初三中考总复习-方程专题(免费地,很全)

合集下载

中考化学方程式大全(必考内容)

中考化学方程式大全(必考内容)

中考化学方程式大全(必考内容)一、氧气的性质:1. 镁在空气中燃烧: 2Mg + O点燃 2MgO★2. 铁在氧气中燃烧: 3Fe + 2O2 点燃 Fe3O43. 铜在空气中受热: 2Cu + O2 △ 2CuO4. 铝在空气中燃烧: 4Al + 3O2 点燃 2Al2O3★5. 氢气中空气中燃烧: 2H2 + O2点燃 2H2O★6. 红磷在空气中燃烧(测定空气中氧气含量):4P + 5O点燃 2P2O57. 硫粉在空气中燃烧: S + O点燃 SO28. 碳在氧气中充分燃烧: C + O点燃 CO29. 碳在氧气中不充分燃烧: 2C + O2点燃 2CO10. 一氧化碳在氧气中燃烧: 2CO + O2点燃 2CO211.玻义耳研究空气的成分实验 2HgO △ 2Hg+ O2 ↑★12.加热高锰酸钾: 2KMnO△ K2MnO4 + MnO2 + O2↑★13.氯酸钾和二氧化锰共热制取氧气2KClO3MnO2△2KCl+3O2↑★14.过氧化氢在二氧化锰作催化剂条件下分解反应:2H2O MnO2 2O+ O2 ↑二、自然界中的水:★15.电解水(探究水的组成实验): 2H2O 通电 2H2↑+ O2 ↑16.生石灰溶于水: CaO + H2O = Ca(OH)217.二氧化碳可溶于水: H2O + CO2=H2CO3三、质量守恒定律:18.镁在空气中燃烧: 2Mg + O2 点燃 2MgO★19.铁和硫酸铜溶液反应: Fe + CuSO4 = FeSO4 + Cu★20.氢气还原氧化铜: H2 + CuO △ Cu + H2O四、碳和碳的氧化物:21. 碳在氧气中充分燃烧: C + O点燃 CO2★22.木炭还原氧化铜: C+ 2CuO 高温 2Cu + CO2↑23.焦炭还原氧化铁: 3C+ 2Fe2O3高温 4Fe + 3CO2↑24.煤炉的底层: C + O点燃 CO225.煤炉的中层: CO2 + C 高温 2CO26.煤炉的上部蓝色火焰的产生: 2CO + O2点燃 2CO2★27.大理石与稀盐酸反应: CaCO3 + 2HCl = CaCl2 + H2O + CO2↑28.碳酸不稳定而分解: H2CO3 = H2O + CO2↑29.二氧化碳可溶于水: H2O + CO2=H2CO3★30.高温煅烧石灰石(工业制CO2):CaCO高温 CaO + CO2↑★31.石灰水与二氧化碳反应(检验二氧化碳):Ca(OH)2 + CO2 = CaCO3↓+ H2O ★32.一氧化碳还原氧化铜: CO+ CuO △ Cu + CO2★33.一氧化碳的可燃性: 2CO + O2点燃 2CO2★34.碳酸钠与稀盐酸(灭火器的原理): Na2CO3 + 2HCl =2NaCl +H2O +CO2↑五、燃料及其利用:★35.甲烷在空气中燃烧: CH4 + 2O点燃 CO2 + 2H2O★36.酒精在空气中燃烧: C2H5OH + 3O2点燃 2CO2 + 3H2O★37.氢气中空气中燃烧: 2H2 + O2点燃 2H2O六、金属38.镁在空气中燃烧: 2Mg + O点燃 2MgO39.铁在氧气中燃烧: 3Fe + 2O点燃 Fe3O440. 铜在空气中受热: 2Cu + O2 △ 2CuO41. 铝在空气中形成氧化膜: 4Al + 3O2 = 2Al2O3★42. 锌和稀硫酸(实验室制取氢气) Zn + H2SO4 = ZnSO4 + H2↑★43. 铁和稀硫酸 Fe + H2SO4 = FeSO4 + H2↑44. 镁和稀硫酸 Mg + H2SO4 = MgSO4 + H2↑45. 