对数函数说课稿正式版

合集下载

人教A版数学必修一《对数函数》说课稿课件完美版

人教A版数学必修一《对数函数》说课稿课件完美版
组内互助互评
设计意图
从定义域求解入手, 及时加深对概念的理 解和掌握,为下一环 节教学做好准备。
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
2.启发诱导,自主探索
动脑筋 画对数函数y=log2x 和 y 的lo图g1象x
7
2
6
5
4
3
2
1
演演示示
12
10
8
6
4
2
1
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
1.创设情景,导入新课
引言:随着经济的快速发展,数字与数学已进入普通市民日常生活,如存贷款
问题,股票等.
创设情景:复利是计算利息的一种方式,现假设有本金1万元,每期利息是2.25%,本
利和为y。
❖ 问题一:本利和y随存期x变化的函数关系式为———— ❖ 问题二:根据对数定义,这个函数写成对数的形式是———— ❖ 问题三:若要本利和翻一番,至少要存 期,翻两番呢? ❖ 问题四:存期x是否也是本利和y的函数?解析式是———— ❖ 问题五:用y表示函数,x表示自变量,这个函数的解析式是————
教师分析讲解
学生观察形如y=log1.025x的函 数
师生共同归纳
定义:设a>0且a≠1,形如y=logax的函数叫对数函数,其
定义域为(0,+ ∞ )
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
1.创设情景,导入新课
展示学习目标
识记对数函数的概念、图象和性质;
y
x
o
1
对数函数
学情分析

对数函数及其性质(第一课时)说课稿

对数函数及其性质(第一课时)说课稿

对数函数及其性质(第一课时)说课稿一、教材分析1.《对数函数》在教材中的地位、作用和特点本节内容是在学习了指数函数后,通过具体实例了解对数函数模型的实际背景。

通过本节课的学习,既可以对对数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习《三角函数》打下坚实的概念和图象基础,又因为《对数函数》是进入高中以后学生遇到的第二个系统研究的函数,对高中阶段研究指数函数、对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《对数函数》不仅是本章《基本初等函数》的重点内容,也是高中数学的核心内容,有着不可替代的重要作用。

本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2.教学目标、重点和难点通过初中的学习和高中对集合、函数、指数函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,鉴于学生已有的知识基础和认知能力,根据《普通高中数学课程标准》的要求,我确定本节课的教学目标、教学重点和难点如下:(1)知识目标:①掌握对数函数的概念;②掌握对数函数的图象和性质;③能初步利用对数函数的概念解决实际问题;(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:对数函数的图象和性质。

(5)教学难点:类比画指数函数图象的方法画对数函数的图像。

二、教法设计在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用对数函数的知识,更期望能引领学生进一步掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的。

《对数函数》说课稿(交)

《对数函数》说课稿(交)

《对数函数》说课稿一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。

而对数函数作为这一阶段的重要的基本初等函数之一,在已学习对数、反函数以及指数函数的基础上以类比的方法进行学习,这有利于学生加深学生对函数、反函数认识及函数性质的理解;同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,也是高考必考的内容之一。

本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标教学目标是教学的出发点和归宿,《数学教学大纲》除了要求使学生掌握必要的数学基础知识外,还要求对学生进行能力培养和思想教育。

根据大纲要求,结合教材和学生的水平状况。

我确定了以下教学目标:(1)理解指数函数与对数函数的内在关系;(2)掌握对数函数的概念、图象和性质;(3)培养学生用类比方法探索研究数学问题的素养;(4)提高学生信息检查和整合能力;(5)学习辩证唯物主义观点。

3、重点和难点:重点:对数函数的概念、图象与性质。

难点:指数函数与对数函数的内在的关系。

二、说教法教法的好坏,直接影响课堂教学的质量。

选择教学方法的原则,概括起来有三点:要服务于教学目标,要适合于学生学习,要充分利用环境条件和学校设备。

对于本节课的教法,我主要考虑了以下两方面:(1)教学模式:建构式教学法本节课应用这种教学模式的具体操作程序是:创设问题情景——自主性学习——类比猜想整理——动手画图验证——知识巩固应用。

这种教学模式的特点是:学生在一定的情境背景(已具备对数、反函数以及指数函数的基础)下,通过自学和教师的引导,利用必要的学习资料等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的(即在学习过程中帮助学生很好地掌握对数函数的概念、图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解)。

