用洛必达法则求下列极限

合集下载

洛必达法则求极限要求

洛必达法则求极限要求

洛必达法则求极限要求洛必达法则是关于求解极限的一种重要方法,它通常被用于处理无穷小量极限的问题。

这个法则可以用来解决许多数学和工程问题,如求解函数最大值和最小值、计算导数、微积分等。

但是,使用洛必达法则求解极限时还需要满足一定的要求。

在这篇文章中,我们将详细介绍如何使用洛必达法则,并阐述它的求解要求。

首先,我们需要了解什么是无穷小量。

无穷小量是指当自变量趋近于某个值时,函数或变量的值可以无限接近于0,但不等于0。

例如,当x趋近于0时,函数 f(x) = x/x的值趋近于1,但不等于0。

此时,我们称f(x)是x的一阶无穷小,即“x是f(x)的无穷小”。

当使用洛必达法则时,需要满足以下两个基本条件:条件1:分子和分母都是无穷小量对于一个函数f(x),如果它的自变量x取某一值时,分子和分母都可以变得非常小,那么就可以使用洛必达法则进行求解。

具体来说,如果分子和分母的表达式都是由无穷小量组成,那么这个极限的解就可以使用洛必达法则求解。

条件2:分母的一阶无穷小量不为零如果分母的一阶无穷小量等于零,则这个函数无法使用洛必达法则求解。

这是因为,分母的导数即变化率为0,其生效范围变得非常小,导致无法得出精确极限。

在了解了洛必达法则的基本条件之后,我们需要考虑如何应用该法则。

假设有一个要求极限的函数(此处以分数函数为例),如下:f(x) = x² - 4x + 4 x-2在这个方程中,分子和分母都是x趋近于2时的一阶无穷小,因此满足条件1。

为了判断是否满足条件2,我们需要计算分母的导数,如下:(x-2)' = 1可以看出,此时分母的导数不等于0,因此满足条件2。

我们可以使用洛必达法则,将函数的极限转化为函数的导数的极限,即f(x) = (x² - 4x + 4)' / (x-2)'进一步计算,得到f(x) = (2x - 4) / 1x趋近于2时,函数f(x)的极限就是2*2 - 4 = 0。

高考培优点 洛必达法则

高考培优点 洛必达法则

跟踪训练 1 若∀x∈[1,+∞),不等式 ln x≤mx-1x恒成立,求实数 m 的 取值范围.
当x=1时,不等式恒成立,m∈R;
当 x>1 时,m≥xx2l-n x1恒成立,
令 h(x)=xx2l-n x1,x>1,

h′(x)=ln
x+1x2-1-2x·xln x2-12
x=x2-x2lxn2-x-1ln2
4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止.
lim
x→a
gfxx=lxi→ma
gf′′xx=lxi→ma
gf″″xx,如满足条件,可继续使用洛必达法则.
0 题型一 用洛必达法则处理 型函数
0
例 1 设函数 f(x)=2+sincoxs x.如果对任何 x≥0,都有 f(x)≤ax,求 a 的取值 范围.
思维升华


用洛必达法则处理∞型函数的步骤:(1)分离变量;(2)出现∞型式子;(3)运
用洛必达法则求值.
跟踪训练2 已知函数f(x)=2ax3+x.当x∈(1,+∞)时,恒有f(x)>x3-a, 求a的取值范围.
当x∈(1,+∞)时,f(x)>x3-a恒成立,
即2ax3+x>x3-a恒成立,
12
且 h(x)>h(0)=0,所以 g′(x)=hxx2>0,
从而 g(x)=ex-x 1在(0,+∞)上单调递增,
所以 a≤lim x→0
ex-1 x.
由洛必达法则得lim x→0
g(x)=lim x→0
ex-x 1=lxi→m0
e1x=1,
即当x→0时,g(x)→1,所以g(x)>1,即有a≤1.

未定式极限的计算

未定式极限的计算
x x
例13.求
lim
x
ln x xn
(n>0)。
1 解 : ll i x n m li x m li 1 m 0 。
x x n x n n 1 x x n n x
例14.
lim
x
xn e x
(n
为正整数,>0)。
解 : l x n i l m n n i 1 l m n x ( n i 1 ) x n 2 m
思考题解答
不一定.
例 f( x ) x sx i ,n g(x)x
显然
f (x) lim x g(x)
lim1cosx x 1
极限不存在.

f (x) lim x g( x)
limxsinx1极限存在. x x
练习题
一 、填 空题:
1 、 洛 必 达 法 则 除 了 可 用 于 求 “ 0 ”, 及 “ ” 两 种
0
类型的未定式的极限外,也可通过变换解决
_____________, _____________, ____________,
_____________, _____________, 等 型 的 未 定 式
的求极限的问题.
ln( 1 x )
2 、 lim
=___________.
x 0
x
3 、 lim ln tan 7 x = _ _ _ _ _ _ _ _ _ _ _ _ . x 0 ln tan 2 x
lim f(x)lim f(x). x F(x) x F(x)
例1 求limtanx. ( 0 )
x0 x
0

原式 lim (taxn) x0 (x)
limsec2 x0 1

微积分第三章习题解答

微积分第三章习题解答

第三章习题解答 习题 3-11. 验证函数()f x =在区间[0,4]上满足罗尔定理的条件,并求出使得结论成立的点ξ。

解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f ==所以函数在区间[0,4]上满足罗尔定理,则有()0f ξ'==,83ξ=。

2. 验证函数3()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使得结论成立的ξ。

解:函数3()1f x x =-在区间[1,2]上连续,在(1,2)上可导,则满足拉格朗日中值定理,则有2(2)(1)321f f ξ-=-,即ξ=3. 函数4()1f x x =-与2()g x x =在区间[1,2]上是否满足柯西中值定理的所有条件,如满足,求出满足定理的数值ξ。

解:函数4()1f x x =-与2()g x x =在区间上连续,在区间(1,2)上可导,则满足柯西中值定理,则有3(2)(1)4(2)(1)2f f g g ξξ-=-,即ξ=4. 若4次方程432012340a x a x a x a x a ++++=有4个不同的实根,证明3201234320a x a x a x a +++=的所有根皆为实根。

证明:设43201234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x ,且1234x x x x <<<,则函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,则在1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。

这说明方程3201234320a x a x a x a +++=至少有3个实根,而方程为3次方,则最多也只有3个实根,所以结论得到证明。

5. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明:存在(0,1)ξ∈,使得()()f f ξξξ'=-。

