第8章带传动

合集下载

机械设计基础---带传动设计(第八章)

机械设计基础---带传动设计(第八章)
思考题1 思考题2
带传动概述
一、类型、特点
1.带传动的组成及工作原理
组成: 固联于主动轴上的带轮1(主动轮);
固联于从动轴上的带轮3(从动轮); 紧套在两轮上的传动带2。
传动原理
摩擦传动:当主动轮转动时,由于带和带轮间的摩擦力,便拖动从 动轮一起转动,并传递动力(平带和V带传动) 。 啮合传动:当主动轮转动时,由于带和带轮间的啮合,便拖动从动 轮一起转动,并传递动力(同步带传动)。
∴ 带绕过主动轮时,将因缩短而使带相对于轮1向后滑动,使 带速落后于轮速,即 v带<v1;带绕过从动轮时情况相反。 因带两边拉力不等、带的弹性变形量变化所导致的带与轮之间 的相对运动称为弹性滑动。弹性滑动只发生在接触弧的局部。
(演示→ )
带传动的几何计算和基本理论
弹性滑动后果: (1) v1 > v带 > v2 (2) η↓ (3) 带磨损 (4) 带温度↑ 速度降低的程度可用滑动率ε来表示:
带传动的张紧装臵
一、定期张紧装臵
(详细介绍)
普通V带传动的结构设计
二、自动张紧装臵 三、采用张紧轮张紧装臵
带传动的张紧2
张紧轮一般应放在松边的内侧,使带只受单向弯曲。同时张紧轮应尽 量靠近大轮,以免过分影响在小带轮上的包角。张紧轮的轮槽尺寸与带轮 的相同。
链传动概述
组成:主、从动链轮、传动链 工作原理:链传动是依靠链轮轮齿与链节的啮合来传递运动 和动力。
一、链传动的特点和应用
◆ 与带传动相比,链传动能保持准确的平均传动比,径向压轴力小,适于低
速情况下工作。 ◆ 与齿轮传动相比,链传动安装精度要求较低,成本低廉,可远距离传动。 ◆ 链传动的主要缺点是不能保持恒定的瞬时传动比。 ◆ 链传动主要用在要求工作可靠、转速不高,且两轴相距较远,以及其它不 宜采用齿轮传动的场合。

机械设计基础第8章 带传动

机械设计基础第8章  带传动

第8章带传动带传动是一种常用的机械传动形式,它的主要作用是传递转矩和转速。

大部分带传动是依靠挠性传动带与带轮间的摩擦力来传递运动和动力的。

本章将对带传动的工作情况进行分析,并给出带传动的设计准则和计算方法。

着重讨论V带传动的设计计算,同时对同步带传动作了简介。

8.1 概述如图8.1所示,带传动一般是由主动轮1、从动轮2、紧套在两轮上的传动带3及机架4组成。

当原动机驱动带轮1(即主动轮)转动时,由于带与带轮间摩擦力的作用,使从动轮2一起转动,从而实现运动和动力的传递。

图8.1 带传动8.1.1 带传动的类型1.按传动原理分(1)摩擦带传动靠传动带与带轮间的摩擦力实现传动,如V带传动、平带传动等;(2)啮合带传动靠带内侧凸齿与带轮外缘上的齿槽相啮合实现传动,如同步带传动。

2.按用途分(1)传动带传递动力用;(2)输送带输送物品用。

本章仅讨论传动带。

3.按传动带的截面形状分(1)平带如图8.2 a)所示,平带的截面形状为矩形,内表面为工作面。

常用的平带有胶带、编织带和强力锦纶带等。

(2)V带V带的截面形状为梯形,两侧面为工作表面,如图8.2 b)所示。

传动时,V带与轮槽两侧面接触,在同样压紧力F Q的作用下,V带的摩擦力比平带大,传递功率也较大,且结构紧凑。

(3)多楔带如图8.3所示,它是在平带基体上由多根V带组成的传动带。

多楔带结构紧凑,可传递很大的功率。

(4)圆形带如图8.4所示,横截面为圆形,只适用于小功率传动。

(5)同步带带的截面为齿形,如图8.5所示。

同步带传动是靠传动带与带轮上的齿互相啮合来传递运动和动力,除保持了摩擦带传动的优点外,还具有传递功率大,传动比准确等优点,多用于要求传动平稳、传动精度较高的场合。

