最新高一数学下期末试题含答案

合集下载

新高一数学下期末试卷(含答案)

新高一数学下期末试卷(含答案)

新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。

4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。

5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。

6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。

7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。

8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。

9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。

10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。

分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。

因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。

顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。

而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。

高一下期末数学试卷含答案解析

高一下期末数学试卷含答案解析
则0≤α<π,且tanα= ,故α=60°,
故选B.
3.在正项等比数列{an}中,若a2=2,a4﹣a3=4,则公比为( )
A.2B.1C. D.
【考点】等比数列的通项公式.
【分析】利用等比数列的通项公式及其性质即可得出,
【解答】解:设正项等比数列{an}的公比为q>0,
∵a2=2,a4﹣a3=4,∴ =2q2﹣2q=4,
22.已知A(﹣1,0),B(1,0),圆C:x2﹣2kx+y2+2y﹣3k2+15=0.
(Ⅰ)若过B点至少能作一条直线与圆C相切,求k的取值范围.
(Ⅱ)当k= 时,圆C上存在两点P1,P2满足∠APiB=90°(i=1,2),求|P1P2|的长.
-学年河北省沧州市高一(下)期末数学试卷
参考答案与试题解析
化为q2﹣q﹣2=0,解得q=2.
故选;A.
4.若a>b,则下列不等式成立的是( )
A.a2>b2B. C.lga>lgbD.
【考点】不等关系与不等式.
【分析】利用不等式的性质和指数函数的单调性就看得出.
【解答】解:∵a>b,∴2a>2b>0,∴ ,
故D正确.
故选D.
5.若直线l∥平面α,直线m⊂α,则l与m的位置关系是( )
A. B. C. D.3
【考点】由三视图求面积、体积.
【分析】由三视图知该几何体是一个长方体截去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.
【解答】解:由三视图知几何体是一个长方体截去一个三棱锥所得的组合体,
且长方体长、宽、高分别是1、1、3,
三棱锥的底面是等腰直角三角形、直角边是1,三棱锥的高是1,
A.2B.1C. D.

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。

福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)

福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)

福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。

2022-2023学年山东省济南市高一(下)期末数学试卷【答案版】

2022-2023学年山东省济南市高一(下)期末数学试卷【答案版】

2022-2023学年山东省济南市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =11+2i对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客( ) A .1000人B .300人C .200人D .100人3.设α,β为两个平面,则α⊥β的充要条件是( ) A .α过β的一条垂线B .α,β垂直于同一平面C .α内有一条直线垂直于α与β的交线D .α内有两条相交直线分别与β内两条直线垂直 4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .355.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( )A .π3B .2π3C .π3或2π3D .无解6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心B .重心C .内心D .外心7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=010.先后抛掷质地均匀的硬币两次,则下列说法正确的是( ) A .事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B .事件“至少一次正面向上”与事件“至少一次反面向上”互斥C .事件“两次正面向上”与事件“两次反面向上”互为对立事件D .事件“第一次正面向上”与事件“第二次反面向上”相互独立11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是( )A .平均数的估计值为30B .众数的估计值为35C .第60百分位数估计值是32D .随机选取这100名学生中有25名学生体育活动时间不低于40分钟12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 .14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 . 15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 .16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i ,y i 分别为甲,乙小区抽取的第i 户家庭近7天用于垃圾分类的总时间,s x 2,s y 2分别为甲,乙小区所抽取样本的方差,已知x =18∑ 8i=1x i =200,s x 2=18∑ 8i=1(x i −x)2=200,y =195,s y 2=210,其中i =1,2,⋯,8.(1)若a ≤b ,求a 和b 的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z 和方差s z 2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x 1,s 12;n ,x 2,s 22,总的样本平均数为ω,样本方差为s 2,则s 2=m m+n [s 12+(x 1−ω)2]+n m+n[s 22+(x 2−ω)2].21.(12分)如图1,在等腰△ABC 中,AC =4,A =π2,O ,D 分别为BC 、AB 的中点,过D 作DE ⊥BC 于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH)=32,点B为线段AD的中点,AC=√3OB=3,sin∠ACOsin∠AOB=32,求cos A.2022-2023学年山东省济南市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z=11+2i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:z=11+2i=1−2i(1+2i)(1−2i)=15−25i,它在复平面内对应点为(15,−25),在第四象限.故选:D.2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客()A.1000人B.300人C.200人D.100人解:依题意济南天下第一泉风景区应抽取游客1500×100100+30+20=1000(人).故选:A.3.设α,β为两个平面,则α⊥β的充要条件是()A.α过β的一条垂线B.α,β垂直于同一平面C.α内有一条直线垂直于α与β的交线D.α内有两条相交直线分别与β内两条直线垂直解:由α⊥β可得α经过β的一条垂线,反之若α经过β的一条垂线,由面面垂直的判定定理可得α⊥β,故A正确;α,β垂直于同一个平面,可得α,β平行或相交,故B错误;α内有一条直线垂直于α与β的交线,可得α,β不一定垂直,故C 错误; α内有两条相交直线分别与β内两条直线垂直,可得α,β平行或相交,故D 错误. 故选:A .4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .35解:袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球, 从中不放回地依次随机摸出2个球, 第二次摸到红球的情况有两种:①第一次摸到红球,第二次摸到红球,概率为:P 1=35×24=310, ②第一次摸到黄球,第二次摸到红球,概率为:P 2=25×34=310, 则第二次摸到红球的概率为P =P 1+P 2=310+310=35. 故选:D .5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( ) A .π3B .2π3C .π3或2π3D .无解解:∵B =π4,b =1,c =√62,由正弦定理有:bsinB=c sinC,∴sinC =csinB b =√62×√221=√32,∵c >b ,∴C >B ,∴C ∈(π4,π),∴C =π3或2π3.故选:C .6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心 B .重心C .内心D .外心解:如图所示:因为SO ⊥平面ABC ,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等, 则∠SAO =∠SBO =∠SCO ,AO =SO tan∠SAO ,BO =SO tan∠SBO ,CO =SOtan∠SCO,故AO =BO =CO ,故O 是△ABC 的外心. 故选:D .7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)解:∵B =π3,c =2, ∴由正弦定理得asinA=b sinπ3=2sinC,∴b =√3sinC ,a =2sinA sinC =2sin(π3+C)sinC =√3cosC+sinCsinC, ∴a +b =√3sinC+√3cosC+sinCsinC=√3(cosC+1)sinC+1=2√3cos 2C 22sin C 2cos C 2+1=√3tan C 2+1,在锐角△ABC 中,{0<C <π20<2π3−C <π2,解得π6<C <π2, ∴π12<C 2<π4,即tanπ12<tan C2<1,又tan π6=2tanπ121−tan 2π12=√33,解得tan π12=2−√3或tan π12=−2−√3(不合题意,舍去), ∴2−√3<tan C2<1,∴1<1tan C 212−3=2+√3,∴√3+1<√3tan C 2+1<4+2√3,即√3+1<a +b <4+2√3,∴√3+3<a +b +c <6+2√3,故△ABC 的周长的取值范围为(√3+3,6+2√3). 故选:C .8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1解:由题意得QE ,QF ,QG 均最小时,平方和最小,过点Q 分别作平面P AB ,平面P AD ,平面ABCD 的垂线,垂足分别为E ,F ,G , 连接AQ ,因为P A ⊥面ABCD ,BC ⊂平面ABCD ,所以P A ⊥BC ,因为底面ABCD 为正方形,所以AB ⊥BC ,又因为P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥面P AB ,因为QE ⊥平面P AB ,则QE ∥BC ,又因为点Q 在PC 上,则点E 应在PB 上, 同理可证F ,G 分别位于PD ,AC 上, 从而补出长方体EQFJ ﹣HGIA ,则AQ 是以QE ,QF ,QG 为共点的长方体的对角线,则AQ ²=QE ²+QF ²+QG ², 则题目转化为求AQ 的最小值,显然当AQ ⊥PC 时,AQ 的最小值, 因为四边形ABCD 为正方形,且P A =AB =1,则AC =√2, 因为P A ⊥面ABCD ,AC ⊂面ABCD ,所以P A ⊥AC , 所以PC =√PA 2+AC 2=√3, 则直角三角形P AC 斜边AC 的高AQ =1×√2√3=√63,此时AQ 2=23, 则QE ²+QF ²+QG ²的最小值为23,故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=0解:ω=−12+√32i ,则ω2=(−12+√32i)=−12−√32i ,ω2≠ω,故C 错误; |ω|=√(−12)2+(√32)2=1,故A 正确;ω3=ω2•ω=(−12−√32i)(−12+√32i)=1,故B 错误; ω2+ω+1=−12−√32i −12+√32i +1=0,故D 正确.故选:AD.10.先后抛掷质地均匀的硬币两次,则下列说法正确的是()A.事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B.事件“至少一次正面向上”与事件“至少一次反面向上”互斥C.事件“两次正面向上”与事件“两次反面向上”互为对立事件D.事件“第一次正面向上”与事件“第二次反面向上”相互独立解:根据题意,依次分析选项:对于A,事件“恰有一次正面向上”即“一次正面向上、一次反面向上”,同样,事件“恰有一次反面向上”也是“一次正面向上、一次反面向上”,两个事件相等,A正确;对于B,事件“至少一次正面向上”,即“一次正面向上、一次反面向上”和“两次都是正面向上”,事件“至少一次反面向上”,即“一次正面向上、一次反面向上”和“两次都是反面向上”,两个事件不互斥,B错误;对于C,事件“两次正面向上”与事件“两次反面向上”不是对立事件,还有一种情况“一次正面向上、一次反面向上”,C错误;对于D,由相互独立事件的定义,事件“第一次正面向上”与事件“第二次反面向上”相互独立,D正确.故选:AD.11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是()A.平均数的估计值为30B.众数的估计值为35C.第60百分位数估计值是32D.随机选取这100名学生中有25名学生体育活动时间不低于40分钟解:对于A,由频率分布直方图可知平均数的估计值为:5×0.1+15×0.18+25×0.22+35×0.25+45×0.2+55×0.05=29.2,故A 错误;对于B ,由频率分布直方图可知[30,40)的频率最大,因此众数的估计值为35,故B 正确; 对于C ,由频率分布直方图得从第一组到第六组的频率依次是0.1,0.18,0.22,0.25,0.2,0.05, 所以第60百分位数估计值m 在[30,40)内,所以0.1+0.18+0.22+(m ﹣30)×0.025=0.6,解得m =34,故C 错误;对于D ,随机选取这100名学生中体育活动时间不低于40分钟的人数为100×(0.2+0.05)=25,故D 正确. 故选:BD .12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32解:对于A 选项,在△BCD 中,BC =AB =2,CD =√6,cos∠CBD =14, 由余弦定理可得CD 2=BC 2+BD 2﹣2BC •BD cos ∠CBD , 即4+BD 2−4BD ×14=6,即BD 2﹣BD ﹣2=0,因为BD >0,解得BD =2, 取AB 的中点E ,连接CE 、DE ,如下图所示:因为△ABC 为等边三角形,E 为AB 的中点,所以,CE ⊥AB ,又因为CD ⊥AB ,CD ∩CE =C ,CD ,CE ⊂平面CDE ,所以,AB ⊥平面CDE , 因为DE ⊂平面CDE ,所以,DE ⊥AB , 所以,二面角D ﹣AB ﹣C 的平面角为∠CED ,因为E 为AB 的中点,所以,AD =BD =2,故△ABD 也是边长为2的等边三角形, 所以DE =√AD 2−AE 2=√4−1=√3,CE =√AC 2−AE 2=√4−1=√3, 又因为CD =√6,所以,CE 2+DE 2=CD 2,则CE ⊥DE , 故二面角D ﹣AB ﹣C 为π2,A 对;对于B 选项,设△ABC 、△ABD 的中心分别为点G 、H ,分别过点G 、H 作GO ∥DE 、HO ∥CE ,设GO ∩HO =O , 因为CE ⊥DE ,CE ⊥AB ,AB ∩DE =E ,AB 、DE ⊂平面ABD ,所以,CE ⊥平面ABD ,因为HO ∥CE ,则OH ⊥平面ABD ,同理,OG ⊥平面ABC , 所以,O 为三棱锥D ﹣ABC 的外接球球心, 由等边三角形的几何性质可知,HE =13DE =√33,同理,GE =13CE =√33,因为OH ∥GE ,OG ∥EH ,HE =GE =√33,GE ⊥HE , 所以,四边形OHEG 为正方形,且OH =GE =√33, 又因为DH =DE −HE =√3−√33=2√33, 因为CE ⊥DE ,OH ∥CE ,则OH ⊥DE ,则OD =√OH 2+DH 2=√(33)2+(233)2=√153, 所以,三棱锥D ﹣ABC 的外接球半径为√153,因此,三棱锥D ﹣ABC 的外接球的表面积为4π⋅OD 2=4π×(√153)2=20π3,B 对; 对于C 选项,设点D 在平面α内的射影点为N ,连接MN ,因为CM ⊥a ,DN ⊥a ,则CM ∥DN ,故点C 、D 、N 、M 四点共面, 因为AB ⊂α,则AB ⊥CM ,又因为CD ⊥AB ,CD ∩CM =C ,CD 、CM ⊂平面CDNM ,则AB ⊥平面CDNM , 又因为AB ⊥平面CDE ,故平面CDE 与平面CDNM 重合, 又因为E ∈α,M ,N ∈α,故E ∈MN , 设∠CEM =θ,其中0≤θ≤π2,又因为∠CED =π2,则∠DEN =π−∠CED −∠CEM =π−π2−θ=π2−θ, 所以,CM =CEsin ∠CEM =√3sinθ,DN =DEsin ∠DEN =√3sin(π2−θ)=√3cosθ,所以,点C 与点D 到平面α的距离之和CM +DN =√3sinθ+√3cosθ=√6sin(θ+π4), 因为0≤θ≤π2,则π4≤θ+π4≤3π4,故当θ+π4=π2时,即当θ=π4时,CM +DN 取最大值√6,C 错; 对于D 选项,ME =CEcosθ=√3cosθ,∠DEM =∠CED +∠CEM =π2+θ, 由余弦定理可得DM =√DE 2+EM 2−2DE ⋅EMcos(π2+θ) =√3+3cos 2θ+2√3⋅√3cosθsinθ=√3+3×1+cos2θ2+3sin2θ =√3sin2θ+3cos2θ2+92=√352sin(2θ+φ)+92, 其中φ为锐角,且tanφ=12,因为0≤θ≤π2,则φ≤2θ+φ≤π+φ,故当2θ+φ=π2时,DM 取得最大值, 且(DM)max =√9+352=√18+654=√15+√32,D 对. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 5 .解:5×75%=3.75,故一组数据1,2,4,5,8的第75百分位数为5. 故答案为:5.14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 12.解:如图,连接A 1C 1,A 1B ,在正方体ABCD ﹣A 1B 1C 1D 1中,有A 1D 1∥B 1C 1∥BC ,A 1D 1=B 1C 1=BC , 所以四边形A 1D 1CB 为平行四边形,所以A 1B ∥CD 1, 所以∠A 1BC 1为直线BC 1与直线CD 1夹角或其补角, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为a , 则A 1B =BC 1=A 1C 1=√2a , 所以△A 1BC 1为等边三角形, 所以∠A 1BC 1=π3,故直线BC 1与直线CD 1夹角的余弦值为cos ∠A 1BC 1=cos π3=12. 故答案为:12.15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 2 . 解:∵在圆C 中,已知一条弦AB =2,∴根据圆的几何性质得出:|AC |cos ∠CAB =12|AB |=12×2=1, ∵AB →•AC →=|AB →•|AC →|cos ∠CAB =2×1=2. 故答案为:2.16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为4√213.解:由题意c =2b ,S △ABC =12bc sin A =1,即b 2sin A =1;连接AG 并延长交BC 于D ,则D 为BC 的中点,可得AD →=12(AB →+AC →),又因为G 为三角形的重心,则AG →=23AD →,可得AG →=13(AB →+AC →),BC →=AC →−AB →,所以AG 2=AG →2=19(AB →2+AC →2+2AB →•AC →)=19(c 2+b 2+2bc cos A )=19(5b 2+4b 2cos A ), BC 2=BC →2=AC →2+AB →2﹣2AB →•AC →=b 2+c 2﹣2bc cos A =5b 2﹣4b 2cos A ,所以3AG 2+BC 2=53b 2+4b 23cos A +5b 2﹣4b 2cos A =203b 2−83b 2cos A =203sinA −8cosA 3sinA,令t =203sinA −8cosA 3sinA>0,则3t sin A +8cos A =20, 即sin (A +φ)=20√9t +64≤1,当且仅当A +φ=π2时取等号,tan φ=82t ,可得9t 2+64≥400,解得t ≥4√213或t ≤−4√213(舍), 即t 的最小值为:4√213.故答案为:4√213. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.解:(1)∵|e 1→|=|e 2→|=1,<e 1→,e 2→>=π3, ∴e 1→⋅e 2→=12,∴|a →|=√e 1→2+4e 2→2+4e 1→⋅e 2→=√1+4+2=√7; (2)∵a →⊥b →,∴a →⋅b →=(e 1→+2e 2→)⋅(te 1→−3e 2→)=te 1→2−6e 2→2+(2t −3)e 1→⋅e 2→=t −6+12(2t −3)=0,解得t =154. 18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .证明:(1)连接A 1B 交AB 1于点N ,连接MN ,则正三棱柱中A 1B 1BA 是平行四边形, 所以N 为A 1B 的中点,又M 为A 1C 1的中点,所以MN ∥BC 1,BC 1⊄平面AB 1M ,MN ⊂平面AB 1M ,所以BC 1∥平面AB 1M . 解:(2)过M 作MH ⊥A 1B 1,垂足为H ,由题意可得B 1M =√3,AM =√5,AB 1=2√2,所以B 1M 2+AM 2=AB 12,所以B 1M ⊥AM ,所以△AB 1M 的面积S △AB 1M =12×√3×√5=√152, 因为正三棱柱中平面A 1B 1C 1⊥平面A 1B 1BA ,又平面A 1B 1C 1∩平面A 1B 1BA =A 1B 1,MH ⊂平面A 1B 1C 1,且MH ⊥A 1B 1, 所以MH ⊥平面A 1B 1BA ,即M 到平面A 1B 1BA 的距离为MH =MA 1sin π3=√32,又△ABB 1的面积S △ABB 1=12AB ⋅BB 1=2, 所以V M−ABB 1=13MH ⋅S △ABB 1=13×√32×2=√33,又V M−ABB 1=V B−MAB 1, 所以13S △AB 1M ⋅d =√33,解得d =2√55, 所以点B 到平面AB 1M 的距离为2√55. 19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.解:(1)证明:事件A 与事件B 相互独立,则P (AB )=P (A )P (B ), 又由B =A B +AB ,事件A B 和AB 互斥,则有P (B )=P (A B +AB )=P (AB )+P (A B )=P (A )P (B )+P (A B ),变形可得:P (A B )=P (B )﹣P (A )P (B )=[1﹣P (A )]P (B )=P (A )P (B ), 故事件A 与B 相互独立;(2)根据题意,设事件A 1、A 2分别表示甲答对1道、2道题目,事件B 1、B 2分别表示乙答对1道、2道题目,则P (A 1)=2×35×(1−35)=1225,P (A 2)=35×35=925, P (B 1)=2×23×(1−23)=49,P (B 2)=23×23=49, 若甲乙两人在两轮活动中答对3道题,即A 2B 1+A 1B 2,则甲乙两人在两轮活动中答对3道题的概率P =P (A 2B 1+A 1B 2)=P (A 2B 1)+P (A 1B 2)=925×49+1225×49=2875. 20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i,y i分别为甲,乙小区抽取的第i户家庭近7天用于垃圾分类的总时间,s x2,s y2分别为甲,乙小区所抽取样本的方差,已知x=18∑8i=1x i=200,s x2=18∑8i=1(x i−x)2=200,y=195,s y2=210,其中i=1,2,⋯,8.(1)若a≤b,求a和b的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z和方差s z2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m,x1,s12;n,x2,s22,总的样本平均数为ω,样本方差为s2,则s2=mm+n [s12+(x1−ω)2]+nm+n[s22+(x2−ω)2].解:(1)已知x=18∑8i=1x i=18(200+220+200+180+200+a+b+220)=200,整理得a+b=380,①又s x2=18∑8i=1(x i−x)2=8[3×(200﹣200)2+2×(220﹣200)2+(180﹣200)2+(a﹣200)2+(b﹣200)2]=200,整理得(a﹣200)2+(b﹣200)2=400,②联立①②,解得a=180,b=200或a=200,b=180,因为a≤b,所以a=180,b=200;(2)设甲小区试行新措施之后,甲小区抽取的第i户家庭近7天用于垃圾分类的总时间为m i,此时m i=x i﹣35,则m i=x−35=165,s m2=s x2=200,所以z=116(8m+8y)=12(165+195)=180,s z2=88+8[s m2+(m−z)2]+88+8[s y2+(y−z)]=12[200+(165﹣180)2]+12[210+(195﹣180)2]=430.21.(12分)如图1,在等腰△ABC中,AC=4,A=π2,O,D分别为BC、AB的中点,过D作DE⊥BC于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.(1)证明:因为DE ⊥BE ,DE ⊥OE ,且BE ∩OE =E ,BE 、OE ⊂平面BCE , 所以DE ⊥平面BCE ,又OA ∥DE ,所以OA ⊥平面BCE ,设点P 是翻折前点B 所在的位置,则D 为AP 的中点, 因为F 为AB 的中点,所以DF ∥PB ,因为PB ⊂平面BCE ,所以OA ⊥PB ,所以OA ⊥DF , 由题意知,DA =DB ,因为F 为AB 的中点,所以DF ⊥AB , 又OA ∩AB =A ,OA 、AB ⊂平面AOB , 所以DF ⊥平面AOB .(2)解:以O 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,2√2),P (2√2,0,0),C (﹣2√2,0,0),D (√2,0,√2), 由(1)知,DF ⊥平面AOB ,因为DF ∥PB ,所以PB ⊥平面AOB ,所以PB ⊥OB , 又OB =√2=12OP ,所以∠POB =60°,所以B (√22,√62,0),F (√24,√64,√2), 所以BF →=(−√24,−√64,√2),CD →=(3√2,0,√2),CB →=(5√22,√62,0),设平面BCD 的法向量为n →=(x ,y ,z ),则{n →⋅CD →=0n →⋅CB →=0,即{3√2x +√2z =05√22x +√62y =0, 令x =1,则y =53,z =﹣3,所以n →=(1,53,﹣3), 设直线BF 与平面BCD 所成的角为θ,则sin θ=|cos <BF →,n →>|=|BF →⋅n →||BF →|⋅|n →|=|−√24+√64×5√3−3√2|(24)+(64)√1+(5√3)=4√3355,故直线BF 与平面BCD 所成的角的正弦值为4√3355. 22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH )=32,点B 为线段AD 的中点,AC =√3OB =3,sin∠ACOsin∠AOB =32,求cos A .解:(1)证明:在△AOC 、△AOD 、△BOC 、△BOD 中,CA CB =S △AOC S △BOC =12OA⋅OCsin∠AOC 12OB⋅OCsin∠BOC =OAsin∠AOC OBsin∠BOC,DA DB=S △AOD S △BOD=12OA⋅ODsin∠AOD 12OB⋅ODsin∠BOD =OAsin∠AOD OBsin∠BOD,所以(ABCD)=CA CB DA DB=OAsin∠AOC OBsin∠BOC OAsin∠AOD OBsin∠BOD=sin∠AOC⋅sin∠BODsin∠BOC⋅sin∠AOD,又在△EOG 、△EOH 、△FOG 、△FOH 中,GE GF =S △EOG S △FOG =12OE⋅OGsin∠EOG 12OF⋅OGsin∠FOG =OEsin∠EOG OFsin∠FOG,HE HF=S △EOH S △FOH=12OE⋅OHsin∠EOH 12OF⋅OHsin∠FOH =OEsin∠EOH OFsin∠FOH,所以(EFGH)=GE GF HE HF=OEsin∠EOG OFsin∠FOG OEsin∠EOH OFsin∠FOH=sin∠EOG⋅sin∠FOHsin∠FOG⋅sin∠EOH ,又∠EOG =∠AOC ,∠FOH =∠BOD ,∠FOG =∠BOC ,∠EOH =∠AOD , 所以sin∠AOC⋅sin∠BOD sin∠BOC⋅sin∠AOD=sin∠EOG⋅sin∠FOH sin∠FOG⋅sin∠EOH,所以(EFGH )=(ABCD ).(2)由题意可得(EFGH)=32,所以(ABCD)=32,即CACB DA DB=32,所以CA CB ⋅DBDA=32,又点B 为线段AD 的中点,即DB DA=12,所以CACB=3,又AC =3,则AB =2,BC =1, 设OA =x ,OC =y 且OB =√3, 由∠ABO =π﹣∠CBO , 所以cos ∠ABO +cos ∠CBO =0, 即2√3)222×2×√3+2√3)222×1×√3=0,解得x 2+2y 2=15,①在△AOB 中,由正弦定理可得AB sin∠AOB =x sin∠ABO,②在△COB 中,由正弦定理可得OB sin∠BCO=y sin∠CBO,③且sin ∠ABO =sin ∠CBO ,②③得,x y=AB sin∠AOB⋅sin∠BCO OB=32×√3=√3,即x =√3y ,④由①④解得x =3,y =√3(负值舍去), 即AO =3,OC =√3所以cosA =AO 2+AB 2−OB 22AO⋅AB =32+22−(√3)22×3×2=56.。