同济大学《高等数学》(第四版)3-2节 洛必达法则

同济大学《高等数学》(第四版)3-2节 洛必达法则
2
∞ ( ) ∞
sec2 x 1 cos 2 3 x 解 原式 = lim = lim π 3 sec 2 3 x 3 x → π cos 2 x x→
2 2
1 − 6 cos 3 x sin 3 x sin 6 x = lim = lim π − 2 cos x sin x π 3 x→ x → sin 2 x
,
1 1 − ⋅ 2 1 Q lim+ ⋅ ln(cot x ) = lim+ cot x sin x 1 x →0 x → 0 ln x x −x = −1, = lim+ ∴ 原式 = e −1 . x → 0 cos x ⋅ sin x
上页 下页 返回
注意:洛必达法则的使用条件. 注意:洛必达法则的使用条件.
2
1 ln(1 + ) x ; 2、 2、 lim x → +∞ arctan x
3、lim x cot 2 x ;
x →0
2 1 ); 4、 − 4、lim( 2 x →1 x − 1 x −1
1 tan x 6、 6、 lim ( ) ; x → +0 x
5、 lim x
x → +0
sin x

解 原式 = lim e
x →1
x →0
1 ln x 1− x
= lim e
1 ln x
=e
ln x x →11− x lim
=e
1 lim x x → 1 −1
= e −1 .
例11 求 lim+ (cot x )
.
1 ln x
( ∞0 )
=e
1 ⋅ln(cot x ) ln x
解 运用对数恒等式得 (cot x)

洛必达法则求极限

洛必达法则求极限

洛必达法则求极限
洛必达法则必须要满足三个条件: (1) 分子分母可导; (2) 分子分母必须同时是无穷小量或同时是无穷大量; (3)分子导数与分母导数比值的极限必须存在或为无穷大.利用洛必达法则求未定式的极限是微分学中的重点之一。

在解题中应注意 :
①在着手求极限以前,首先要检查是否满足0/0或∞/∞型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形) ,就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限比如利用泰勒公式求解.
②洛必达法则可连续多次使用,直到求出极限为止.
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此-定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。

洛必达法则的应用

洛必达法则的应用

f ( x) F ( x) F ( ) f ( ) lim lim lim lim A. x a g ( x ) x a G ( x ) a G( ) a g ( )
例1 解
tan x 求 lim . x 0 x
0 ( ) 0
(tan x ) sec2 x 1. 原式 lim lim x 0 x 0 ( x ) 1
F ( x),G( x)满足柯西中值定理的条 件, 则有 F ( ) F ( x ) F ( x ) F (a ) (在x与a之间) G( x ) G( x ) G(a ) G( )
F ( ) F ( x ) f ( x ) A, lim A, lim 当x a时, a , 而 lim a G( ) x a G ( x ) x a g ( x )
定义 这种在一定条件下通过分子分母分别求导再求极限 来确定未定式的值的方法称为洛必达法则.
当x 时,以及x a ( a ), x ( )时, 该法则仍然成立 .

定义辅助函数
g ( x), x a f ( x ), x a G( x ) , F ( x) , 0, xa 0 , x a 在 U (a, ) 内任取一点 x, 在以 a 与 x 为端点的区间上 ,
练习题
一、填空题:
0 1 、洛必达法则除了可用于求“ ” ,及“ ”两种 0 类 型 的未 定 式的 极限 外 ,也 可 通 过 变 换 解 决 _____________,_____________,____________, _____________ ,_____________ ,等型的未定式 的求极限的问题.
1 cos x lim 0. x 0 2x

