烧结过程中氮氧化物生成机理及控制

合集下载

浅析煤粉燃烧过程中NOX产生机理和控制技术

浅析煤粉燃烧过程中NOX产生机理和控制技术

浅析煤粉燃烧过程中NOX产生机理和控制技术摘要:很多工业的发展都离不开煤粉,煤粉通过燃烧产生大量的热能应用于工业生产中可以大大提高生产力。

在煤粉燃烧的过程中,煤粉与空气发生剧烈摩擦并且在高温的条件下会生成一种产物--NOX。

NOX简单理解来说就是氮氧化物,这种物质的产生对于环境来说有很强的破坏。

本文主要针对煤粉燃烧过程中NOX产生机理和控制技术的相关内容进行分析。

关键词:煤粉燃烧;NOX;产生机理;控制技术引言:由于工业文明的发展,各种工业行业都呈现在出发展的态势。

在工业的发展过程中很多是以环境为代价进行的,环境的污染问题越来越严重。

煤粉是工业燃烧的主要原料之一,燃烧生成的氮氧化物也是比较多的,只有详细分析出氮氧化物产生的机理,才能制定相应的控制技术。

一.NOX的产生的和危害NOX的产生主要是煤粉等化石燃料在有空气的条件下发生剧烈摩擦从而生成的,氮氧化物包含的种类也比较多,比如在生活中常见的一氧化氮,二氧化氮等。

氮氧化物的存在会造成很大的危害,主要体现两方面,一方面是对人体,一方面是对环境。

对于人体来说,氮氧化物的含量如果偏低,可能会造成头晕头疼等微微不适的状况,如果氮氧化物的含量超过了一定的标准,会造成人瞬间死亡。

长时间在含有氮氧化物的环境中生活,对于人的身体健康也会造成影响。

对于环境来说,氮氧化物的存在可能会破坏生态环境的平衡,而且对于臭氧层会有一定的破坏作用,酸雨就是氮氧化物导致的。

而且氮氧化物的对于光线也有一定的遮挡作用,形成一定的烟雾,阻碍人们的出行。

二.NOX产生机理氮氧化物的产生是由化石燃料在燃烧过程中产生的,根据其具体的产生机理主要有三种:和温度具有密切关系的热力型;和燃料浓度有密切关系的快速型;和氮的分解温度有密切关系的燃料型。

这三种产生机理是现存的氮氧化物产生的主要来源,接下来进行具体的分析。

(1)和温度具有密切关系的热力型热力型的产生机理理解起来是比较容易的,在煤粉燃烧的过程中,温度是很高的,温度有一个分界点,这个分界点主要是一千五百摄氏度,温度在一千五百摄氏度以下产生的氮氧化合物比较少,温度一旦超过一千五百摄氏度,氮氧化合物产生的效率大大增加,并且随着温度的升高产生的速度越来越快。