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若复数z满足,则z的虚部为()A. B.2 C. D.i2.已知向量,则()A.0B.C.D.3.函数的部分图象如图所示,则其解析式为()A. B.C. D.4.若,且,则()A. B. C. D.75.在中,点D满足,若,则()A. B. C.3 D.6.已知,则下列直线中,是函数对称轴的为()A. B. C. D.7.在平面直角坐标系xOy中,点,点,其中若,则()A. B. C. D.8.在中,已知则下列说法正确的是()A.当时,是锐角三角形B.当时,是直角三角形C.当时,是钝角三角形D.当时,是等腰三角形9.已知是非零向量,则“”是“对于任意的,都有成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.定义域为、的函数的图象的两个端点分别为点是的图象上的任意一点,其中,点N满足向量,点O为坐标原点.若不等式恒成立,则称函数在上为k函数.已知函数在上为k函数,则实数k的取值范围是()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。

11.知复数z满足,则__________,__________.12.在中,,P满足,则__________.13.在中,若,则k的一个取值为__________;当时,__________.14.一名学生想测算某风景区山顶上古塔的塔尖距离地面的高度,由于山崖下河流的阻碍,他只能在河岸边制定如下测算方案:他在河岸边设置了共线的三个观测点A,B,如图,相邻两观测点之间的距离为200m,并用测角仪器测得各观测点与塔尖的仰角分别为,,,根据以上数据,该学生得到塔尖距离地面的高度为___________________15.已知函数,给出下列四个结论:①对任意的,函数是周期函数;②存在,使得函数在上单调递减;③存在,使得函数的图象既是轴对称图形,又是中心对称图形;④对任意的,记函数的最大值为,则其中所有正确结论的序号是__________.三、解答题:本题共4小题,共48分。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案

贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案

遵义市2023~2024学年度第二学期期末质量监测高一数学(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,62.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A. B.514C.514-D.143.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c++r r rB.a b c+-r r rC.a b c -+r r rD.a b c--4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A.8-B.378C.9714-D.97145.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.56.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.87.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米B.34米C.米D.30米8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=t D.复数z 的共轭复数为23iz =-+10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B =D.若B 发生时A 一定发生,则()14P AB =11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,3BD =,求2a c +的最小值.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n nf x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.遵义市2023~2024学年度第二学期期末质量监测高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,6【答案】C 【解析】【分析】根据交集和补集含义即可得到答案.【详解】由题意得{}3,4A B = ,则(){}1,2,5,6U A B = ð.故选:C.2.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A.5314-B.514C.514-D.14【答案】D 【解析】【分析】根据正弦定理即可得到答案.【详解】根据正弦定理有sin sin a b A B =,即10sin 2A =sin 14A =.故选:D.3.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c ++r r rB.a b c+-r r rC.a b c-+r r rD.a b c--【答案】A【解析】【分析】利用图形结合向量线性运算即可.【详解】AC AD DC A a b c B BD DC =+=++++=.故选:A.4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A. B.8C.14-D.14【答案】B 【解析】【分析】首先求出cos 4α=,再利用二倍角正弦公式即可.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,3sin 4α=,则cos 4α==,则3sin 22sin cos 24ααα==⨯⨯.故选:B.5.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.5【答案】C 【解析】【分析】根据平均数计算公式直接求解即可.【详解】全班75名学生的平均成绩4035828583.47575x =⨯+⨯=.故选:C .6.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.8【答案】A 【解析】【分析】根据两点间的距离判定三角形为直角三角形,求解即可.【详解】||AB == ,||BC ===,||AC ===222||||AC AB BC ∴+=,所以三角形ABC 为直角三角形,1=2S ∴⨯,故选:A .7.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米 B.34米C.米D.30米【答案】D 【解析】【分析】根据仰角可得BC AB h ==,BD ==,在三角形BCD 利用余弦定理即可求解.【详解】设教学楼的高度为h ,在直角三角形ABC 中,因为45ACB ∠= ,所以BC AB h ==,在直角三角形ABD 中,因为30ADB ∠= ,所以tan 30ABBD= ,所以BD ==,在BCD △中,由余弦定理可得2222cos CD BC BD BC BD CBD =+-⋅∠,代入数值可得)22233022h h =+-⨯,解得30h =或30h =-(舍),故选:D.8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减【答案】B 【解析】【分析】对A ,赋值法令0x y ==求解;对B ,赋值法结合奇函数的定义判断;对C ,令2y =求得函数的周期求解;对D ,利用单调性定义结合赋值法求解判断.【详解】对于A ,令0x y ==,可得()()()0002f f f =+-,解得()02f =,故A 错误;对于B ,令y x =-,可得()()()02f f x f x =+--,又()02f =,则()()()222f x f x f x ⎡⎤--=-+=--⎣⎦,所以函数()2f x -是奇函数,故B 正确;对于C ,令2y =,得()()()()222f x f x f f x +=+-=,则()f x 是周期函数,周期为2,所以()()202402f f ==,故C 错误;对于D ,令1x x =,21y x x =-,且210x x >>,则()()()1211212f x x x f x f x x +-=+--,即()()()21212f x f x f x x -=--,而0x >时,()f x 与2大小不定,故D 错误.故选:B.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=tD.复数z 的共轭复数为23iz =-+【答案】AB 【解析】【分析】对A ,根据复数的模的计算公式即可判断;对B ,根据复数虚部的定义即可判断;对C ,根据复数的分类可判断;对D ,根据共轭复数的定义即可判断.【详解】对于A ,z ==A 正确;对于B ,复数23i z =+的虚部为3,故B 正确;对于C ,因为()i 23i z t t +=++是实数,则30t +=,即3t =-,故C 错误;对于D ,复数23i z =+的共轭复数为23i z =-,故D 错误.故选:AB.10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B = D.若B 发生时A 一定发生,则()14P AB =【答案】ABD 【解析】【分析】根据互斥事件和独立事件的概率公式逐项判断.【详解】对于A ,若A 与B 相互独立,则()()()1113412P AB P A P B ==⨯=,所以()()()()111134122P A B P A P B P AB ⋃=+-=+-=,故A 对;对于B ,因为()13P A =,()14P B =,则()()131144P B P B =-=-=,因为()()()131344P A P B P AB =⨯==,所以事件A 与B 相互独立,故B 对;对于C ,若A 与B 互斥,则()()()1173412P A B P A P B ⋃=+=+=,故C 错;对于D ,若B 发生时A 一定发生,则B A ⊆,则()()14P AB P B ==,故D 对.故选:ABD11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦【答案】AC 【解析】【分析】根据图象变换得到()f x 的解析式,进而可判断A ,B ,C 选项;对D ,题意转化为πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,根据正弦函数的性质求解判断.【详解】把函数sin 1y x =+图象上所有的点向左平移π3个单位,可得πsin 13y x ⎛⎫=++ ⎪⎝⎭,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()πsin 2π13f x x ⎛⎫=++ ⎪⎝⎭,对于A ,周期2π12πT ==,故A 正确;对于B ,令πππ2π2π2π232k x k -+≤+≤+,Z k ∈,即511212k x k -++≤≤,Z k ∈,所以函数()f x 的单调递增区间为51,1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈,故B 错误;对于C ,()22ππsin 2π1sin 2π13333f x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫++-=++++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦5ππsin 2πsin 2π233x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭ππsin 2π2πsin 2π233x x ⎡⎤⎛⎫⎛⎫=-+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππsin 2πsin 2π2233x x ⎛⎫⎛⎫=---+= ⎪ ⎪⎝⎭⎝⎭.故C 正确;对于D ,根据题意方程112f x ω⎛⎫= ⎪⎝⎭即πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,ππππ2π333x ωω∴≤+<+,由正弦函数性质得π4π2π5π3ω<+≤,解得11763ω<≤,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.【答案】【解析】【详解】试题分析:.考点:三角函数的定义13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.【答案】1()2sin(24f x x π=+【解析】【分析】根据函数()f x 的图象求得2,4A T π==,得到1()2sin()2f x x ϕ=+,再由(22f π=和题设条件,求得4πϕ=,即可求得函数的解析式.【详解】由函数()f x 的图象可得72,()422A T πππ==--=,所以22142T ππωπ===,即1()2sin()2f x x ϕ=+,又由()22f π=,即1sin()122πϕ⨯+=,可得2,42k k Z ππϕπ+=+∈,即2,4k k Z πϕπ=+∈,又因为||2ϕπ<,所以4πϕ=,所以1()2sin()24f x x π=+.故答案为:1()2sin(24f x x π=+.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.【答案】⎡-+⎣【解析】【分析】建立平面直角坐标系,得到向量的坐标,用向量的数量积坐标运算即可求解.【详解】以A 为坐标原点,,AB AF 所在直线分别为轴,建立平面直角坐标系,则()()0,0,4,0A B 过H 作AF的垂线,垂足为N ,正八边形ABCDEFGH 中,边长为4,所以()821801358HAB ︒︒-⨯∠==,所以AN HN =,所以222AN HN HA AN +=⇒=,所以4AF =+,设(),P x y ,则()()4,0,,AB AP x y == ,所以4AP AB x ⋅=,因为P 是正八边形ABCDEFGH 内的动点(含边界),所以x 的范围为4x -≤≤+所以416x -≤≤+故答案为:⎡-+⎣.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.【答案】(1)5(2)1-或89【解析】【分析】(1)根据向量的坐标运算,向量模的公式运算得解;(2)根据向量的坐标运算求得ma c + 和a mb +坐标,再由向量共线即可计算出m 的值.【小问1详解】因为()1,4a =- ,()2,1b =-r,所以()5858582,43,4777777a b ⎛⎫-=--⨯⨯+=- ⎪⎝⎭r r ,所以58577a b -==r r .【小问2详解】因为()2,5ma c m m +=-+r r ,()21,4a mb m m +=--+r r,又ma c + 与a mb +共线,所以()()()24521m m m m -+-+=-,所以2980m m +-=,解得1m =-或89.所以m 的值为1-或89.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.【答案】(1)82.5;(2)15.【解析】【分析】(1)根据给定的频率分布直方图,结合75%分位数的意义列式计算即得.(2)求出抽取的6人中,“探月达人”人数,再利用列举法求出概率.【小问1详解】由频率分布直方图知,成绩在[40,50),[50,60),[60,70),[70,80),[80,90)内的频率依次为:0.05,0.15,0.2,0.3,0.2,则成绩在80分以下的频率为0.7,成绩在90分以下频率为0.9,因此参加这次竞赛的学生成绩的75百分位数为(80,90)x ∈,由(80)0.020.05x -⨯=,解得82.5x =,所以参加这次竞赛的学生成绩的75百分位数为82.5.【小问2详解】由于0.30.20.163,62,610.30.20.10.30.20.10.30.20.1⨯=⨯=⨯=++++++,则6人中,成绩在[70,80),[80,90),[90,100]内的学生分别为3人,2人,1人,其中有3人为“探月达人”,设为a ,b ,c ,有3人不是“探月达人”,设为,,d e f ,则从6人中选择2人作为学生代表,有,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef ,共15种,其中2人均为“探月达人”为,,ab ac bc ,共3种,所以被选中的2人均为“探月达人”的概率为31155=.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,BD =,求2a c +的最小值.【答案】(1)π3B =(2)6+【解析】【分析】(1)利用正弦定理进行角换边,再结合余弦定理即可得到答案;(2)根据面积法得1112a c +=,再利用乘“1”法即可得到最小值.【小问1详解】因为sin sin sin C A Ba b a c-=+-,所以由正弦定理可得c a ba b a c-=+-,即222a c b ac +-=,又因为222cos 2a c b B ac+-=,则1cos 2B =,因为(0,π)B ∈,所以π3B =.【小问2详解】因为ABD CBD ABC S S S += 所以1π1π1πsin sin sin 262623AB BD BC BD AB BC ⨯+⨯=⨯,因为BD =,所以c BD a BD ⨯+⨯=,所以2()c a ac ⨯+=,即1112a c +=,所以22242(2)66c a a c a c a c a c ⎛⎫+=++=++≥+⎪⎝⎭,当且仅当22a c ==+时,2a c +取得最小值6+.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.【答案】(1)最小值为2-,x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈(2)6365-【解析】【分析】(1)利用三角恒等变换得π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则得到其最小值和此时所对应的x 的集合;(2)首先求出4sin()5αβ-=,再计算出3cos()5αβ-=,5cos 13β=-,12sin 13β=,最后化简为繁,利用两角和的余弦公式即可得到答案.【小问1详解】21()14sin cos cos 1cos 2cos 22f x x x x x x x ⎛⎫=-++=-++ ⎪ ⎪⎝⎭π121cos 22sin 26x x x ⎛⎫=-+++=+ ⎪⎝⎭当ππ22π,Z 62x k k +=-+∈,即ππ,Z 3x k k =-+∈时,()f x 取得最小值2-,此时x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈.【小问2详解】πππ82sin 22sin()21221265f αβαβαβ⎛⎫--⎛⎫⎛⎫-=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则4sin()5αβ-=,因为ππ2β<<,所以ππ2β-<-<-,又因为ππ2α<<,所以ππ22αβ-<-<,所以3cos()5αβ-=,因为πππ102sin 22sin 2cos 26266213f βπβββ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5cos 13β=-,因为ππ2β<<,所以12sin 13β==,cos cos[()]cos()cos sin()sin ααββαββαββ=-+=---354126351351365⎛⎫=⨯--⨯=- ⎪⎝⎭.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.【答案】(1)下凸函数,理由见解析(2)证明见解析(3)【解析】【分析】(1)作差()()121222f x f x x x f ++⎛⎫-⎪⎝⎭,化简即可证明;(2)任意取12,(0,π)x x ∈,作差()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其符号即可;(3)根据(2)中结论得sin sin sin sin sin 44A B C D A B C D ++++++⎛⎫≤ ⎪⎝⎭,代入计算即可得到答案.【小问1详解】下凸函数,理由如下:任意取12,R x x ∈,因为()()()()22221212*********22424f x f x x x x x x x x x f ++-+++⎛⎫-=+-=- ⎪⎝⎭即()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,当且仅当12x x =时等号成立,故2()1(R)f x x x =+∈是下凸函数.【小问2详解】任意取12,(0,π)x x ∈,不妨设12x x ≤,()()12121212sin sin sin 2222h x h x x x x x x x h ++++⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭12121122sincos cos sin sin cos sin cos 22222222x x x x x x x x=+--2112sin sin cos cos 2222x x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,由于12π0222x x <≤<,根据sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,则2112sin sin ,cos cos 2222x x x x ≥≥,所以()()121222h x h x x x h ++⎛⎫≥⎪⎝⎭,即函数()h x 是上凸函数.【小问3详解】当(0,,π,),A B C D ∈,且πA B C D +++=,由(2)知()sin ,(0,π)h x x x =∈是上凸函数,所以sin sin sin sin πsin sin 4442A B C D A B C D++++++⎛⎫≤==⎪⎝⎭,故πsin sin sin sin 4sin 4sin 244A B C D A B C D +++⎛⎫+++≤== ⎪⎝⎭所以当且仅当π4A B C D ====时等号成立,即sin sin sin sin A B C D +++的最大值为.【点睛】关键点点睛:本题第二问的关键是作差因式分解得()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其正负即可.。