铝和稀硫酸 2Al +3H2SO4 = Al2(SO4)3 +3H2↑46. 锌和稀盐酸 Zn + 2HCl = ZnCl2 + H2↑47. 铁和稀盐酸 Fe + 2HCl =FeCl2 + H2↑48. 镁和稀盐酸 Mg+ 2HCl = MgCl2 + H2↑49.铝和稀盐酸 2Al + 6HCl =2AlCl3 + 3 H2↑★50. 铁和硫酸铜溶液反应: Fe + CuSO4 = FeSO4 + Cu51. 锌和硫酸铜溶液反应: Zn + CuSO4 =ZnSO4 + Cu52. 铜和硝酸汞溶液反应: Cu + Hg(NO3)2= Cu(NO3)2 + Hg★53.金属铁的治炼原理: 3CO+ 2Fe2O高温 4Fe + 3CO2↑七、酸、碱、盐★54. 氧化铁和稀盐酸反应: Fe2O3 + 6HCl =2FeCl3 + 3H2O★55. 氧化铁和稀硫酸反应: Fe2O3 + 3H2SO4 =Fe2(SO4)3 + 3H2O56. 氧化铜和稀盐酸反应: CuO + 2HCl =CuCl2 + H2O57. 氧化铜和稀硫酸反应: CuO + H2SO4 =CuSO4 + H2O★58.盐酸和烧碱起反应: HCl + NaOH = NaCl +H2O★59. 盐酸和氢氧化钙反应: 2HCl + Ca(OH)2 = CaCl2 + 2H2O60. 氢氧化铝药物治疗胃酸过多: 3HCl + Al(OH)3 = AlCl3 + 3H2O61. 硫酸和烧碱反应: H2SO4 + 2NaOH =Na2SO4 + 2H2O★62.大理石与稀盐酸反(实验室制取CO2 ):CaCO3 +2HCl =CaCl2+H2O+CO2↑★63.碳酸钠与稀盐酸反应: Na2CO3 + 2HCl = 2NaCl + H2O + CO2↑64.碳酸氢钠与稀盐酸反应: NaHCO3 + HCl= NaCl + H2O + CO2↑★65. 硫酸和氯化钡溶液反应: H2SO4 + BaCl2 == BaSO4 ↓+ 2HCl★66.苛性钠暴露在空气中变质: 2NaOH + CO2 = Na2CO3 + H2O67.苛性钠吸收二氧化硫气体: 2NaOH + SO2 =Na2SO3 + H2O68.苛性钠吸收三氧化硫气体: 2NaOH + SO3 = Na2SO4 + H2O★69.消石灰放在空气中变质: Ca(OH)2 + CO2 = CaCO3↓+ H2O70. 消石灰吸收二氧化硫: Ca(OH)2 + SO2 = CaSO3↓+ H2O★71. 铁和硫酸铜溶液(波尔多液不能用铁桶装): Fe + CuSO4 = FeSO4 + Cu★72.碳酸钠与稀盐酸(检验NaOH变质):Na2CO3+2HCl=2NaCl+H2O+CO2↑★73. 碳酸氢钠与稀盐酸(小苏打治疗胃酸过多)NaHCO3+HCl=NaCl+H2O+CO2↑★74. 氢氧化钙与碳酸钠(检验NaOH变质): Ca(OH)2+Na2CO3=CaCO3↓+ 2NaOH★75.氯化钠和硝酸银(区别食盐和蒸馏水):NaCl + AgNO3 =AgCl↓ + NaNO3★76.硫酸钠和氯化钡: Na2SO4 + BaCl2 == BaSO4↓ + 2NaCl二、中考化学推断题2.A~F是初中化学常见的物质,已知A、B、C、D、E是五种不同类别的物质,A是空气中含有的一种气体,E是地壳中含量最多的金属元素组成的单质,F中各元素质量比为2:1:2,六种物质之间的反应与转化关系均为初中化学常见的化学反应,图中“﹣”表示相连的物质能相互反应,“→”表示一种物质转化成另一种物质(部分反应物、生成物及反应条件已略去)请回答下列问题:(1)E物质的化学式_____。