图8.2 平带和V带图8.3 多楔带图8.4 圆形带图8.5 同步带8.1.2 带传动的特点和应用带传动属于挠性传动,传动平稳,噪声小,可缓冲吸振。

过载时,带会在带轮上打滑,从而起到保护其他传动件免受损坏的作用。

第八章 带传动

第八章 带传动
V↑→寿命Nh↓ V↑→бc↑→带与轮间压力↓ V≈20m∕s
§4 V带轮设计 自学 自学思考题: 1. 带轮槽角与V带楔角是否相等?若不等,那个大?那个小?为 什么? 2.V带轮轮毂宽度是依据什么来确定的?它与轮缘宽度之间有无
必然联系? §5 V带传动的张紧装置
自学 自学思考题:V带轮张紧有哪些方法?其应用场合如何?
第八章 带传动
主要内容:
1.带传动的工作原理、特点和应用。 2.带传动的受力分析、应力分析、弹性滑动和打滑。 3.V带传动的设计准则和设计方法。
重点和难点:
1.带传动的工作原理。 2.平带传动与V带传动的特点比较。 3.欧拉公式的物理意义。 4.弹性滑动与打滑的本质。 5.V带传动的设计计算。
§1 概述 1、 带传动的工作原理
§6 V带的适用于维护(补充) 1) 正确安装带轮; 2) 轴应有足够的刚度; 3) 带在轮槽中应有正确位置; 4) 成组使用的V带长度应经过挑选,长短不应相差太大; 5) 避免新、旧带混用,以免使带受力不均; 6) V带不可与油接触,避免在阳光下直接暴晒; 7) 避免在有爆炸危险的场合使用。
接触弧 有效拉力↑→滑动弧↑→ε↑ 打滑:当静弧等于零时,带与带轮之间产生全面的相对滑动,这 种现象称为打滑。必须避免。
主动轮小与从动轮→主动轮接触弧长小于从动轮→打滑首先发 生于主动轮上(小轮上)
§3 V带传动的设计计算 1、 失效形式、设计准则和单根V带的许用功率 1. 失效形式:过载打滑、疲劳断带 2. 设计准则:保证带传动不打滑且具有一定的疲劳强度或寿 命。 3. 单根V带的许用功率 在实验条件下确定单根V带得P0(基本额定功率) 实验条件 实验条件与实验条件不相同时→修正法(系数法) 2、 原始数据及设计内容 原始数据:P、n1、n2(或n1、i),工作条件和要求等。 设计内容:带的型号、长度、根数、带传动中心距、带轮直径及 结构。 3、 设计步骤和方法 1. 确定计算功率Pca Pca=KA×P ∟工作情况系数 T8—6∕p151 2. 选择带的型号 Pca 、N1 → F8-8, F8-9∕p152→ 型号 注意:若Pca、n1坐标交点恰好位于两种型号交接区域时,应两种 型号同时计算,比较最后结果,取优者。 3. 确定主动轮直径D1、计算从动轮直径D2 型号→ T8-3∕p145, T8-7∕p153→ D1≥ddmin(可初选D1=min) 验算带速:V=πD1n1∕60×1000 , 应使Vmin≥5m∕S,且: 普通V带: Vmax≤25~ 30m∕S 窄V带: Vmax≤30~40m∕S D2≈iD1 按F8-7∕p153 圆整

机械设计基础第8章 带传动

机械设计基础第8章 带传动

7
第二节 带传动的受力分析及运动特性 一、传动的主要几何参数 带传动的主要几何参数有中心距a、带长L(V 带为Ld)、包角α和带轮基准直径d等,如图8.6所 示。
图8.6 带的几何参数
8
二、带传动的受力分析 带以一定的初拉力张紧在两带轮上,使带与带 轮接触面上产生正压力。带传动未工作时,带的两 边都受到相同的初拉力F0,如图8.7(a)。带传动 工作时,主动轮对带的摩擦力Ff与带的运动方向一 致;从动轮对带的摩擦力Ff与带的运动方向相反, 如图8.7(b),这样,传动带两边的拉力就不相等。
因此,带传动的传动比i和转速n2应为
15
第四节 普通V带传动计算 一、带的规格 通V带为无接头的环形橡胶带,由伸张层(顶 胶)、强力层(抗拉体)、压缩层(底胶)和包布 层(胶帆布)组成如图8.11。
图8.11
V带的结构
16
图8.12
V带的节线和节面
17
表8.1
普通V带截面尺寸(GB 11544—89)
39
三、带轮结构尺寸 带轮结构如图8.15。带轮基准直径较小时,常 采用实心式结构,代号为S,如图8.15(a);中等直 径小于350 mm的带轮可采用腹板式结构,代号为 P如图8.15(b);若腹板面积较大时,在板上加工出 孔,为孔板式,代号为H如图8.15(c);直径大于35 0 mm时,可采用轮辐式结构,如图8.15(d)。
18
19
二、带传动的主要失效形式及设计准则 (1)主要失效形式 1)打滑 当传递的圆周力F超过了带与带轮之 间摩擦力总和的极限时,发生过载打滑,使传动失 效。 2)疲劳破坏 传动带在变应力的长期作用下 ,因疲劳而发生裂纹、脱层、松散,直至断裂。
20
(2)设计准则 带传动的设计准则是:保证带传动不发生打滑 的前提下,充分发挥带传动的能力,并使传动带具 有一定的疲劳强度和寿命。

机械设计第8章带传动

机械设计第8章带传动

设带的总长不变,则紧边拉力的增量应等于松边拉力的减量:
F1 + F2 = 2 F0
①取绕在主动轮一侧的带为分离体:
F2 Ff
O1
T=0
D1 D1 D1 Ff F2 F1 0 2 2 2
n1
Ff F1 F2
上式表明:摩擦力Ff 提供了松边、紧边的拉力差。
主动轮
F1
②取主动轮及绕于其上的带为分离体:
2)V带
应用最广的带传动,在同样的张紧力下, V带传动较平带传动能产生更大的摩擦力。
普通V带
窄V带
宽V带
FQ
FN FQ
/2
平带传动----平面摩擦
FN= FQ
摩擦力: F f = FN f = f FQ
V带传动----槽面摩擦
FN sin /2 FQ= 2 2
/2
FN=
FQ
sin /2
三、带传动的特点(主要针对摩擦型)
优点:
☻ 缓冲,吸振,平稳无噪音。
用于高速轴:★电机→带传动→齿轮传动→工作机 ☻ 适宜远距离传动。
☻ 过载时打滑可防止其它零件损坏。
☻结构简单、成本低廉。
缺点:
☻有弹性滑动,传动比不稳定。 ☻带的寿命较短,传动效率较低。 ☻需要张紧装臵。
☻ 不宜用于高温、易燃、易爆场合。
中性层
bp 节宽bp:节面的宽度。
节面
dd
带轮槽宽尺寸等于带的节宽bp处的直径---基准直径dd
V带在规定的张紧力下,位于带轮基准直径上的周线长度---带的基准长度Ld
表8-2 V带的基准长度系列及长度系数KL 基准长度 KL 基准长度 KL Ld / mm Y Z A B C Ld / mm Z A B C 200 0.81 2000 1.08 1.03 0.98 0.88 224 0.82 2240 1.10 1.06 1.0 0.91 250 0.84 2500 1.30 1.09 1.03 0.93 280 0.87 2800 1.11 1.05 0.95 315 0.89 3150 1.13 1.07 0.07 355 0.92 3550 1.17 1.07 0.97 400 0.96 0.79 4000 1.10 1.13 1.02 450 1.00 0.80 4500 1.15 1.04 500 1.02 0.81 5000 1.18 1.07 560 0.82 5600 1.09 630 0.84 0.81 6300 1.12 710 0.86 0.83 7100 1.15 800 0.90 0.85 8000 1.18 900 0.92 0.87 0.82 9000 1.21 1000 0.94 0.89 0.84 10000 1.23 1120 0.95 0.91 0.86 11200 1250 0.98 0.93 0.88 12500 1400 1.01 0.96 0.90 14000 1600 1.04 0.99 0.92 0.83 16000 1800 1.06 1.01 0.95 0.86