(2)教学手段:利用计算机多媒体辅助教学。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

对数函数说课稿

对数函数说课稿

对数函数说课稿对数函数是数学中一个重要的概念,它在科学、工程、经济等领域都有广泛的应用。

在高中数学课程中,对数函数通常在函数章节中被引入,作为指数函数的逆运算。

本节课我们将深入探讨对数函数的定义、性质、图像以及应用。

首先,我们从对数函数的定义开始。

对数函数可以定义为指数函数的逆运算。

如果\( a^x = N \)(其中\( a > 0 \)且\( a \neq 1 \)),那么\( x \)被称为\( N \)的以\( a \)为底的对数,记作\( x =\log_a N \)。

这意味着,对数函数是指数函数的解,它描述了在给定底数和结果的情况下,需要多少次乘法才能得到这个结果。

接下来,我们讨论对数函数的性质。

对数函数具有以下性质:1. 对数函数的底数\( a \)必须大于0且不等于1。

2. 对数函数是单调函数,即当\( N \)增加时,\( \log_a N \)也增加。

3. 对数函数的图像总是通过点(1, 0),因为\( \log_a a = 1 \)。

4. 当底数\( a > 1 \)时,对数函数的图像从左到右上升;当底数\( 0 < a < 1 \)时,图像从左到右下降。

对数函数的图像是一条曲线,它的形状取决于底数\( a \)的值。

当底数\( a > 1 \)时,图像在\( y \)轴右侧,随着\( x \)的增加,\( y \)值逐渐增加;当底数\( 0 < a < 1 \)时,图像在\( y \)轴左侧,随着\( x \)的增加,\( y \)值逐渐减少。

在实际应用中,对数函数可以用来解决各种问题,例如计算复利、声音的分贝等级、酸碱度的pH值等。

例如,在金融领域,复利计算公式\( A = P(1 + r/n)^{nt} \)可以通过对数函数转换为\( t =\frac{\log(A/P)}{\log(1 + r/n)} \),从而简化计算过程。

对数函数说课稿一等奖

对数函数说课稿一等奖

对数函数说课稿一等奖对数函数说课稿一一、教材的本质、地位与作用对数函数(第二课时)是xxxx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.二、教学目标根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:学习目标:1、复习巩固对数函数的图像及性质2、运用对数函数的性质比较两个数的大小能力目标:1、培养学生运用图形解决问题的意识即数形结合能力2、学生运用已学知识,已有经验解决新问题的能力3、探索出方法,有条理阐述自己观点的能力德育目标:培养学生勤于思考、独立思考、合作交流等良好的个性品质三、教材的重点及难点对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。

所以确定本节课重点:运用对数函数图像性质比较两数的.大小教学中将在以下2个环节中突出教学重点:1、利用学生预习后的心得交流,资源共享,互补不足2、通过适当的练习,加强对解题方法的掌握及原理的理解另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。

所以确定本节课难点:同真异底的对数比大小教学中会在以下3个方面突破教学难点:1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。

2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。

3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)以下是网友分享的关于对数与对数运算说课稿的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一§2.2.1对数与对数运算说课稿大家好,我是。

,我今天的讲课内容是对数与对数的运算。

我将从以下5个方面来进行今天的说课,第一是教学内容分析,第二是学生的学情分析,第三是教学方法的策略,第四是教学过程的设计,第五的教学反思。

一、教学内容分析对数与对数的运算是人教版高中教材必修一第二章第二节第一课时的内容。

本节课是第一课时,主要讲的就是认识对数和对数的一些基本运算性质。

本节课的学习蕴含着转化化规的数学思想,类比与对比等基本数学方法。

在上节课,我们学习了指数函数以及指数函数的性质,是本节课学习对数与对数的运算的基础,而下节课,我们又将学习对数函数与对数函数的性质,这节课恰好为下节课的学习做了一个铺垫。

二、学生学情分析接下来我将从认知、能力、情感三个方面来进行学生的学情分析。

首先是认知,该阶段的高中生已经学习了指数及指数函数的性质,具备了学习对数的基础知识;在能力方面,高一的学生已经初步具备运用所学知识解决问题的能力,但是大多数同学还缺乏类比迁移的能力;而在情感方面,大多数学生有积极的学习态度,能主动参与研究,但是还有部分的学生还是需要老师来加以引导的。

三、教学方法的策略根据教材的要求以及本阶段学生的具体学习情况,我制定了一下的教学目标。

首先是知识与技能,理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值;接着是过程与方法,通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力;最后是情感态度与价值观,通过对问题转化过程的引导,培养学生敢于质疑、勇于开拓的创新精神。

基于以上的分析,我制定了本节课的重难点。

本节课的教学重点是对数的定义,对数式与指数式的互化,对数的运算法则及其推导和应用;本节课的难点是对数概念的理解和对数运算法则的探究和证明;本节课我所采用的教学方法是探究式教学法,分为以下几个环节:教师创设问题情境,启发式地讲授,讲练结合,引导学生思考,最后鼓励学生自主探究学习。