燃烧过程中氮氧化物的生成机理

燃烧过程中氮氧化物的生成机理

燃烧过程中氮氧化物的生成机理一、本文概述氮氧化物(NOx)是燃烧过程中产生的一类重要污染物,对人类健康和环境质量构成了严重威胁。

本文旨在深入探讨燃烧过程中氮氧化物的生成机理,为有效控制其排放提供理论基础。

文章首先概述了氮氧化物的主要来源和危害,然后详细介绍了燃烧过程中氮氧化物的生成途径,包括热力型NOx、快速型NOx和燃料型NOx的生成过程。

接着,文章分析了影响氮氧化物生成的主要因素,如燃烧温度、氧气浓度、燃料种类等。

在此基础上,文章探讨了降低氮氧化物排放的技术措施,如低氮燃烧技术、烟气脱硝技术等。

文章对氮氧化物生成机理的未来研究方向进行了展望,旨在为燃烧过程氮氧化物减排技术的研发和应用提供有益参考。

二、氮氧化物的生成途径氮氧化物的生成主要发生在高温、富氧的燃烧环境中,其生成途径主要分为三种:热力型NOx、快速型NOx和燃料型NOx。

热力型NOx:在高温条件下,空气中的氮气与氧气直接发生反应,生成NO,这是热力型NOx的主要生成方式。

这种反应通常在燃烧区域的温度高于1500℃时发生,且随着温度的升高,NO的生成速率会显著增加。

快速型NOx:快速型NOx主要在碳氢燃料浓度较高的区域生成,其中燃料中的碳氢化合物与氮气、氧气以及羟基自由基(OH)等发生反应,生成NO。

这种反应方式在火焰前锋的富燃料区域中特别显著,因为这里的碳氢化合物浓度最高。

燃料型NOx:燃料型NOx的生成与燃料中的氮元素有关。

在燃烧过程中,燃料中的氮元素首先被氧化为氨(NH3)和氰化氢(HCN)等中间产物,这些中间产物再进一步与氧气反应生成NO和NO2。

燃料型NOx的生成量取决于燃料的种类和燃烧条件,如火焰温度、氧气浓度以及燃料与氧气的混合程度等。

在燃烧过程中,这三种NOx生成途径可能同时发生,但在不同的燃烧条件和燃料类型下,它们对总NOx生成量的贡献可能会有所不同。

例如,在燃气轮机和高温工业锅炉中,热力型NOx是主要的NOx生成途径;而在柴油机和某些燃煤锅炉中,燃料型NOx的贡献可能更为显著。

烧结(球团)工艺过程氮氧化物产生及控制

烧结(球团)工艺过程氮氧化物产生及控制

烧结(球团)工艺过程氮氧化物产生及控制刘树根;宁平;李婷【摘要】对某大型钢铁企业三条烧结生产线与一条球团生产线NOx产生情况进行了对比研究,提出了烧结(球团)烟气NOx控制策略.烧结(球团)烟气中的氮氧化物均以NO为主,占NOx总量的比例不低于94%.在温度降低、混合时间延长的特定环境下,高温烟气中的NO能转化为其他含氮气体组分,NOx总量呈下降趋势.球团生产时,因高炉煤气、焦炉煤气含氮而产生的燃料型NOx占烟气氮氧化物排放总量的16.5%,以温度型NOx产生为主;烧结生产工艺中,固体燃料煤或焦末中氮含量高达0.83%~ 1.26%,烟气中氮氧化物产生以燃料型NOx为主,占烟气中NOx总量的比例不低于80%.烧结(球团)烟气中NOx浓度随烧结机上料量增加呈明显上升趋势.鉴于我国目前仍缺乏成熟的烧结(球团)烟气脱硝末端治理技术与工程应用案例,加强生产过程控制是实现烧结(球团)烟气氮氧化物达标排放的重要举措.【期刊名称】《四川环境》【年(卷),期】2016(035)003【总页数】6页(P17-22)【关键词】烧结;球团;烟气脱硝;温度型NOx;燃料型NOx【作者】刘树根;宁平;李婷【作者单位】昆明理工大学环境科学与工程学院,昆明650500;昆明理工大学环境科学与工程学院,昆明650500;昆明理工大学环境科学与工程学院,昆明650500【正文语种】中文【中图分类】X511目前,我国钢铁行业氮氧化物控制面临严峻压力。

一方面,《钢铁烧结、球团工业大气污染物排放标准》(GB28662-2012)规定:自2015年1月1日起,现有及新建钢铁企业烧结(球团)设备执行更严格的氮氧化物排放浓度限值300 mg/m3;另一方面,我国现有钢铁企业虽已基本建成烟气脱硫设施,但烧结(球团)烟气脱硝方面的基础研究及工程应用明显滞后[1~3]。

整体来讲,烟气脱硝技术可分为催化还原法[4~6]、物理吸附法[7~9]、氧化—吸收法[10~13]、循环流化床法[14]、高能电子氧化法等主要类型。

氮氧化物的生成机理及防治措施

氮氧化物的生成机理及防治措施

加强环保、能源、交通等相关部门之间的 合作与协调,形成政策合力,共同推进氮 氧化物防治工作。
跨界创新合作
公众参与与教育
鼓励企业、高校、科研机构等跨界合作, 共同研发和推广氮氧化物防治新技术、新 方法,促进技术创新和成果转化。
加强氮氧化物防治的公众宣传和教育,提 高公众环保意识,形成社会共同关注和参 与氮氧化物防治的良好氛围。
植物损害
氮氧化物可损伤植物叶片,影响 光合作用,导致植物生长受阻,
产量下降。
水体污染
氮氧化物通过沉降和雨水冲刷进入 水体,导致水体富营养化,引发藻 类大量繁殖,破坏水生生态平衡。
土壤酸化
氮氧化物沉降到土壤,导致土壤酸 化,影响土壤微生物活动和养分供 应,降低土壤肥力。
03
氮氧化物的防治措施
燃烧优化技术
燃料型氮氧化物的生成机理
燃料中的氮元素:当燃料中含有氮元素时,燃烧过程中燃料中的氮与氧气反应生成氮氧化物 。
燃烧条件:燃料型氮氧化物的生成量与燃烧温度、氧气浓度、燃烧时间等因素密切相关。通 常,高温富氧条件下更容易生成燃料型氮氧化物。
在上述各个生成机理中,影响因素包括但不限于燃烧温度、氧气浓度、反应时间、燃料成分 等。为了有效防治氮氧化物的生成,可以采取以下措施:降低燃烧温度、控制氧气浓度、缩 短反应时间、使用低氮燃料以及采用先进的排放控制技术等。
政策法规
制定严格的氮氧化物排放标准和政策法规,推动企业采取 防治措施,减少氮氧化物的排放。同时,加强监管和执法 力度,确保各项措施得到有效执行。
04
未来展望与研究方向
新型脱硝技术的研发与应用
高效脱硝技术
研究和开发更高效、更环保的脱硝技术,以降低氮氧化物的排放 ,并克服现有技术的局限性和挑战。

氮氧化物的生成机理及防治措施

氮氧化物的生成机理及防治措施

碳氢化合物燃烧时,分解成 CH、CH2和C2等基团,与 N2发生如下反应
火焰中存在大量O、OH基 团,与上述产物反应
燃料型NOx的形成
燃料中的N通常以原子状态与HC结合,C—N键的键能
较N ≡N 小,燃烧时容易分解,经氧化形成NOx
火焰中燃料氮转化为NO的比例取决于火焰区NO/O2的
比例
NO
燃料中20%~80%的氮转化为NOx O,H,OH
氮氧化物的性质及来源
NOx的性质(续)
NO2:强烈刺激性,来源于NO的氧化,酸沉降
NOx的来源
固氮菌、雷电等自然过程(5×108t/a) 人类活动(5×107t/a)
○ 燃料燃烧占 90% ○ 95%以NO形式,其余主要为NO2
燃烧过程 NOx的形成 机理
形成机理
○ 燃料型NOx ● 燃料中的固定氮生成的NOx
两段燃烧技术
第一段:氧气不足,烟气温 度低,NOx生成量很小
第二段:二次空气,CO、 HC完全燃烧,烟气温度低
先进的低NOx燃烧技术
原理:低空气过剩系数运行技术+分段 燃烧技术
炉膛内整体空气分级的低NOx直流燃烧器
○ 炉壁设置助燃空气(OFA,燃尽风)喷嘴 ○ 类似于两段燃烧技术
先进的低NOx燃烧技术
第九章 氮氧化物污染控制
教学内容 一. 氮氧化物的性质及来源
二. 燃烧过程中氮氧化物的 形成机理
三. 低氮氧化物燃烧技术
四. 烟气脱硝技术