高一数学下期末考试题附答案

高一数学下期末考试题附答案

4—、选择题(本题共姓名12小题,(1)sin 75的值等于(B)(3)(5)飞in 440化简为⑴ C os 220 °化简sin(x 朋in x(A) COS (2X yk(B)COS (才F 列函数中是周期为(A) y 1 2sin 2(B)为了得到函数的图象上所有点向左平行移动(7) (9已知 a =向左平行移动ntan高一下数学期末试题每小题5分, 0cos80 y)cos 于cos y班级 _______ 学号 _______共60分,将答案直接填在下表中)兀的奇函数的为(7T2个单位长度P = a个单位长度n3,2x(D)(C )sin 220(D )osin80(C ) sin(2 x y)(D)sin y71tan(D ) y22sin(2xR 的图象,只需把函数(B )向右平行移动a P(D )向右平行移动都是锐角,则 + 等于y 3sinL1 X 2个单位长度 个单位长度71 71(B )4已知(A ) 已知(A ) (C ) .3(c)或44(乙 3),3(D )或544b 二(x , -6),若(B )4 b,则x 等于(C )- 4a 、b 是两个单位向•量,下列四个命题屯正确的是a 与b 相等 (B )如果a 与b 平行,那么a 与b 相等 (D )a2二 b 2a ・b 二 1(A)0 (B)3 4(c) 一(D) 15 5(10)已知W= 3, |b| 二 4 (且 a 与b不共线),若(ak+b)丄(ak-b),则k的值为/ \ 3 3 3 4 (A)- _ (B)(C) ±—(D) ±-4 4 4 3 (11) 已知同二3, b二(4, 2), 且 a II b, 则a的坐标为(A)3 5 厂6 5、3 5(> 3 5)J J( 5 5 (B)(- 5 _ 5坐标是答案5)或(-5(12)已知向量b 二2)30,一9(c)(,0)U―oO — +oO L ,)3二、填空题(本题共4小题,每小题5分,共20分)(13)在三角形ABC中,已知a、b、c是角A、B、C的对边且a二6, b二3 2 , A二p则角B的大小为(14)已知cos=念,则sin 2x的值为(15)若将向呈a (2,。

最新高一数学下期末试题附答案

最新高一数学下期末试题附答案

最新高一数学下期末试题附答案一、选择题1.已知向量a ,b 满足4a =,b 在a 上的投影(正射影的数量)为-2,则2a b -的最小值为( ) A .43B .10C .10D .82.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .12± C .110± D .322± 3.在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A cB b=,7sin B =,57ABC S =△,则b =( ) A .23B .27C .15D .144.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 5.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .6.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .3 B .3(0,]4C .3D .3[,1)47.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称 D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称8.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)29.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④10.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-11.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=12.如图,在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A .B .C .19D .二、填空题13.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__. 14.不等式2231()12x x -->的解集是______.15.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________. 16.已知0,0,2a b a b >>+=,则14y a b=+的最小值是__________. 17.已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.18.已知函数2,()24,x x m f x x mx m x m ⎧≤=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.19.函数sin 3y x x =-的图像可由函数2sin y x =的图像至少向右平移________个单位长度得到.20.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩若()()10f a f +=,则实数a 的值等于________.三、解答题21.从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下: 甲 8 9 7 9 7 6 10 10 8 6 乙10986879788(1)计算甲、乙两人射箭命中环数的平均数和标准差;(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛. 22.已知不等式的解集为或.(1)求;(2)解关于的不等式23.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求角A 的大小;(2)若23,4a b c =+=,求ABC ∆的面积.24.如图,在等腰直角OPQ ∆中,090POQ ∠=,22OP =,点M 在线段PQ 上.(Ⅰ) 若5OM =,求PM 的长;(Ⅱ)若点N 在线段MQ 上,且030MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.25.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,21EA =百米,60AED ∠=. (1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.26.设函数2()cos 2sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最小正周期. (2)求函数()f x 的单调递减区间;(3)设,,A B C 为ABC 的三个内角,若1cos 3B =,124C f ⎛⎫=- ⎪⎝⎭,且C 为锐角,求sin A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】b 在a 上的投影(正射影的数量)为2-可知||cos ,2b a b <>=-,可求出||2b ≥,求22a b -的最小值即可得出结果.【详解】因为b 在a 上的投影(正射影的数量)为2-, 所以||cos ,2b a b <>=-, 即2||cos ,b a b =-<>,而1cos ,0a b -≤<><,所以||2b ≥,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+22=1644(2)4||484||b b -⨯⨯-+=+所以22484464a b -≥+⨯=,即28a b -≥,故选D. 【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.2.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+,CP CA AP =+,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+,CP CA AP =+,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 3.D解析:D 【解析】 【分析】 利用正弦定理化简sin 5sin 2A cB b=,再利用三角形面积公式,即可得到,a c,由sin B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c =由于在ABC中,sin B =,ABC S =△1sin 2ABCS ac B ==联立521sin 2sin a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin 4B =,所以3cos 4B ==所以在ABC 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故b =(负数舍去) 故答案选D 【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.4.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.5.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 6.A解析:A 【解析】试题分析:设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而1AF BF 是平行四边形,所以14BF BF AF BF +=+=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,即12b ≤<,又22224c a b b =-=-,所以0c <≤0c a <≤.故选A . 考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c 关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.7.D解析:D 【解析】()sin(2)cos(2))2442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈.所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.8.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)=e ﹣2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.9.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.10.D解析:D 【解析】 由tan()24πα+=有tan 112,tan 1tan 3ααα+==-,所以11sin cos tan 1131sin cos tan 1213αααααα---===-+++,选D.点睛:本题主要考查两角和的正切公式以及同角三角函数的基本关系式,属于中档题。