高数习题答案3-2

高数习题答案3-2

习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→;(2)xe e x x x sin lim 0-→-; (3)ax a x a x --→sin sin lim ;(4)x x x 5tan 3sin lim π→;(5)22)2(sin ln lim x x x -→ππ;(6)n n mm a x ax a x --→lim ;(7)x x x 2tan ln 7tan ln lim 0+→;(8)xx x 3tan tan lim 2π→;(9)xarc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)2120lim x x e x →;(13))1112(lim 21---→x x x ;(14)x x x a )1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→.解 (1)111lim 111lim )1ln(lim 000=+=+=+→→→x x xx x x x .(2)2cos lim sin lim 00=+=--→-→xe e x e e x x x x x x . (3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m namx nx mx a x a x -----→→===--1111lim lim . (7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x177s e c 22s e c l i m 277t a n 2t a n l i m 272200=⋅⋅==+→+→x x x x x x . (8)x x x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅= )s i n (c o s 23)3s i n (3c o s 2lim 312x x x x x -⋅-=→πxx x c o s 3c o s l i m2π→-= 3s i n3s i n 3l i m2=---=→x x x π.(9)22221lim 11)1(111lim cot arc )11ln(limxx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→ 122lim 212lim ==+=+∞→+∞→x x x x .(10)x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1s i n lim )sin (cos 22lim00==--=→→xx x x x x x .(注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x . (12)+∞====+∞→+∞→→→1lim lim 1lim lim 21012022t t t t x x x x e t e x e e x(注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 221)(11lim 1)1ln(lim)1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→ a a a x ax x x ==+=∞→∞→1lim lim ,所以 a x ax x x x e e xa ==++∞→∞→)1l n (l i m )1(l i m. .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 x x x x x x x x x x c o tc s c 1lim csc ln lim ln sin lim 000⋅-==+→+→+→c o s s i n l i m 20=-=+→xx x x ,所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=,而 xx x x x x x x x 2000c s c 1limcot ln lim ln tan lim -==+→+→+→ 0s i n l i m 20=-=+→xx x , 所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限x x x x sin lim +∞→存在, 但不能用洛必达法则得出.解 1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出. 解 0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限x x x x sin 1sin lim 20→是存在的. 但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0])1([)(2111x e x e x x f x x 在点x =0处的连续性.解 21)0(-=e f ,)0(lim)(lim 21210f e e x f x x ===---→-→,因为]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f ,而 200)1l n (l i m]1)1l n (1[1l i m x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim 00-=+-=-+=+→+→x x x x x ,所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f )0(21f e ==-.因此f (x )在点x =0处连续.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 x x x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222c s cs i n 1s i n c o s s i n -=-=+-=. x x xx x x c o t c s c s i n c o s )s i n 1()(c s c 2⋅-=-='='.2. 求下列函数的导数:(1)1227445+-+=x x x y ; (2) y =5x 3-2x +3e x ; (3) y =2tan x +sec x -1; (4) y =sin x ⋅cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xey x ;(9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ). (4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )' =cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x . (5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) .(6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln1ln 1)ln (x x x xx x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x . (10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) . 解 (1)y '=cos x +sin x , 21321236s i n 6c o s 6+=+=+='=πππx y ,222224s i n 4c o s 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214c o s 44s i n 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=.求:(1)该物体的速度v (t ); (2)该物体达到最高点的时刻. 解 (1)v (t )=s '(t )=v 0-gt . (2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x ,所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x ); (3)23x e y -=; (4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=; (7) y =tan(x 2);(8) y =arctan(e x ); (9) y =(arcsin x )2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3. (2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ). (3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='. (4)222212211)1(11x x x x x x y +=⋅+='+⋅+='.(5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x . (6))()(21])[(22121222122'-⋅-='-='-x a x a x a y222122)2()(21xa x x x a --=-⋅-=-.(7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2). (8)xx x x e e e e y 221)()(11+='⋅+='.(9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x x x x y tan )sin (cos 1)(cos cos 1-=-='⋅='.7. 求下列函数的导数: (1) y =arcsin(1-2x ); (2)211xy -=; (3)x e y x3cos 2-=;(4)xy 1arccos =;(5)xx y ln 1ln 1+-=;(6)x x y 2sin =;(7)x y arcsin =; (8))ln(22x a x y ++=; (9) y =ln(sec x +tan x ); (10) y =ln(csc x -cot x ). 解 (1)2221)21(12)21()21(11xx x x x y --=---='-⋅--='. (2))1()1(21])1[(21212212'-⋅--='-='---x x x y222321)1()2()1(21xx x x x --=-⋅--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xxx x )3s i n 63(c o s 213s i n 33c o s 21222x x e x e x e xxx +-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x x x x x x x y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y2222221)]2(211[1xa x x a x a x +=++⋅++=. (9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=; (4)xe y arctan=;(5)y =sin n x cos nx ; (6)11arctan -+=x x y ;(7)x x y arccos arcsin =;(8) y =ln[ln(ln x )] ;(9)xx xx y -++--+1111;(10)xxy +-=11arcsin .解 (1)'⋅=')2(arcsin )2(arcsin 2x x y)2()2(11)2(a r c s i n22'⋅-⋅=x x x 21)2(11)2(a r c s i n 22⋅-⋅=x x .242a r c s i n2x x -= (2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x x yx x x c s c 212s e c 2t a n 12=⋅⋅=. (3))ln 1(ln 121ln 1222'+⋅+=+='x xx y )(l n ln 2ln 1212'⋅⋅+=x x xx x x 1ln 2ln 1212⋅⋅+=x x x 2ln 1ln +=.(4))(arctan arctan'⋅='x e y x)()(112arctan'⋅+⋅=x x e x)1(221)(11a r c t a n2a r c t a nx x e x x ex x +=⋅+⋅=.(5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )' =n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x . (6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(a r c c o s a r c s i n a r c c o s 11x x x x +⋅-=22)(a r c c o s12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x x x x x y)l n (l n ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=. (10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=.9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数. 解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dxdy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2).(2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ⋅e ch x ; (3) y =th(ln x ); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x . (2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='. (4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='.(6)222)1()1(112422++='+⋅++='x x x x x y . (7)12)(1)(142222-='⋅-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=.(9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x yx x xx x sh ch 2ch 21ch sh 4⋅⋅-=x x x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xxx x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ⋅sin(x 2); (3)2)2(arctan x y =;(4)n x x y ln =;(5)t t t t ee e e y --+-=; (6)x y 1cos ln =;(7)x ey 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=;(10)212arcsin t t y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x =sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2).(3)2arctan 44214112arctan 222x x x x y +=⋅+⋅='.(4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x x y . (5)2222)1(4)())(())((+=+---++='-----tt t t t t t t t t t t e e e e e e e e e e e e y . (6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x xx exe y x x -⋅⋅-⋅='-⋅='--x e x x1s i n 222s i n 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+='xx x x +⋅+=412.(9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.总习题一1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件.(2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件. )(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件.(3) f (x )在x 0的某一去心邻域内无界是∞=→)(l i m 0x f x x 的________条件.∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件.(4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0x f x x →存在的________条件.解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要.2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ).(A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小.解 因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim0000-+-=-+=→→→→ 3ln 2ln )1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) .所以f (x )与x 同阶但非等价无穷小, 故应选B .3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ).解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ].(3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]. (4) 由0≤ cos x ≤1得2222ππππ+≤≤-n x n (n =0, ±1, ±2, ⋅ ⋅ ⋅),即函数f (cos x )的定义域为[2,22ππππ+-n n ], (n =0, ±1, ±2, ⋅ ⋅ ⋅).4. 设⎩⎨⎧>≤=0 0 0)(x x x x f , ⎩⎨⎧>-≤=0 00)(2x x x x g , 求f [f (x )], g [g (x )], f [g (x )], g [f (x )].解 因为f (x )≥0, 所以f [f (x )]=f (x )⎩⎨⎧>≤=0 0 0x x x ;因为g (x )≤0, 所以g [g (x )]=0; 因为g (x )≤0, 所以f [g (x )]=0;因为f (x )≥0, 所以g [f (x )]=-f 2(x )⎩⎨⎧>-≤=0 002x x x .5. 利用y =sin x 的图形作出下列函数的图形:(1)y =|sin x |; (2)y =sin|x |; (3)2sin 2x y =.6. 把半径为R 的一圆形铁片, 自中心处剪去中心角为α的一扇形后围成一无底圆锥. 试将这圆锥的体积表为α的函数.解 设围成的圆锥的底半径为r , 高为h , 依题意有R (2π-α)=2πr , παπ2)2(-=R r ,παπαπαπ244)2(2222222-=--=-=R R R r R h . 圆锥的体积为παπαπαππ244)2(312222-⋅-⋅=RR V 22234)2(24a R -⋅-=πααππ(0<α<2π). 7. 根据函数极限的定义证明536lim 23=---→x x x x . 证明 对于任意给定的ε>0, 要使ε<----|536|2x x x , 只需|x -3|<ε, 取δ=ε, 当0<|x -3|<δ时, 就有|x -3|<ε, 即ε<----|536|2x x x , 所以536lim 23=---→x x x x .8. 求下列极限:(1)221)1(1lim -+-→x x x x ; (2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ;(4)30sin tan lim x x x x -→; (5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x . (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x 21212)1221()1221(l i m++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim . (4)x x x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换).(5)x c b a c b a xx x x xx xx x x x x x x x cb ac ba 3333010)331(lim )3(lim -++⋅-++→→-+++=++,因为e c b a x x x c b a xx x x =-+++-++→330)331(l i m , )111(lim 3133lim 00x c x b x a x c b a xx x x x x x x -+-+-=-++→→])1l n (1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=, 所以 3ln 103)3(lim abc e c b a abc x x x x x ==++→. 提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v . (6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin1[lim )(sin lim -⋅-→→-+=ππ, 因为e x xx =-+-→1s i n 12)]1(sin1[lim π,x x x x x x x c o s )1(s i n s i n l i mt a n )1(s i n l i m 22-=-→→ππ 01s i n c o s s i n lim )1(sin cos )1(sin sin lim 222=+-=+-=→→x x x x x x x x x ππ, 所以 1)(s i n lim 0tan 2==→e xx x π. 9. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为f (0)=a , a x a x f x x =+=--→→)(lim )(lim 200, 01sinlim )(lim 00==++→→xx x f x x , 所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续.。