教学目标
氮氧化物的形成机理,低氮氧 通过本节内容的学习,使学生
化物燃烧技术和烟气脱硝技术。 达到如下要求(1)了解氮氧 化物的性质和主要来源(2)
熟悉氮氧化物的形成机理(3)

烧结砖窑炉氮氧化物的产生及控制

烧结砖窑炉氮氧化物的产生及控制

烧结砖窑炉氮氧化物的产生及控制一、NOx(氮氧化物)中国是一个以煤炭为能源的国家,煤在一次能源中占75%,其中84%以上是通过燃烧方式利用的。

NOx是煤与空气在高温燃烧时产生的,是造成大气污染的主要污染源之一。

其主要危害有:对人体健康的直接危害,主要影响呼吸系统;对植物有损害;参与形成光化学烟雾,形成酸雨,污染环境;N2O(一氧化碳)是一种温室气体,会破坏环臭氧层。

二、NOX产生机理煤在燃烧过程中产生的氮氧化物主要是一氧化氮和二氧化氮,其生成量和排放量与燃烧方式、特别是烧成温度和空气过剩系数等密切相关。

NOX生成途径主要有燃料型、热力型和快速性三种方式。

其中快速型生成量很少,可以忽略不计。

1、热力型NOX指空气中的氮气和氧气在燃料燃烧时所形成的高温环境下生成的一氧化氮和二氧化氮总和。

其反应式为:N2+O2=2NO2NO+ O2=2NO2当燃烧区域温度低于1000℃时,一氧化氮的生成量较少,而温度在1300~1500℃时,一氧化氮的浓度为500~1000ppm,而且随温度的升高,NOX的生成速度按指数规律增加。

当温度足够时,热力型NOX可达20%。

因此温度对热力型NOX的生成具有绝对性作用,过量空气系数和烟气停留时间对热力型NOX的生成有很大影响。

根据热力型NOX的生成过程,要控制其生成,就需要降低溶炉的最高烧成温度,并免产生场部高区,以降低热力型N0的生成2、燃料型NOX燃料型NOx的生成是燃料中的氮化台物在燃烧过程中氧化反应而生成的,称为料型一般的炉察产生的0中大约%%是燃料型的NOx因此,燃料型O是察产生x的主要途径。

燃料型NOx的生成和破坏过程不仪与煤种性燃料中氮化合物受热分解后在发分和焦影中的例,成分和分布有关,而目其反应过程还和燃烧多件(如温度和氧)及各种成分的浓度密切相关,在接加燃料的坯体进入察炉被加热以后,燃料中的氮有机化台物首先被分解成(HCN)。

氢(NH4)和CN等中间产物,它们随挥发分一起从燃料中析出,被称为挥发分析出后仍残留在燃料中的氢化合物称为焦炭N。

氮氧化物生成机理及控制技术

氮氧化物生成机理及控制技术

氮氧化物生成机理及控制技术能源与环境是当今社会发展的两大问题,如何文明用能、合理用能已经成为人们越来越关注的话题。

在能源的利用中,矿物燃料的燃烧要排放出大量污染物。

例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。

循环流化床锅炉是最近二十年里发展起来的一种新型燃烧技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。

它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。

本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,为循环流化床锅炉的设计、运行提供参考。

1NOx的生成机制煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。

和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。

在煤燃烧过程中,生成的NOx途径有三个:(1)热力型NOx(ThermalNOx),它是空气中的氮气在高温下氧化而生成的。

(2)燃料型NOx(FuelNOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。

(3)快速型NOx(PromptNOx),它是燃烧时空气中的氮和燃料中的炭氢离子团如CH等反应生成的NOx。

其中燃料型NOx是最主要的,它占总生成量的60%~80%以上,热力型NOx的生成和燃烧温度的关系很大,在温度足够高时,热力型NOx的生成量可占到总量的20%;快速型NOx在煤燃烧过程中的生成量很小。

另外,N2O和NOx燃料型一样,也是从燃料的氮化合物转化生成的,它的生成过程和燃料型NOx的生成和破坏密切相关。

氮氧化物的产生机理及脱氮技术原理_百度文库.

氮氧化物的产生机理及脱氮技术原理_百度文库.

氮氧化物的产生机理及脱氮技术原理:一、氮氧化物的产生机理在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种: (a热力型燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。

其生成机理可用捷里多维奇(Zeldovich反应式表示。

随着反应温度T的升高,其反应速率按指数规律。

当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。

热力型氮氧化物生成机理(Zeldovich反应式在高温下总生成式为(b瞬时反应型(快速型快速型NOx是1971年Fenimore通过实验发现的。

在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。

由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。

上述两种氮氧化物都不占NOx的主要部分,不是主要来源。

(c燃料型NOx由燃料中氮化合物在燃烧中氧化而成。

由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。

在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN 和等中间产物基团,然后再氧化成NOx。

由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份和焦炭中剩余氮的氧化(焦炭两部分组成。

燃料中氮分解为挥发分N和焦炭N的示意图二、低NOx燃烧技术原理对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。

1在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。

燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取:(1减少燃烧的过量空气系数;(2控制燃料与空气的前期混合;(3提高入炉的局部燃料浓度。