河北省石家庄市2022-2023学年高一下学期期末数学试题含答案

河北省石家庄市2022-2023学年高一下学期期末数学试题含答案

石家庄市2022—2023学年第二学期高一级部期末考试数学试题(答案在最后)一、单选题1.已知复数z 满足()()1i i z a =-+,若复数z 的模为,则实数=a ()A.1 B.2C.3D.0【答案】D 【解析】【分析】先化简复数z ,再根据复数z 的模为求实数a 即可.【详解】()()()21i i =i i i 11i z a a a a a =-++--=++-,因为复数z ,所以z ==0a ∴=故选:D .2.某校高一年级15个班参加朗诵比赛的得分如下:858788898990919192939393949698则这组数据的40%分位数为()A.90B.91C.90.5D.92【答案】C 【解析】【分析】根据百分位数的定义计算即可.【详解】由题意,150.46⨯=,故这组数据的40%分位数为从小到大第6,7位数据的平均数,即909190.52+=.故选:C3.在正方体1111ABCD A B C D -中,异面直线1AD 与1DC 所成的角的大小为()A.30︒ B.45︒C.60︒D.90︒【答案】C 【解析】【分析】连接1,BD BC ,则得1AD ∥1BC ,从而得1BC D ∠为异面直线1AD 与1DC 所成的角,然后在三角形1BC D 中可得答案【详解】解:连接1,BD BC ,因为11AB D C =,AB ∥11D C ,所以四边形11ABC D 为平行四边形,所以1AD ∥1BC ,所以1BC D ∠为异面直线1AD 与1DC 所成的角,在正方体1111ABCD A B C D -中,11BD BC DC ==,所以三角形1BC D 为等边三角形,所以160BC D ∠=︒,所以异面直线1AD 与1DC 所成的角的大小为60︒,故选:C【点睛】此题考查异面直线所成的角,属于基础题4.在钝角ABC 中,已知AB =,1AC =,30B ∠=︒,则ABC 的面积是()A.2B.34C.32D.34【答案】B 【解析】【分析】根据正弦定理求出C ,进而算出A ,最后由三角形面积公式得到答案.【详解】由正弦定理,1sin sin sin 302C C =⇒=︒,若60C =︒,则ABC 为直角三角形,不合题意;所以120C =︒,则1801203030A =︒-︒-︒=︒,所以131sin 3024S ABC =⨯︒=.5.已知在边长为6的等边三角形ABC 中,12BD DC = ,则AD AC ⋅= ()A.24 B.6C.18D.24-【答案】A 【解析】【分析】由已知条件将AD 用,AB AC表示出来,然后再计算AD AC ⋅ 即可【详解】因为12BD DC =,所以11()33BD BC AC AB ==- ,所以121()333AD AB BD AB AC AB AB AC=+=+-=+因为边三角形ABC 的边长为6,所以66cos6018AC AB ⋅=⨯︒=,所以2133AD AC AB AC AC⎛⎫⋅=+⋅ ⎪⎝⎭22133AB AC AC =⋅+2118362433=⨯+⨯=,故选:A6.从四双不同的鞋中任意取出4只,事件“4只全部不成对”与事件“至少有2只成对”()A.是对立事件B.不是互斥事件C.是互斥但不对立事件D.都是不可能事件【答案】A 【解析】【分析】从4双不同的鞋中任意摸出4只,可能的结果为:“恰有2只成对”,“4只全部成对”,“4只都不成对”,即可求得答案.【详解】从4双不同的鞋中任意摸出4只,可能的结果为:“恰有2只成对”,“4只全部成对”,“4只都不成对”,故:事件“4只全部成对”的对立事件为“恰有2只成对”+“4只都不成对”=“至少有两只不成对”.∴事件“4只全部不成对”与事件“至少有2只成对”是:对立事件.【点睛】本题主要考查了判断2个事件是否是对立事件,解题关键是掌握对立事件概念和结合实际问题具体分析,考查了分析能力,属于基础题.7.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A.若m αβ= ,n ⊂α,n m ⊥,则n β⊥.B.若m α⊥,//m n ,n β⊂,则αβ⊥.C.若//m α,//n α,则//m n .D.若//αβ,m α⊂,n β⊂,则//m n .【答案】B 【解析】【分析】对于A ,由面面垂直的性质定理判断即可;对于B ,由面面垂直的判定定理判断即可;对于C ,由线面平行的性质判断;对于D ,由面面平行的性质判断即可【详解】解:对于A ,当m αβ= ,n ⊂α,n m ⊥,且αβ⊥时,才能得到n β⊥,所以A 错误;对于B ,当m α⊥,//m n 时,得n α⊥,因为n β⊂,所以由面面垂直的判定定理可得αβ⊥,所以B 正确;对于C ,当//m α,//n α时,m ,n 可能平行、可能相交、可能异面,所以C 错误;对于D ,当//αβ,m α⊂,n β⊂时,m ,n 可能平行、可能异面,所以D 错误,故选:B8.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、多选题9.某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种的参保客户进行抽样调查,得出如下统计图例,则以下四个选项正确的是()A.1829-周岁人群参保总费用最少B.30周岁以上的参保人群约占参保总人群的20%C.54周岁以上的参保人数最少D.丁险种更受参保人青睐【答案】ACD 【解析】【分析】根据统计图表给出信息逐个选项判断.【详解】对于A :由第一个图可得54周岁及以上的参保人数最少,占比为130%33%20%17%---=,其余年龄段的参保人数均比1829-周岁人群参保人数多.由第二个图可得,因为20%400017%6000⨯<⨯,所以1829-周岁人群参保总费用最少,故A 对.对于B :由第一个图可得,30周岁以上的参保人群约占参保总人群的80%,故B 错.对于C :由第一个图可得,54周岁及以上的参保人数占参保总人数的130%33%20%17%---=,所以C 对.对于D :由第三个图可得,丁险种参保人群约占参保总人群的55%,所以最受青睐,所以D 对.故选:ACD.10.已知z C ∈,则下列命题正确的是()A.若z z =,则z 为纯虚数B.若()i 12i z =-,则z 的虚部为1C.i z a =+(a ∈R )且z =,则1a =D.若1z =,则1z +的最大值为2【答案】BD 【解析】【分析】根据复数的定义,以及复数的运算,以及复数的几何意义,分别判断选项.【详解】A.若z z =,则z 是实数,故A 错误;B.若()i 12i i 2z =-=+,则z 的虚部为1,故B 正确;C.z ==1a =±,故C 错误;D.若1z =,则其复数z 对应的向量OZ的终点在以原点为圆心的单位圆上,1z +的几何意义表示,单位圆上的点与定点()1,0-的距离,很显然,点()1,0与()1,0-的距离最大,最大值是2,故D 正确.故选:BD11.下列命题中,正确的是()A.在ABC 中,A B ∠>∠是sin sin A B >的充要条件B.在锐角ABC 中,不等式sin cos A B >恒成立C.在ABC 中,若cos cos a A b B =,则ABC 是等腰直角三角形D.在ABC 中,若60B =︒,2b ac =,则ABC 是等边三角形【答案】ABD 【解析】【分析】对于A ,应用正弦定理及三角形中大边对大角以及充要条件的定义即可判断正误;对于B 由锐角三角形易得022A B ππ>>->,根据锐角正弦函数的大小关系及诱导公式即可判断正误;对于C 由正弦定理边角关系,结合三角形内角的性质判断内角A 、B 的数量关系;对于D 利用余弦定理,结合已知得2()0a c -=,进而判断△ABC 的形状.【详解】解:对于A :若sin sin A B >,而sin sin a bA B=,即a b >,故A B >,同理,若A B >,即a b >,而sin sin a bA B=,故sin sin A B >,所以A B ∠>∠是sin sin A B >的充要条件,故A 正确;对于B :由锐角△ABC 知:2A B π+>,即022A B ππ>>->,则sin sin()cos 2A B B π>-=,故B 正确;对于C :由题设得sin cos sin cos A A B B =,可得sin 2sin 2A B =,又,(0,)A B π∈,则22A B =或22A B π+=,即A B =或2A B π+=,故△ABC 为等腰或直角三角形,故C 错误;对于D :由题设,2221cos 22a cb B ac +-==,即222ac a c b =+-,又2b ac =,所以22ac a c ac =+-,故2()0a c -=,即a c =,又60B =︒,所以a b c ==,故△ABC 必是等边三角形,故D 正确.故选:ABD.12.棱长为2的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,下列正确的是()A.1AMD ∠的最大值为90°B.11DC D M⊥C.三棱锥1M DCC -的体积为定值 D.1AM MD +的最小值为4【答案】BC 【解析】【分析】对A,令1(01)A M t =≤≤,在1AA M △中,根据余弦定理求得2AM ,再在1AMD △中根据余弦定理求解1cos AMD ∠的表达式,判断出当102t <<时,1cos 0AMD ∠<即可;对B ,根据线面垂直的性质与判定,证明1C D ⊥平面11A BCD 即可;对C ,根据体积公式结合长方体的性质证明即可;对D ,把1AA B 与矩形11A BCD 展开在同一平面内,再分析最小值即可【详解】对A ,在正方体1111ABCD A B C D -中,连接11,,AD AM D M ,如图,而2AB =,则1A B =,令1(01)A M t =≤≤,在1AA M △中,145AA M ∠=,由余弦定理得22222)22cos 45884AM t t =+-⨯⨯=-+ ,根据线面垂直的性质有111D A A M ⊥,则222212)48D M t =+=+,1AMD △中,1AD =,222111118(21)cos 22AM D M AD t t AMD AM D M AM D M +--∠==⋅⋅,当102t <<时,1cos 0AMD ∠<,即1AMD ∠是钝角,A 不正确;对B ,因11A D ⊥平面11CDD C ,1C D ⊂平面11CDD C ,则111A D C D ⊥,正方形11CDD C 中,11CD C D ⊥,1111A D CD D ⋂=,111,A D CD ⊂平面11A BCD ,于是得1C D ⊥平面11A BCD ,又1D M ⊂平面11A BCD ,因此,11D M C D ⊥,B 正确;对C ,由题意,M 到平面1DCC 的距离为定值BC ,故1113M DCC DCC V S BC -=⋅ 为定值,C 正确;对D ,把1AA B 与矩形11A BCD 展开在同一平面内,连接1AD 交1A B 于点M ',如图,在1AA D △中,1135AA D ∠=,由余弦定理得:1AD ==因点M 在线段1A B 上,111AM MD AD AM M D ''+≥=+,当且仅当点M 与M '重合时取“=”,所以1AP PD +的最小值为,D 错误;故选:BC三、填空题13.为响应自己城市倡导的低碳出行,小李上班可以选择自行车,他记录了100次骑车所用时间(单位:分钟),得到频率分布直方图,则骑车时间的众数的估计值是_____分钟【答案】21【解析】【分析】利用最高矩形底边的中点值即为样本数据的众数可得结果.【详解】由频率分布直方图可知,骑车时间的众数的估计值是2022212+=分钟.故答案为:21.14.2(1i)(2i)i ---=___________.【答案】3i -【解析】【分析】根据题意,由复数的四则运算,即可得到结果.【详解】原式2i 2i 13i 1--+-==--.故答案为:3i -.15.已知向量()4,2a = ,向量()2,1b k k =-+,若a b a b +=- ,则k 的值为______.【答案】5【解析】【分析】由条件求得0a b ⋅= ,再根据数量积的坐标表示求k .【详解】a b a b +=- ,两边平方后得0a b ⋅= ,即()()42210k k -++=,解得:5k =.故答案为:516.已知长方体1111ABCD A B C D -的体积为接球的体积为__.【答案】52133π【解析】【分析】设矩形ABCD 的边长分别为a ,b ,利用基本不等式求出4a b ==时,表面积取得最小值,设此时长方体的外接球的半径为r ,利用勾股定理求出r ,即可求出外接球的体积.【详解】设矩形ABCD 的边长分别为a ,b ,由题意可得=,16ab ∴=,长方体的表面积为:22()32)32ab a b a b ++=+++当且仅当4a b ==时,表面积取得最小值,此时长方体的外接球的半径为r,2r =,r ∴=343r π=.故答案为:52133.四、解答题17.已知复数1i z a =+,21i z =-,其中a 是实数.(1)若212i z =-,求实数a 的值;(2)若12z z 是纯虚数,求23202311112222z z z z z z z z ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】(1)1-(2)1-【解析】【分析】(1)根据给定的条件,利用复数乘方运算及复数相等求出a 的值.(2)利用复数除法结合纯虚数的定义,求出12z z ,再利用i 乘方的周期性求解作答.【小问1详解】复数1i z a =+,则2212i)(1i )2(2i a a z a +=+==--,又a 是实数,因此21022a a ⎧-=⎨=-⎩,解得1a =-,所以实数a 的值是1-.【小问2详解】复数1i z a =+,21i z =-,R a ∈,则12i (i)(1i)(1)(1)i 11i 1i (1i)(1i)222z a a a a a a z +++-++-+====--+,因为12z z 是纯虚数,于是102102a a -⎧=⎪⎪⎨+⎪≠⎪⎩,解得1a =,因此12i z z =,又1234i i,i 1,i i,i 1==-=-=,则*4342414N ,i i,i 1,i i,i 1n n n n n ---∈==-=-=,即有*4342414N ,i i i i 0n n n n n ---∈+++=,所以2320232342311112222(()(505(i i i i )i i i i 1i 1z z z z z z z z ++++=++++++=--=- .18.某校为了解高一学生在五一假期中参加社会实践活动的情况,抽样调查了其中的100名学生,统计他们参加社会实践活动的时间(单位:小时),并将统计数据绘制成如图的频率分布直方图.(1)估计这100名学生在这个五一假期中参加社会实践活动的时间的平均数;(2)估计这100名学生在这个五一假期中参加社会实践活动的时间的75百分位数(结果保留两位小数).【答案】(1)平均数为20.32(2)23.86【解析】【分析】(1)根据频率分布直方图求出a 的值,然后求平均数即可;(2)根据75百分位数确定所在区间,再计算即可.【小问1详解】由频率分布直方图可得:(0.020.060.0750.025)41a ++++⨯=,解得0.07a =,所以这100名学生在这个五一假期中参加社会实践活动的时间的平均数为:(0.02120.06160.075200.07240.02528)420.32⨯+⨯+⨯+⨯+⨯⨯=.【小问2详解】75百分位数即为上四分位数,又∵(0.020.060.075)40.62++⨯=,(0.020.060.0750.07)40.9+++⨯=,∴上四分位数位于22~26之间,设上四分位数为y ,则220.750.6226220.90.62y --=--,解得132223.867y =+≈.19.如图,在ABC 中,342,,cos 25AB DC A CB ===的垂直平分线交边AC 于点D.(1)求AD 的长;(2)若AD AB >,求sin ACB ∠的值.【答案】(1)52AD =或710;(2)5sin 5ACB ∠=.【解析】【分析】(1)在ADB 中,利用余弦定理可求出AD 的长;(2)由(1)可得52AD =,在ABC 中,由余弦定理求出BC ,再利用正弦定理可求出sin ACB ∠的值【详解】解:(1)在ADB 中,2224cos 25AD AB BD A AD AB +-==⋅,整理得22064350AD AD -+=,即()()251070AD AD --=,所以52AD =或710.(2)因为AD AB >,由(1)得52AD =,所以4AC AD DC =+=.在ABC 中,由余弦定理得2224362cos 41622455BC AB AC AB AC A =+-⋅⋅=+-⨯⨯⨯=.所以5BC =.由4cos 5A =,得3sin 5A ==.在ABC 中,由正弦定理得sin sin BC AB A ACB∠∠=,即253sin 5ACB ∠=,所以sin 5ACB ∠=.20.如图,四边形ABCD 是边长为4的菱形,60,C PA ∠=⊥ 平面.ABCD 将菱形ABCD 沿对角线BD 折起,使得C 点到达点Q 的位置,且平面QBD ⊥平面ABD .(1)求证://PA 平面QBD ;(2)若PA =ABDQP 体积.【答案】(1)证明见解析;(2)12.【解析】【分析】(1)取BD 中点H ,连接QH ,由已知可得QH BD ⊥,平面QBD ⊥平面ABD ,得QH ⊥平面ABD ,所以//PA QH ,可得答案.(2)算出P ABD V -利用P BDQ A BDQ V V --=,可得ABDQP P ABD P BDQ P ABD Q ABD V V V V V ----=+=+.【详解】(1)取BD 中点H ,连接QH ,四边形ABCD 是边长为4的菱形,60C ∠= ,则QBD △为正三角形,所以QH BD ⊥,而平面QBD ⊥平面ABD ,平面QBD ⋂平面,ABD BD QH =⊂平面QBD ,所以QH ⊥平面ABD ,因为PA ⊥平面ABD ,所以//PA QH ,PA ⊄平面QBD ,所以//PA 平面QBD .(2)依题意,211344334P ABD ABD V S PA -=⋅=⨯⨯= ,由(1)知,//PA 平面QBD ,所以点P 到平面QBD 的距离与点A 到平面QBD 的距离相等,则P BDQ A BDQ V V --=,而211348334A BDQ Q ABD ABD V V S QH --==⋅=⨯⨯⨯= ,所以多面体ABDQP 的体积为4812ABDQP P ABD P BDQ P ABD Q ABD V V V V V ----=+=+=+=.21.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知cos tan 1sin A B A=+.(1)若2π3C =,求B ;(2)求222a b c+的最小值.【答案】(1)π6(2)5【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos tan 1sin A B A=+化成()cos sin A B B +=,再结合π02B <<,即可求出;(2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c+化成2224cos 5cos B B+-,然后利用基本不等式即可解出.【小问1详解】因为cos sin 1sin cos A B A B =+,即()1sin cos cos sin sin cos cos 2B A B A B A B C =-=+=-=,而π02B <<,所以π6B =;【小问2详解】由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<,而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以ππ3π0,,,424B C ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B B c C B+++-==()2222222cos 11cos 24cos 555cos cos B B B B B -+-==+-≥=.当且仅当22cos 2B =时取等号,所以222a b c+的最小值为5-.22.设四边形ABCD 为矩形,点P 为平面ABCD 外一点,且PA ⊥平面ABCD ,若1==PA AB ,2BC =.(1)求PC 与平面PAD 所成角的正切值;(2)在BC 边上是否存在一点G ,使得点D 到平面PAG ,若存在,求出BG 的值,若不存在,请说明理由;(3)若点E 是PD 的中点,在PAB 内确定一点H ,使CH EH +的值最小,并求此时HB 的值.【答案】(1)5;(2)存在,1BG =;(3),,C H E '三点共线,3HB =.【解析】【分析】(1)由线面垂直的判定定理可得CD ⊥平面APD ,得到PC 与平面APD 所成角为CPD ∠,在直角CPD △中,即可求解直线PC 与平面PAD 所成角的正切值;(2)假设BC 边上存在一点G 满足题设条件,作DQ AG ⊥,得到DQ ⊥平面PAG ,求得DQ =,得到1BG =,即可得到答案.(3)延长CB 到C ',使BC BC '=,由线面垂直的判定定理,可得CB ⊥平面APB ,得出C '是点C 关于面APB 的对称点,连接C E '交面APB 于H ,得到点H 是使CH EH +的值最小时,进而求得HB 的长度.【详解】(1)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD PA ⊥,又因为底面ABCD 是矩形,所以CD AD ⊥,由线面垂直的判定定理可得CD ⊥平面APD ,所以PC 与平面APD 所成角为CPD ∠,在直角PAD 中,1,2PA AD ==,可得PD ==,又由1CD =,在直角CPD △中,可得5tan 5CD CPD PD ∠==,即直线PC 与平面PAD 所成角的正切值为5.(2)假设BC 边上存在一点G 满足题设条件,作DQ AG ⊥,又因为,DQ PA PA AG A ⊥= ,可得DQ ⊥平面PAG ,所以DQ =,此时点G 为BC 的中点,所以1BG =故存在点G ,当1BG =时,使点D 到平面PAG .(3)延长CB 到C ',使得BC BC '=,因为PA ⊥平面ABCD ,CB ⊂平面ABCD ,所以CB PA ⊥,又因为底面ABCD 是矩形,所以CB AB ⊥,由线面垂直的判定定理,可得CB ⊥平面APB ,则C'是点C关于面APB的对称点,连接C E',交面APB于H,则点H是使CH EH+的值最小时,在面APB上的一点.作EM DA⊥于M,则点M是AD的中点,连接C M'交AB于N,连接HN,则12AM ANBC NB==',所以23HNEM=,又12EM=,所以13HN=,而2233BN AB==,所以3HB==.【点睛】本题主要考查了空间几何体的结构特征,线面位置的关系的判定及应用,以及直线与平面所成角的求解,其中解答中熟记线面位置关系的判定定理和性质定理,以及线面角的求解方法是解答的关键,着重考查推理与运算能力.。