洛必达法则洛必达法则

洛必达法则洛必达法则

洛必达法则洛必达法则洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。

再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。

当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。

比如利用泰勒公式求解。

②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(T aylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.) /n!*(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。

罗尔定理拉格朗日柯西中值定理洛必达法则与导数的应用

罗尔定理拉格朗日柯西中值定理洛必达法则与导数的应用

精心整理内容概要习题3-1★1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出满足定理的数值ξ。

(1)]511[32)(2.,,x x x f ---=;(2)]30[3)(,,x x x f -=。

知识点:罗尔中值定理。

思路:根据罗尔定理的条件和结论,求解方程0)(/=ξf ,得到的根ξ便为所求。

解:)5.即为所(2∴f (f '★2.思路 解∴5(01)12,ξ±∃=,使(1)(0)()10f f f ξ-'=-,验证完毕。

★3.已知函数4)(x x f =在区间]21[,上满足拉格朗日中值定理的条件,试求满足定理的ξ。

解:要使(2)(1)()21f f f ξ-'=-,只要3415ξξ=⇒=(12)ξ,=即为满足定理的ξ。

★★4.试证明对函数r qx px y ++=2应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间。

证明:不妨设所讨论的区间为][a,b ,则函数r qx px y ++=2在][a,b 上连续,在)(a,b 内可导,从而有()()()f b f a f ξb a-'=-,即a b r qa pa r qb pb q ξ-++-++=+)()(222, 解得2ab ξ+=,结论成立。

★5.函数3)(x x f =与1)(2+=x x g 在区间]21[,上是否满足柯西定理的所有条件?如满足,请求出满足定理的数值ξ。

知识点:柯西中值定理。

思路解,所以满★★★6.存在ξ思路,然后再证明)0(F ()()()0F ξf ξξf ξ''=+=,即()()f ξf ξξ'=-。

注:辅助函数的构造方法一般可通过结论倒推,如:要使()()f x f x x'=-,只要 ∴只要设辅助函数)()(x xf x F =★★7.若函数)(x f 在)(a,b 内具有二阶导函数,且)()()(321x f x f x f ==)(321b x x x a <<<<,证明:在)(31,x x 内至少有一点ξ,使得()0f ξ''=。

洛比达法则

洛比达法则
2
2
2
x→
2
6 cos 6 x = 3. = lim π x → 2 cos 2 x
2
0 二、 ⋅ ∞, ∞ − ∞,0 ,1 , ∞ 型未定式
0 0

关键: 关键: 将其它类型未定式化为洛必达法
1.决的类型: 或 型. 0 ∞
1 1 步骤: 步骤 0 ⋅ ∞ ⇒ ⋅ ∞, 或 0 ⋅ ∞ ⇒ 0 ⋅ . 0 ∞ −2 x 例9 求 lim x e . ( 0 ⋅ ∞ )
ln(1 + x ) 例3 . (0) 求 lim 2 x →0 x 0 1 解 1 1 + x = lim 原式 = lim =∞ x →0 2 x x → 0 2(1 + x ) x
f ′( x ) 0 ∞ 如果 仍属 、 型,且 f ′( x )、 g ′( x ) 满 g' ( x ) 0 ∞ 足定理的条件, 续使用洛必达法则, 足定理的条件,可以继 续使用洛必达法则,即
6x 6x lim 注意: 注意: 式 中 的 x →1 6 x − 2 已不是未定式,不能 已不是未定式, 上
再对它应用洛必塔法则,否则会导致错误结果. 再对它应用洛必塔法则,否则会导致错误结果.
注意:在多次使用洛必塔法则时, 注意 在多次使用洛必塔法则时,一定要注 在多次使用洛必塔法则时 意验证是否满足条件. 意验证是否满足条件
1 tan x 6. lim ( ) ; x → +0 x
5. lim
x → +0
x
sin x