焦炉加热燃烧时氮氧化物的形成机理及控制

焦炉加热燃烧时氮氧化物的形成机理及控制

焦炉加热燃烧时氮氧化物的形成机理及控制燃气在焦炉立火道燃烧时会产生氮氧化物(NOx),氮氧化物通常多指NO和NO2的混合物,大气中的氮氧化物破坏臭氧层,造成酸雨,污染环境。

上世纪80代中期,发达国家就视其为有害气体,提出了控制排放标准。

目前发达国家控制标准基本上是氮氧化物(废气中O2含量折算至5%时),用焦炉煤气加热的质量浓度以NOx计不大于500mg/m3,用贫煤气(混合煤气)加热的质量浓度不大于350mg/m3(170ppm) 。

随着我国经济的快速发展,对焦炉排放氮氧化物的危害也日益重视,并准备制订排放控制标准。

本文将对氮氧化物在焦炉燃烧过程中的形成机理及控制措施进行论述。

研究表明,在燃烧生成的NOx中,NO占95%, NO2为5%左右,在大气中NO缓慢转化为NO2,故在探讨NOx形成机理时,主要研究NO的形成机理。

焦炉燃烧过程中生成氮氧化物的形成机理有3种类型:一是温度热力型NO;二是碳氢燃料快速型NO;三是含N组分燃料型NO。

也有资料将前两种合称温度型NO。

1 温度热力型NO形成机理及控制燃烧过程中,空气带入的氮被氧化为NON2+O2 = 2NONO的生成由如下一组链式反应来说明,其中原子氧主要来源于高温下O2的离解:O+N2 = NO+NN+O2 = NO+O由于原子氧和氮分子反应,需要很大的活化能,所以在燃料燃烧前和燃烧火焰中不会生成大量的NO,只有在燃烧火焰的下游高温区(从理论上说,只有火焰的下游才积聚了全部的热焓而使该处温度最高,燃烧火焰前部与中部都不是高温区),才能发生O2的离解,也才能生成NO。

关于燃烧高温区的温度,综合有关资料,选择以《炼焦炉中气体的流动和传热》的论述为依据,当α = 1.1,空气预热到1100℃时。

焦炉煤气的理论燃烧温度为2350℃;高炉煤气理论燃烧温度为2150℃。

一般认为,实际燃烧温度要低于此值,实际燃烧温度介于理论燃烧温度和测定的火道砌体温度之间。

如测定的火道温度不小于1350℃,则焦炉煤气的实际燃烧温度不小于1850℃,而贫煤气不小于1750℃。

烧结过程NOx控制措施的的探讨

烧结过程NOx控制措施的的探讨

烧结过程 NOx控制措施的的探讨摘要:通过对烧结烟气中NOx生成机理的研究,结合实际生产制定烧结过程治理措施,形成一套控制烧结烟气NOx含量方法,针对暂时未采取脱硝技术的烧结生产提出一些指导性的意见。

关键词:烧结烟气;NOx形成机理;控制措施1前言氮氧化物是大气主要污染物之一, 90%以上的氮氧化物源于煤、石油、天然气等燃料的燃烧,其中70%来自于煤的燃烧,随着燃煤在工业的广泛应用,用量显著增加,氮氧化物将会对大气环境造成严重危害。

因此研究烧结机氮氧化物有效控制措施,是企业生存的必须课题,同时也是关系着大气环境质量。

根据宝钢、鞍钢、首钢烧结烟气氮氧化物监测数据显示均能满足新排放标准300mg/m³的限值要求,其检测数据显示烧结机各风箱中氮氧化物的浓度分布呈两头低、中间高的趋势,浓度最高值位于7~12风箱,峰值接近600mg/m³。

2烧结过程NOx形成机理与生产实践分析烧结烟气中氮氧化物(NOx)来源主要有三个:一是热力型NOx,即空气中的氮气与氧气在高温下(大于1350℃)反应产生的氮氧化物;二是快速型NOx,主要来自高温火焰中CnHm与空气中N2快速反应,空气过剩系数较小,点火温度低,燃烧产物停留时间较短时形成;三是燃料型NOx,即燃料中的氮经燃烧分解产生的氮氧化物,烧结过程中燃料燃烧层温度基本在1350℃~1500℃,燃料中N元素化合物在燃烧过程中转化成NOx。

2.1热力型NOx烧结过程燃烧层温度基本控制于1200℃~1500℃,宽度为15mm~50mm,停留时间为300s,烧结矿FeO控制为7%~9%、燃料综合配比为3.8%,且采用全焦烧结,燃烧层温度为1200℃~1300℃,不能达到NOx快速生成高温温场基础1500℃;另外,燃烧层温度与烧结终点温度直接相关,通过对比发现,烧结终点温度控制为300℃~400℃与400℃~500℃时,烧结过程NOx无较明显变化。

综合分析认为在烧结基本平稳过程中,热力型NOx生成量生成较少。

烧结烟气NOx生成机理及减排方法分析

烧结烟气NOx生成机理及减排方法分析

烧结烟气NOx 生成机理及减排方法分析李东升,周峰,向小平,刘武杨,丘远秋(柳州钢铁股份有限公司烧结厂,广西柳州505001)摘要:烧结生产过程中产生的NO X 是我国NO X 排放的主要来源之一,对人体健康和生态环境危害极大,已成为各大钢铁企业亟待解决的难题。

文章主要阐述烧结过程中NO X 的生成机理和主要减排手段,并针对柳钢目前烧结生产现状,建议可以从烧结燃料角度出发,对烧结燃料进行预处理,再结合SCR 脱硝末端烟气治理工艺来治理烧结生产过程中产生的NO X ,达到双重脱硝的目的,满足环保新要求。