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福州2023—2024学年第二学期期末考试高一年级数学(答案在最后)(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.122.已知复数12z i =-,则zz=()A.12B.1C.2D.43.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C .若αβ⊥,//l α,//m β,则l m⊥D.若αβ⊥,//l α,//m β,则//l m4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+= B.1λμ+=- C.0λμ= D.1λμ=-5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.77,3D.77,77.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为610.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQC.若1A BQ △的外心为M ,则11AB A M ⋅为定值2D.若1AQ =,则点Q 的轨迹长度为23π三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,ACB AC AB ACB ∠∠===的角平分线交AB 于D ,则CD =__________.13.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.福州2023—2024学年第二学期期末考试高一年级数学(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.12【答案】D【解析】【分析】利用百分位的定义求解即可.【详解】将样本数据按从小到大的顺序排列为:9,9,10,10,11,12,13.上四分位数即75%分位数,775% 5.25⨯=,所以该组数据的上四分位数为从小到大排列的第6个数,即12,故选:D.2.已知复数12z i=-,则zz=()A.12B.1C.2D.4【答案】B【解析】【分析】根据条件,利用共轭复数的定义及复数的运算法则,得到34i55zz=--,再利用复数模的定义,即可求出结果.【详解】因为12z i =-,所以12i 14i 434i 12i 555z z ---===--+,得到1z z=,故选:B.3.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C.若αβ⊥,//l α,//m β,则l m ⊥D.若αβ⊥,//l α,//m β,则//l m 【答案】B 【解析】【分析】根据线面平行或垂直的判定及性质定理逐个判断即可.【详解】对于A ,若//αβ,//l α,//m β,则l 与m 可能平行,也可能相交,还可能异面,故A 错误;对于B ,若//l m ,m β⊥,则l β⊥,又//αβ,所以l α⊥,故B 正确;对于C ,D ,αβ⊥,//l α,//m β,则l 与m 可能平行,也可能异面或相交,故C ,D 错误;故选:B .4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+=B.1λμ+=- C.0λμ= D.1λμ=-【答案】A 【解析】【分析】由向量垂直得到数量积为0,再由向量的数量积运算化简可得λ和μ的关系.【详解】因为向量,a b 满足||||a b == ,=0a b ⋅,若()()a b a b λμ+⊥+ ,所以22()()(1)()3()0a b a b a a b b λμμλμλλμ+⋅+=++⋅+=+=,所以0λμ+=.故选:A .5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+【答案】A 【解析】【分析】根据给定条件,在BCD △中,利用正弦定理求出BC ,再利用直角三角形边角关系求解即得.【详解】在BCD △中,由正弦定理得sin sin BC CDBDC CBD =∠∠,sin sin(π)BC s γαγ=--,则sin sin()s BC γαγ=+,在Rt ABC △中,sin sin tan tan tan sin()sin()s s AB BC ACB γγββαγαγ=∠=⋅=++.故选:A6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.277,3D.277,7【答案】D 【解析】【分析】将圆锥侧面沿母线PA 剪开并展开成扇形,最短路线即为扇形中的直线段AB ,利用余弦定理即可求解,过P 作AB 的垂线,垂足为M ,由题意得到AM 为上坡路段,MB 为下坡路段,计算即可.【详解】如图,将圆锥侧面沿母线PA 剪开并展开成扇形,由题可得该扇形半径2PA =,弧长为24π2π33⨯=,故圆心角4π2π323APB ∠==,最短路线即为扇形中的直线段AB ,由余弦定理可得:222cos 7AB PA PB PA PB APB =+-⋅∠=;2227cos 27PB AB PA PBA PB BA +-∠==⋅,过P 作AB 的垂线,垂足为M ,当蚂蚁从A 点爬行到点M 过程中,它与点P 的距离越来越小,故AM 为上坡路段,当蚂蚁从点M 爬行到点B 的过程中,它与点P 的距离越来越大,故MB 为下坡路段,下坡路段长27cos 7MB PB PBA =⋅∠=,故选:D7.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件【答案】C 【解析】【分析】利用列举法与古典概型的概率公式求得各事件的概率,由3434,A A A A =∅≠Ω 即可判断A ;由1313()()()P A P A P A A ≠即可判断B ;由2424()()()P A P A P A A =即可判断C ,由24A A ≠∅ 即可判断D.【详解】依次抛掷两枚质地均匀的骰子,两次的结果用有序数对表示,其中第一次在前,第二次在后,样本空间Ω如下:()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),()()()()()()6,1,6,2,6,3,6,4,6,5,6,6},共36个样本点.则事件1A 包括(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),共6个,11()6P A =,事件2A 包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),,共18个,21()2P A =,事件3A 包括(1,5),(2,4),(3,3),(4,2),(5,1),共5个,35()36P A =,事件4A 包括(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6个,461()366P A ==.对于A ,3434,A A A A =∅≠Ω ,所以3A 与4A 不为对立事件,故A 错误;对于B ,事件13A A 包括(2,4),则131()36P A A =,又11()6P A =,35()36P A =,所以131315()()()636P A P A P A A =⨯≠,即1A 与3A 不相互独立,故B 错误;对于C ,事件24A A 包括(1,6),(3,4),(5,2),则241()12P A A =,又21()2P A =,41()6P A =,所以2424111()()()2612P A P A P A A =⨯==,即2A 与4A 相互独立,故C 正确;对于D ,事件24A A 包括(1,6),(3,4),(5,2),则24A A ≠∅ ,即2A 与4A 不为互斥事件,故D 错误.故选:C.【点睛】关键点点睛:利用列举法和古典概型的概率公式求得各事件的概率是解决本题的关键.8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.【答案】D 【解析】【分析】先证得PB ⊥平面PAC ,再求得2AB BC AC ===,从而得-P ABC 为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】PA PB PC == ,BPA CPA CPB ∠=∠=∠,所以AB BC AC ==,故ABC 为等边三角形,P ABC ∴-为正三棱锥,取AC 的中点O ,连接,PO BO ,则,AC BO AC PO ⊥⊥,又,,BO PO O BO PO =⊂ 面PBO ,所以AC ⊥面PBO ,又BP ⊂面PBO ,所以AC PB ⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,又,PA PC ⊂面PAC ,所以,PA PB PC PB ⊥⊥,PA PB PC === ,2AB BC AC ∴===,在APC △中由勾股定理得PA PC ⊥,P ABC ∴-为正方体一部分,2R ==2R =,344π338V R ∴=π=⨯=,故选:D .【点睛】思路点睛:补体法解决外接球问题,可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为6【答案】ABD 【解析】【分析】A 选项,由余弦定理得sin cos 2CC =,求出sin tan 2cos C C C==;B 选项,由正弦定理和sin sin cos cos sin C A B A B =+化简得到sin cos A A =,求出π4A =;C 选项,在A 选项基础上求出sin 5C =,cos 5C =,从而得到sin 10B =,由正弦定理得到b =D 选项,由三角形面积公式求出答案.【详解】A 选项,由余弦定理得222sin sin cos 222a b c ab C CC ab ab +-===,故sin tan 2cos CC C==,A 正确;B 选项,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以sin cos sin sin sin cos cos sin A B B A A B A B +=+,即sin sin cos sin B A A B =,因为()0,πB ∈,所以sin 0B ≠,故sin cos A A =,又()0,πA ∈,故π4A =,B 正确;C 选项,由A 选项可知,sin cos 2C C =,又22sin cos 1C C +=,故25sin 14C =,因为()0,πC ∈,所以sin 0C >,解得sin 5C =,故5si cos n 2C C ==,()sin sin sin cos cos sin 252510=+=+=⨯+⨯=B AC A C A C ,由正弦定理得sin sin a bA B=12=b =C 错误;D 选项,△ABC的面积为11sin 6225ab C ==.故选:ABD10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQ 5C.若1A BQ △的外心为M ,则11A B A M ⋅为定值2D.若17AQ =,则点Q 的轨迹长度为23π【答案】ABD 【解析】【分析】由题易证得1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,可判断A ;取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,由面面平行的判定定理可得平面1//A BP 面AMN ,因为AQ ⊂面AMN ,所以AQ//平面1A BP ,当AQ MN ⊥时,AQ 有最小值可判断B ;由三角形外心的性质和向量数量积的性质可判断C ;在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,易知点Q 的轨迹为圆弧23A A 可判断D.【详解】对于A ,因为11//A B D C ,又因为1A B ⊂面1A BP ,1D C ⊄面1A BP ,所以1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,故A 正确;对于B ,取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,则易证明://AM PC ,AM ⊄面1A BP ,PC ⊄面1A BP ,所以//AM 面1A BP ,又因为1//A B MN ,,MN ⊄面1A BP ,1A B ⊄面1A BP ,所以//MN 面1A BP ,MN AM M ⋂=,所以平面1//A BP 面AMN ,AQ ⊂面AMN ,所以AQ//平面1A BP当AQ MN ⊥时,AQ 有最小值,则易求出5,2,AM MN ==2212cos1204122172AN AD DN AD DN ⎛⎫=+-⋅︒=+-⨯⨯⨯-= ⎪⎝⎭,Q M 重合,所以则AQ 的最小值为5AM =,故B 正确;对于C ,若1A BQ △的外心为M ,,过M 作1MH A B ⊥于点H ,2212+2=22A B 则21111==42A B A M A B ⋅ .故C 错误;对于D ,过1A 作111A O C D ⊥于点O ,易知1A O ⊥平面11C D D ,111cos 13OD A D π==在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,则13127A A A A ==,32732OA OA ==-=所以若17AQ =,则Q 在以O 为圆心,2为半径的圆弧23A A 上运动,又因为1131,3,D O D A ==所以323A OA π∠=,则圆弧23A A 等于23π,故D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,7,ACB AC AB ACB ∠∠=== 的角平分线交AB 于D ,则CD =__________.【答案】23【解析】【分析】在ABC 中,由余弦定理可得:1BC =,由正弦定理可得21sin 7B =,根据角平分线的性质可得:2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BD B DCB =∠即可求解.【详解】因为在ABC 中,120,2,7ACB AC AB ∠===由余弦定理可得:2222cos AB AC BC AB BC ACB =+-⋅⋅∠,解得1BC =由正弦定理可得:sin sin AC AB B ACB =∠,即27sin 3B =,解得:21sin 7B =,因为ACB ∠的角平分线交AB 于D ,所以60BCD ︒∠=,由角平分线性质可得:BD BCDA AC=,所以2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BDB DCB =∠7321372=23CD =故答案为:2313.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.【答案】()315e -【解析】【分析】先根据题意以及题中数据,可得:向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,由此即可估计出曲边三角形的面积.【详解】由题意以及表中数据可得,向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,所以其频率为63105=,因为矩形区域面积为()111e e -⨯=-,所以这个曲边三角形面积的一个近似值为()315e -.故答案为()315e -【点睛】本题主要考查几何概型,以及定积分在求面积中的应用,属于常考题型.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.【答案】4+4【解析】【分析】根据条件求出正四面体ABCD 的棱长为2,设(01)AF AD λλ=<<,利用几何关系得到空间四边形BCFE 的四条边长之和4L =+,即可求出结果.【详解】如图,将正四面体放置到正方体中,易知正四面体外接球即正方体的外接球,设正四面体ABCD ,所以正方体的边长为a ,易知正方体的外接球直径为体对角线DH 的长,又DH =,所以正四面体的半径22DH R ==,依题有224π3π6πR a ==,得到a =,即正四面体ABCD 的棱长为2,因为//BD 面CEF ,面ABD ⋂面CEF EF =,BD ⊂面ABD ,所以//EF BD ,设(01)AF AD λλ=<<因为2AB AD BD ===,则2AF AE λ==,22BE DF λ==-,在EAF △中,因为π3EAF ∠=,所以2EF λ=,在FDC △中,π3FDC ∠=,2DC =,则FC =,所以空间四边形BCFE 的四条边长之和2222442L λλ=+-++++,又01λ<<,当12λ=时,min 4L =+,故答案为:4+.【点睛】关键点点晴:本题的关键在于设出(01)AF AD λλ=<<后,利用几何关系得出FC =2EF λ=,22BE λ=-,从而得出空间四边形BCFE 的四条边长之和4L =+,转化成求L 的最小值来解决问题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.【答案】(1)0.125;(2)310【解析】【分析】(1)由频率分布直方图各小矩形的面积和等于1,可求得a 的值;(2)再由[)15,17和[)17,19的频率比0.120.153=,确定这5株分别在[)15,17和[)17,19的株数,最后由古典概型的计算公式求得结果即可.【小问1详解】依题意可得()0.050.0750.150.121a ++++⨯=,解得0.125a =;【小问2详解】由(1)可得高度在[)15,17的频率为:20.0500.1⨯=;高度在[)17,19的频率为:20.0750.15⨯=;且0.120.153=,所以分层抽取的5株中,高度在[)15,17和[)17,19的株数分别为2和3,因此记高度在[)15,17植株为,m n ,记高度在[)17,19植株为,,A B C ,则所有选取的结果为(m ,n )、(m ,A )、(m ,B )、(m ,C )、(n ,A )、(n ,B )、(n ,C )、(A ,B )、(A ,C )、(B ,C )共10种情况,令抽取的2株高度均在[)15,17内为事件M ,事件M 的所有情况为(A ,B )、(A ,C )、(B ,C )共3种情况,由古典概型的计算公式得:()310P M =.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.【答案】(1(2)()1,5【解析】【分析】(1)在BCD △中,由正弦定理可得sin CBD ∠,从而求得cos CBD ∠.(2)解法一:由(1)求得sin ADB ∠sin cos 55A A =∠+∠,AB 21tan A =+∠,从而ABD S = 21tan A +∠,再利用ππ22ABD A -∠<∠<,即可求得ABD △面积的取值范围;解法二:作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,求得1A D ,1A B ,2A D ,分别求出1A BD S ,2A BD S ,利用12A BD ABD A BD S S S <<△△△即可求得范围.【小问1详解】在BCD △中,由正弦定理可得sin sin BD CDBCD CBD ∠∠=,所以22sin 5CBD ∠==,又π0,4CBD ⎛⎫∠∈ ⎪⎝⎭,所以cos 5CBD ∠==.【小问2详解】解法一:由(1)可知,πsin sin cos 25ABD CBD CBD ⎛⎫∠=-∠=∠= ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,所以()sin sin ADB A ABD ∠=∠+∠sin cos cos sin A ABD A ABD =∠∠+∠∠sin cos 55A A =∠+∠,在ABD △中,由正弦定理得sin sin AB BDADB A=∠∠,所以sin 2cos sin sin ADB A AAB A A∠∠+∠==∠∠21tan A =+∠,1sin 2ABD S AB BD ABD=⋅⋅∠122112tan 5tan A A⎛⎫=⨯+⨯=+ ⎪∠∠⎝⎭,因为()πADB ABD A ∠=-∠+∠,且ABD △为锐角三角形,所以()π0π2π02ABD A A ⎧<-∠+∠<⎪⎪⎨⎪<∠<⎪⎩,所以ππ22ABD A -∠<∠<,所以πtan tan 2A ABD ⎛⎫∠>-∠⎪⎝⎭πsin cos 12πsin 2cos 2ABD ABD ABD ABD ⎛⎫-∠ ⎪∠⎝⎭===∠⎛⎫-∠ ⎪⎝⎭,所以102tan A<<∠,所以2115tan A<+<∠,即15ABD S <<△,所以ABD △的面积的取值范围为()1,5.解法二:由(1)可知,sin sin cos 25πABD CBD CBD ∠∠∠⎛⎫=-== ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,tan 2ABD ∠=,如图,作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,所以15sin 525A D BD ABD ∠=⋅==,15cos 515A B BD ABD ∠=⋅==,所以112112A BD S =⨯⨯=△,又2tan 5225A D BD ABD ∠=⋅==,所以215552A BD S =⨯=△.由图可知,仅当A 在线段12A A 上(不含端点)时,ABD △为锐角三角形,所以12A BD ABD A BD S S S <<△△△,即15ABD S <<△.所以ABD △面积的取值范围为()1,5.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.【答案】(1)“关关姐”和“页楼哥”回答正确的概率分别为31;52;(2)“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122,,;255三人最终一共获得2枝“黑玫瑰”奖品的概率825【解析】【分析】(1)根据独立事件的乘法公式分别求解即可;(2)综合应用独立事件的乘法公式和互斥事件的概率加法公式分别求解即可.【小问1详解】记=i A “玲儿姐回答正确第i 个问题”,i B =“关关姐回答正确第i 个问题”,i C =“页楼哥回答正确第i 个问题”,1,2i =.根据题意得111111122()()()(1())(1())(1)(1())315P A B P A P B P A P B P B ==--=--=,所以13()5P B =;1111133()()()()510P B C P B P C P C ===,所以11()2P C =;故在第一个问题中,“关关姐”和“页楼哥”回答正确的概率分别为35和12.【小问2详解】由题意知222324(),(),()435P A P B P C ===,“玲儿姐”获得一枝“黑玫瑰”奖品的概率为11212231()()()342P P A A P A P A ====;“关关姐”获得一枝“黑玫瑰”奖品的概率为21212322()()()535P P B B P B P B ====;“页楼哥”获得一枝“黑玫瑰”奖品的概率为31212142()()()255P P C C P C P C ===⨯=;三人最终一共获得2枝“黑玫瑰”奖品的概率为123123123(1)(1)(1)P P P P P P P PP P =-+-+-122132123825525525525=⨯⨯+⨯⨯+⨯=.所以“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122255,,;三人最终一共获得2枝“黑玫瑰”奖品的概率为825.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =.【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证.(3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.【小问1详解】连接1AB 与1A B ,两线交于点O ,连接OM,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .【小问2详解】因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A = ,1AA ,AC ⊂平面11ACC A ,所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =,在1Rt ACC V 和1Rt A AM中,11tan tan AC C A MA ∠=∠=,所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BM A M M = ,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .【小问3详解】当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AA C C .证明如下:设1AC 的中点为D ,连接DM ,DN,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点,所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.【答案】(1)0.178-;可以认为零件的尺寸不随生产过程的进行而系统地变大或变小(2)(i )从这一天抽检的结果看,需对当天的生产过程进行检查;(ii )证明见解析;(iii )均值10.02;标准差0.09【解析】【分析】(1)根据数据和公式即可计算r 的值,根据0.25r <的规则进行判断即可;(2)(i )计算()3,3x s x s -+的值,根据13个零件的尺寸与区间的关系进行判断;(ii )根据已学公式进行变形即可证明;(iii )代入公式计算即可.【小问1详解】由题可得()()16118.5 2.78n i iii i x y nxy x x i ==-=--=-∑∑,40.848s===,18.439=≈所以 2.780.180.84818.439ˆniix ynxyr--=≈-⨯∑,则0.180.25r =<,所以可以认为零件的尺寸不随生产过程的进行而系统地变大或变小【小问2详解】(i )由题可得39.9730.2129.334x s -=-⨯=,39.9730.21210.606x s +=+⨯=,因为第13个零件的尺寸为9.22,9.229.334<,所以从这一天抽检的结果看,需对当天的生产过程进行检查;。