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

中考复习——一元二次方程及分式方程(附答案)

中考复习——一元二次方程及分式方程(附答案)

一元二次方程及分式方程专题训练一、填空题:(每题 3 分,共 36 分)1、当 a ____时,方程 (a-1) x2+x-2=0 是一元二次方程。

2、方程 2x (1+x)=3 的一般形式为_________。

3、当 x=____时,分式x+1x+2的值等于45。

4、方程 2x2=32 的解为____。

5、方程21-x2-1=11+x的解为____。

6、方程 x2-5x-6=0 可分解成____与____两个一元一次方程。

7、已知 m 是方程 x2-x-23=0 的一个根,则 m2-m=____。

8、2x2+4x+10=2 (x+___)2+____。

9、以-2 和 3 为根的一元二次方程为______(写出一个即可)。

10、如果方程 x2-3x+m=0 的一根为 1,那么方程的另一根为____。

11、如果方程x+1x-2-1=m2-x有增根,那么 m=____。

12、长 20m、宽 15m 的会议室,中间铺一块地毯,地毯的面积是会议室面积的12,若四周未铺地毯的留空宽度相同,则留空的宽度为____。

二、选择题:(每题 4 分,共 24 分)1、下列方程中是一元二次方程的是()A、x+3=5B、xy=3C、x2+1x=0 D、2x2-1=02、若关于 x 的方程2x-ax-1=1 无解,则 a 的值等于()A、0B、1C、2D、4 3、方程 2x (x-2)=3 (x-2) 的根是()A、x=32B、x=2C、x1=32,x2=2 D、x=-324、把方程 x2+3=4x 配方得()A、(x-2)2=7B、(x-2)2=1C、(x+2)2=1D、(x+2)2=25、某车间原计划 x 天内生产零件 50 个,由于采用新技术,每天多生产零件 5 个,因此提前3 天完成任务,则可列出的方程为()A、50x-3=50x-5 B、50x=50x-3-5 C、50x-3=50x-5 D、50x=50x-3-56、把一个小球以 20m/s 的速度竖直向上弹出,它在空中高度 h (m) 与时间 t (s) 满足关系:h=20t-5t2,当 h=20 时,小球的运动时间为()A、20sB、2sC、(22+2) sD、(22-2) s三、解下列方程:(每题 6 分,共 36 分)1、x (x+5)=24 2、2x2=(2+3) x 3、x2-4x=5 4、4 (x-1)2=(x+1)25、5x=7x-26、x+1x-1-1=4x2-1四、解答题:(每题 8 分,共 32 分)1、解关于 x 的方程ax-ab=1+x(a≠b)2、方程 x2+3x+m=0 的一个根是另一根的 2 倍,求 m 的值。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