关键词:铁矿烧结;氮氧化物;减排措施Metallurgy and materials作者简介:李东升(1992-),男,黑龙江大庆人,硕士,主要从事烧结、球团工艺技术方面工作。

NOx 是常见的大气污染物,是造成酸雨、臭氧层空洞和光化学烟雾等污染的根由物质之一,严重危害生态环境和人体健康,已被列入我国大气污染物的重点防治对象。

近年来,钢铁工业发展迅速,巨大的钢铁产量带来了严重的环境污染问题,已成为我国大气污染物的主要来源之一。

烧结工序作为钢铁生产的重要组成部分,烟气中的污染物成分复杂、种类繁多,主要污染物有二噁氧化硫、氮氧化物、二英、微细颗粒物等,其中氮氧化物的排放量占钢铁工序总排放量的一半以上。

目前,烧结烟中的二氧化硫和粉尘等污染物已得到了有效的治理,但是对NOx 的治理才刚刚起步,在环保政策逐渐加码的背景下,在烧结生产过程中有效实施NOx 减排至关重要。

图1钢铁工序主要生产工序NOx 排放比例11.8014.2914.914.3554.667060504030201001烧结烟气NOx 的生成机理烧结烟气中的NOx 主要是烧结燃料和含铁原料中的N 与空气中的O 在高温反应时产生的。

按照生成途径的不同,主要包括热力型NOx 、快速型NOx 和燃料型NOx 三类。

1.1热力型NOx热力型NOx 是在高温状况下,空气中的N 2与O 2发生反应生成的NOx ,该类型NOx 的生成速率与温度成正比例关系,即反应的温度越高,NOx 的生成速率越大。

煤燃烧中氮氧化物生成机理及控制氮氧化物排放技术

煤燃烧中氮氧化物生成机理及控制氮氧化物排放技术

建材发展导向2018年第09期61 氮氧化物的危害氮氧化物(NOx)是导致光化学烟雾的关键因素,可以直接造成大气层中臭氧含量降低、形成硝酸雨,使人感染肺水肿、气喘病、鼻炎等疾病。

根据相关研究,每吨煤燃烧后都要产生5-30kg 的氮氧化物。

然而在我国能源结构中大约有70%-80%的能源比例是由煤燃烧来产生,煤炭燃烧已经成为我国氮氧化物排放的主要来源。

2 煤燃烧过程中NO X 的生成机理煤燃烧生成NO X 的机理要比SO 2复杂得多,而且烟气中的NO X 浓度也不像SO 2那样能够通过计算煤的含硫量得出,其生成量和燃烧方式尤其是燃烧温度与过剩空气系数之间密切相关。

加强煤燃烧过程中的NO X 生成机理研究有利于尽快发现有效抑制其产生的科学方法。

煤燃烧过程中的NO X 生成主要有下面3种途径:(1)燃料型NO X 。

燃料中的氮化合物在燃烧时先热分解,随后又被氧化而生成NO X ,生成NO X 的比例60%~80%以上。

(2)快速型NO X 。

在燃烧时,空气中的氮与燃料中的碳氢离子团发生化学反应生成NO X 。

(3)热力型NO X 。

空气中的N 2在高温条件下被氧化生成NO X ,生产的NO X 可占20%左右。

2.1 燃料型NO X 生成机理燃料型NO X 的生成机理十分复杂,在常规燃烧条件下,燃料中的含氮化合物会首先热分解为氰化氢(HCN)、氨(NH 3)以及CN 等中间产物,它们从燃料中随挥发分N 一起析出。

挥发分N 析出后,仍然大量残留于焦碳中的氮化合物被称为焦碳N。

在一般的燃烧温度下,燃料型NO X 的60~80%来自挥发分N ;焦碳N 生成的NO X 只占到20%~40%。

燃料型NOx 的转化率。

将燃烧时产生的NO 浓度与燃料中完全转化NO 时的浓度比定义为燃料型NO 的转化率CR。

日本丰桥大学有学者曾对煤炭进行相关试验研究,总结出了NO 转化率与煤的挥发分、含氮量、燃烧时的最高温度、过剩空气系数以及氧浓度间的经验公式:CR=0.407-0.128N ad +3.34X10-4 V ad 2(a-1)+5.55×10-4T max +3.50×10-3C o22.2 热力型NO X 生成机理热力型NO X 的生成机理由捷里多维奇(Zeldovich)提出,按照该生成机理,空气中的N 2在高温条件下被氧化,发生的就是捷里多维奇(Zeldovich)的不分支链锁反应:O 2+M →2O+M O+N 2→NO+N N+O 2→NO+O2.3 快速型NO X 生成机理快速型NO 是由费尼莫尔(Fenimore)在1971年发现的,即碳氢化燃料在燃烧时,反应区域会迅速生成NO。