东北石油大学机械设计复习材料第八章带传动

东北石油大学机械设计复习材料第八章带传动

第八章 带传动1.V 带的设计中,一般应使小带轮的包角α1大于 120︒ 。

2.当带有打滑趋势时,带传动的有效拉力达到 最大值 ,而带传动的最大有效拉力取决于 包角 、 摩擦系数 、 预紧力 三个因素。

3.V 带正常工作时,带的最大应力为 σmax =σ1+σb1+σc ,发生部位是 紧边绕入小带轮处 。

4.带传动的失效形式为带的 疲劳破坏 和 打滑 。

5.在普通V 带传动中,载荷平稳,包角为180º,带长为特定长度,单根V 带的基本额定功率P 。

主要及 带型 、 小带轮基准直径 和 小带轮转速 有关。

6.带传动的设计准则为,保证带在不打滑的条件下 具有足够的疲劳强度和寿命 。

7.在设计V 带传动时,V 带的型号是根据 计算功率 和 小带轮转速 选取的。

8.一般带传动的工作原理是利用 带及带轮间的接触摩擦力 传递运动和力。

9.带的应力由 松、紧边拉应力 、 离心拉应力 和 弯曲应力 三部分组成。

10.当机器过载时,带传动发生____打滑___现象,这起到过载安全装置的作用。

11.一对相啮合的圆柱齿轮的Z 2>Z 1,b 1>b 2,其接触应力的大小为 A 。

A 、σH1=σH2B 、σH1>σH2C 、σH1<σH2D 、σH1≥σH212. 在设计V 带传动中,选取小带轮直径min 1d d d >,min d 主要依据 A 选取。

A .带的型号B .带的线速度C .传动比D .高速轴的转速13.V 带轮的最小直径d min 取决于 A 。

A 、带的型号B 、带的速度C 、主动轮转速D 、带轮结构尺寸14.同步带传动依靠 A 来传递运动和动力。

A 、带齿及轮齿之间的啮合力B 、带及带轮之间的摩擦力C 、带的预紧力15.设计V 带传动时,限制小带轮的最小直径是为了限制 D 。

A 、小带轮包角B 、带长C 、带的离心力D 、带的弯曲应力16.带的弹性滑动是由带的弹性变形引起的,其特点为 C 。

第8章_带传动习题解答

第8章_带传动习题解答

n2'
(1 )
dd1 n1 dd2
332.96r / min
转速误差 n2 n2 n2 ' 0.9%
n2
n2
四.计算带轮转速
在5%允许范围内
v dd1n1 6.28m / s 60 1000
五.计算中心距和带长
5 v 25m / s
1.初定中心距 0.7(dd1 dd2 ) a0 2(dd1 dd2 )
九.计算压轴力
Fp
2F0
sin
1 2
Z
2270N
知识回顾 Knowledge Review
祝您成功!
d d1
57.30
1540
1200
七.计算带根数
作业一
Z
KAP P1
(P0
Pca P0)KK L
式中: P0 1.64kW
P0 0.29kW
K 0.928 KL 0.95
4.94
取Z=5
八.计算预紧力
作业一
作业一
F0
500
Pca zv
2.5 ( K
1)
qv2
500 8.4 ( 2.5 1) 0.17 6.282 233N 5 6.28 0.928
取 a0 dd1 dd2 125 355 480mm
2.初算带长
Ld ' 2a0
2
(d
d1
d
d
2
)
(dd2 dd1)2 4a 0
1742mm
取标准 Ld 1800mm
3.确定中心距
作业一
a
a0
Ld
2
Ld
'
480
1800