初三复习专题之方程专题

初三复习专题之方程专题

初三复习专题之方程专题知识点一:一元一次方程1.等式及其性质:① 如果b a =,那么=±c a ; ② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca . 2. 方程、一元一次方程的概念:0b ax =+ ()0≠a .【例题精析】【例1】把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A.132177=--x x B.13217710=--x x C.1032017710=--x x D.132017710=--x x【例2】已知关于x 的方程2x+a ﹣5=0的解是x=2,则a 的值为 .【例3】若是关于的一元一次方程,则的值是( ) A. B.-2 C.2 D.4【例4】已知3是关于的方程的解,则的值是( )A.-5B.5C.7D.2【例5】某公园门票价格规定如下:购票张数1—50张51—100张100张以上每张票的价格13元11元9元班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可省多少钱?(3)如果一班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱?知识点二:二元一次方程(组)1、二元一次方程2、二元一次方程组的解3、解题步骤:消元法【例6】下列方程组中是二元一次方程组的是()A.12xyx y=⎧⎨+=⎩B.52313x yyx-=⎧⎪⎨+=⎪⎩C.20135x zx y+=⎧⎪⎨-=⎪⎩D.5723zx y=⎧⎪⎨+=⎪⎩【例7】在方程yx413-=5中,用含x的代数式表示y为y=;当x=3时,y=.【例8】已知方程是一个二元一次方程,求m和n的值.【例9】二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是( ) A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩【例11】、求解下列方程⎩⎨⎧-=+--=++- 1)(3)( 52)(3)(5y x y x y x y x ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=-+=931613y x y x y知识点三:一元一次不等式1、不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a c b ). 2、解题步骤3、解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“同小取小”;x a x b>⎧⎨>⎩的解集是x b >,即“同大取大”; x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大取中间”;x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.【例题精析】【例12】观察图,可以得出不等式组⎩⎨⎧>+->+015.0013x x 的解集是( ) A .x <31 B .31-<x <0 C .0<x <2 D .31-<x <2 【例13】若不等式ax ﹣2>0的解集为x <﹣2,则关于y 的方程ay+2=0的解为( )A . y=﹣1B . y=1C . y=﹣2D .y=2【例14】若不等式组无解,则实数a 的取值范围( )A .a ≥一1B .a<-1C .a ≤1 D.a ≤-1【例15】今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居月用水量(吨) 单价(元/吨)不大于10吨部分 1.5大于10吨不大于m 吨部分(2050m ≤≤) 2大于m 吨部分 3②记该用户六月份用水量为x 吨,缴纳水费为y 元,试列出y 与x 的函数式;③若该用户六月份用水量为40吨,缴纳水费y 元的取值范围为7090y ≤≤,试求m 的取值范围。

初三数学中考复习解方程练习题

初三数学中考复习解方程练习题

初三数学中考复习解方程练习题解方程是初中数学中的重要内容之一,也是中考数学考试中常见的题型。

掌握解方程的方法和技巧对于提高数学成绩至关重要。

本文将为大家提供一些初三数学中考复习解方程练习题,帮助大家巩固知识,提高解题能力。

一、一元一次方程1. 解方程:3x + 5 = 2x + 10解析:将方程中的变量项移项,有3x - 2x = 10 - 5,化简得x = 5。

2. 解方程:4x - 7 = 3x + 5解析:将方程中的变量项移项,有4x - 3x = 5 + 7,化简得x = 12。

3. 解方程:2(x - 3) = x + 4解析:先用分配律展开括号,得2x - 6 = x + 4,然后将方程中的变量项移项,有2x - x = 4 + 6,化简得x = 10。

4. 解方程:5(x + 2) - 3 = 2x + 4解析:先用分配律展开括号,得5x + 10 - 3 = 2x + 4,然后将方程中的变量项移项,有5x - 2x = 4 - 10 + 3,化简得3x = -3,再将方程两边同时除以3,得x = -1。

二、一元二次方程1. 解方程:x^2 - 4x + 3 = 0解析:通过因式分解,可以将方程化简为(x - 3)(x - 1) = 0,令(x - 3) = 0或(x - 1) = 0,解得x = 3或x = 1。

2. 解方程:2x^2 + 5x - 3 = 0解析:通过配方法,可以求得方程的根。

首先计算a、b、c的值,代入公式x = (-b ± √(b^2 - 4ac)) / (2a),算出两个根。

三、分式方程1. 解方程:(2x + 5)/3 - 1 = (x - 1)/2解析:首先将方程两边的分式进行通分,得到(2x + 5 - 3)/3 = (x -1)/2,化简得(2x + 2)/3 = (x - 1)/2。

然后交叉相乘,得到2(2x + 2) = 3(x- 1),继续化简,得到4x + 4 = 3x - 3,将变量项移项得x = -7。

【新】九年级数学 人教版 中考专题复习-方程和方程组篇(知识点讲解+练习题)

【新】九年级数学 人教版 中考专题复习-方程和方程组篇(知识点讲解+练习题)