7. lim (
x → +∞
2
π
arctan x) x .
练习题答案
1.
1 ; 8

用洛必达法则求下列极限

用洛必达法则求下列极限

习题3-21. 用洛必达法则求下列极限: (1)xx x )1ln(lim0+→;(2)xe e xx x sin lim 0-→-;(3)ax ax a x --→sin sin lim ;(4)x xx 5tan 3sin limπ→; (5)22)2(sin ln limx x x -→ππ;(6)nnmm ax a x a x --→lim;(7)xxx 2tan ln 7tan ln lim 0+→;(8)xxx 3tan tan lim2π→; (9)xarc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)212lim x x e x →;(13)⎪⎭⎫ ⎝⎛---→1112lim 21x x x ;(14)x x xa)1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→.解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x . (2)2cos lim sin lim 00=+=--→-→xe e x e e xx x x x x .(3)a xa x a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos 3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ. (6)nm n m n m ax nn m m ax anm na mx nx mx a x a x -----→→===--1111limlim. (7)177sec 22sec lim 277tan 2tan lim 2722sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim22002200=⋅⋅==⋅⋅⋅⋅=+→+→+→+→x x x x x xx x x x x x x x . (8))sin (cos 23)3sin (3cos 2lim31cos 3cos lim 3133sec sec lim 3tan tan lim 22222222x x x x x x x x x x x x x x -⋅-==⋅=→→→→ππππ 3sin 3sin 3lim cos 3cos lim22=---=-=→→x xx x x x ππ.(9)122lim 212lim 1lim 11)1(111lim cot arc )11ln(lim 2222==+=++=+-⋅+=++∞→+∞→+∞→+∞→+∞→x x x x x x x x x x x x x x x .(10)x x xx x x x x x x x 22022020cos 1limcos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2) 1sin lim )sin (cos 22lim 00==--=→→xxx x x x x .(11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x . (12)+∞====+∞→+∞→→→1lim lim 1lim lim 2101222t t t t x x xx e t e x e e x (注: 当x →0时, +∞→=21xt ).(13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 a a a x ax xx ax a x x a xa x x x x x x ==+=--⋅+=+=+∞→∞→∞→∞→∞→1lim lim 1)(11lim 1)1ln(lim )1(ln(lim 22,所以 a x ax x x x e exa ==++∞→∞→)1ln(lim )1(lim . .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 0cos sin lim cot csc 1lim csc ln limln sin lim 20000=-=⋅-==+→+→+→+→xx x x x x x x x x x x x x , 所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=,而 0sin lim csc 1lim cot ln limln tan lim 202000=-=-==+→+→+→+→xx x x x x x x x x x x , 所以 1lim )1(lim 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限xxx x sin lim +∞→存在, 但不能用洛必达法则得出.解 1)sin 1(lim sin lim=+=+∞→∞→x x x x x x x , 极限x xx x sin lim+∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx xx x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sinlim20→存在, 但不能用洛必达法则得出.解 0011sin sin limsin 1sinlim020=⋅=⋅=→→xx x x xx x x x , 极限x x x x sin 1sinlim20→是存在的.但xx x x x x x x x cos 1cos1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0 0 ])1([)(2111x e x ex x f xx 在点x =0处的连续性. 解 21)0(-=e f , )0(lim )(lim 21210f eex f x x ===---→-→,因为 ]1)1ln(1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x xxx x e ex x f , 而 21)1(21lim 2111lim )1ln(lim ]1)1ln(1[1lim 00200-=+-=-+=-+=-++→+→+→+→x x x x x x x x x x x x x , 所以 )0(lim])1([lim )(lim 21]1)1ln(1[101100f ee ex x f x xx x xxx x ===+=--+-→-→+→.因此f (x )在点x =0处连续.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第四章

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0. 解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ? [][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=-即 (1)(1)f f -=() f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim (1)1(0),(20)lim ()lim (1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又w ww .t tl ea rn .n et1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)() f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导. 又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠ 综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ. (3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f f f x x -'=+==- 则3x =±,取3ξ=,即存在w ww .t tl ea rn .n et(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得 f (ξ)+f ′(ξ) = 0,ξ(∈a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=.即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=.6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根.证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根. 7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ) = 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.w ww .t tl ea rn .n et又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=. 习题4-2 1.利用洛必达法则求下列极限: (1) sin 3limtan 5x x x π→; (2) 0e 1lim (e 1)x x x x x →---; (3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx +→; (6) 0lim sin ln x x x +→;(7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim(e 1x x x x →--;(9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) csc 03e lim(2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞-; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)limlim lim (1)111lim 22(3)lim lim limπππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m n m m x a n n --= 2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=w ww .t tl ea rn .n et[]2000221()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100 x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1111(7)limlim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x x xxxx x x x x x x x x x x xx x →→→→→-----==-------====+-++00022cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =eee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========2221lim12lim(1)arctan (1)arctan πeeex x x x x xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x x e e ex x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2222111122000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'w ww .t tl ea rn .n et202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) ee ee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx nx →++=-21lim()0 x x mx n →∴++= 且21()lim5(1)x x mx n x →'++='- 即 10m n ++= 且 1lim(2)5x x m →+=即 1m n +=- 且 25m +=于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出. 解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''= w ww .t tl ea rn .n et5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim 211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''=== 故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续. 习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()ٛ… x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+w ww .t tl ea rn .n et()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====- 又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+ 2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1)ٛ … n n n n n n n n n n n n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++(01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+ 解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限: w ww .t tl ea rn .n et(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x→→→--==-= (2) 利用泰勒公式,有221111ln(1(2o x x x x+=-+,所以222222221111lim lim ln(1(())21()1111lim lim .(1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦习题4-4 1. 求下面函数的单调区间与极值: (1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.w ww .t tl ea rn .n et(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =.(3) ()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<,∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减.当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x =在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '<∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减;当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根. 3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加. 解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使w ww .t tl ea rn .n et()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式: (1) 1+12xx >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令1()12f x x =+,则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而 ()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x '=-+=++ 当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值. 解: ()cos cos3f x a x x '=+w ww .t tl rn et若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为(3πf =.习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-,()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅-则 1()L x Pc xQ αα-'=-令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=w ww .t tl ea rn .n et即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去).所以要使平均成本最小,应生产1000件产品. (2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次) w ww .t tl ea rn .n et(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ==== 漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2ππ3α=-=-, 所以,当2ππ3α=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k ,(k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的w w.t tl ea rn .n et燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q kv = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x );(3) y = x e x; (4) y = 4(1)x ++e x;(5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.x (,1)-∞-1-(1,1)-1(1,)+∞y' -0 + 0 -y上凸ln 2 下凸ln 2上凸所以,曲线2ln(1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点w ww .t tl ea rn .n et(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0x xy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x e y e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21(2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e 是拐点.2. 利用函数的凸性证明下列不等式:(1)e e 2x y+>2e x y+, x ≠y ; (2) x ln x +y ln y >(x +y )ln2x y+,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即 2()2e e e x yx yx y ++>≠.w ww .t tl ea rn .n et(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而 232,62y ax bx y ax b '''=+=+ 所以 620a b +=又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23x x -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim limlim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞, 所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又22lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,w ww .t tl ea rn .n et又函数22x y -=没有间断点,因而也没有垂直渐近线.(3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,33x x x x x x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =.又 1limlim 212x x y x x x →∞→∞==- 2111lim()lim()lim 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==--所以有斜渐近线1124y x =+. 5.作出下列函数的图形:(1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =. (iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++, w ww .t tl ea rn .n et令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.作图如下:图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y xy x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++2222222(1)(1)24,(1)(1)x x x x xy x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:w ww .t tl e a rn .e图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3w wl ea rn .n et。

用洛必达法则求下列极限(学习资料)

