭圆抛物面
x y 2z p q
z x
2 2
( p与q同号)
z o y
x
o
y
p0,q0
p0,q0
9
(5) 双曲抛物面(马鞍面)
x y 2 z ( p与q同号) p q
2 2
z o x
10
空间解析几何 基础知识
1
一、空间直角坐标系
1、坐标系的建立
三个坐标轴的正方 向符合右手系.
定点 o 横轴 x
z
竖轴
y 纵轴
即以右手握住 z 轴, 当右手的四个手指 从 x 轴正向以

空间直角坐标系
2 大拇指的指向就是 z 轴的正向. 度转向 y 轴正向时,
2

2º 球面方程
R M0 M
( x x0 )2 ( y y0 )2 ( z z0 )2 R2 .
y
(6) 双曲抛物面(马鞍面)
x y 2z p q
2 2
z
o x y
11
球心在原点时方程为
x y z R .
2
2
2
2
3
二、曲面及其方程
定义: 若曲面S与三元方程F (x, y, z) = 0 有如下关系:
z
那末, 方程F (x, y, z) =0叫 做曲面S的方程, 而曲面S 叫做方程F (x, y, z) =0的图
o
F (x, y, z) = 0 S
形.
x
y
4
三、常见的空间曲面
1º 平面
平面的一般方程:

空间解析几何知识点

空间解析几何知识点
设向量 = ,则
, , }
二、向量的运算
定义
坐标表示
备注
向量的数量积
向量的向量积
方向与 、 都垂直,且 、 与 成右手系
=
与 平行
三、几类常见的二次曲面及其标准方程
曲面名称
方程
旋转曲面
曲线 绕 轴旋转构成
绕 轴旋转构成
球面
,半径 ,球心
椭球面
, 为椭球面的半径
圆柱面
, ,
椭圆柱面
, ,
抛物柱面
, ; , ; , ( 为正数)
空间解析几何知识点
第七章空间解析几何与向量代数
一、向量的有关定义和性质
定义
坐标表示
备注
向量
(矢量)
具有大小和方向的量
将 的起点放原点,其终点坐标为 ,则 =
=
①向量:
②零向量:
③设


向量
的模
向量的大小(或长度)
设 , 则
向量的方向余弦
设 与三坐标轴正向的夹角为 、 、 ,则 、 、 为 的方向余弦
五、直线的表示
方程的形式
相关系数的意义
参数式方程
为直线上一点, 为直线的方向向量
标准方程(对称式)
同上
一般式方程
直线的方向向量为
两点式方程
, 为直线上两点,直线的方向向量为
双曲柱面
, , ( 为正数)
圆锥面
,由直线 或 绕 轴旋转而成
椭圆抛物面
, , ( 为正数)
双曲抛物面
, , ( 为正数)
单叶双曲面
, ,
双叶双曲面

四、平面的表示
方程的形式
相关系数的意义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
例1 在 xy 坐标面上求一点 M ,使它的 x 坐标为1, 且与点 (1, 2, 2) 和点 (2, 1, 4) 的距离相等.
解 因为所求点在 xy 坐标面上,所以设该点为 (1, y, 0)
由题意,得
(1 1)2 ( y 2)2 (0 2)2 (1 2)2 ( y 1)2 (0 4)2
x
xz面上点的坐标为(x, 0, z)
8
二. 空间两点间的距离
给定空间两点 M1 ( x1 , y1 , z1 )与 M2 ( x2 , y2 , z2 ),可证明这两点 间的距离 d 为
d M1M2 ( x2 x1 )2 ( y2 y1 )2 (z2 z1 )2
这与平面解析几何中两点间的距离公式是一样的. 过 M1, M2各作三个分别垂直于三条坐标轴的平面. 这六个平面围成一个以 M1M2 为对角线的长方体; (如下图)
任一点M和一个三元有序数组(x, y, z)建立了一一对应关系.
7
由以上规定知道:
坐标原点O的坐标为(0, 0, 0)
z
x轴上点的坐标为(x , 0, 0)
y轴上点的坐标为(0, y, 0)
z轴上点的坐标为(0, 0, z)
y
xy面上点的坐标为(0, y, z)
d M1M2
(x2 x1 )2 ( y2 y1 )2 (z2 z1 )2
M1
特别地, 空间任一点M(x, y, z) x2 O
到原点O的距离为:
x1
x
m1
OM x2 y2 z2
M2
d
M3
y1
y2
y
m3
例 已知两点(–1, 0, 2),(3, –2, 4),求此两点间的距离.
解 d (3 1)2 (2 0)2 (4 2)2 24 2 6
y、z称为点M的横坐标 、纵坐标及
z
R
竖坐标,记为M (x, y, z).
z
反之, 对于任给的三元有序数组(x, y, z), O x
可依次在 x 轴、y轴、z轴上分别 x P
M
y
Qy
找出坐标为x、 y、z 的三点P、Q、R.
然后过此三点作是三个平面分别垂直于 x轴、y轴、z轴, 这
三个平面的交点M, 就是以数组(x, y, z)为坐标的点.这样空间
本章将在一元函数微分法的基础上, 来研究多元函数的微 分法. 因为从一元函数到二元函数将会面临一些新问题, 而 从二元函数到二元以上的多元函数, 可完全类推.
故本章主要研究二元函数的微分法及其应用.要研究多元函 数, 需首先介绍一些空间解析几何知识. 现就必备知识作简单 介绍.
1
§7.1 空间解析几何基本知识
解得 y 5, 于是所求点为(1, 5, 0).
12
三. 空间曲面与方程
z
1. 曲面的一般方程 与平面解析几何相仿, 空间解析几何
利用空间坐标法, 把由点构成的几何
M(x,y,z)
S
y
O
D
x
P(x,y)
图形和代数方程联系起来.
由平面解析几何知识知,在平面直角坐标系中图形和代数
方程之间有如下联系.
yz平面及 zx平坐标面;且它们将空间分割成八个部分, 称每一个 部分为一个卦限.
4
把含三个坐标轴正方向的那个卦限为第一卦限.如图:
z
Ⅲ Ⅳ
Ⅱ Ⅰ
Ⅵy
xⅧ