第8章---带传动

第8章---带传动
二、单根V带的许用功率
单根带所能传递的有效拉力为:
传递的功率为:
为保证带具有一定的疲劳寿命,应使:
1.单根V带的基本额定功率P0
σ1 ≤ [σ] –σb1 - σc
代入得:
※在 α=π,Ld为特定长度、平稳的工作条件下,所得 P0 称为单根普通V带的基本额定功率,见表8-4。P.151
东莞理工学院专用
称带与带轮接触弧的总摩擦力Ff为有效拉力Fe,即带所能传递的圆周力:
Fe= F1 - F2
且传递功率与有效拉力和带速之间有如下关系:
2、有效拉力(有效圆周力)及传递功率
F1
Ff
F2
紧边
松边
主动轮
n1
Ff =F1 - F2
当非满负荷工作时,此摩擦力分布范围并未充满整个接触弧。
东莞理工学院专用
*
二、带传动的最大有效拉力Fec及其影响因素
顶宽b 6 10 13 17 22 32 38
节宽 bp 5.3 8.5 11 14 19 27 32
高度 h 4 6 8 11 14 19 25
§8-6* 同步带传动简介
内容提要
东莞理工学院专用
*
§8-1 概述
一. 带传动的组成 及工作原理
1 组成:主动轮1、从动轮2、环形带3。
2 工作原理:安装时带被张紧在带轮上,产生的初拉力使得带与带轮之间产生压力。主动轮转动时,依靠摩擦力拖动从动轮一起同向回转。
3
1
n2
打滑将使带的磨损加剧,从动轮转速急速降低,带传动失效,这种情况应当避免。
避免打滑的条件: Fe ≤ Fec
1)相同点:都是滑动;2)不同点:本质不同:前者是一种固有特性,不可避免;后者是一种失效,可以避免。发生原因不同:前者是带两边的拉力差引起的,后者是过载导致。发生区域不同:前者是在局部接触弧上,后者是在整个接触弧上。3)联系:弹性滑动区域的量变导致打滑的质变

机械设计08-带传动

机械设计08-带传动
解:(1)求计算功率 查表8-7得KA=1.2,所以
PC K A P 1.2 9 10.8KW
(2)选V带型号
根据Pc=10,8KW和n1=1460r/min,查图8-11。 位于A、B型交界处,选用B型。
(3)求大小轮基准直径d1、d2 查表8-6,B型带的最小直径为125。现取d1=140。
分析:1 仅发生于紧边全长 2仅发生于松边全长
(2) 离心拉应力 c
c Fc / A qv2 / A
分析:在带全长处处相等
(2) 由离心力所产生的拉力
微弧段dl上产生的离心力
dFNc
(rd )q v2
r
qv2d
法向上微弧段dl上各力的平衡得:
qv2d
2Fc
sin
d
2
sin d d
2
2
切记:欧拉公式不可用于非极限状态下的受力分析!
3. V带传动和平带传动的比较
FN
FN FQ
2FN sin 2 FQ
平带:Ff fFQ
V带 : Ff f
FQ
f F Q
sin
2
f f V带可传递较大功率
5 带的应力分析
(1) 紧边应力 1 ,松边应力 2
1 F1 / A
2 F2 / A
轿车发动机 机器人关节
第8章 带传动
§8.1 概述 §8.2 带传动工作情况的分析 §8.3 V带传动的设计计算 §8.4 V带轮设计 §8.5 V带传动的张紧装置
§8.1 概述
带传动的组成:主动轮 从动轮 紧套在两轮上的传动带 带的传动过程:
原动机转动
驱动主动轮
主动轮转动
带与轮的摩擦
从动轮转动
d2

第八章 带传动

第八章 带传动

二、带传动的最大有效拉力Fec及其影响因素
• 忽略带作圆运动时离心力,取主动轮上一小段带为分离体
受力分析如下:Fy 0 :
1 d 2
1 1 fdN F cos d ( F dF ) cos d 2 2 1 若取: cos d 1 2 则:fdN dF (b)
e f 1 ……(4) Fec 2 F0 f e 1
• 分析:由(4)式可知最大有效拉力与下列因素有关 # 预紧力——F0 ↑ Fec ↑,但F0 过大,摩擦力加剧,缩短带寿命。 F0 过小,带传动的工作能力不能充分利用 # 包角——α ↑ Fec ↑,为增大α应把紧边放在下面,松边在上面
# 摩擦系数——f ↑ Fec ↑,V带比平带的f大
受力分析小结
F1 F2 2F0 (1)
Ff F1 F2 Fe (2)
Fe F1 F0 2 F F2 F0 e 2
预紧力F0 紧边拉力F1 松边拉力F2 摩擦力的总合Ff
有效拉力Fe
……(3) 欧拉公式 最大有效拉力Fec 带传动时,当带有打滑趋 势时,摩擦力达到极限, 则带传动的有效拉力达到 最大有效拉力
计算压轴力Fp
d d 2 d d1 57.5 120 a
Pca z ( P0 P0 ) K K L
Z<10
K ——包角系数,查表8-8 K L ——长度系数,查表8-2
Pca z ( P0 P0 ) K K L
P0 ——单根带基本额定功率,查表8-5a或8-5c P0 ——额定功率的增量(计入传动比的影响),
查表8-5b或8-5d •预紧力:F0 500 Pca ( 2.5 1) qv2
zv K

机械设计_第8章-带传动_(1)

机械设计_第8章-带传动_(1)
14
第八章 带传动
8-3、V带传动的设计计算
(一)设计准则和单根V带的基本额定功率 • 带传动的主要失效形式:打滑、传动带的疲劳破坏。 • 设计准则: 在不打滑的条件下,具有一定的疲劳强度和寿命。
Fec = F1 (1 −
1 e
) fV α
σ max = σ 1 + σ b1 + σ c ≤ [σ ]
弯曲应力与带轮直径成反比,为了避免弯曲应力过大,带轮 直径不得小于最小值(表8-6)。
11
第八章 带传动
带的应力分布及最大应力值 2 离心拉应力 σ c = Fc / A = qv / A (MPa)
拉应力 弯曲应力 σc σ1 σ2 σb1 σb2
σ 1 = F1 / A (MPa) σ 2 = F2 / A (MPa)
F2 = F0 − Fe / 2
过大初始拉力的危害
P一定时,Fe一定。故增加F0导致F1及F2增加 ——带张得过紧,将因过度磨损而很快松弛
第八章 带传动
(二)带传动的初拉力和临界摩擦力 在一定的初拉力作用下,带与带轮之间最多能传递多大摩擦力 呢? 当带与带轮之间出现打滑趋势时,摩擦力达到最大(临界状 态Ffc),从而有效拉力也达到最大(临界状态Fec )。 • 临界状态下,紧松边拉力的关系(欧拉公式):
F1 = e fV α F2
α 包角 α1 = 180o − fV 当量摩擦系数
d d 2 − d d1 × 57.3o a
α2 α1
8
第八章 带传动
联解: 得:
F1 = F2 e
fV α
Fec = F1 − F2
e fV α F1 = Fec fV α e −1 1 F2 = Fec f α e −1