中考复习-方程和方程组篇内容讲解【学生总结】等式的性质:①性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b (c≠o )那么ac=二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的组3、 叫做解方程4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程【解一元一次方程】一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。

2、解一元一次方程的一般步骤: 1。

2。

3。

4。

5。

概念考点:(1)若关于x 的方程22(2)10()a a x x ---+=是一元一次方程,求a 的值.(2)若关于x 的方程5413524n x -+=是一元一次方程,求n 的值.解方程:(1) 3131=+-x x (2)x x x -=--+22132(3)53210232213+--=-+x x x (4)32116110412xx x --=+++*带小数方程4x 1.55x 0.8 1.2x0.50.20.1----=【二元一次方程组】二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法例1 解方程组: 213211x y x y +=⎧⎨-=⎩①②.对应训练(1)解方程组: 2()134123()2(2)3x y x yx y x y -+⎧-=-⎪⎨⎪+--=⎩.3(2)3814x y x y -=⎧⎨-=⎩23(3)253s t t s =⎧⎪+⎨=⎪⎩356(4)415x y x y -=⎧⎨+=-⎩43(1)4(4)(5)(6)35115(1)3(5)7525x x y x y y x y x +-⎧-=-=⎧⎪⎨⎨-=+⎩⎪=+⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x yx y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩*含参方程组.已知关于x、y的方程组52111823128x y ax y a+=+⎧⎨-=-⎩①②的解满足x>0,y>0,求实数a的取值范围.【一元一次不等式组】掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.例题:用不等式表示:①a为非负数,a为正数,a不是正数解:②(2)8与y的2倍的和是正数;(3)x与5的和不小于0;(5)x的4倍大于x的3倍与7的差;【学生总结:】基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )例题:①解不等式 31(1-2x )>2)12(3 x②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页.问从第六天起,每天至少读多少页? 解:(1) 在数轴上表示解集:“大右小左”“” (2) 写出下图所表示的不等式的解集3、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边例题:①不等式组⎩⎨⎧-<<,3,2x x ⎩⎨⎧->>,3,2x x ⎩⎨⎧-<>,3,2x x ⎩⎨⎧-><,3,2x x 数轴表示解集考点二:在数轴上表示不等式(组)的解 例2 把不等式组1215x x >⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .对应训练 2.不等式组2(5)65212x x x+≥⎧⎨->+⎩的解集在数轴上表示正确的是( )A .B .C .D .考点三:不等式(组)的解法例3 不等式2x-1>3的解集是 . 例4 解不等式组23 120x x +>⎧⎨-≥⎩,并把解集在数轴上表示出来.对应训练3.不等式2x-4<0的解集是.4.解不等式组2 11 00x xx+>⎧⎨-<⎩①②,并把它的解集在数轴上表示出来.考点四:不等式(组)的特殊解例5 不等式组21312xx-<⎧⎪⎨-≤⎪⎩的整数解有()个.A.1 B.2 C.3 D.4 对应训练5.求不等式组21025xx x+>⎧⎨>-⎩的正整数解.考点五:确定不等式(组)中字母的取值范围例6 若不等式组122x ax x+≥⎧⎨->-⎩有解,则a的取值范围是.对应训练6.已知x=3是关于x的不等式3x-22ax+>23x的解,求a的取值范围.课堂总结:针对练习【分式方程】1.解分式方程1x -1-2=31-x,去分母得( )A .1-2(x -1)=-3B .1-2(x -1)=3C .1-2x -2=-3D .1-2x +2=32. 分式方程x x -1-1=3(x -1)(x +2)的解为( )A .x =1B .x =-1C .无解D .x =-23. 分式方程2x +13-x =32的解是___________ __.4. 分式方程4x -3-1x=0的根是____________.5. 关于x 的分式方程m x 2-4-1x +2=0无解,则m =_____________.解方程:=0.6.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.。