煤燃烧中氮氧化物生成机理及控制氮氧化物排放技术

煤燃烧中氮氧化物生成机理及控制氮氧化物排放技术
煤燃烧中氮氧化物生成机理及控 制氮氧化物排放技术
硕611
1
1.NOX的生成机理 2.低NOX燃烧技术 2.低
2
1、概述 、 煤燃烧过程中产生的氮氧化物主要是一 氧化氮(NO)和二氧化物(NO2)这二者统 称为NOX。此外还有少量的氧化二氮(N2O) 产生。 在通常的燃烧温度下,煤燃烧生成的NOX 中,NO占90%以上,NO2占5~10%,而N2O 只占1%左右。 近年来随着燃煤流化床锅炉的发展,发 现流化床锅炉排出的N2O比煤粉炉排放的要 大得多,因此已引起人们对N2O问题的日益 3 重视。
8
9
燃料分级燃烧时所使用的二次燃料可 以是和一次燃料相同的燃料,例如煤粉炉 可以利用煤粉作为二次燃料。但目前煤粉 炉采用更多的是碳氢类气体或液体燃料作 为二次燃料。这是因为和空气分级燃烧相 比,燃料分级燃烧在炉膛内需要有三级燃 烧区,这使得燃料和烟气在再燃区内的停 留时间相对较短,所以二次燃料宜于选用 容易着火和燃烧的气体或液体燃料。
15
西安 交通大学 和武汉锅 炉厂开发 的空气分 级低NOX 级低 旋流燃烧 器 Nhomakorabea16
水平浓淡燃烧
背火侧(淡)
向火侧(浓) 煤粉、空气 混合物
调节风
调节器
浓缩器
变异煤粉浓度水平浓淡燃烧方式炉膛内流场示踪图
17
垂直浓淡燃烧
18
大速差低NOx燃烧器(清华)
19
百叶窗浓淡燃烧技术(华中科技大学 百叶窗浓淡燃烧技术 华中科技大学) 华中科技大学
为了完成全部燃烧过程,完全燃烧所需的 其余空气则通过布置在主燃烧器上方的专 门空气喷口OFA(Over Fire Air)——称为 “燃尽风”喷口送入炉膛,与第一级燃烧 区在“贫氧燃烧”条件下所产成的烟气混 合,在α>1的条件下完成全部燃烧过程。 由于整个燃烧过程所需空气是分二级供入 炉内,使整个燃烧过程分为二级进行,故 称之为空气分级燃烧法。 根据实际经验,采用将顶层燃烧器改成 “火上风”喷口的方法,可以降低NOX的 排放15%—30% 。

氮氧化物的生成机理及防治措施

氮氧化物的生成机理及防治措施
在燃烧过程中,当温度高于800°C时,空气中的氮气在高温 下与氧气发生反应,生成热力型氮氧化物,如一氧化氮和二 氧化氮。温度越高,生成的热力型氮氧化物浓度越高。
快速型氮氧化物
总结词
快速型氮氧化物是在富燃料燃烧过程中,燃料中的氮化合物快速分解生成的。
详细描述
在富燃料燃烧时,燃料中的氮化合物在燃烧初期快速分解,与氧气反应生成快 速型氮氧化物,如一氧化二氮。这种类型的氮氧化物在燃烧过程中浓度较低。
氮氧化物的生成机理及防治 措施
汇报人: 2024-01-08
目录
• 氮氧化物的生成机理 • 氮氧化物的危害 • 氮氧化物的防治措施 • 氮氧化物排放标准及政策 • 未来研究方向与展望
01
氮氧化物的生成机理
热力型氮氧化物
总结词
热力型氮氧化物主要在高温条件下由空气中的氮气和氧气反 应生成。
详细描述
中国氮氧化物排放标准
中国政府为了控制氮氧化物排放,制定了一系列严格的排放标准。这些标准根据 不同地区和行业的特点,规定了具体的排放限值,并要求企业采取措施降低氮氧 化物排放。
中国氮氧化物排放标准不仅关注单个企业的排放,还注重区域和流域的排放控制 ,以实现整体环境质量的改善。
氮氧化物减排政策与措施
开发高效的氮氧化物控制技术
研发新型的氮氧化物控制技术 ,如催化还原、吸附分离、等 离子体处理等,以提高氮氧化
物去除效率。
针对不同行业和排放源的特 点,开发具有针对性的氮氧 化物控制技术,以满足不同
场景的需求。
加强氮氧化物控制技术的工程 化应用研究,提高技术的可靠 性和稳定性,降低运行成本。
加强国际合作与交流,共同应对氮氧化物污染问题
加强国际间的合作与交流,共同研究和应对氮氧化物污染问题,分享经验 和最佳实践。

浅谈NOx的生成机理和控制技术

浅谈NOx的生成机理和控制技术

浅谈NOx的生成机理和控制技术摘要:随着对环保要求的不断加强,对NOx的排放越来越严格。

NOx是重要的酸性污染气体,煤炭和石油的燃烧是人为产生NOx排放的最主要来源。

本文分析了煤炭在燃烧中生成NOx的机理和规律,以及各自的特点,介绍了控制和减少NOx生成的基本技术。

关键词:氮氧化物;机理;控制;分级一、氮氧化物生成机理热力NOx的生成量和燃烧温度关系很大,在温度足够高时,热力NOx的生成量可占到NOx总量的30%,随着反应温度T的升高,其反应速率按指数规律增加。

当T<1300℃时,NOx的生成量不大,而当T>1300℃时,T每增加100℃,反应速率增大6~7倍。

T<1300℃时,NOx的生成量不大,而当T>1300℃时,T每增加100℃,反应速率增大6~7倍。

2 快速型NOx生成机理快速型NOx是在碳氢化合物燃料在燃料过浓时燃烧,燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms。

快速NOx在燃烧过程中的生成量很小。

影响快速NOx生成的主要因素有空气过量条件和燃烧温度。

3 燃料型NOx生成机理由燃料中氮化合物在燃烧中氧化而成。

由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800℃时就会生成燃料型NOx,它在煤粉燃烧NOx产物中60~80%。

在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。

由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化(挥发分)和焦炭中剩余氮的氧化(焦炭)两部分组成,其中挥发份NOx占燃料型NOx大部分。