对数说课稿

对数说课稿

教材分析1地位与作用:对数与对数运算是人教a版,必修1第2.2.1节的内容,本节课是第一课时,主讲对数的性质。

本节课是在学生学习了指数函数及其性质之后学习的,其主要内容是对数概念及指对数互化、对数运算等内容。

本节学习内容蕴含转化化归数学思想,类比与对比等基本数学方法。

对数与指数的互化是对指数函数及其性质的巩固,也是后面学习对数函数的基础。

2学情分析:学生在初中就已学习指数运算,在2.1学习了指数函数的主要性质,对指数相关知识已很清晰;另外,学习函数时就已了解了反函数意义,对学习本课已具备条件。

3教学重难点重点:对数概念的理解,对数基本运算性质的运用。

难点:灵活运用对数与指数的互化并用对数性质求值。

教学目标(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)知识目标:理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值。

能力目标:学生的对比分析、合情推理能力得到加强,体验转化化归思想。

a 3.从定义出发归纳对数恒等式及指对数互换:①2=4=2 x?log24?log222?2②2=2 x?log22?1③一般地:logaan?n可以看出,指对数互化只要按定义要求写即可,如果可写成对数恒等式形式就可化简。

(三)特殊对数1.常用对数log10a 记为:lga 2.自然对数logea 记为:lna (四)从比较大小归纳单调性(相当于对数的单调性)问题4:log23与log25的大小?根据指对数互化:不妨设s= log23, t= log25 st则:2=3<2=5,根据指数函数单调性可知:s<t,即log23<log25 学生小组讨论由特殊到一般地大小规律。

一般地:①当a>1时,且m>n>0,logam?logan②当0<a<1时,且m>n>(五)指数互化巩固性例练例14-6①5=625 ②2=1/64 ③log1162xx2 例2:求下列各式中的x的值:2①log64x= ②logx8?6 3 (六)回归引入问题问题5:不等式3+2*3-9&gt;0xx分两边求解:右边即3&lt;3+2=log3x 左边:从指数函数图像可以看出:0<<log3(3?23)} (七)总结篇二:对数的概念-说课稿对数与对数的运算尊敬的各位老师,大家好:今天我说课的内容是对数的概念,下面我从教材分析、目标分析、教学程序、板书设计、评价反思五个方面汇报我对这节课的教学设想,主要阐述了教什么,怎么教,为什么这么教的问题。

教师说课比赛 对数函数第一课时说课稿 教案

教师说课比赛 对数函数第一课时说课稿 教案

对数函数(第一课时)一、教材分析1、教材的地位与作用函数是高中数学的核心,对数函数是重要的基本初等函数之一,它是学生已学过指数函数及对数与常用对数基础上引入的,这为过渡到本节的学习起到辅垫作用;“对数函数”这节教材是在没有学习反函数的基础上研究指数函数和对数函数的自变量与因变量之间的关系。

学习本节使学生的知识体系更加完整、系统,同时又是指数函数知识的拓展和延伸,它是解决有关自然科学领域中实际问题的重要工具。

2、教学目标的确定及依据通过对教材的研究和结合学生的实际情况等方面的要求,本节的知识目标:理解对数函数的概念,掌握对数函数的图象和性质,在掌握性质的基础上学会初步应用。

能力目标是:通过对数函数的学习,培养学生数形结合,分类讨论的数学思想;注重培养学生分析、类比、归纳的能力。

情态及价值观目标:用联系的观点分析问题,认识事物之间的转化,在某某和谐的教学气氛中,培养合作意识,感受学习乐趣,动脑思考的良好个性品质。

3、教学重点、难点重点:对数函数的概念,图象和性质难点:①指数函数与对数函数的内在关系②通过已知的指数函数图象和性质再类比对数函数的图象和性质。

二、教法分析数学是一门培养和发展人的思维的重要学科,因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”。

1、教法——发现法发现法的教学方法,体现了认知心理学的应用。

在教学过程中,首先创设一个问题的情境,引导学生积极思考,容易激发其兴趣,唤起其有意注意,兴趣可调动学习积极性。

由学生熟悉的指数函数知识逐步过渡到对数函数知识的认识,其次,借助老师和学习伙伴的帮助,发挥其主动性来对知识的“发现”和接受(即在学习过程中帮助学生很好地掌握对数函数的概念,图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解)2、学法启发式与独立自主学习,合作交流学习相结合提出富有启发性的问题激发他们的独立自主探索,与合作交流。