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。

2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

初三总复习方程_初三数学_数学_初中教育_教育专区

初三总复习方程_初三数学_数学_初中教育_教育专区
x+y=40, 程组:__2_._1_0_x_+__8_y_=__3_7_0___.
第5讲┃ 一次方程(组)
【归纳总结】
工程问题 行__作__时__间____ 路程=__速__度____×时间
利润=售价-__进__价____,利润率=利 进润 价×100%,利润 =进价×__利__润__率__
第5讲┃ 一次方程(组)
变式题 [2013·漳州] 如图 5-3,10 块相同的长方形墙砖拼
成一个矩形,设长方形墙砖的长和宽分别为 x 厘米和 y 厘米,则
依题意列方程组正确的是
(B )
x+2y=75, A.y=3x
2x+y=75, C.y=3x
图 5-3 x+2y=75, B.x=3y
2x+y=75, D.x=3y
考点3 一次方程(组)的应用
1.如图 5-1 是某超市中某种洗发水的价格标签,一
售货员不小心将墨水滴在标签上,使得原价看不清楚,请
你帮忙算一算,该洗发水的原价是
(D )
图 5-1 A.15.36 元 B.16 元 C.23.04 元 D.24 元
第5讲┃ 一次方程(组)
2.八年级一班有 40 名同学去看演出,购买甲、乙两 种票共用去 370 元,其中甲种票每张 10 元,乙种票每张 8 元,设购买了甲种票 x 张,乙种票 y 张,由此可列出方
选择 某一未知数的系数成整数倍,选择系数较小的方程 加减消 ①选择系数是 1 或-1 的未知数;②若未知数的系 元法消 数都不是 1 或-1,选系数的绝对值较___小_____的未 去未知 知数;③选方程组中系数成整数倍的未知数;④选 数的选择 方程组中系数的最小公倍数较小的未知数
第5讲┃ 一次方程(组)
单元方程组与不等式目录