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

2024学年郑州市高一年级(下)期末考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p :0x ∃>,0y >,使得不等式(5x y λ+>++成立,则命题p 成立的一个充分不必要条件可以是()A.52λλ⎧⎪≥⎨⎪⎪⎩⎭B.53λλ⎧⎪≥⎨⎪⎪⎩⎭C.54λλ⎧⎪>⎨⎪⎪⎩⎭D.55λλ⎧⎪>⎨⎪⎪⎩⎭2.已知 1.30.920.9, 1.3,log 3a b c ===,则()A.a c b <<B.c a b <<C .a b c<< D.c b a<<3.将函数()πcos 23f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,得到函数()g x 的图象,则函数()()242h x g x x x =-+-的零点个数为()A.1B.2C.3D.44.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17245.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A.sin ()2xf x = B.cos ()2xf x = C.()sin 12xf x ⎛⎫= ⎪⎝⎭D.()cos 12xf x ⎛⎫= ⎪⎝⎭6.在ABC 中,D 为BC 上一点,且3BD DC =,ABC CAD ∠=∠,2π3BAD ∠=,则tan ABC ∠=()A.3913B.133C.33D.357.已知π02α<<,()2ππ1sin 2sin 2cos cos 2714αα+=,则α=()A.3π14B.5π28C.π7D.π148.已知z 是复数,z 是其共轭复数,则下列命题中正确的是()A.22z z= B.若1z =,则1i z --1+C.若()212i z =-,则复平面内z 对应的点位于第一象限D.若13i -是关于x 的方程20(R)x px q p q ++=∈,的一个根,则8q =-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.已知函数()()()sin 0,0,π2πf x A x A ωϕωϕ=+>><<的部分图象如图所示,其图象上最高点的纵坐标为2,且图象经过点()π0,1,,13⎛⎫-⎪⎝⎭,则()A.11π6ϕ=B.3ω=C.()f x 在π2π,23⎡⎤⎢⎥⎣⎦上单调递减D.方程()()21f x a a =-<<-在0,π][内恰有4个互不相等的实根10.已知a ,b ,c是平面上三个非零向量,下列说法正确的是()A.一定存在实数x ,y 使得a xb yc =+成立B.若a b a c ⋅=⋅,那么一定有()a b c⊥- C.若()()a c b c -⊥-,那么2a b a b c-=+- D .若()()a b c a b c ⋅⋅=⋅⋅ ,那么a ,b ,c 一定相互平行11.已知函数2()2sin cos 23cos f x x x x =-,则下列结论中正确的有()A.函数()f x 的最小正周期为πB.()f x 的对称轴为ππ32k x =+,k ∈Z C.()f x 的对称中心为ππ(0)3,2k +,k ∈ZD.()f x 的单调递增区间为π5π[π,π]1212k k -++,k ∈Z 三、填空题:本大题共3个小题,每小题5分,共15分.12.已知142x y >->-,,且21x y +=,则19214x y +++的最小值为_________.13.球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为R ,球冠的高是h ,球冠的表面积公式是2πS Rh =,如图2,已知,C D 是以AB 为直径的圆上的两点,π,6π3COD AOC BOD S ∠=∠==扇形,则扇形COD 绕直线AB 旋转一周形成的几何体的表面积为__________.14.已知点O 是ABC 的外心,60BAC ∠=︒,设AO mAB nAC =+,且实数m ,n 满足42m n +=,则mn 的值是___________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,a b R ∈且0a >,函数4()4x xbf x a+=-是奇函数.(1)求a ,b 的值;(2)对任意(0,)x ∈+∞,不等式()02x mf x f ⎛⎫-> ⎪⎝⎭恒成立,求实数m 的取值范围.16.本学期初,某校对全校高二学生进行数学测试(满分100),并从中随机抽取了100名学生的成绩,以此为样本,分成[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示频率分布直方图.(1)估计该校高二学生数学成绩的平均数和85%分位数;(2)为进一步了解学困生的学习情况,从数学成绩低于70分的学生中,分层抽样6人,再从6人中任取2人,求此2人分数都在[)60,70的概率.17.已知ABC 的面积为9,点D 在BC 边上,2CD DB =.(1)若4cos 5BAC ∠=,AD DC =,①证明:sin 2sin ABD BAD ∠=∠;②求AC ;(2)若AB BC =,求AD 的最小值.18.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r,2AFFB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.19.已知),cos2a x x =,()2cos ,1b x =- ,记()()R f x a b x =⋅∈(1)求函数()y f x =的值域;(2)求函数()y f x =,[]0,πx ∈的单调减区间;(3)若()π24F x f x m ⎛⎫=+- ⎪⎝⎭,π0,3x ⎛⎤∈ ⎥⎝⎦恰有2个零点12,x x ,求实数m 的取值范围和12x x +的值.2024学年郑州市高一年级(下)期末考试数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

2023-2024学年广东省部分学校高一(下)期末数学试卷+答案解析

2023-2024学年广东省部分学校高一(下)期末数学试卷+答案解析

2023-2024学年广东省部分学校高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数,则()A. B. C. D.12.已知圆锥的表面积为,它的侧面展开图是个半圆,则此圆锥的体积为()A.3B.C.9D.3.已知正方体的棱长为2,E,F分别是BC和CD的中点.则两条平行线EF和间的距离为()A. B. C. D.4.端午节吃粽子是我国的一个民俗,记事件“甲端午节吃甜粽子”,记事件“乙端午节吃咸粽子”,且,事件A与事件B相互独立,则()A. B. C. D.5.菏泽市博物馆里,有一条深埋600多年的元代沉船,对于研究元代的发展提供了不可多得的实物资料.沉船出土了丰富的元代瓷器,其中的白地褐彩龙风纹罐如图的高约为36cm,把该瓷器看作两个相同的圆台拼接而成如图,圆台的上底直径约为20cm,下底直径约为40cm,忽略其壁厚,则该瓷器的容积约为()A. B. C. D.6.人脸识别就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点,,O为坐标原点,定义余弦相似度为,余弦距离为已知,,若P,Q的余弦距离为则()A. B. C. D.7.在棱长为1的正方体中,,E是线段含端点上的一动点,则①;②面;③三棱锥的体积为定值;④OE与所成的最大角为上述命题中正确的个数是()A.1B.2C.3D.48.已知正方体的棱长为2,M 是棱的中点,空间中的动点P 满足,且,则动点P 的轨迹长度为()A.B.3C.D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.下列有关复数的说法正确的是()A.若,则B.C.D.若,则的取值范围为10.已知点,,则下列结论正确的是()A.与向量垂直的向量坐标可以是B.与向量平行的向量坐标可以是C.向量在方向上的投影向量坐标为D.对,向量与向量所成角均为锐角11.在正方体中,,E 是棱的中点,则下列结论正确的是()A.若F 是线段的中点,则异面直线EF 与AB 所成角的余弦值是B.若F 为线段上的动点,则的最小值为C.若F 为线段上的动点,则平面ABF 与平面CDF 夹角的余弦值的取值范围为D.若F 为线段上的动点,且与平面ABCD 交于点G ,则三棱锥的体积为三、填空题:本题共3小题,每小题5分,共15分。