在xy坐标平面的上部, 依次称为第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限.
在xy坐标平面的下部与第一卦限相对应的称为第Ⅴ卦限;
以后依次称为第Ⅵ、Ⅶ、Ⅷ卦限.
5
在建立了空间直角坐标系后,就可以建立空间的点与有序数
(1) 曲面 Σ 上的任意点 的坐标都满足方程 (7.1.3); (2) 不在曲面 Σ 上的点的坐标都不满足方程 (7.1.3); 则称方程(7.1.3)是曲面 Σ的一般方程,而曲面 Σ 是方程(7.1.3)
的图形. (如图7.1.5)
14
图7.1.5
15
2.常见曲面 1) 平面
例2 一动点M( x, y, z)与两定点 A(1, 2, 3) 和 B(2, -1, 4) 的距离相等, 求此动点M的轨迹方程.
9
向xy面投影,并设 M1, M2点 在xy面的垂足各为 m1, m3 .
z
M2
d
M1
M3
y1
x2
O
x1
x
m1
y2 m3 y
则 M1 M2 2 M1 M3 2 M2 M3 2 m1m3 2 M2 M3 2
10
而 m1m3 2 x2 x1 2 y2 y1 2
z
且 M2 M3 2 z2 z1 2
组(x, y, z)之间的对应关系.
对于空间中的任意点M,过点M作三个平面分别垂直于三条
坐标轴. 且与x轴、y轴、z轴的交点依次为P、Q、 R. (如图)
z
P、Q、R三点在三个坐标轴上的坐标
R
依次为x、y、z ;这样空间的点
z
M就唯一确定了一个三元有序数组
O
(x, y, z).
x
xP
M
y
Qy
6
并把有序数组(x, y, z) 称为点M的空间直角坐标,并依次把 x、
的正方向, 就构成一个空间直角坐标系, 并 记为 oxyz.
3
其几何直观, 如下图:
z 竖轴
在空间直角坐标系 oxyz 中, 点O 称为坐标原点; ox、oy及oz 分别
称为x轴(横轴) 、y轴(纵轴)及z轴(竖轴), 并统称为坐标轴.
3
2 1 21 O 1 2 3 3
x 横轴
纵轴
y
任意两条坐标轴构成的平面称为坐标面,分别简称为xy平面.
平面解析几何 图形 曲线
(二元)方程
y f (x)或F(x, y) 0 13
对于空间中的曲面 Σ, 当建立空间直角坐标系 Oxyz 后,如 果曲面 Σ 上的任意点 M 的坐标 ( x, y, z) 与一个三元方程
F ( x, y, z) 0或z f ( x, y) ……(7.1.3)
有如下关系:
一. 空间直角坐标系 二. 空间两点间的距离 三. 空间曲面与方程 四.空间曲线的一般方程 五.空间曲线在坐标面上的投影
2
一. 空间直角坐标系
要求大家了解空间解析几何的初步知识.下面仅简要地介绍 有关解空间解析几何的一些基本概念.
1. 空间直角坐标系及空间中的点与坐标
过空间中的一个定点O, 作三条相互垂直的直线 ox、oy、oz. 再规定一个长度单位和按照右手螺旋法则去确定 ox、oy、oz
解 因为 MA MB
(x 1)2 ( y 2)2 (z 3)2 (x 2)2 ( y 1)2 (z 4)2
相关文档
最新文档