初三解方程100道及答案

初三解方程100道及答案

初三数学解方程练习题及答案解方程是初中数学中重要的内容之一,也是提高学生运用数学知识解决实际问题的能力的关键。

在初三阶段,学生需要掌握解一元一次方程和解一元二次方程的方法。

本文将为大家提供100道初三解方程练习题及答案,帮助大家巩固解方程的知识点。

一、解一元一次方程1.解方程2x + 5 = 15。

解:首先将方程化简为2x = 15 - 5,得到2x = 10。

然后再将2x除以2得到x = 5。

所以方程的解为x = 5。

2.解方程3(x - 4) = 15。

解:首先将方程化简为3x - 12 = 15。

然后将方程两边的常数项移动到一边,得到3x = 15 + 12,即3x = 27。

最后将方程两边除以3,得到x = 9。

所以方程的解为x = 9。

3.解方程4x + 7 = 23。

解:首先将方程化简为4x = 23 - 7,得到4x = 16。

然后将方程两边除以4,得到x = 4。

所以方程的解为x = 4。

4.解方程5(x + 2) = 35。

解:首先将方程化简为5x + 10 = 35。

然后将方程两边的常数项移动到一边,得到5x = 35 - 10,即5x = 25。

最后将方程两边除以5,得到x = 5。

所以方程的解为x = 5。

5.解方程6x - 8 = 10。

解:首先将方程化简为6x = 10 + 8,得到6x = 18。

然后将方程两边除以6,得到x = 3。

所以方程的解为x = 3。

二、解一元二次方程1.解方程x^2 + 5x + 6 = 0。

解:首先我们可以尝试因式分解。

将方程因式分解为(x + 2)(x + 3) = 0,然后分别令x + 2 = 0和x + 3 = 0,得到x = -2和x = -3。

所以方程的解为x = -2和x = -3。

2.解方程2x^2 + 3x - 2 = 0。

解:我们可以使用求根公式来解这个方程。

根据求根公式,方程的解可以表示为x = (-b ± √(b^2 - 4ac)) / (2a)。

初三的方程知识点总结归纳

初三的方程知识点总结归纳

初三的方程知识点总结归纳初三阶段是学习方程的关键时期,方程作为数学中的重要概念之一,是解决实际问题的有力工具。

本文将对初三阶段的方程知识进行总结归纳,帮助同学们更好地理解和掌握方程相关的知识。

一、一元一次方程一元一次方程是初步接触的一种方程形式,它的基本形式为ax + b= 0。

其中,a和b为常数,x为未知数。

解一元一次方程的基本方法是移项和合并同类项。

其解法如下:1. 移项法:对于方程ax + b = 0,我们可以通过移项将b移到方程的另一侧,变成ax = -b,然后再除以a,即可得到解x = -b/a。

2. 合并同类项法:对于方程ax + b = 0,我们可以通过合并同类项将ax和b合并,得到ax + b = ax + 0,然后将ax和ax消去,得到b = 0,即可得到解x = -b/a。

二、一元一次方程的应用在初三阶段,我们还需要学会将一元一次方程应用于实际问题的解决。

以下是一些常见的应用情况:1. 两个未知数的一元一次方程:当问题中涉及到多个未知数时,我们可以将其抽象成一个一元一次方程。

通过列方程并求解,可以得到问题的解答。

2. 图表问题:图表问题是数学中常见的应用场景之一。

我们可以通过观察图表中的数值规律,列出相应的一元一次方程,并解之得到问题的答案。

三、一元二次方程一元二次方程是初三阶段学习的另一种方程形式,它的基本形式为ax^2 + bx + c = 0。

其中,a、b、c为常数,x为未知数。

解一元二次方程的基本方法是因式分解法和求根公式法。

其解法如下:1. 因式分解法:对于一元二次方程ax^2 + bx + c = 0,我们可以通过因式分解的方式将其化简为两个一元一次方程相乘的形式,然后分别解两个一元一次方程得到解。

2. 求根公式法:对于一元二次方程ax^2 + bx + c = 0,我们可以使用求根公式来求解。

求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。

初三方程总复习

初三方程总复习

初三:一元一次方程 一元二次方程 二元一次方程组 分式方程复习 1一元一次方程.只含有 个未知数,并且未知数的次数都是 的方程叫做一元一次方程。

一元一次方程的标准形式是: 。

使方程左右两边的值相等的未知数的值叫做方程的 。

求解方程的基本步骤:2.常见列方程解应用题的几种类型:(1)和、差、倍、分问题 ①较大量=较小量+多余量②总量=倍数×倍量(2)等积变形问题 3V V aabh =,=正方体长方体hh S 31V S V =,=锥体柱体(3)行程问题 相遇问题 追及问题 顺逆流问题(4)利润率问题 商品利润=商品利润率=×100%售价=进价×(1+利润率)(5)储蓄问题 利息=本金×利率×期数(6)日历中的问题 日历中每一行上相邻两数,右边的数比左边的数大 ;日历中每一列上相邻的两数,下边的数比上边的数 大 例1、 已知下列各式:①2x -5=1;②8-7=1;③x +y ;④21x -y=x 2;⑤3x +y =6;⑥5x +3y +4z =0;⑦nm11-=8;⑧x =0。

其中方程的个数是( )A 、5B 、6C 、7D 、8例2、解方程:xx 759279911-=+练习:解方程:7.023.107.0x x --=1例4、解方程:1642534331=-+-⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛x练习:5|x|-16=3|x|-4解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。

(2)当括号内含有分数时,常由外向内先去括号,再去分母。

(3)当分母中含有小数时,可用分数的基本性质化成整数。

(4)运用整体思想,即把含有未知数的代数式看作整体进行变形。

解方程时,认真观察方程的结构特征,灵活采用解方程的一些技巧,可达到事半功倍的效果。

例5.甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是汽车的32。

(完整版)初三中考总复习-方程专题(免费的,很全)

(完整版)初三中考总复习-方程专题(免费的,很全)