用洛必达法则求下列极限(学习资料)

x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
习题 32 1 用洛必达法则求下列极限 (1) lim ln(1 x) x0 x (2) lim e x ex x0 sin x (3) lim sin x sin a xa x a (4) lim sin 3x x tan5x
(5) lim ln sin x x ( 2x)2
2
x x0
x0
2 验证极限 lim x sin x 存在 但不能用洛必达法则得出 x x
知识类+
3
解 lim x sin x lim (1 sin x) 1 极限 lim x sin x 是存在的
x x
x
x
x x
但 lim (x sin x) lim 1 cos x lim (1 cos x) 不存在不能用洛必达法则
x
x x 1
x
1
x x a x 1
x
x2
所以
lim (1
a)x
lim
x ln(1 a )
ex
ea
x
x
x
(15)因为 lim xsin x lim esin xln x
x0
x0
1

lim sin x ln x lim ln x lim
x
lim sin 2 x 0
x0

七种未定式的极限解法

七种未定式的极限解法

七种未定式的极限解法未定式极限是指在求解数列极限、函数极限等问题中,出现了未知的形式不确定的极限式子。

例如,0/0、∞/∞、1^∞、0^0、∞-∞、∞^0、1^∞等。

这些极限式子看似无解,但实际上有很多方法可以求解它们。

1. 利用洛必达法则洛必达法则是求解未定式的一种常用方法,它指的是对于形如0/0或∞/∞的未定式,可以先对函数分子和函数分母求导数,然后再求原函数的极限,如此多次运用直到极限存在或无限趋近于某个值为止。

例如,求解lim(x→1)[(x^2-1)/(x-1)],此时x-1=0,x^2-1=0,因此可得到0/0的未定式。

此时应该对分子和分母分别求导数,得到lim(x→1)[(2x)/(1)]=2。

因此,这个极限等于2。

2. 利用泰勒公式泰勒公式是将函数表示成幂级数的公式,可以用来求解一些未定式的极限。

通过将函数展开成泰勒级数,可以将函数的极限转化为级数的极限,从而进行求解。

3. 化为指数函数的形式对于一些形如0^0、∞^0、1^∞的未定式,可以将它们化为指数函数的形式,然后再求解。

其中,化为指数函数的形式通常需要利用对数运算。

例如,求解lim(x→0) [(1+x)^(1/x)],此时1^∞是一个未定式。

通过取自然对数ln,可得到ln(lim(x→0) [(1+x)^(1/x)])=lim(x→0)ln[(1+x)^(1/x)]。

根据对数运算法则,可将指数函数拆为自然对数函数,得到lim(x→0) [ln(1+x)/x]。

因为此时0/0是一个未定式,可以使用洛必达法则。

对分子和分母同时求导数,得到lim(x→0) [1/(1+x)] = 1。

因此,原极限等于e^1,即e。

4. 利用换元法换元法是求解一些未知式子的常用方法,它通常能够将未定式转化为已知的极限式子,从而进行求解。

5. 利用等价无穷小量法6. 利用夹逼定理夹逼定理是一种求解极限的方法,它通常用于一些难以直接求解的未定式,夹逼定理是通过夹逼一个已知的极限式子,使得我们能够推导出原未知式子的极限。

浅析洛必达法则求函数极限.docx

浅析洛必达法则求函数极限.docx

浅析洛必达法则求函数极限.docx⽤洛必达法则求未定式极限的⽅法⼀、洛必达法则求函数极限的条件及适⽤范围(⼀) 洛必达法则定理定理1⑴若函数/(X )与函数g(x)满⾜下列条件: (1)在。

的某去⼼邻域讥兀)内可导,且g?)HO (2) lim /(x) = 0 XTG+0 lim g(x) = 0 XTO+0 v f\x) A(3) lim ------ ------ = A兀T"+0 g\x)则lim /⑴⼆lim f = A (包括A 为⽆穷⼤的情形)XT"+0 g(x)g'(x)定理2若函数/(兀)和g(x)满⾜下列条件+ ⼀, X -> X o ,兀 TOO,兀⼀>+00,X —>—00。

定理证明:作辅助函数于是函数F(x)及G(x)在[d,d +》)连续,在(d,G + /)可导,并且G (%)丰0?今对(G ,G + /) 内任意⼀点x,利⽤柯西中值定理得(1) 在d 的某去⼼邻域Mr)内可导,且g3 H 0(2) lim /(x) = oolim p(x) = ooX->X ()(3) r⼴(x)⼈ lim = A则lim = lim 以卫=5+o 0(x) 5+() g(x) 5+0 g\x)A (包括A 为⽆穷⼈的怙:形)此外法则所述极限过程对下述六类极限过程均适⽤:F (兀)=0, 当兀=aG(x) =0, 当兀=a空n(叽空丄G(x) G(x)-G(G ) G\X Q )由F(Q 及G (劝的定义,上式B |jZW =ZW g(x) gUo)所以当XTQ + 0时(这时显然有兀oTG + O ),对上式两端取极限,即证毕。

关于定理⼆的证明⽅法也同定理1类似,这⾥就不点出。

当然,还有其他不同的证明⽅法。

(-)洛必达法则使⽤条件只有在分⼦、分母同时趋于零或者同时趋于⽆穷⼤时,才能使⽤洛必达法则。

连续多次使⽤法则时,每次都要检査是否满⾜定理条件,只有未定式⽅可使⽤,若是检查结果满⾜法则使⽤条件,才可连续使⽤洛必达法则,直到求出函数极限或者为⽆穷⼤,否则就会得出错谋的结果,下⾯举个例⼦来说明。