高一下学期期末数学试卷及答案

高一下学期期末数学试卷及答案

高一下学期期末数学试卷及答案不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。

下面为您推荐高一下学期期末数学试卷及答案。

【试题一】一、选择题:(共15个小题,每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的)1.已知全集U=R,A=,B={x|lnx0},则AB=()A.{x|﹣1x2}B.{x|﹣1x2}C.{x|x﹣1或x2}D.{x|02.已知,那么cos=()A.B.C.D.3.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1D.24.△ABC中,AB=2,AC=3,B=60,则cosC=()A.B.C.D.5.已知△ABC是边长为1的等边三角形,则(﹣2)(3﹣4)=()A.﹣B.﹣C.﹣6﹣D.﹣6+6.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.277.已知角是第二象限角,且|cos|=﹣cos,则角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5B.4C.3D.29.对任意一个确定的二面角﹣l﹣,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()A.a∥a且b∥B.a∥a且bC.a且bD.a且b10.定义22矩阵=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到函数g(x),则函数g(x)解析式为()A.g(x)=﹣2cos2xB.g(x)=﹣2sin2xC.D.11.已知一个几何体的三视图如图所示,则该几何体的体积为()A.7B.7C.7D.812.若sin(+)=,是第三象限的角,则=()A.B.C.2D.﹣213.已知,记数列{an}的前n项和为Sn,则使Sn0的n的最小值为()A.10B.11C.12D.1314.(1+tan18)(1+tan27)的值是()A.B.C.2D.2(tan18+tan27)15.数列{an}满足:且{an}是递增数列,则实数a的范围是()A.B.C.(1,3)D.(2,3)二、填空题(共5小题,每小题4分,共20分,将答案填在答题纸上)16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C 三点共线,则k=.17.已知向量、满足||=1,||=1,与的夹角为60,则|+2|=.18.在△ABC中,BD为ABC的平分线,AB=3,BC=2,AC=,则sinABD等于.19.在四棱锥S﹣ABCD中,SA面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为.20.设数列{an}的通项为an=2n﹣7(nN*),则|a1|+|a2|++|a15|=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)21.已知平面向量=(1,x),=(2x+3,﹣x)(xR).(1)若∥,求|﹣|(2)若与夹角为锐角,求x的取值范围.22.(文科)已知{an}是单调递增的等差数列,首项a1=3,前n 项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.(Ⅰ)求{an}和{bn}的通项公式.(Ⅱ)令Cn=nbn(nN+),求{cn}的前n项和Tn.23.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB ﹣sin(A﹣B)sinB+cos(A+C)=﹣.(Ⅰ)求cosA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.24.已知如图:四边形ABCD是矩形,BC平面ABE,且AE=2,EB=BC=2,点F为CE上一点,且BF平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥A﹣DBE的体积;(3)求二面角D﹣BE﹣A的大小.25.如图,函数f(x)=Asin(x+)(其中A0,0,||)的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m0),PQR=,M为QR的中点,|PM|=.(Ⅰ)求m的值及f(x)的解析式;(Ⅱ)设PRQ=,求tan.26.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.(Ⅰ)求证:{lgan}是等差数列;(Ⅱ)设Tn是数列{}的前n项和,求Tn;(Ⅲ)求使Tn(m2﹣5m)对所有的nN*恒成立的整数m的取值集合.2021-2021学年河北省衡水市冀州中学高一(下)期末数学试卷(理科)参考答案与试题解析一、选择题:(共15个小题,每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的)1.已知全集U=R,A=,B={x|lnx0},则AB=()A.{x|﹣1x2}B.{x|﹣1x2}C.{x|x﹣1或x2}D.{x|0【考点】并集及其运算.【分析】求出A与B中不等式的解集,分别确定出A与B,找出两集合的并集即可.【解答】解:由A中不等式变形得:0,即(x+1)(x﹣2)0,且x﹣20,解得:﹣1x2,即A={x|﹣1x2},由B中不等式变形得:lnx0=ln1,得到0则AB={x|﹣1x2},故选:B.2.已知,那么cos=()A.B.C.D.【考点】诱导公式的作用.【分析】已知等式中的角变形后,利用诱导公式化简,即可求出cos的值.【解答】解:sin(+)=sin(2++)=sin(+)=cos=.故选C.3.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1D.2【考点】平面向量的基本定理及其意义.【分析】如图所示,由于=+,可得:PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.即可得出.【解答】解:如图所示,∵=+,PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.=1.故选:C.4.△ABC中,AB=2,AC=3,B=60,则cosC=()A.B.C.D.【考点】正弦定理.【分析】由已知及正弦定理可得sinC==,又AB【解答】解:∵AB=2,AC=3,B=60,由正弦定理可得:sinC===,又∵ABcosC==.故选:D.5.已知△ABC是边长为1的等边三角形,则(﹣2)(3﹣4)=()A.﹣B.﹣C.﹣6﹣D.﹣6+【考点】平面向量数量积的运算.【分析】将式子展开计算.【解答】解:(﹣2)(3﹣4)=3﹣4﹣6+8=311cos120﹣411cos60﹣612+811cos60=﹣﹣2﹣6+4=﹣.故选:B.6.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.27【考点】等差数列的性质.【分析】观察下标间的关系,知应用等差数列的性质求得.【解答】解:由等差数列性质知S3、S6﹣S3、S9﹣S6成等差数列,即9,27,S9﹣S6成等差,S9﹣S6=45a7+a8+a9=45故选B.7.已知角是第二象限角,且|cos|=﹣cos,则角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】三角函数值的符号.【分析】根据的范围判断出的范围,再由含有绝对值的式子得到角的余弦值的符号,根据一全正二正弦三正切四余弦再进一步判断的范围.【解答】解:由是第二象限角知,是第一或第三象限角.又∵|cos|=﹣cos,cos0,是第三象限角.故选C.8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5B.4C.3D.2【考点】等差数列的通项公式.【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.【解答】解:,故选C.9.对任意一个确定的二面角﹣l﹣,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()A.a∥a且b∥B.a∥a且bC.a且bD.a且b【考点】异面直线及其所成的角.【分析】作辅助线,利用二面角的定义和线线角的定义证明两角互补即可.【解答】解:如图,若a且b,过A分别作直线a、b的平行线,交两平面、分别为C、B设平面ABC与棱l交点为O,连接BO、CO,易知四边形ABOC为平面四边形,可得BOC与BAC互补∵﹣l﹣是大小确定的一个二面角,而BOC就是它的平面角,BOC是定值,BAC也是定值,即a,b所成的角为定值.故选D10.定义22矩阵=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到函数g(x),则函数g(x)解析式为()A.g(x)=﹣2cos2xB.g(x)=﹣2sin2xC.D.【考点】函数y=Asin(x+)的图象变换;三角函数中的恒等变换应用.【分析】利用三角恒等变换化简函数f(x)的解析式,再利用函数y=Asin(x+)的图象变换规律,求得函数g(x)解析式.【解答】解:由题意可得f(x)==cos2x﹣sin2x﹣cos(+2x)=cos2x+sin2x=2cos(2x﹣),则f(x)的图象向右平移个单位得到函数g(x)=2cos[2(x﹣)﹣]=2cos(2x﹣)=﹣2cos2x,故选:A.11.已知一个几何体的三视图如图所示,则该几何体的体积为()A.7B.7C.7D.8【考点】由三视图求面积、体积.【分析】根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,结合图中数据即可求出它的体积.【解答】解:根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,如图所示;所以该几何体的体积为V=V正方体﹣﹣=23﹣122﹣122=7.故选:A.12.若sin(+)=,是第三象限的角,则=()A.B.C.2D.﹣2【考点】运用诱导公式化简求值.【分析】已知等式利用诱导公式化简求出sin的值,根据为第三象限角,利用同角三角函数间基本关系求出cos的值,原式利用诱导公式化简,整理后将各自的值代入计算即可求出值.【解答】解:∵sin(+)=﹣sin=,即sin=﹣,是第三象限的角,cos=﹣,则原式====﹣,故选:B.13.已知,记数列{an}的前n项和为Sn,则使Sn0的n的最小值为()A.10B.11C.12D.13【考点】数列的求和.【分析】由,可得a1+a10=a2+a9==a5+a6=0,a110,则有S90,S10=0,S110可求【解答】解:由,可得a1+a10=a2+a9==a5+a6=0,a110S90,S10=0,S110使Sn0的n的最小值为11故选:B14.(1+tan18)(1+tan27)的值是()A.B.C.2D.2(tan18+tan27)【考点】两角和与差的正切函数.【分析】要求的式子即1+tan18+tan27+tan18tan27,再把tan18+tan27=tan45(1﹣tan18tan27)代入,化简可得结果.【解答】解:(1+tan18)(1+tan27)=1+tan18+tan27+tan18tan27=1+tan45(1﹣tan18tan27)+tan18tan27=2,故选C.15.数列{an}满足:且{an}是递增数列,则实数a的范围是()A.B.C.(1,3)D.(2,3)【考点】数列的函数特性;分段函数的解析式求法及其图象的作法;函数单调性的判断与证明.【分析】根据题意,首先可得an通项公式,这是一个类似与分段函数的通项,结合分段函数的单调性的判断方法,可得;解可得答案.【解答】解:根据题意,an=f(n)=;要使{an}是递增数列,必有;解可得,2故选D.二、填空题(共5小题,每小题4分,共20分,将答案填在答题纸上)16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C 三点共线,则k=.【考点】平面向量共线(平行)的坐标表示;三点共线.【分析】利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.【解答】解:向量,又A、B、C三点共线故(4﹣k,﹣7)=(﹣2k,﹣2)k=故答案为17.已知向量、满足||=1,||=1,与的夹角为60,则|+2|=.【考点】平面向量数量积的运算.【分析】根据条件进行数量积的计算便可得出,从而便可求出,这样即可求出的值.【解答】解:根据条件,;;.故答案为:.18.在△ABC中,BD为ABC的平分线,AB=3,BC=2,AC=,则sinABD等于.【考点】正弦定理.【分析】利用余弦定理求得cosABC=cos2的值,可得的值.【解答】解:∵△ABC中,BD为ABC的平分线,AB=3,BC=2,AC=,设ABD=,则ABC=2,由余弦定理可得cos2===,2=,=,故答案为:.19.在四棱锥S﹣ABCD中,SA面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为17.【考点】球内接多面体.【分析】如图所示,连接AC,BD相交于点O1.取SC的中点,连接OO1.利用三角形的中位线定理可得OO1∥SA.由于SA底面ABCD,可得OO1底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心,SC是外接球的直径.【解答】解:如图所示连接AC,BD相交于点O1.取SC的中点,连接OO1.则OO1∥SA.∵SA底面ABCD,OO1底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心.因此SC是外接球的直径.∵SC2=SA2+AC2=9+8=17,4R2=17,四棱锥P﹣ABCD外接球的表面积为4R2=17=17.故答案为:1720.设数列{an}的通项为an=2n﹣7(nN*),则|a1|+|a2|++|a15|=153.【考点】等差数列的前n项和.【分析】先根据数列的通项公式大于等于0列出关于n的不等式,求出不等式的解集即可得到数列的前三项为负数,利用负数的绝对值等于它的相反数,求出前三项的绝对值,正数的绝对值等于本身把第四项及后面的各项化简,然后利用等差数列的前n项和的公式即可求出所求式子的值.【解答】解:由an=2n﹣70,解得n,所以数列的前3项为负数,则|a1|+|a2|++|a15|=5+3+1+1+3+5++23=9+121+2=153.故答案为:153三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)21.已知平面向量=(1,x),=(2x+3,﹣x)(xR).(1)若∥,求|﹣|(2)若与夹角为锐角,求x的取值范围.【考点】平面向量数量积的运算;平面向量共线(平行)的坐标表示.【分析】(1)根据向量平行与坐标的关系列方程解出x,得出的坐标,再计算的坐标,再计算||;(2)令得出x的范围,再去掉同向的情况即可.【解答】解:(1)∵,﹣x﹣x(2x+3)=0,解得x=0或x=﹣2.当x=0时,=(1,0),=(3,0),=(﹣2,0),||=2.当x=﹣2时,=(1,﹣2),=(﹣1,2),=(2,﹣4),||=2.综上,||=2或2.(2)∵与夹角为锐角,,2x+3﹣x20,解得﹣1又当x=0时,,x的取值范围是(﹣1,0)(0,3).22.(文科)已知{an}是单调递增的等差数列,首项a1=3,前n 项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.(Ⅰ)求{an}和{bn}的通项公式.(Ⅱ)令Cn=nbn(nN+),求{cn}的前n项和Tn.【考点】等差数列与等比数列的综合;数列的求和.【分析】(Ⅰ)设公差为d,公比为q,则a2b2=(3+d)q=12①,S3+b2=3a2+b2=3(3+d)+q=20②联立①②结合d0可求d,q,利用等差数列,等比数列的通项公式可求an,bn(Ⅱ)由(I)可得,bn=2n﹣1,cn=n2n﹣1,考虑利用错位相减求解数列的和即可【解答】解:(Ⅰ)设公差为d,公比为q,则a2b2=(3+d)q=12①S3+b2=3a2+b2=3(3+d)+q=20②联立①②可得,(3d+7)(d﹣3)=0∵{an}是单调递增的等差数列,d0.则d=3,q=2,an=3+(n﹣1)3=3n,bn=2n﹣1(Ⅱ)bn=2n﹣1,cn=n2n﹣1,Tn=c1+c2++cnTn=120+221+322++n2n﹣12Tn=121+222++(n﹣1)2n﹣1+n2n两式相减可得,﹣Tn=120+121+122++12n﹣1﹣n2n﹣Tn==2n﹣1﹣n2nTn=(n﹣1)2n+123.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB ﹣sin(A﹣B)sinB+cos(A+C)=﹣.(Ⅰ)求cosA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.【考点】两角和与差的余弦函数;向量数乘的运算及其几何意义;二倍角的正弦;二倍角的余弦;余弦定理.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B 的值,利用余弦定理求出c的大小.【解答】解:(Ⅰ)由可得,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知ab,即AB,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.24.已知如图:四边形ABCD是矩形,BC平面ABE,且AE=2,EB=BC=2,点F为CE上一点,且BF平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥A﹣DBE的体积;(3)求二面角D﹣BE﹣A的大小.【考点】二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)连接AC交BD于G,连结GF,则G为AC的中点,推导出BFCE,FG为△ACE的中位线,由此能证明AE∥平面BFD.(2)推导出BFAE,BCAE,AD平面ABE,从而AEBE,由V A ﹣DBE=VD﹣ABE,能求出三棱锥A﹣DBE的体积.(3)由AEBE,ADBE,得到DEA是二面角D﹣BE﹣A的平面角,由此能求出二面角D﹣BE﹣A的大小.【解答】证明:(1)连接AC交BD于G,连结GF,∵ABCD是矩形,G为AC的中点,1分由BF平面ACE得:BFCE,由EB=BC知:点F为CE中点,2分FG为△ACE的中位线,FG∥AE,3分∵AE平面BFD,FG平面BFD,AE∥平面BFD.4分解:(2)由BF平面ACE得:BFAE,由BC平面ABE及BC∥AD,得:BCAE,AD平面ABE,∵BCBF=F,AE平面BCE,则AEBE,6分V A﹣DBE=VD﹣ABE=,即三棱锥A﹣DBE的体积为.8分(3)由(2)知:AEBE,ADBE,BE平面ADE,则BEDE,DEA是二面角D﹣BE﹣A的平面角,10分在Rt△ADE中,DE==4,AD=DE,则DEA=30,二面角D﹣BE﹣A的大小为30.12分.25.如图,函数f(x)=Asin(x+)(其中A0,0,||)的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m0),PQR=,M为QR的中点,|PM|=.(Ⅰ)求m的值及f(x)的解析式;(Ⅱ)设PRQ=,求tan.【考点】由y=Asin(x+)的部分图象确定其解析式;同角三角函数间的基本关系.【分析】(Ⅰ)由已知可得=,从而解得m的值,由图象可求T,由周期公式可求,把p(1,0)代入f(x),结合||,即可求得的值,把R(0,﹣4)代入f(x)=Asin(x﹣),即可解得A的值,从而可求f(x)的解析式.(Ⅱ)由ORP=﹣,tanORP=,根据tan(﹣)=即可解得tan的值.【解答】解:(Ⅰ)∵PQR=,OQ=OR,∵Q(m,0),R(0,﹣m),又M为QR的中点,M(,﹣),又|PM|=,=,m2﹣2m﹣8=0,m=4,m=﹣2(舍去),R(0,4),Q(4,0),=3,T=6,=6,,把p(1,0)代入f(x)=Asin(x+),Asin(+)=0,∵||,=﹣.把R(0,﹣4)代入f(x)=Asin(x﹣),Asin(﹣)=﹣4,A=.f(x)的解析式为f(x)=sin(x﹣).所以m的值为4,f(x)的解析式为f(x)=sin(x﹣).(Ⅱ)在△OPR中,ORP=﹣,tanORP=,tan(﹣)=,=,解得tan=.26.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.(Ⅰ)求证:{lgan}是等差数列;(Ⅱ)设Tn是数列{}的前n项和,求Tn;(Ⅲ)求使Tn(m2﹣5m)对所有的nN*恒成立的整数m的取值集合.【考点】数列的求和;等差关系的确定.【分析】(I)根据等差数列的定义即可证明{lgan}是等差数列;(Ⅱ)求出{}的通项公式,利用裂项法即可求Tn;(Ⅲ)直接解不等式即可得到结论.【解答】解:(I)∵a1=10,an+1=9Sn+10.当n=1时,a2=9a1+10=100,故,当n1时,an+1=9Sn+10①,an+2=9Sn+1+10②,两式相减得an+2﹣an+1=9an+1,即an+2=10an+1,即,即{an}是首项a1=10,公比q=10的等比数列,则数列{an}的通项公式;则lgan=lg10n=n,则lgan﹣lgan﹣1=n﹣(n﹣1)=1,为常数,即{lgan}是等差数列;(Ⅱ)∵lgan=n,则=(﹣),则Tn=3(1﹣++﹣)=3(1﹣)=3﹣,(Ⅲ)∵Tn=3﹣T1=,要使Tn(m2﹣5m)对所有的nN*恒成立,则(m2﹣5m)对所有的nN*恒成立,解得﹣1故整数m的取值集合{0,1,2,3,4,5}.【试题二】一、选择题(共12小题,每小题5分,满分60分)1.点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动弧长到达Q,则Q点坐标()A.(﹣,)B.(﹣,﹣)C.(﹣,﹣)D.(﹣,)2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件抽到的不是一等品的概率为()A.0.7B.0.65C.0.35D.0.33.已知,为单位向量,其夹角为60,则(2﹣)=()A.﹣1B.0C.1D.24.sin(﹣15)=()A.B.C.D.5.已知向量=(﹣2,1),=(3,0),则在方向上的正射影的数量为()A.﹣B.C.﹣2D.26.在△ABC中,a=1,b=x,A=30,则使△ABC有两解的x的范围是()A.B.(1,+)C.D.(1,2)7.如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中的数,那么在空白的判断框中,应该填入下面四个选项中的()A.cxB.xaC.cbD.bc8.△ABC中,角A,B,C所对的边分别为a,b,c若A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形9.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且,,,则与()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直10.设函数,且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为,且在上为增函数B.y=f(x)的最小正周期为,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数11.设O点在△ABC内部,且有,则△ABC的面积与△AOC的面积的比为()A.2B.C.3D.12.已知在等边△ABC中,AB=3,O为中心,过O的直线与△ABC 的边分别交于点M、N,则+的值是()A.B.2C.D.二、填空题(共4小题,每小题5分,满分20分)13.高一某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为8的样本,则需要将全班同学分成组.14.已知tan=2,tan=3,且、都是锐角,则tan=.15.有一解三角形的题目因纸张破损,有一条件不清,具体如下:在△ABC中,已知a=,2cos2=(﹣1)cosB,c=,求角A,若该题的答案是A=60,请将条件补充完整.16.在△ABC中,ACB为钝角,AC=BC=1,且x+y=1,函数的最小值为,则的最小值为.三、解答题(共6小题,满分70分)17.已知函数f(x)=Asin(x+)(A0,0),xR的值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(﹣)的值.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP 上的一动点.(1)求使取最小值时的;(2)对(1)中求出的点Z,求cosAZB的值.20.学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.(1)在给出的样本频率分布表中,求A,B,C,D的值;(2)估计成绩在120分以上(含120分)学生的比例;(3)为了帮助成绩差的学生提高数学成绩,学校决定成立二帮一小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.样本频率分布表:分组频数频率[60,75)20.04[75,90)30.06[90,105)140.28[105,120)150.30[120,135)AB[135,150]40.08合计CD21.某休闲农庄有一块长方形鱼塘ABCD,AB=50米,BC=25米,为了便于游客休闲散步,该农庄决定在鱼塘内建三条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E 在边BC上,点F在边AD上,且EOF=90.(1)设BOE=,试将△OEF的周长l表示成的函数关系式,并求出此函数的定义域;(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.22.在平面直角坐标系中,O为坐标原点,已知向量=(﹣1,2),又点A(8,0),B(n,t),C(ksin,t).(1)若,且||=||,求向量;(2)若向量与向量共线,常数k0,求f()=tsin的值域;(3)当(2)问中f()的值4时,求.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动弧长到达Q,则Q点坐标()A.(﹣,)B.(﹣,﹣)C.(﹣,﹣)D.(﹣,)【考点】弧长公式.【分析】画出图形,结合图形,求出xOQ的大小,即得Q点的坐标.【解答】解:如图所示,;点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动弧长到达Q,则POQ=﹣2=,xOQ=,cos=﹣,sin=,Q点的坐标为(﹣,);故选:A.2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件抽到的不是一等品的概率为()A.0.7B.0.65C.0.35D.0.3【考点】互斥事件的概率加法公式.【分析】根据对立事件的概率和为1,结合题意,即可求出结果来.【解答】解:根据对立事件的概率和为1,得;∵事件A={抽到一等品},且P(A)=0.65,事件抽到的不是一等品的概率为P=1﹣P(A)=1﹣0.65=0.35.故选:C.3.已知,为单位向量,其夹角为60,则(2﹣)=()A.﹣1B.0C.1D.2【考点】平面向量数量积的运算.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)的值.【解答】解:由题意可得,=11cos60=,=1,(2﹣)=2﹣=0,故选:B.4.sin(﹣15)=()A.B.C.D.【考点】三角函数的化简求值;运用诱导公式化简求值.【分析】利用两角差的正弦公式,结合特殊角的三角函数,即可得出答案.【解答】解:sin(﹣15)=sin(30﹣45)=sin30cos45﹣cos30sin45=﹣=.故选:D.5.已知向量=(﹣2,1),=(3,0),则在方向上的正射影的数量为()A.﹣B.C.﹣2D.2【考点】平面向量数量积的运算.【分析】根据向量数量积的关系进行化简,结合向量投影的定义进行求解即可.【解答】解:∵向量=(﹣2,1),=(3,0),在方向上的正射影为||cos,===﹣2,故选:C6.在△ABC中,a=1,b=x,A=30,则使△ABC有两解的x的范围是()A.B.(1,+)C.D.(1,2)【考点】正弦定理.【分析】根据题意画出图形,由题意得到三角形有两解的条件为b=xa,bsinA【解答】解:结合图形可知,三角形有两解的条件为b=xa,bsinA b=x1,xsin301,则使△ABC有两解的x的范围是1故选:D.7.如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中的数,那么在空白的判断框中,应该填入下面四个选项中的()A.cxB.xaC.cbD.bc【考点】程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存值的变量X=C.【解答】解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存值的变量X=C故选A.8.△ABC中,角A,B,C所对的边分别为a,b,c若A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形【考点】三角形的形状判断.【分析】由已知结合正弦定理可得sinC【解答】解:∵由正弦定理可得,sinCsin(A+B)sinAcosB+sinBcosAsinAcosB0又sinA0cosB0即B为钝角故选:A9.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且,,,则与()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【考点】平行向量与共线向量.【分析】根据向量的定必分点性质可分别表示出,,,然后三者相加即可得到答案.【解答】解:由定比分点的向量式得:,,,以上三式相加得,故选A10.设函数,且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为,且在上为增函数B.y=f(x)的最小正周期为,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数【考点】两角和与差的正弦函数.【分析】将函数解析式提取2,利用两角和与差的余弦函数公式及特殊角的三角函数值化为一个角的余弦函数,找出的值,代入周期公式,求出函数的最小正周期,再由函数图象关于直线x=0对称,将x=0代入函数解析式中的角度中,并令结果等于k(kZ),再由的范围,求出的度数,代入确定出函数解析式,利用余弦函数的单调递减区间确定出函数的得到递减区间为[k,k+](kZ),可得出(0,)[k,k+](kZ),即可得到函数在(0,)上为减函数,进而得到正确的选项.【解答】解:f(x)=cos(2x+)+sin(2x+)=2[cos(2x+)+sin(2x+)]=2cos(2x+﹣),∵=2,T==,又函数图象关于直线x=0对称,﹣=k(kZ),即=k+(kZ),又||,=,f(x)=2cos2x,令2k2x2k+(kZ),解得:kxk+(kZ),函数的递减区间为[k,k+](kZ),又(0,)[k,k+](kZ),函数在(0,)上为减函数,则y=f(x)的最小正周期为,且在(0,)上为减函数.故选B11.设O点在△ABC内部,且有,则△ABC的面积与△AOC的面积的比为()A.2B.C.3D.【考点】向量在几何中的应用.【分析】根据,变形得,利用向量加法的平行四边形法则可得2=﹣4,从而确定点O的位置,进而求得△ABC的面积与△AOC的面积的比.【解答】解:分别取AC、BC的中点D、E,∵,,即2=﹣4,O是DE的一个三等分点,=3,故选C.12.已知在等边△ABC中,AB=3,O为中心,过O的直线与△ABC 的边分别交于点M、N,则+的值是()A.B.2C.D.【考点】解三角形的实际应用.【分析】如图所示,设AOM=.由点O是正△ABC的中心,AC=3.可得AD═ACsin60,AO=AD.在△AMO中,由正弦定理可得:OM==,同理在△ANO中,可得:ON=.代入即可得出.【解答】解:如图所示,设AOM=.∵点O是正△ABC的中心,AC=3.AD═ACsin60=,AO=AD=.在△AMO中,由正弦定理可得:=,OM==,同理在△ANO中,由正弦定理可得:ON=.=+==2sin.∵,由过O的直线交AB于M,交AC于N,可得,因此当时,取得值2.故选:B.二、填空题(共4小题,每小题5分,满分20分)13.高一某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为8的样本,则需要将全班同学分成8组.【考点】系统抽样方法.【分析】根据系统抽样进行求解即可.【解答】解:高一某班有学生56人,系统抽样的方法抽取一个容量为8的样本,则568=7,即样本间隔为7,每7人一组,共需要分成8组,故答案为:814.已知tan=2,tan=3,且、都是锐角,则tan=1+.【考点】两角和与差的正切函数;半角的三角函数.【分析】先利用正切的两角和公式求得tan(+)的值,进而求得+,的值,利用二倍角的正切函数公式即可计算得解.【解答】解:tan(+)===﹣1,∵、都是锐角,+=,可得:=,tan0,∵tan(+)=﹣1=,整理可得:tan2﹣2tan﹣1=0,解得:tan=1+,或1﹣(舍去).故答案为:1+.15.有一解三角形的题目因纸张破损,有一条件不清,具体如下:在△ABC中,已知a=,2cos2=(﹣1)cosB,c=,求角A,若该题的答案是A=60,请将条件补充完整.【考点】余弦定理.【分析】利用诱导公式、二倍角公式求得B,再利用两角和的正弦公式求得sin75的值,再利用正弦定理求得c的值.【解答】解:在△ABC中,∵已知a=,2cos2=(﹣1)cosB,1+cos(A+C)=(﹣1)cosB,即1﹣cosB=(﹣1)cosB,cosB=,B=.若A=60,则C=180﹣A﹣B=75,sin75=sin(45+30)=sin45cos30+cos45sin30=,则由正弦定理可得=,求得c=,故答案为:.16.在△ABC中,ACB为钝角,AC=BC=1,且x+y=1,函数的最小值为,则的最小值为.【考点】向量加减混合运算及其几何意义.【分析】在△ABC中,ACB为钝角,AC=BC=1,函数f(m)的最小值为.利用数量积的性质可得ACB,进而再利用数量积的性质和二次函数的单调性即可得出.【解答】解:在△ABC中,ACB为钝角,AC=BC=1,函数f(m)的最小值为.函数==,化为4m2﹣8mcosACB+10恒成立.当且仅当m==cosACB时等号成立,代入得到,.===x2+(1﹣x)2﹣x(1﹣x)=,当且仅当x==y时,取得最小值,的最小值为.故答案为:.三、解答题(共6小题,满分70分)17.已知函数f(x)=Asin(x+)(A0,0),xR的值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(﹣)的值.【考点】由y=Asin(x+)的部分图象确定其解析式;两角和与差的余弦函数.【分析】(1)根据题意求出A,图象经过点,代入方程求出,然后求f(x)的解析式;(2),且,,求出,然后求出sin,sin,利用两角差的余弦函数求f(﹣)的值.【解答】解:(1)依题意有A=1,则f(x)=sin(x+),将点代入得,而0,,,故.(2)依题意有,而,,.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA正弦定理得,∵A锐角,sinA0,,又∵C锐角,(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP 上的一动点.。