第八章带传动

第八章带传动

第八章 带传动一 选择题(1) 带传动不能保证精确的传动比,其原因是 C 。

A. 带容易变形和磨损B. 带在带轮上打滑C. 带的弹性滑动D. 带的材料不遵守胡克定律(2) 带传动的设计准则为 C 。

A. 保证带传动时,带不被拉断B. 保证带传动在不打滑的条件下,带不磨损C. 保证带在不打滑的条件下,具有足够的疲劳强度(4) V 带轮槽楔角ϕ与V 带楔角θ间的关系是 C 。

A. θϕ=B. θϕ>C. θϕ<(5) 设计V 带传动时发现V 带根数过多,最有效的解决方法是 C 。

A. 增大传动比B. 加大传动中心距C. 选用更大截面型号的V 带(6) 带传动中紧边拉力为1F ,松边拉力为2F ,则其传递的有效圆周力为 D 。

A. 21F F +B. ()221F F −C. ()221F F +D. 21F F −(7) 要求单根V 带所传递的功率不超过该单根V 带允许传递的功率P ,这样,带传动就不会产生 C 失效。

A. 弹性滑动B. 疲劳断裂C. 打滑和疲劳断裂D. 打滑E. 弹性滑动和疲劳断裂(9) 设计V 带传动时,如小带轮包角1α过小 (1α<120°)最有效的解决方法是 A 。

A. 增大中心距B. 减小中心距C. 减小带轮直径(10) V 带轮轮槽与带的三种安装情况如图8-1所示,其中 A 种情况是正确的。

图8-1(11) V 带的楔角等于 A 。

A. 40oB. 35oC. 30oD. 20o(12) V 带带轮的轮槽角 D 40o 。

A. 大于B. 等于C. 小于D. 小于或等于(13) 带传动采用张紧轮的目的是 D 。

A. 减轻带的弹性滑动B. 提高带的寿命C. 改变带的运动方向D. 调节带的初拉力(14) V 带的参数中, D 尚未标准化。

A. 截面尺寸B. 长度C. 楔角D. 带厚度与小带轮直径的比值(15) 在各种带传动中, B 应用最广泛。

A. 平带传动B. V 带(三角带)传动C. 多楔带传动D. 圆带传动(17) 为使V 带(三角带)传动中各根带受载均匀些,带的根数z 一般不宜超过 C 根。

机械设计基础第八章

机械设计基础第八章

, 当量摩擦系数 f′>f, V带传动能力更大。 带传动能力更大。 带传动能力更大 注意: 带楔角为 带楔角为40° 注意:V带楔角为 ° 带轮槽角小于40° 带轮槽角小于 °。
带传动概述
二、带传动的结构(阅读) 带传动的结构(阅读) 机构传动中应用最广的是普通V带传动。(窄 带 机构传动中应用最广的是普通 带传动。(窄V带、宽V带、大 带传动。( 带 楔角V带 汽车V带 楔角 带、汽车 带) 普通V带是标准件 制成无接头的环形, 带是标准件, 普通 带是标准件,制成无接头的环形,按剖面尺寸大小分为 Y、Z、A、B、C、D、E七种型号,剖面尺寸由小到大。注意: 七种型号, 、 、 、 、 、 、 七种型号 剖面尺寸由小到大。注意: 节宽b 节径d 和基准直径d 基准长度L 节宽 p、节径 p和基准直径 d,基准长度 d。
带传动的几何计算及基本理论
五、带传动的主要失效形式及设计准则 1、主要失效形式 、 (1)打滑。当传递的圆周力 超过了带与带轮之间摩擦力 )打滑。当传递的圆周力F超过了带与带轮之间摩擦力 总和的极限时,发生过载打滑,使传动失效。 总和的极限时,发生过载打滑,使传动失效。 (2)疲劳破坏。传动带在变应力的长期作用下,因疲劳而 )疲劳破坏。传动带在变应力的长期作用下, 发生裂纹、脱层、松散、直到断裂。 发生裂纹、脱层、松散、直到断裂。 2、设计准则 、 在不打滑的前提下,使带具有一定的疲劳强度和寿命。 在不打滑的前提下, 六、带传动的设计条件和传动功率 根据设计准则,带传动应满足以下两个条件: 根据设计准则,带传动应满足以下两个条件: 1、不打滑条件 、 1000 P 1 F1 ) F= F f lim = F1 F2 = F1 = F1 (1 F≤Fflim fα 1 e fα 1 V

第八章带传动

第八章带传动
附件1 平带与V带摩擦系数的比较
FN
1
附件2 带传动主要几何参数的计算
2
附件3 柔韧体的欧拉公式的推导
3
4
附件4 离心拉应力公式的推导
5
附件5 带上弯曲应力公式的推导678910
11
12
13
14
15
第三篇 机械传动
一、机器的组成
机器通常由动力机、传动装置和工作机组成
二、传动装置
1=1800-
0.5(d d 2 d d 1 ) sin 2 a
0 0