高等数学 线性代数 习题答案第四章

高等数学 线性代数 习题答案第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)()f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导.又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ.(3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f ff x x -'=+==-则x =,取ξ=,即存在(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得f (ξ)+f ′(ξ) = 0,ξ∈(a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x 在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=. 即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=. 6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根. 证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根.7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ)= 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=.习题4-21.利用洛必达法则求下列极限:(1) sin3lim tan5x xxπ→; (2) 0e 1lim (e 1)x x x x x →---;(3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx+→; (6) 0lim sin ln x x x +→; (7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim()e 1x x x x →--; (9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) c s c 03e lim()2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)lim lim lim (1)111lim 22(3)lim lim lim πππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m nm m x a n n --=2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=[]200021()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1)111(7)lim lim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x xxxxx x x x x x x xx x x x x x →→→→→-----==-------====+-++0002cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =e ee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========221lim12lim(1)arctan (1)arctan πeeex x x xx xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x e e e x x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2221111220000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) eeee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx n x →++=-21lim()0 x x mx n →∴++= 且21()lim 5(1)x x mx n x →'++='-即 10m n ++= 且 1l i m (2)5x x m →+= 即 1m n +=- 且 25m += 于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出.解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''=5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''===故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续.习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()…x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====-又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1) … n n n n n n n n n nn n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++ (01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限:(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x →→→--==-= (2) 利用泰勒公式,有221111ln(1)()2o x x x x+=-+,所以222222221111lim lim ln(1)(())21()1111lim lim .()1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦ 习题4-41. 求下面函数的单调区间与极值:(1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =. (3)()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<, ∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减. 当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x = 在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '< ∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减; 当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根.3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加.解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式:(1) 1+12x x >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令 1()12f x x =+则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x'=-+=++当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值.解: ()cos cos3f x a x x '=+若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为()3πf =习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-, ()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅- 则 1()L x Pc xQ αα-'=- 令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去). 所以要使平均成本最小,应生产1000件产品.(2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量70*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次)(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ====漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2πα==, 所以,当2πα=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k (k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q k v = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x ); (3) y = x e x; (4) y = 4(1)x ++e x; (5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,)3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.所以,曲线2l n (1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0xxy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x ey e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21()2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e是拐点. 2. 利用函数的凸性证明下列不等式:(1) e e 2x y +>2e x y+, x ≠y ;(2) x ln x +y ln y >(x +y )ln2x y +,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即2()2e e e x yx y x y ++>≠.(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而232,62y a x b x y a x b'''=+=+ 所以 620a b += 又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23xx -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim lim lim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞,所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又2lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,又函数22x y -=没有间断点,因而也没有垂直渐近线. (3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,3x x x xx x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =. 又 1limlim 212x x y x x x →∞→∞==- 2111l i m ()l i m ()l i m 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==-- 所以有斜渐近线1124y x =+. 5.作出下列函数的图形: (1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim 012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =.(iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++ 22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++,令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y x y x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++ 2222222(1)(1)24,(1)(1)x x x x x y x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3。

高等数学习题及解答 (1)

高等数学习题及解答 (1)

普通班高数作业(上)第一章 函数1、试判断下列每对函数是否是相同的函数,并说明理由: (2))sin(arcsin x y =与x y =; (4)x y =与2x y =;(6))arctan(tan x y =与x y =; (8))(x f y =与)(y f x =。

解:判断两个函数的定义域和对应法则是否相同。

(2))sin(arcsin x y =定义域不同,因此两个函数不同; (4)x x y ==2,两个函数相同;(6))arctan(tan x y =定义域不同,因此两个函数不同;(8))(x f y =与)(y f x =定义域和对应法则都相同,因此两个函数相同。

2、求下列函数的定义域,并用区间表示:(2)xx x y -+=2; (3)x y x -+=1ln arcsin 21; (7)xey xln 111-+=。

解:(2))0,2[-∈x ;(3)]1,0()0,1[22--⋃-∈e e x ; (7)),(),0(+∞⋃∈e e x 。

3、设⎪⎩⎪⎨⎧<-≥-=0,10,1)(22x x x x x f ,求)()(x f x f -+。

解:按0>x ,0=x ,0<x 时,分别计算得,⎩⎨⎧=-≠=-+0200)()(x x x f x f 。

4、讨论下列函数的单调性(指出其单增区间和单减区间): (2)24x x y -=; (4)x x y -=。

解:(2)22)2(44--=-=x x x y 单增区间为]2,0[,单减区间为]4,2[。

(4)⎩⎨⎧≥<-=-=002x x x x x y ,定义域为实数集,单减区间为),(+∞-∞。

5、讨论下列函数的奇偶性:(2)x x x x f tan 1)(2+-=; (3))1ln()(2x x x f -+=;(6)x x f ln cos )(=; (7)⎩⎨⎧≥+<-=0,10,1)(x x x x x f 。