影响燃料型NOx生成的因素有燃料的含氮量、燃料的挥发分含量、燃烧过程温度、着火阶段氧浓度等。

燃料的挥发分增加NOx转换量就越大;火焰温度越高NOx转换量就越大;挥发分NOx转化率随氧浓度的平方增加。

烧结过程中氮氧化物生成机理及控制

烧结过程中氮氧化物生成机理及控制

热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反 应。其生成机理可用捷里多维奇(Zeldovich)反应式表示。 随着反应温度T的升高,其反应速率按指数规律增加。当T<1500oC时,NO的 生成量很少,而当T>1500oC时,T每增加100oC,反应速率增大6-7倍。 因烧结温度低于1500℃,一般不宜产生。
燃烧方式的改进通常是一种相对简便易行的减少NOx排放的措施 ,但这种措施 会带来燃烧效率的降低,不完全燃烧损失增加,而且NOx的脱除率也不够高, 因此随着环保要求的不断提高,燃烧的后处理越来越成为必然。 二级污染预防措施是指在NOx的生成后的控制措施,即对燃烧后产生的含NOx 的烟气(尾气)进行脱氮处理,又称为烟气脱硝(Flue gas deNOx)或废气脱硝 (Waste gas deNOx)。
3. 控制对策:(1)降低燃烧温度,避免其生成所需要的高温条件;(2)降 低分子氮的浓度;(3)降低分子氧的浓度;(4)缩短在热力型NOx生产区的 停留时间; 4. 工程实践中常用手段(1)通过向火焰面喷射水/水蒸气来降低燃烧温度; (2)通过烟气循环使一部分烟气和新鲜空气混合,既降低氧浓度,同时可以降 低火焰的温度;(3)分级燃烧和浓淡燃烧等技术控制热力型NOx
烧结过程中氮氧化物主要来源于烧结过程中燃料的燃烧。烧结生产中的燃料分点火燃料和 烧结燃料。 点火燃料一般为气体燃料和液体燃料。
成分/%质量分 数
CO2
CO
CH4
CmHn
H2
N2
O2
焦炉煤气 高炉煤气
1.5-2.5 14-22
25-31 20-26
23-28 0.3-0.5
2-3
54-59 2-3
3-5 55-58

烧结过程中氮氧化物的生成及SCR脱除技术分析

烧结过程中氮氧化物的生成及SCR脱除技术分析

烧结过程中氮氧化物的生成及SCR脱除技术分析作者:唐勇闫海青李华杰来源:《科技资讯》2012年第14期摘要:在烧结过程中由于燃料的燃烧产生大量的氮氧化物,通过改变燃烧条件可以控制NOx 的生成,这种技术称为低NOx燃烧技术;但这种技术NOx降低率不高,一般不超过75%,要进一步降低NOx的排放,就必须采用烟气脱硝技术。

通过多种脱硝技术的比较,本文分别从反应机理、反应过程、反应使用的催化剂及还原剂、影响因素等几个方面重点分析了比较成熟的SCR(选择性催化还原)技术。

关键词:烧结氮氧化物 SCR中图分类号:TQ51 文献标识码:A 文章编号:1672-3791(2012)05(b)-0106-01烧结过程是一个高温燃烧条件下的复杂物理、化学过程,在高温烧结过程中产生SO2、NOx、HCl、HF、CO2、CO、二恶英等多种污染物和粉尘的废气。