0.5(d d 2 d d 1 ) 2 a
d d 2 d d 1 180 1 180 180 a
d d 2 d d 1 180 2 180 180 a
38
④求中心距a和带的基准长度Ld
a) 初选a0
0.7(dd1+dd2)≤a0≤2(dd1+dd2)

b) 由a0定计算长度(开口传动) Ld 0
(dd 2 dd1 ) 2 2a0 (dd1 dd 2 ) 2 4a0
c) 按表8-2定相近的基准长度(节线长度):Ld d) 由基准长度Ld求实际中心距
弹性滑动是带传动 中不 可避免的现象,是正常 工作时固有特性 弹性滑动会引起下列后果: (1)从动轮的圆周速度总是落后于主动轮的圆 周速度 (2)损失一部分能量,降低了传动效率,会使 带的温度升高;并引起传动带磨损
30
打滑造成带的严重磨损并使带的运动处于不稳定 状态
带在大轮上的包角大于小轮上的包角,所以 打滑总是在小轮上先开始的 打滑是由于过载引起的,避免过载就可以避 免打滑
表8-4a,

第八章带传动v讲解学习

第八章带传动v讲解学习

Fe≤Femax 二、带的应力分析
1.拉应力
紧边σ1=F1/A
松边σ2=F2/A
2.弯曲应力σb
小带轮σb1=2Eha/dd1 大带轮σb2=2Eha/dd2
3.离心应力 σc=qυ2/A
4.应力线图
1)弯曲应力值较大
且ha
σb ;
dd σb
————σb1>σb2
2)带处于变应力状态,带的破坏属于疲劳强度问 题
(4×700)=1975mm
查表8-2取带的基准长度Ld=2000mm 3)确定中心距
a= a0+(Ld- Ld')/2=700+(2000-1975) /2=712.5mm
安装时所需的最小中心距
amim= a-0.015 Ld=712.50.015×2000=682.5mm
amax= a+0.030Ld=712.5+0.03×2000=772.5mm
试设计某机床用的普通V带传动,已知电动机 功率P=55KW,转速n1=1440r/min,传动 比i=2.2,要求职两带轮轴中心距离不大于 800mm,每天工作16h.
解:
1.选择带的类型:按题目取普通V带
2.选择普通V带型号
查表8-6,取工况系数KA=1.2 计算功率Pca=KAP=1.2×5.5=6.6kW
根据Pca和n1查图8-8,选取A型V带
3.确定带轮基准直径dd1、dd2 线1)下选,取取小dd带1=轮11基2m准m直径dd1。因Pca和n1交点在虚
2)验算带速
υ=πdd1 n1/(60×1000) =π×112×1440/60000=8.44m/s
合适
3)确定大带轮基准直径dd2。 取ε=0.015

第8章 带传动

第8章 带传动
通常,传递的功率 一般为5~ 通常,传递的功率 ≤ 700 kW;带速一般为 ~25m/s;传动比 i ≤7。 ;带速一般为 ; 。
§8-2 带传动的工作情况分析
§8-2 带传动的工作情况分析
一、受力分析 带传动尚未工作时, 带传动尚未工作时,带所受的 拉力称为初拉力 初拉力, 表示。 拉力称为初拉力,用 F0 表示。 带传动工作时,一边拉紧, 带传动工作时,一边拉紧,称 为紧边;另一边放松,称为松边。 紧边;另一边放松,称为松边。 松边 变形 紧边 松边 变形量 ∆l1 ∆l2 力 力变化量 ∆F1=F1-F0 ∆F2=F0-F2
普通V §8-3 普通V带传动设计
概 述
类型:V带有普通V带、窄V带、宽V带、联组V带等多种类型,其 类型: 带有普通V 联组V带等多种类型, 中普通V带应用最广,本节主要介绍普通V带传动。 中普通V带应用最广,本节主要介绍普通V带传动。 bp 包布 (1)标准普通 带 )标准普通V带 带已经标准化, ♦ 普通 V 带已经标准化 , 是 无接头的环形带。 无接头的环形带。 ♦主要参数
带传动概述4 带传动概述4
概 述
4.带传动的特点 .带传动的特点 优点: 适用于中心距较大的传动, 优点: 1. 适用于中心距较大的传动, 2. 带有弹性,能缓冲减振,运转平稳,噪音小; 带有弹性,能缓冲减振,运转平稳,噪音小; 3. 摩擦带传动过载时带与带轮打滑,以此保护其他零件。 摩擦带传动过载时带与带轮打滑,以此保护其他零件。 4. 结构简单,成本低; 结构简单,成本低; 缺点:1. 带的寿命短,在有油的场合,寿命更短; 缺点: 带的寿命短,在有油的场合,寿命更短; 2. 对摩擦带传动,传动比不恒定; 对摩擦带传动,传动比不恒定; 3. 效率较低。 效率较低。 5.带传动的应用 .带传动的应用 在各类机械中应用广泛, 在各类机械中应用广泛,但摩擦带传动不适用于对传动比有精确 要求的场合。 要求的场合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章带传动讨论题8-1 一带式运输机的传动装置如图所示。

已知小带轮直径d i=140mm,大带轮直径d2=400m m,运输带速度 v=0.3m/s,为了提高生产率,拟在运输机载荷(即拉力)F不变及电动机和减速器传动能力都满足要求的条件下,欲将运输带的速度提高到0.42m/s。