以学生作为教学主体,教师作为教学主导,在讨论中以教师的点拔如“类比法”使学生能够找到解决问题的方法,从而解决所提问题,通过加强合作交流,反馈练习法,激发他们手脑并用,引发和加强学生的有意注意。

对数函数说课

对数函数说课

《对数的概念》(第一课时)说课稿作者:颜艺梅时间:2014/7/6各位老师:大家好!本节课我说课的内容是高中数学必修1第二章第2.2节《对数的概念》第一课时的内容。

在这节课中,我将从教材分析,教学目标,教法学法、教学过程、板书设计、说课心得这六个方面加以分析说明。

一、教材分析1、教材的地位和作用函数是高中数学的一个重要内容,贯穿整个高中阶段,而对数又是一个新的知识。

本节内容是在学习了指数函数后,通过具体实例了解对数函数模型的实际背景,学习对数概念,进而学习一类新的基本初等函数-----对数函数。

由于对数与指数是对应的,所以在指数函数的基础上学习对数有利于巩固指数函数,加深对指数函数的理解,也为进一步学习对数函数打下坚实的基础。

因此本节课的内容十分重要,起到承上启下的作用。

另外《对数》与我们日常生活也息息相关,例如人口问题,地震问题,考古问题,PH的测定等问题,充分体现了数学的应用价值。

因此,学习对数的概念有着广泛的意义。

2、教学的重点和难点通过指数函数引入对数的概念,让学生理解对数的定义、对数式与指数式互化、对数的运算性质及对数的初步应用是本节课的重点。

而熟练掌握对数式与指数式的互化又是本节课的难点。

针对本节课的重难点,我借助计算器和多媒体的演示,让学生更好地了解对数在现实生活中的意义,这样才能更好地突破重难点。

二、教学目标分析1、知识目标:理解对数的定义,掌握对数式与指数式的互化,对数的运算性质及对数的初步应用2、能力目标:培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想及类比的思想。

3、情感目标:培养学生的学习兴趣,激发探究知识的热情,形成良好的团队合作精神。

三、教法学法分析1、教法分析由于《对数的概念》这节课的特殊地位,在本节课的教法设计中,我通过课本的“思考”引入,让学生从人口问题中感受到对数函数的现实背景,并引出对数的概念。

采用直观教学法、启发发现法、课堂讨论法等教学方法。

(完整版)对数函数说课稿正式版

(完整版)对数函数说课稿正式版

《对数函数及其性质》说课稿一、说教材1、教材出处及其所处地位和作用对数函数及其性质出自人教版高中数学(必修1)第一册第二章“基本初等函数”第二节“对数函数”中的内容函数是中学数学中最重要的基本概念之一,也是高考重要考点之一。

本章学习是在学生初中完成函数的第一阶段学习的基础上,进行第二阶段的函数学习。

而对数函数及其性质是在学习了函数概念、性质(即单调性和奇偶性)初等函数指数函数及其性质、对数概念之后进行学习的。

因此学好本节内容,有利于学生加深对函数概念、性质及指数函数及其性质的认识,能进一步完善学生对函数认识的系统性,加深对类比、数形结合等思想方法的理解;并且为以后学习幂函数、函数图像的变换、复合函数和导数的学习打好基础,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标(1)知识技能:①理解对数函数的概念;②掌握对数函数的图像和性质;(2)过程方法:①渗透数形结合的基本数学思想方法②培养学生观察、类比、猜测、归纳的能力;(3)情感态度:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学的应用价值。

3、重点和难点:重点:对数函数的概念,对数函数的图像与性质。

难点:对数函数的概念,底数a对对数函数性质的影响函数概念是学生较难理解的知识点,而对数函数的性质是由其概念所决定,因此我把对数函数的概念作为重点和难点,利用函数概念类比对数函数的概念,利用指数函数的图像和性质类比对数函数的图像和性质,这是掌握重点的关键,而借助多媒体直观教学是突破底数a对对数函数性质的影响这一难点的关键。