烟气脱硝将是继烟气脱硫之后国家控制大气污染物排放的又一个重点领域。

随着我国对环境保护的日益重视,“十二五”期间,烟气脱硝将逐步大力开展。

1 烧结过程中氮氧化物的生成氮氧化物是指空气中主要以一氧化氮和二氧化氮形式存在的氮的氧化物。

其中占主要成分的是NO和NO2,一般将两者统称为以氮氧化物,用NOx表示。

钢铁厂烧结过程中的NOx主要来源于烧结过程中燃料的燃烧。

一般情况下燃烧过程中产生的氮氧化物主要是NO和NO2,这二者统称为NOx,在低温条件下燃烧还会产生一定量的N2O。

燃烧过程中生成NOx的种类和数量除了与燃料性质相关外,还与燃烧温度和过量空气系数等燃烧条件密切相关。

2 燃烧过程中降低NOx排放技术降低燃烧过程中NOx排放技术已经得到了广泛的研究和应用。

目前,降低NOx排放技术可以分为低NOx燃烧技术和烟气处理降低NOx技术两大类。

通过NOx的生成机理可以发现,燃烧条件对NOx的生成和排放有很大影响,适当调整燃烧条件,就有可能减少NOx的生成和排放。

通过改变燃烧条件来控制NOx生成的技术称为低NOx燃烧技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.燃料型NOx指燃料中的氮在燃烧过程中经过一系列的氧化-还原反应而生成 NOx,它是 煤燃烧过程NOx生成的主要来源。反应机理:
2.燃料型NOx既受燃烧温度、过量空气系数、煤种、煤颗粒大小等影响同时 也受燃烧过程中燃料-空气混合条件的影响以及高温下的自由基。 3.控制方法(1)通过改变煤或其它化石燃料的燃烧条件,从而减少燃料型 NOx的生成量,即燃烧过程中NOx的脱除;(2)对燃烧后的含NOx的烟气 进行 烧结一般属于这种类型
燃烧方式的改进通常是一种相对简便易行的减少NOx排放的措施 ,但这种措施 会带来燃烧效率的降低,不完全燃烧损失增加,而且NOx的脱除率也不够高, 因此随着环保要求的不断提高,燃烧的后处理越来越成为必然。
二级污染预防措施是指在NOx的生成后的控制措施,即对燃烧后产生的含NOx 的烟气(尾气)进行脱氮处理,又称为烟气脱硝(Flue gas deNOx)或废气脱硝
热力型NOx源于在燃烧过程中空气中的N2被氧化而成NO,它主要产生于温度高于1800K的高温区,其反应机理: N2+O=NO+N N+O2=NO+O N+OH=NO+H 分子氮比较稳定,它被氧原子氧化为NO的过程需要较大的活化能,整个反应的速度决定于第一式的反应速度。 氧原子在反应中起活化链的作用,它来源于高温下O2的分解。 2. 热力型NOx的主要影响因素是温度和氧浓度。随温度和氧浓度的增加,热力型NOx的浓度增加。
2018年1月21日星期W
光化学反应使NO2分解为NO和O3,大气中臭氧对人体健康十分有害。 光化学烟雾中对植物有害的成分主要为臭氧和氮氧化合物:臭氧浓度超 过0.1ppm时便对植物产生危害。NO2浓度达1ppm时,某些植物便会受 害。 氮氧化物在大气的催化反应中可形成硝酸。
热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反 应。其生成机理可用捷里多维奇(Zeldovich)反应式表示。 随着反应温度T的升高,其反应速率按指数规律增加。当T<1500oC时,NO的 生成量很少,而当T>1500oC时,T每增加100oC,反应速率增大6-7倍。 因烧结温度低于1500℃,一般不宜产生。
2.温度型或热力型NOx 燃烧时空气中的N2在高温下氧化生成的NOx,称作温度型或热力型NOx。3.快速型(或速 度型)NOx
碳氢燃料在燃料过多时燃烧所产生的NOx,称作快速型(或速度型)NOx,对于大多数的矿 物燃料,这类NOx含量较小
3.快速型(或速度型)NOx 碳氢燃料在燃料过多时燃烧所产生的NOx,称作快速型(或 速度型)NOx,对于大多数的矿物燃料,这类NOx含量较小
NOx的控制方法分类
见诸于文献资料上有关NOx的治理方法有几十种之多,这些方法大体上可以分为两大类 — — 一级污染预防措施和二级污染预防措施。
一级污染预防措施是指在NOx生成前的所有控制措施。
一级污染预防措施主要是通过改进燃烧方式减少NOx的生成量。基于NOx的形成受温度的 影响极大这一规律,可以通过改进燃烧方式避开使NOx大量生成的温度区间,从而实现 NOx的减排。
3. 控制对策:(1)降低燃烧温度,避免其生成所需要的高温条件;(2)降 低分子氮的浓度;(3)降低分子氧的浓度;(4)缩短在热力型NOx生产区的 停留时间;
4. 工程实践中常用手段(1)通过向火焰面喷射水/水蒸气来降低燃烧温度; (2)通过烟气循环使一部分烟气和新鲜空气混合,既降低氧浓度,同时可以降 低火焰的温度;(3)分级燃烧和浓淡燃烧等技术控制热力型NOx
烧结过程中氮氧化物主要来源于烧结过程中燃料的燃烧。烧结生产中的燃料分点火燃料和 烧结燃料。 点火燃料一般为气体燃料和液体燃料。
成分/%质量分 数
CO2
1.5-2.5 14-22
CO
25-31 20-26
CH4
23-28 0.3-0.5
CmHn
2-3
H2
54-59 2-3Βιβλιοθήκη N23-5 55-58
O2
0.3-0.6
焦炉煤气 高炉煤气
工业部门各种燃料类型的Nox排放因子
燃料/kg/t 煤 原油 煤油 燃料油
排放因子 7.5 5.09 7.46 5.84
燃料/kg/t 焦炭 汽油 柴油 LPG
排放因子 9 16.7 9.62 2.63
炼厂干气
煤气
0.53
9.5
天然气
20.85
•点击添加文本
•点击添加文本
降低燃烧过程Nox排放措施:
2017年4月2日
•NOx的形成机理(一)
一、 NOx的形成机理 在燃料的燃烧过程中,NOx的生成通过三种机理,三种机理所生成的NOx分别称作燃料型 NOx( Fuel NOx)、温度型或热力型NOx(Thermal NOx)和快速型(或速度型)NOx (Prompt NOx): 1.燃料型NOx 燃料本身所含的氮的有机物诸如喹啉(C5H5N)、吡啶(C9H7N)等,在高温下释放出氮和氧化 合生成的NOx,称作燃料型NOx。
(Waste gas deNOx)。
NOx的危害性及排放情况
氮氧化物是化石燃料与空气在高温燃烧时产生的,包括一氧化氮(NO)、二氧化氮(NO2)和氧化二氮(N2O)。还有 NmOn
氮氧化物的危害性表现在:
对人体健康的直接危害。 参与形成光化学烟雾,形成酸雨,造成环境污染。 氧化二氮是一种温室气体,会破坏臭氧层。
技术主要有降低Nox燃烧技术和终端治理(也即是脱硝)我们只说控制燃烧技术。 通过氮氧化物生成机理我们可以看出,燃烧条件对Nox生成与排放有很大的影响适当调节燃烧条件, 就可能减少Nox的生成有排放。 1、减少燃料周围氧浓度。2、控制燃料粒度0.5mm-3mm。3、烟气再循环利用。 4、燃料被白灰包裹。5、适度增大水分。
氮痒化合物: 是指空气中主要以一氧化碳和二氧化碳形式存在的氮痒化合物。空气中含氮的氧化物有 一氧化二氮(N2O)一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、等、但 是主要成分是NO和N2O,一般将这两者统称为氮痒化物,用Nox表示。 钢铁厂各种设备排出的氮氧化物,总量占固定污染源的第二位,其中烧结占一半左右。
相关文档
最新文档