有人建议把大带轮的直径减少到280mm,其余参数不变以实现这一要求,此方案是否可行?若不行应如何修改?讨论题7-1图解:当d2由400mm减小为280mm时,满足运输带速度提高到0.42m/s的要求。

但由于运输带速度的提高,在运输机载荷F不变的条件下,因为 P=Fv。

即输出的功率增大,就 V带传动部分来说,小轮转速 n i及d i不变,即带速不变,而传递的功率要求增加,带上有效拉力也必须增加,则 V带根数也要增加,故只改变d2是不行的。

可以增加 V带的根数或重新选择带的型号来满足输出功率增大的要求。

不过通常情况下,齿轮传动和带传动是根据同一工作机要求的功率或电动机的额定功率设计的。

若齿轮传动和电动机的承载能力足够,带传动的承载能力也能够,但d2的变化会导致带传动的承载能力有所变化,是否可行,必须通过计算做出判断。

8-2由双速电机与 V带传动组成传动装置,靠改变电机输出轴转速可以得到两种转速 300r/min和600r/min,若电动机输出轴功率不变,带传动应按哪一种转速设计?为什么?因为单根V带的功率P i 主要与带的型号,小带轮的直径和转速有关。

转速高,P i增大,则V带根数将减小(Z=K A P/(P I +A P I)K O K L),因此应按转速低的工作情况计算带的根数,这样高速时更能满足。

同时也因为P=Fv,当P不变时,v减小,则F增大,则需要的有效拉力大,带的根数应增加。

按300r/min设计的V带传动,必然能满足 600r/min的要求,反之则不行。

思考题8-3摩擦带传动有哪些特点?它的工作原理是什么?解:摩擦带传动的特点是:传动平稳、噪声小,并能吸振缓冲;具有过载保护作用;结构简单,制造、安装及维护较方便;适合于中心距较大的两轴间的传动。

但由于工作中存在弹性滑动,不能保证准确的传动比且效率低,带的寿命短。

不宜用于易燃易爆的场合。

尺寸大,需张紧装置,轴及轴承上受力较大。

它的工作原理是:由于传动带紧套在带轮上,带上产生初拉力,带与轮面接触处产生正压力,当主动轮转动时,带与轮面间产生摩擦力,作用于带上的摩擦力方向与主动轮圆周速度方向相同,驱使带传动。

在从动轮上带作用于轮上的摩擦力方向与带的运动方向相同,当摩擦力大于要克服的阻力时,系统匀速转动。

8-4为什么V带传动比平型带传动应用更广泛?解:V带的横截面为梯形,其两个侧面为工作面。

由于楔形摩擦原理,在相同的摩擦因素f和初拉力下,V带传动较平带传动能产生较大的摩擦力(当带轮槽角=400时,当量摩擦因素f v=f/sin(<f/2)>f, f v~ 3f),故V带传递的功率比平带约高2倍,并且V带为封闭的环状,没有接头,传动更为平稳。

8-5什么叫弹性滑动?它是怎样产生的?能否避免?它对传动有何影响?解:因为带的弹性及拉力差的影响,使带沿带轮表面相对滑动(在主动轮上滞后,在从动轮上超前)的现象叫带的弹性滑动。

传动带是弹性体,在拉力作用下会产生弹性伸长,其伸长量随拉力的变化而变化,当带绕入主动轮时,传动带的速度 v与主动轮的圆周速度 v i相同,但在转动过程中,由紧边变为松边。

带上的拉力逐渐减小,故带的伸长量相应减小。

带一面随主动轮前进,一面向后收缩,使带速v低于主动轮圆周速度 V i (滞后)产生两者的相对滑动。

在绕过从动轮时,情况正好相反,拉力逐渐增大,弹性伸长量逐渐增大,带沿从动轮一面绕进,一面向前伸长,带速大于从动轮的圆周速度 V2,两者之间同样发生相对滑动。

弹性滑动就是这样产生的。

它是带传动中无法避免的一种正常的物理现象。

它使从动轮的圆周速度低于主动轮,并且它随外载荷的变化而变化,使带不能保证准确的传动比。

引起V2的波动;它使带加快磨损,产生摩擦发热而使温升增大,并且降低了传动效率。

8-6带传动工作时,带中会产生哪些应力?其应力分布如何?它对带传动有何影响?带中最大应力发生在何处?并写出最大应力的数学表达式。

解:带传动过程中,带上会产生:拉应力CT (紧边拉应力5和松边拉应力02),弯曲应力區及离心拉应力任。

其应力分布见其应力分布图(教材图7-13)。

因此带在变应力下工作,当应力循环次数达到一定数值后,带将发生疲劳破坏:脱层、撕裂、拉断。

这是带的一种失效形式,设计中应考虑。

带上最大应力发生在紧边绕入主动轮处,其值为二max=G + 6i+;「c。

8-7在设计V带传动时,为什么应对V带轮的最小基准直径d min加以限制?解:带上的弯曲应力 6=2Ey o/d。

可知带愈厚,带轮直径愈小,则带上的弯曲应力愈大,为避免过大的弯曲应力,设计V带传动时,应对 V带轮的最小基准直径 d min加以限制。

8-8 V带的楔角是40 ,为何带轮轮槽角分别是34、36、38 ?若主、从动带轮直径不同,两轮轮槽角是否相同?为什么?解:V带弯曲时,带的上面受拉,其横向要收缩;下面受压,其横向伸长,因而楔角将减小,为保证带和带轮之间的良好接触,带轮轮槽角应适当减小。