二、说教法为了使学生能掌握好本节内容,充分发挥学生的主动性,积极性和探索精神。

指导学生运用类比、分类讨论、数形结合等思想方法。

《对数函数》说课稿

《对数函数》说课稿

《对数函数》说课稿对数函数说课稿一、教学目标- 理解对数函数的定义、性质和应用。

- 掌握对数函数的图像、增减性及其特殊值。

- 能够应用对数函数解决实际问题。

二、教学重点和难点重点- 对数函数的定义和性质。

- 对数函数图像的绘制和分析。

- 对数函数的增减性及其特殊值。

难点- 对数函数的应用。

- 解决实际问题的对数函数模型建立。

三、教学内容和方法内容1. 对数函数的定义和性质:- 对数函数的定义和反函数关系。

- 对数函数的性质:定义域、值域、单调性等。

- 对数函数与指数函数的关系。

2. 对数函数的图像和分析:- 绘制对数函数的基本图像。

- 分析对数函数的图像特点:渐近线、拐点等。

3. 对数函数的增减性及其特殊值:- 讨论对数函数的增减性。

- 求解对数函数的特殊值。

4. 对数函数的应用:- 对数函数在科学计算中的应用。

- 对数函数在等比数列或等比数列中的应用。

方法- 教师讲解结合示例分析,引导学生理解对数函数的定义和性质。

- 利用计算工具或手绘方法绘制对数函数的图像,让学生感受对数函数的变化规律。

- 针对对数函数的增减性进行讨论和练,强调求解特殊值的方法和意义。

- 引导学生应用对数函数解决实际问题,培养学生的应用能力和创新思维。

四、学情分析学生在前一阶段已研究过指数函数的相关知识,对指数函数的性质和应用有一定的了解。

通过对数函数的研究,可以进一步加深学生对指数函数与对数函数的关系的理解,并提高学生的数学分析和问题解决能力。

五、教学过程1. 导入:通过复指数函数的相关知识,引导学生思考指数函数和对数函数的关系。

2. 知识讲解:讲解对数函数的定义和性质,引导学生理解对数函数的基本概念。

3. 图像绘制:利用计算工具或手绘方法绘制对数函数的图像,并对其特点进行分析。

4. 增减性和特殊值:讨论对数函数的增减性,求解对数函数的特殊值,并解释其意义。

5. 应用练:引导学生应用对数函数解决实际问题,并结合实例进行讲解和练。

对数函数说课稿

对数函数说课稿

《对数函数》说课稿一、教材分析本节内容是在学习指数函数、对数的基础上引入的。

对数函数的学习,不但是对函数这一重要思想的进一步认识与理解,使学生的知识体系更加完善、系统,同时,它又是学生进一步学习,解决生产和生活中实际问题的重要工具。

为此,我制定了以下教学目标。

1、在探索指数与对数内在联系的基础上,掌握对数函数的概念、图象、性质并能简单应用。

2、在学习过程中,体会由特殊到一般、类比联想、数形结合、分类讨论等数学思想方法,发展学生的形象思维、逻辑思维能力,提高他们的信息检查和整合能力。

3、在民主、和谐的教学气氛中,促进师生的情感交流。

教学重点:对数函数的概念、图象和性质. 教学难点:指数函数和对数函数的内在关系。

二、指导思想和教学方法1、树立以学生发展为本的思想。

通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与知识的形成过程。

2、利用多媒体辅助教学,采用“从特殊到一般”、“从具体到抽象”的方法,启发引导学生思考、分析、探索、归纳,并在教学中渗透“类比联想”、“数形结合”及“分类讨论”的数学思想方法。

三、学法指导本节课采用学生经过观察分析、类比联想、协作学习、自已发现结论的学习方法,以培养学生逻辑思维能力、动手实践能力和探索精神。

四、教学过程分以下几个环节进行 1、提出问题首先给出一个问题:在细胞分裂过程中,细胞个数y 是分裂次数x 的指数函数2xy =。

若研究其相反问题:知道分裂后细胞个数y ,要求其分裂次数x 的值,即有:22log xyy x =→=。

上述函数中,y 是自变量,x 是y 的函数,但习惯上,用x 表示自变量,y 表示它的函数,因此对上式进行改写:22lo glo g x y y x=→=。

设计意图:这里,以学生熟悉的问题为背景,以旧有知识为基点,顺利切入学生的最近发展区,使学生亲历了对数函数模型的形成过程,初步理解对数函数的概念,感受研究对数函数的意义。

高一数学教案对数函数说课5篇

高一数学教案对数函数说课5篇

高一数学教案对数函数说课5篇最新高一数学教案对数函数说课1对数函数教案1. 掌握对数函数的定义和图象,理解并记忆对数函数的性质。

2. 培养分析推理能力3. 培4. 重点:理解对数函数的定义,掌握对数函数的图像和性质。

5. 难点:底数a对数函数的影响。

首先复习对数的定义师:上次讲细胞分裂问题时得到细胞个数y是分裂次数x的.函数。

今天我们来研究相反的问题,如果要求这种细胞经过多次分裂,大约可以得到1万个,10万个等等,那,分裂次数可以用怎样的关系式来表示呢?生:表达式是x=log ,表示分裂次数x是细胞个数y的函数师:如果用x表示自变量,y表示函数,此式又可化为y=logax ,那它与指数函数有何关系?函数y=log ax的定义域是什么?生:它们互为反函数,由于y= 的值域是{y|y>0}因此y=logax的定义域是{x|x>0} 师:对,由此我们就可以得到新的函数的定义。