用洛必达法则求下列极限

用洛必达法则求下列极限

习题 32 1 用洛必达法则求下列极限 (1) lim ln(1 x) x0 x (2) lim e x ex x0 sin x (3) lim sin x sin a xa x a (4) lim sin 3x x tan5x(5) lim ln sin x x( 2x)22(6) lim xm am xa x n a n(7) lim ln tan 7x x0 ln tan 2x(8) lim tan x xtan 3x2ln(1 1 )(9) limxx arc cot x(10) lim ln(1 x2 ) x0 sec x cos x(11) lim x cot 2xx01(12) lim x 2e x2 x0(13) lim x 12 x2 11 x 1(14) lim (1 a ) x x x(15) lim xsin x x0(16) lim ( 1 )tan x x0 x. 精品.1解 (1) lim ln(1 x) lim 1 x lim 1 1x0 xx0 1x0 1 x(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x(3) lim sin x sin a lim cos x cos axa x axa 1(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5(5) lim ln sin x limcot x 1 lim csc2 x 1x ( 2x)2 x 2( 2x) (2) 4 x 28222(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n(7) limln tan 7x lim1 tan 7x sec27x 77limtan 2x 7limsec2 2x 2 1x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7tan 2x(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)2222 lim cos 3x lim 3sin 3x 3x cos xx sin x221 ( 1 )ln(1 1 )1 1(9) limx lim xx2 lim 1 x2 lim 2x lim 2 1x arc cot x x1x x x 2 x 1 2x x 21 x2(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注x0 sec x cos x x0 1 cos2 xx0 1 cos2 x lim2x lim x 1x0 2 cos x( sin x) x0 sin xcosx×ln(1 x2)~x2)(11) lim x cot 2x lim x lim 1 1x 0x0 tan 2x x0 sec2 2x 2 211(12) lim x 2e x2e x2 limlimetlimet (注x0x0 1 t t t 1x2当x 0时t 1 x2精品.(13)lim x 12 x2 1x1 1limx11 x x2 1limx11 2x1 2(14)因为lim (1 a)xlimx ln(1 a )exxxx1 ( a )而limx(ln(1 a)limln(1 a) xlim1a xx2 lim ax lim a axx x 1x1x x a x 1xx2所以lim (1 a)xlimx ln(1 a )exeaxxx(15)因为 lim xsin x lim esin x ln xx0x01而lim sin x ln x lim ln x limx lim sin 2 x 0x 0x0 csc x x0 csc x cot x x0 x cos x所以lim xsin x lim esin xln x e0 1x 0x0(16)因为 lim ( 1 )tan x etan x ln xx0 x1而lim tan x ln x lim ln x lim x lim sin 2 x 0x 0x0 cot x x0 csc2 xx0 x所以lim(1)tanx limetanxln x e0 1x x 0x02 验证极限 lim x sin x 存在 但不能用洛必达法则得出 x x解 lim x sin x lim (1 sin x) 1x xxx极限 lim x sin x 是存在的 x x但 lim (x sin x) lim 1 cos x lim (1 cos x) 不存在x (x)x 1x不能用洛必达法则精品.x 2 sin 13 验证极限 limx 存在x0 sin x但不能用洛必达法则得出x2 sin 1解 limx limx x sin 1 1 0 0x0 sin x x0 sin xxx 2 sin 1极限 limx 是存在的x0 sin x(x2 sin 1 )2x sin 1 cos 1但 limx limxx 不存在x0 (sin x) x0cos x不能用洛必达法则4讨论函数f(x)1[ (1 x) x e1]xx 0 在点 x 0 处的连续性 1e2x0解1f (0) e 211lim f (x) lim e 2 e 2 f (0) x0x01因为limf (x) lim[(1 x)x1]xlim1[ 1 ln(1 x)1]ex xx0x0 ex0而lim1 [1 ln(1 x) 1] limln(1 x) xlim1 1 x1 lim1 1x0 x xx0x2x0 2xx0 2(1 x) 21所以limf (x) lim[(1 x)x1]x1[ 1 ln(1x)1]lim e x x1e 2f (0)x0x0 ex0因此 f(x)在点 x 0 处连续 如有侵权请联系告知删除,感谢你们的配合!精品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 3 2
1 用洛必达法则求下列极限 (1) lim ln(1 x)
x0 x (2) lim e x ex
x0 sin x (3) lim sin x sin a
xa x a (4) lim sin 3x
x tan5x
(5) lim ln sin x x ( 2x)2
2
(6) lim xm am xa x n a n
(7) lim ln tan 7x x0 ln tan 2x
(8) lim tan x x tan 3x
2
1
ln(1 )
(9) lim
x
x arc cot x
(10) lim ln(1 x2 ) x0 sec x cos x
(11) lim x cot 2x
x0
1
(12) lim x 2e x2 x0
(13) lim x 1
2 x2 1
1 x 1
(14) lim (1 a ) x x x
(15) lim xsin x x0
(16) lim ( 1 )tan x
x0 x


1
解 (1) lim ln(1 x) lim 1 x lim 1 1
x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
(5) lim ln sin x lim
cot x
1 lim csc2 x 1
x ( 2x)2 x 2( 2x) (2) 4 x 2
8
2
2
2
(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n
(7) lim
ln tan 7x
lim
1 tan 7x
sec2
7x 7
7
lim
tan 2x 7
lim
sec2 2x 2 1
x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7
tan 2x
(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3
x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)
2
2
2
2
lim cos 3x lim 3sin 3x 3
x cos x
x sin x
2
2
1 ( 1 )
ln(1 1 )
1 1
(9) lim
x lim x
x2 lim 1 x2 lim 2x lim 2 1
x arc cot x x
1
x x x 2 x 1 2x x 2
1 x2
(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注
x0 sec x cos x x0 1 cos2 x
x0 1 cos2 x
lim
2x
lim x 1
x0 2 cos x( sin x) x0 sin x
cosx ln(1 x2)~x2)
(11) lim x cot 2x lim x lim 1 1
x 0
x0 tan 2x x0 sec2 2x 2 2
(12)
1
1
lim x 2e x2
e x2 lim
lim
et
lim
et

x0
x0 1 t t t 1
x2
(注
当 x0 时


t 1 x2
(13)
lim x 1
2 x2 1
x
1 1
lim
x1
1 x x2 1
lim
x1
1 2x
1 2
(14)因为
lim (1
a)x
lim
x ln(1 a )
ex
x
x
x
1 ( a )

lim
x(ln(1
a)
lim
ln(1
a) x
lim
1
a x
x2 lim ax lim a a
x
x x 1
x
1
x x a x 1
x
x2
所以
lim (1
a)x
lim
x ln(1 a )
e
x
ea
x
x
x
(15)因为 lim xsin x lim esin x ln x
x0
x0
1

lim sin x ln x lim ln x lim
x
lim sin 2 x 0
x 0
x0 csc x x0 csc x cot x x0 x cos x
所以
lim xsin x lim esin xln x e0 1
x 0
x0
(16)因为 lim ( 1 )tan x etan x ln x
x0 x
1

lim tan x ln x lim ln x lim x lim sin 2 x 0
x 0
x0 cot x x0 csc2 x
x0 x
所以
lim(1)tanx limetanxln x e0 1
x x 0
x0
2 验证极限 lim x sin x 存在 但不能用洛必达法则得出 x x
解 lim x sin x lim (1 sin x) 1
x x
x
x
极限 lim x sin x 是存在的 x x
但 lim (x sin x) lim 1 cos x lim (1 cos x) 不存在
x (x)
x 1
x
不能用洛必达法则


x 2 sin 1
3 验证极限 lim
x 存在
x0 sin x
但不能用洛必达法则得出
x2 sin 1
解 lim
x lim
x
x sin 1 1 0 0
x0 sin x x0 sin x
x
x 2 sin 1
极限 lim
x 是存在的
x0 sin x
(x2 sin 1 )
2x sin 1 cos 1
但 lim
x lim
x
x 不存在
x0 (sin x) x0
cos x
不能用洛必达法则
4
讨论函数
f
(x)
1
[ (1 x) x e
1
]x
x 0 在点 x 0 处的连续性

1
e2
x0

1
f (0) e 2
1
1
lim f (x) lim e 2 e 2 f (0)
x0
x0
1
因为
lim
f (x)
lim
[(1
x)
x
1
]x
lim
1[ 1 ln(1 x)1]
ex x
x0
x0 e
x0

lim
1 [1 ln(1 x) 1]
lim
ln(1 x) x
lim
1 1 x
1
lim
1 1
x0 x x
x0
x2
x0 2x
x0 2(1 x) 2
1
所以
lim
f (x)
lim
[(1
x)
x
1
]x
1[ 1 ln(1x)1]
lim e x x
1
e 2
f (0)
x0
x0 e
x0
因此 f(x)在点 x 0 处连续













相关文档
最新文档