主、从动带轮直径不同,两轮轮槽角不相同。

考虑到带绕过不同直径的带轮时,其变形不等。

轮槽角除按带的型号确定外,还与带轮直径有关。

8-9带传动的失效形式有哪些?设计准则是什么?解:带传动靠摩擦力传动,当传递的圆周阻力超过带和带轮接触面上所能产生的最大摩擦力时,传动带将在带轮上产生打滑而使传动失效;另外带在工作过程中由于受循环变应力作用会产生疲劳损坏:脱层、撕裂、拉断。

这是带传动的另一种失效形式。

其设计准则是:即要在工作中充分发挥其工作能力而又不打滑,同时还要求带有一定的使用寿命。

8-10带轮基准直径d、带速V、中心距a、带长L d、包角:i、初拉力F o和摩擦系数f的大小对传动有何影响?解:带轮基准直径d太大,结构不紧凑,过小的d会使弯曲应力增大,影响带的疲劳强度,同时在传递相同功率时,d小,则带速v下降。

使带上的拉力增大。

带的受力不好,故对小带轮的直径加以限制,不能太小。

由P=Fv可知,在传递相同功率时,v增大,F减小。

可减少带的根数,故带传动宜布置在高速级上,但v太高离心力太大,使带与轮面间的正压力减小而降低了带的工作能力。

同时离心应力增大,使带的疲劳强度下降,故带速在(5~25)m/s内合适。

中心距a取得小,结构紧凑。

但小轮包角减小,使带的工作能力降低。

同时在一定速度下,由于带在单位时间内的应力循环次数增多,而使带的使用寿命下降;但过大的中心距,使结构尺寸不紧凑,且高速时易引起带的颤动。

当带轮直径一定时,带长 L d与a直接有关,故L d对传动的影响同中心距 a,带的工作能力与L d有关。

由于L d为标准长度系列,常由它确定带传动的实际中心距a。

为使带传动有一定的工作能力,包角1200, i愈大,则带传递的最大有效拉力愈大,但由于结构受限:1< 180°。

初拉力F o直接影响带传动的工作能力。

F°愈大,其最大有效拉力也愈大,适当的初拉力是保证带传动正常工作的重要因数之一。

但过大的F o会使带的寿命降低,轴和轴承的压轴力增大,也会使带的弹性变形变成塑性变形,反而使带松弛,而降低工作能力。

带与带轮表面的摩擦系数 f也影响带传动的工作能力,增大f可提高带与轮面之间的摩擦力,即最大有效拉力。

但会因磨损加剧而大大降低带的寿命。

8-11带传动为何要有张紧装置?V带传动常用的张紧装置有哪些?张紧轮应放在什么位置?为什么?解:由于传动带不是完全弹性体,带工作一段时间后会因伸长变形而产生松弛现象,使初拉力降低,带的工作能力也随之下降。

因此为保证必需的初拉力应及时重新张紧,故要有张紧装置。

常用的张紧方法是调整带传动的中心距。

如把装有带轮的电动机安装在滑道上,并用调整螺栓调整或摆动电动机底座并用调整螺栓使底座转动来调整中心距。

如中心距不可调整时可采用张紧轮。

张紧轮一般放置在带的松边上,压在松边的内侧并靠近大带轮。

这样安装可避免带反向弯曲降低带的寿命,且不使小带轮的包角减小过多。

计算题8-12 V带传动传递的功率为 5.5kW,小带轮的转速 n i=1450r/min , d i= d2= 150mm,已知带与轮间的当量摩擦系数仁=0.45。

求有效拉力F,松边拉力F2,紧边拉力F1?解:v=「dm/60 X 1000= ■:X 150 X 1450/60 X 1000=11.38m/sF=1000P/v=1000X 5.5/11.38=483.3N解方程组:F=F1-F2=483.3F1/F2=e fv“=2.7180.45二得:F I=639N , F2=156N即:有效拉力 F=483N,紧边拉力F I=639N,松边拉力F2=156N。

8-13设计某带式运输机传动系统中的普通V带传动。

已知电动机型号为Y112M 额定功率P=4kW,转速 m=1440r/min,传动比i=3.8, —天运转时间10h。

解:1)确定设计功率P c查表得工况系数K A=1.2贝V P C=K A X P=1.2 X 4=4.8kW2)选择V带型号根据P c=4.8kW, n1=1440r/min。

查图选用 A 型。

3)确定带轮基准直径d1, d2查表 A型V带带轮最小基准直径 d min=75mm查表并根据图中A型带推荐的d1范围取d1=100mm则d2=i X d1=3.8 X 100=380mm查表基准直径系列取d2=375 mm传动比 i=n/n2=d2/d1=375/100=3.75传动比误差为(3.75-3.8)/3.8=-1.3% <± 5%,允许4)验算带的速度v= rd1 n〃60 X 1000=7. X 100 X 1440/60 X 1000=7.54m/s5)确定中心距a和基准长度L d初取 a。

: 0.7(d1+d2)w a°w 2(d什d2)0.7(100+375) w a。

w 2(100+375)332.5 w a°w 940取 a0=500mm初算V带基准长度2L d0=2a°+二(d〔+d2)/2+(d2-d1)/4a°=2 X 500+「(100+375)/2+(375-100) 2/4X 500=1784mm查表选标准基准长度L d=1800mm实际中心距 a=a°+(L d-L d0)/2=500+(1800-1784)/2=508mm6)验算小带轮上包角:1:1=1800-(d2-d1)* X 57.30/a=180°-(375-100)* X 57.30/508=148.98°>1200,合适7)确定V带根数由 d1=100mm , n 1=1440r/min,查表 7-4A 型带的 P1=1.32kW。

相关文档
最新文档