(引入课题《对数函数的概念及性质》)一般地,函数y=log ax叫做对数函数,(a>0且a≠1)其中是自变量,定义域是{x|x>0}高一数学教案对数函数说课2学习对数函数的教案设计教学目标1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.3. 通过对数函数关于性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.教学重点,难点重点是理解对数函数的定义,掌握图像和性质.难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.教学方法启发研讨式教学用具投影仪教学过程一. 引入新课今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.反函数的实质是研究两个函数的关系,因此自然我们应从大家了解的函数出发,再研究其反函数.这个了解的函数就是指数函数.提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:由得 .又的值域为,所求反函数为 .那我们今天就是研究指数函数的反函数-----对数函数.二.对数函数的图像与性质 (板书)1. 作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图.具体操作时,要求学生做到:(1) 指数函数和的图像要尽量准确(关键点的`位置,图像的转变趋势等).(2) 画出直线 .(3) 的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:2. 草图.教师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:然后明确提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)3. 性质(1) 定义域:(2) 值域:由以上两条可说明图像位于轴的右侧.(3) 截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线.(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.(5) 单调性:与关于.当时,在上是增函数.即图像是上升的当时,在上是减函数,即图像是下降的.之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:当时,有 ;当时,有 .学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)对图像和性质有了一定的了解后,一起来看看它们的应用.三.巩固练习练习:若,求的取值范围.四.小结五.作业略高一数学教案对数函数说课3对数运算性质的应用教案设计一.内容及其解析(一)内容:对数运算性质的应用。

对数函数的说课稿

对数函数的说课稿

对数函数的说课稿对数函数的说课稿篇1教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是A.0<a<23B. 23 <a<1C.0<a<23 或a>1D.a>23解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:C[例2]三个数60.7,0.76,log0.76的大小顺序是A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:D[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga | =1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53又a=-1,f(x)=0满足题意,a=1不合题意.所以a的取值范围是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x) 当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]解:原方程可化为(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1是增根∴x=2是原方程的根.[例7]解方程log2(2-x-1) (2-x+1-2)=-2 解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log254 或x=-log23对数函数的说课稿篇2教学目标:(一)教学知识点:1、对数函数的概念;2.对数函数的图象和性质.(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化教学重点:对数函数的图象和性质教学难点:对数函数与指数函数的关系教学方法:联想、类比、发现、探索教学辅助:多媒体教学过程:一、引入对数函数的概念由学生的预习,可以直接回答“对数函数的概念”由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:问题:1.指数函数是否存在反函数?2.求指数函数的反函数①;指出反函数的定义域。

对数函数说课稿

对数函数说课稿

对数函数说课稿对数函数说课稿对数函数说课稿(一)一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。

而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标的确定及依据依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:(1)理解对数函数的概念、掌握对数函数的图象和性质。

(2)培养学生自主学习、综合归纳、数形结合的能力。

(3)培养学生用类比方法探索研究数学问题的素养;(4)培养学生对待知识的科学态度、勇于探索和创新的精神。

(5)在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

难点:底数a对对数函数的图象和性质的影响;关键:对数函数与指数函数的类比教学[关键]由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。

二、说教法教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。

根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。

对数函数及其性质说课稿

对数函数及其性质说课稿

对数函数及其性质(说课稿)2.2对数函数及其性质各位老师,大家好!今天我说课的内容是人教版必修(一)对数函数及其性质第一课时,下面,我将从教材分析、教法分析、学法分析、教辅手段、教学过程、板书设计等六个方面对本课时的教学设计进行说明.一、教材分析1、教材的地位和作用函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.2、教学目标的确定及依据结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下的教学目标:(1) 知识与技能:进一步理解对数函数的意义,掌握对数函数的图像与性质,初步利用对数函数的图像与性质来解决简单的问题。

(2) 过程与方法:经历探究对数函数的图像与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;渗透类比、数形结合、分类讨论等数学思想方法。

(3) 情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。

3、教学重点与难点重点:对数函数的意义、图像与性质.难点:对数函数性质中对于在与两种情况函数值的不同变化.二、教法分析本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,采用“从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。

三、学法分析本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)类比学习:与指数函数类比学习对数函数的图像与性质.(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.四、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方法进行教学。