2023-2024学年河北省邯郸市高一(下)期末数学试卷+答案解析

2023-2024学年河北省邯郸市高一(下)期末数学试卷+答案解析

2023-2024学年河北省邯郸市高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.有三组数据,5,5,6,6,6,7,7,7;,4,5,5,6,7,7,8,8;,3,3,3,6,9,9,9,设它们的方差依次为,则()A. B. C. D.2.在复平面内,非零复数z满足为虚数单位,则复数z对应的点在()A.一、三象限B.二、四象限C.实轴上除原点外D.坐标轴上除原点外3.已知向量,且,则向量与向量的夹角为()A. B. C. D.4.已知的顶点坐标分别是,则()A. B. C. D.5.设,是两个平面,m,l是两条直线,则下列命题为假命题的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则6.在中,,,平面内一点O满足,则向量在向量上的投影向量为()A. B. C. D.7.在三棱锥中,平面ABC,,,若该三棱锥的体积为,则其外接球的表面积为()A. B. C. D.8.甲、乙两人各有一枚质地均匀的硬币,甲抛掷2次,乙抛掷3次,事件“甲抛掷的两次中第一次正面朝上”,事件“甲抛掷的两次硬币朝上的面相同”,事件“甲得到的正面数比乙得到的正面数少”,则下列说法正确的是()A. B.C. D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知非零向量,下列说法错误的是()A.若,则B.若,则C.若,且,则D.若,则与垂直的单位向量的坐标为10.已知复数z,w均不为0,则下列式子正确的是()A. B. C. D.11.在中,内角A,B,C所对的边分别为a,b,c,已知:::5:6,D为线段AC上一点,则下列判断正确的是()A.为钝角三角形B.的最大内角是最小内角的2倍C.若D为AC中点,则D.若,则三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高一数学下期末试题含答案一、选择题1.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8 B .6 C .4 D .22.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122± C .1102± D .3222± 3.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥ C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m4.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+5.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .422+C .442+D .642+6.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1767.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 28.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 9.若函数()sin cos f x x x ωω=-(0)>ω在,22ππ⎛⎫- ⎪⎝⎭上单调递增,则ω的取值不可能为( ) A .14B .15C .12D .3410.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( )A .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称 D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称11.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10D .1或1112.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题13.已知两个正数,x y 满足4x y +=,则使不等式14m x y+≥恒成立的实数m 的范围是__________14.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__. 15.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件. 16.不等式2231()12x x -->的解集是______.17.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______. 18.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.19.直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为__________.20.若()1,x ∈+∞,则131y x x =+-的最小值是_____. 三、解答题21.在中角所对的边分别是,,,.求的值; 求的面积.22.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;23.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程. 24.已知平面向量a ,b 满足1a b ==. (1)1a b -=,求a 与b 的夹角;(2)若对一切实数x ,不等式a xb a b +≥+恒成立,求a 与b 的夹角θ.25.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 012345≥保费0.85aa1.25a 1.5a 1.75a 2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 0 1 2 3 4 5≥频数605030302010(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值; (Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(Ⅲ)求续保人本年度的平均保费估计值.26.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表 日用水量 [)0,0.1 [)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6 [)0.6,0.7频数132 49 26 5使用了节水龙头50天的日用水量频数分布表 日用水量 [)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310 16 5(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】 【分析】由题意可知,()min 19a x y x y ⎡⎤⎛⎫++≥⎢⎥ ⎪⎝⎭⎣⎦,将代数式()1a x y x y ⎛⎫++⎪⎝⎭展开后利用基本不等式求出该代数式的最小值,可得出关于a 的不等式,解出即可. 【详解】()11a ax yx y a x y y x⎛⎫++=+++ ⎪⎝⎭.若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意; 若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 【点睛】本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题.2.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+,CP CA AP =+,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+,CP CA AP =+,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 3.B解析:B 【解析】 【分析】利用,l α可能平行判断A ,利用线面平行的性质判断B ,利用//l m 或l 与m 异面判断C ,l 与m 可能平行、相交、异面,判断D . 【详解】l m ⊥,m α⊂,则,l α可能平行,A 错;l α⊥,//l m ,由线面平行的性质可得m α⊥,B 正确; //l α,m α⊂,则//l m , l 与m 异面;C 错,//l α,//m α,l 与m 可能平行、相交、异面,D 错,.故选B. 【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.4.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.5.D解析:D 【解析】 【分析】根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积. 【详解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边,斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+ 故选D . 【点睛】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.6.C解析:C 【解析】 【分析】 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 7.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.8.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.9.D解析:D 【解析】∵()sin cos (0)4f x x x x πωωωω⎛⎫=-=-> ⎪⎝⎭ ∴令22,242k x k k Z ππππωπ-+≤-≤+∈,即232,44k k x k Z ππππωωωω-+≤≤+∈ ∵()sin cos (0)f x x x ωωω=->在,22ππ⎛⎫-⎪⎝⎭上单调递增 ∴42ππω-≤-且342ππω≥ ∴102ω<≤故选D. 10.D 解析:D 【解析】()sin(2)cos(2))2442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.11.A解析:A 【解析】试题分析:根据直线平移的规律,由直线2x ﹣y+λ=0沿x 轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.解:把圆的方程化为标准式方程得(x+1)2+(y ﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x ﹣y+λ=0沿x 轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0, 因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5, 解得λ=﹣3或7 故选A考点:直线与圆的位置关系.12.B解析:B 【解析】分析:首先设出等差数列{}n a 的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果3d =-,之后应用等差数列的通项公式求得51421210a a d =+=-=-,从而求得正确结果.详解:设该等差数列的公差为d , 根据题中的条件可得32433(32)224222d d d ⨯⨯⨯+⋅=⨯++⨯+⋅, 整理解得3d =-,所以51421210a a d =+=-=-,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d 和的关系,从而求得结果.二、填空题13.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m 的范围【详解】由题意知两个正数xy 满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查 解析:94m ≤【解析】 【分析】由题意将4x y +=代入14x y+进行恒等变形和拆项后,再利用基本不等式求出它的最小值,根据不等式恒成立求出m 的范围. 【详解】由题意知两个正数x ,y 满足4x y +=,则14559144444x y x y y x x y x y x y +++=+=++≥+=,当4y x x y=时取等号; 14x y ∴+的最小值是94, 不等式14m x y +≥恒成立,94m ∴≤. 故答案为94m ≤. 【点睛】本题考查了利用基本不等式求最值和恒成立问题,利用条件进行整体代换和合理拆项再用基本不等式求最值,注意一正二定三相等的验证.14.【解析】【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数【解析】 【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈;若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 15.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .16.【解析】【分析】先利用指数函数的单调性得再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法属中档题 解析:()1,3-【解析】 【分析】先利用指数函数的单调性得2230x x --<,再解一元二次不等式即可. 【详解】22321 ()1230132x x x x x -->⇔--<⇔-<<. 故答案为()1,3- 【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题.17.【解析】【分析】根据递推公式和累加法可求得数列的通项公式代入中由数列中的性质结合数列的单调性即可求得最小值【详解】因为所以从而…累加可得而所以则因为在递减在递增当时当时所以时取得最小值最小值为故答案解析:415. 【解析】 【分析】根据递推公式和累加法可求得数列{}n a 的通项公式.代入na n中,由数列中*n N ∈的性质,结合数列的单调性即可求得最小值. 【详解】因为12n n a a n +=+,所以12n n a a n +-=, 从而12(1)(2)n n a a n n --=-≥ …,3222a a -=⨯ 2121a a -=⨯,累加可得12[12(1)]n a a n -=⨯++⋅⋅⋅+-,2(1)22n nn n -=⨯=- 而121,a =所以221n a n n =-+,则221211n a n n n n n n-+==+-, 因为21()1f n n n=+-在(0,4]递减,在[5,)+∞递增 当4n =时,338.254n a n ==, 当5n =时,418.25n a n ==, 所以5n =时n a n 取得最小值,最小值为415. 故答案为:415【点睛】本题考查了利用递推公式及累加法求数列通项公式的方法,数列单调性及自变量取值的特征,属于中档题.18.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析解析:①③ 【解析】 【分析】利用奇偶性的定义判定函数()y f x =的奇偶性,可判断出命题①的正误;在,2x ππ⎛⎫∈ ⎪⎝⎭时,去绝对值,化简函数()y f x =的解析式,可判断函数()y f x =在区间,2ππ⎛⎫ ⎪⎝⎭上的单调性,可判断命题②的正误;由22f π⎛⎫=⎪⎝⎭以及()2f x ≤可判断出命题③的正误;化简函数()y f x =在区间[],ππ-上的解析式,求出该函数的零点,即可判断命题④的正误. 【详解】对于命题①,函数()sin sin f x x x =+的定义域为R ,关于原点对称,且()()()sin sin sin sin sin sin f x x x x x x x f x -=-+-=+-=+=,该函数为偶函数,命题①正确; 对于命题②,当2x ππ<<时,sin 0x >,则()sin sin 2sin f x x x x =+=,则函数()y f x =在,2ππ⎛⎫ ⎪⎝⎭上单调递减,命题②错误;对于命题③,sin 1x ∴≤,sin 1x ≤,()2f x ∴≤,又22f π⎛⎫= ⎪⎝⎭,所以,函数()y f x =的最大值为2,命题③正确;对于命题④,当0πx <<时,sin 0x >,()sin sin 2sin 0f x x x x =+=>, 由于该函数为偶函数,当0x π-<<时,()0f x >, 又()()()00f f f ππ=-==,所以,该函数在区间[],ππ-上有且只有三个零点.因此,正确命题的序号为①③. 故答案为:①③. 【点睛】本题考查与三角函数相关命题真假的判断,涉及三角函数的奇偶性、单调性、最值以及零点的判断,解题的关键就是将三角函数的解析式化简,考查推理能力,属于中等题.19.【解析】【分析】【详解】设圆心直线的斜率为弦AB 的中点为的斜率为则所以由点斜式得解析:10x y -+=. 【解析】 【分析】 【详解】设圆心O ,直线l 的斜率为k ,弦AB 的中点为P ,PO 的斜率为op k ,2110op k -=--则l PO ⊥,所以k (1)11op k k k ⋅=⋅-=-∴=由点斜式得1y x =+.20.【解析】【分析】由已知可知然后利用基本不等式即可求解【详解】解:(当且仅当取等号)故答案为【点睛】本题主要考查了利用基本不等式求最值解题的关键是配凑积为定值属于基础试题解析:3+【解析】 【分析】由已知可知()11y 3x 3x 13x 1x 1=+=-++--,然后利用基本不等式即可求解. 【详解】 解:x 1>,()11y 3x 3x 13x 1x 1∴=+=-++-- ()123x 13233x 1≥-⋅+=+-,(当且仅当313x =+取等号) 故答案为233+. 【点睛】本题主要考查了利用基本不等式求最值,解题的关键是配凑积为定值,属于基础试题.三、解答题21.(1);(2)【解析】 【分析】)利用同角三角函数基本关系式可求,由正弦定理可得的值;由,可得为锐角,由可得,利用两角和的正弦函数公式可求的值,利用三角形面积公式即可得解. 【详解】,,.,由正弦定理可得:,C 为锐角,由可得:,,【点睛】本题主要考查了同角三角函数基本关系式,正弦定理的应用,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径. 22.(1)见解析;(2)见解析; 【解析】 【分析】(1)要证BD⊥平面PAC ,只需在平面PAC 上找到两条直线跟BD 垂直即证,显然AC BD ⊥,从PA ⊥平面ABCD 中可证PA BD ⊥,即证. (2)要证明平面PAB⊥平面PAE,可证 A E ⊥平面PAB 即可. 【详解】(1)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥; 因为底面ABCD 是菱形,所以AC BD ⊥;因为PA AC A ⋂=,,PA AC ⊂平面PAC , 所以BD ⊥平面PAC .(2)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥,因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以AE PA ⊥; 因为PA AB A ⋂= 所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE . 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力. 23.(1)3x +y +2=0;(2)(x -2)2+y 2=8. 【解析】 【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求. 【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩,∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |=∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8. 【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题. 24.(1)3π(2)θπ= 【解析】 【分析】(1)根据向量数量积的定义及性质即可求解(2)利用平方化简不等式可得22cos 12cos 0x x θθ+⋅--≥恒成立,利用判别式求解即可.【详解】(1)∵1a b ==,21211a b a b ∴-=-⋅+=,即12a b ⋅=, ∴1cos 2a b θ=, ∴3πθ=.(2)不等式a xb a b +≥+两边平方可得:22cos 12cos 0x x θθ+⋅--≥恒成立, ∴0∆≤,即()24cos412cos 0θθ++≤,故()2cos 10θ+≤, 只能cos 1θ=-, 而0θπ≤≤, 所以θπ=. 【点睛】本题主要考查了向量的数量积定义,性质,不等式恒成立,属于中档题. 25.(I )1120;(Ⅱ)310;(Ⅲ)1.1925a . 【解析】 【分析】(I )求出A 为事件:“一续保人本年度的保费不高于基本保费”的人数.总事件人数,即可求P (A )的估计值;(Ⅱ)求出B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”的人数.然后求P (B )的估计值;(Ⅲ)利用人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值. 【详解】解:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.事件A 的人数为:60+50=110,该险种的200名续保, P (A )的估计值为:1101120020=; (Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B 的人数为:30+30=60,P (B )的估计值为:60320010=; (Ⅲ)续保人本年度的平均保费估计值为0.856050 1.2530 1.530 1.7520210200a a a a a a x ⨯+⨯+⨯+⨯+⨯+⨯==1.1925a .【点睛】 本题考查样本估计总体的实际应用,考查计算能力. 26.(1)直方图见解析;(2)0.48;(3)347.45m . 【解析】 【分析】(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于0.35的矩形的面积总和,即为所求的频率; (3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得到一年能节约用水多少3m ,从而求得结果. 【详解】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.【点睛】该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.。

相关文档
最新文档