《对数函数》说课教案

《对数函数》说课教案

《对数函数》说课教案鸡西市第一中学王健一、教材分析(一)教材的地位和作用指对互化是指数与对数最紧密的关系,从反函数角度理解指数函数与对数函数的关系,是最恰当的方法。

由于指数函数与对数函数是高中数学函数一章里最重要的两个函数,因此,从指数函数过渡到对数函数,再由对数函数回归到指数函数,是学习知识不断升华的过程,也是研究问题非常好的方法。

学习时要十分注重类比的思想的应用。

(二)说教学目标确实立及依据1、知识目标:使学生初步掌握对数函数的定义,会画对数函数的图象,初步掌握对数函数的性质.进一步理解反函数概念及函数和反函数图象间的关系.通过比较、对照的方法,学生更好地掌握函数的定义、图象及性质。

提高学生对数形结合思想的认识和应用意识。

2、能力目标:通过指数函数与对数函数关系,让学生比较、对照,培养学生类比的能力;在问题探究的过程中体验数学活动的过程,发展合情推理和演绎推理的能力;.3、情感目标:创设情境,引起学生的兴趣,并引导学生探索研究知识,这种方式方法是教学的高境界。

通过探究学习培养学生勇于探索的科学态度及创新精神,激发兴趣,学会欣赏数学美。

(三)说教材的重点、难点以及确立的依据1、教学重点:对数函数的定义、图象及性质。

2、教学难点:由对数函数与指数函数互为反函数这一关系,利用指数函数图象及性质得到对数函数的图象及性质。

3、确立依据:学生的特点及大纲的要求。

二、教材处理1、由指数函数的反函数引入对数函数,学生易于接受,符合学生认知结构的需要,同时教师通过课件导入,把指数函数图象与性质形象地表露给学生,目的在于激发学生探索对数函数图象与性质的欲望。

2、同指数函数一样,在学习了函数定义之后,我们要画函数的图象.应该如何画对数函数的图象呢?引导学生画图,然后进一步观察,归纳,总结,学生参与意识浓厚,这样主动学习的方法有助于学生理解消化知识。

3、学生主动学习并接受对数函数后,很自然的就会进一步提出问题,从而进一步探究知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《对数函数及其性质》说课稿
一、说教材
1、教材出处及其所处地位和作用
对数函数及其性质出自人教版高中数学(必修1)第一册第二章“基本初等函数”第二节“对数函数”中的内容
函数是中学数学中最重要的基本概念之一,也是高考重要考点之一。

本章学习是在学生初中完成函数的第一阶段学习的基础上,进行第二阶段的函数学习。

而对数函数及其性质是在学习了函数概念、性质(即单调性和奇偶性)初等函数指数函数及其性质、对数概念之后进行学习的。

因此学好本节内容,有利于学生加深对函数概念、性质及指数函数及其性质的认识,能进一步完善学生对函数认识的系统性,加深对类比、数形结合等思想方法的理解;并且为以后学习幂函数、函数图像的变换、复合函数和导数的学习打好基础,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标
(1)知识技能:①理解对数函数的概念;②掌握对数函数的图像和性质;
(2)过程方法:①渗透数形结合的基本数学思想方法②培养学生观察、类比、猜测、归纳的能力;
(3)情感态度:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学的应用价值。

3、重点和难点:
重点:对数函数的概念,对数函数的图像与性质。

难点:对数函数的概念,底数a对对数函数性质的影响
函数概念是学生较难理解的知识点,而对数函数的性质是由其概念所决定,因此我把对数函数的概念作为重点和难点,利用函数概念类比对数函数的概念,利用指数函数的图像和性质类比对数函数的图像和性质,这是掌握重点的关键,而借助多媒体直观教学是突破底数a对对数函数性质的影响这一难点的关键。

二、说教法
为了使学生能掌握好本节内容,充分发挥学生的主动性,积极性和探索精神。

指导学生运用类比、分类讨论、数形结合等思想方法。

本节主要采用直观演示法和启发诱导法。

借助多媒体教学,直观从函数概念引出对数函数概念,形象、清晰演示出底数a对对数函数性质的影响。

在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题的形式加以引导点拨。

三、说学法
就本节课教学我将从以下几个方面对学生进行学法指导:
(1)通过具体事例,类比函数的概念,自然引出对数函数的定义,并加深了对对数概念的理解
(2)通过比较、对照的方法,引导学生结合图像类比指数函数性质,探索研究对数函数的性质
(3)通过图像变换特征,数形结合在动态变化过程中让学生理解对数函数的图像和性质.
四、说教学过程
1、创设情境、引入课题:
首先,通过具体事例,激发学生的好奇心,开拓学生的知识面。

情景:考古学家在马王堆发掘的“沉睡”了近2200年的古长沙国丞相夫人辛追。

其次,通过两个问题:(1)那么考古学家是怎样推测出辛追距今2200年的呢?(2)t 是关于p 的函数?为什么?类比函数的概念,自然引出一个特殊的函数——对数函数。

之后,再通过一个具体的实例:在前面提到的放射性物质,经过的时间x 年与物质剩余量y
的关系式为x y 84.0=,我们也可以把它改为对数式,y x 84.0log =,其中x 年也可以看作
物质剩余量y 的函数.得到另一个对数函数——y x 84.0log =,同时让学生发现,对数函数模型在解决现实生活的实例中有广泛的应用,激发他们的学习兴趣。

最后,我设计两个问题,体现了由特殊到一般的数学思想,启发学生进行归纳概括,得出对数函数的一般形式,从而引入课题。

问题一:这两个函数有什么共同点?
问题二:如果用x 表示自变量,用y 表示函数,你能得到上述两个函数的一般式吗?
2、抽象归纳,引出概念:
首先,提问:你能根据指数函数的定义给出对数函数的定义吗?从而引导学生类比指数函数的定义,得出对数函数的定义。

即:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).
其次,设计两个思考:(1).在函数的定义中,为什么要限定a >0且a ≠1.
(2).为什么对数函数log a y x =(a >0且a ≠1)的定义域是(0,+∞).
帮助学生剖析对数函数的概念,使学生抓住其本质,便于理解记忆。

再次,运用教材上的 例题1:求下列函数的定义域
(1))2
log a y x = (2)log (4)a y x =- (a >0且a ≠1)
出了教材原有的这两道题以外,我增加一道题:(3))2(log x y x -=
及时检验与巩固学生对对数函数定义中底数和定义域的限制,加深对对数函数定义的理解。

3.探索研究,概括性质:
首先,设计一个探究;同桌之间互相合作,同一直角坐标系中画出下列两组函数的图像,并观察各组函数的图像,探究他们之间的关系.(1)x y y x
2log ;2== ;(2)x y y x 2
1log ,21=⎪⎭⎫ ⎝⎛=。

采用“从特殊到一般”、“从具体到抽象”的方法,引导学生归纳出:当,1,0≠>a a 函数x a y =与x y a log =的图像关于直线y=x 对称。

培养学生观察、分析、归纳的能力。

要求学生根据这种关系作出对数函数
log a y x =(a >0且a ≠1)的图像,并对照指数函数
的性质,总结归纳对数函数的性质.
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,借助多媒体展示底数a 对对数函数性质的影响,通过图像变换特征,数形结合,在动态变化过程中让学生理
解对数函数的图像和性质,突破教学难点)
其次,设计两个问题,
问题一:对数函数x y a log =(,1,0≠>a a ),当1>a 时,x 取何值,y >0,x 取何值,y 0.<,当10<<a 呢?
问题二:对数式b a log 的值的符号与a ,b 的取值之间有何关系?请用一句简洁的话语叙述. 在教材原有性质的基础上,引申出函数值和自变量的变化等情况,为学生在解决相关问题时做铺垫,适当增加相关知识。

再次,再设计一个探究:
采用多媒体投缘,在同一坐标系中画出下列对数函数的图像,探究他们之间的关系. x y 2log = x
y 21log = x y 3log = x
y 31log =
采用“从特殊到一般”、“从具体到抽象”的方法,引导学生归纳出:当,1,0≠>a a 函数x y a log =与x y a
1log =的图像关于x 轴对称。

进一步培养学生观察、分析、归纳的能力。

4.知识整合,例题教学
在这一环节,我主要设计一道例题,考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法.同时规范解题格式.
例2.比较下列各组中两个值的大小
(1)4.3log 2与5.8log 2(2)8.1log 3.0与7.2log 3.0
5.课堂小结
1、学生自己谈收获和体会,归纳本节内容,从整体上认识本节所学知识。

2、强调底数相同时,指数函数的图像和对数函数的图像是关于直线y=x 对称的,一方面,加深前后知识之间的联系,另一方面,引出反函数的概念:我们把这种关系称为互为反函数,
也就是说:函数x a y =称为x y a log =的反函数,反之,函数x y a log =也称为x a y =的
反函数.一般地,如果函数)(x f y =存在反函数,那么它的反函数记作为)(1x f y -=
6.布置作业与课后练习
作业: P74.习题2.2 7,8
作业按循序渐进的原则布置,既巩固本节课所学知识,又培养自觉学习的习惯,在解题能力方面也得到锻炼。

相关文档
最新文档