方程复习一、一元一次方程归纳1:有关概念一元一次方程的概念1、方程:含有未知数的等式叫做方程.2、方程的解:能使方程两边相等的未知数的值叫做方程的解.3、一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.基本方法归纳:判断一元一次方程时只需看未知数的个数及未知数的次数为1即可;方程的解只需带入方程看等式是否成立即可.注意问题归纳:未知数的系数必须不能为零.【例1】(2017湖南省永州市)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2B.2C.﹣1D.1归纳2:一元一次方程的解法1、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.2、解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.基本方法归纳:根据解一元一次方程的步骤计算即可.注意问题归纳:利用等式的性质2时注意:除数不能是零;解方程去分母时应该每项都乘;去括号时注意应该变号.【例2】解方程:305 64x x--=.归纳3:一元一次方程的应用1、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例3】(2017湖南省常德市)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?练习题:1.(2017浙江省杭州市)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y ﹣cB .若x =y ,则xc =ycC .若x =y ,则cy c x = D .若c y c x 32=,则2x =3y 2.(2016内蒙古包头市)若2(a +3)的值与4互为相反数,则a 的值为( ) A .﹣1 B .72-C .﹣5D .12 3.(2017丽水)若关于x 的一元一次方程x ﹣m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤24.(2017云南省)已知关于x 的方程2x +a +5=0的解是x =1,则a 的值为 .5.(2016内蒙古赤峰市)甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动43周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转 周,时针和分针第一次相遇.6.(2017安徽省)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?二、二元一次方程归纳1:二元一次方程的有关概念1、二元一次方程:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程.2、二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3、二元一次方程组:两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.基本方法归纳:判断一个方程是不是二元一次方程关键看未知数的个数和未知项的最高次数;判断方程组的解只需带入方程组组看是不是成立即可.注意问题归纳:判断一个方程是不是二元一次方程特别注意是:未知项的最高次数而不是未知数的次数.【例1】(2017四川省眉山市)已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣3归纳2:二元一次方程的解法基础知识归纳:解一元二次方程组的方法(1)代入法(2)加减法基本方法归纳:解一元二次方程组的方法关键是消元.当一个未知数能很好的表示出另一个未知数时,一般采用代入法;当两个方程中的同一个未知数的系数相等或互为相反数时,或者系数均不为2时,一般采用加减消元.注意问题归纳:根据题意选择适当的方法快速求解,注意计算中的错误.【例2】(2017广东省广州市)解方程组:5 2311x yx y+=⎧⎨+=⎩.归纳3:二元一次方程组的应用基础知识归纳:1、列二元一次方程组解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)列方程组,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程组.(4)解方程组.(5)检验,看方程组的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程组→答.基本方法归纳:解题时先理解题意找到等量关系列出方程组再解方程组最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例3】上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600﹣500)=87元】(1)甲定制了600MB 的月流量,花费48元;乙定制了2GB 的月流量,花费120.4元,求a ,b 的值.(注:1GB =1024MB )(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.【例4】(2017四川省遂宁市)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?练习题:1.(2016贵州省毕节市)已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,则m ,n 的值为( )A .m =1,n =﹣1B .m =﹣1,n =1C .m =13,n =43-D .m =13-,n =432.(2017浙江省嘉兴市)若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==b y a x ,则a ﹣b =( ) A .1 B .3 C . 41-D .47 3.(2017内蒙古包头市)若关于x 、y 的二元一次方程组325x y x ay +=⎧⎨-=⎩的解是1x b y =⎧⎨=⎩,则b a 的值为 .4.(2016广西钦州市)若x ,y 为实数,且满足2(2)0x y +=,则y x 的值是 .5.(2016四川省达州市)已知x ,y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式2()(2)(2)x y x y x y --+-的值. 6.(2017四川省乐山市)二元一次方程组2322+=-=+x y x y x 的解是 7.(2017内蒙古呼和浩特市)某专卖店有A ,B 两种商品,已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元,A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折?8.(2017四川省南充市)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?9.(2016湖南省长沙市)2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?三、分式方程☞考点归纳归纳 1:分式方程 的有关概念1、分式方程:分母里含有未知数的方程叫做分式方程.2、分式方程的增根:分式方程化成整式方程解得的未知数的值,如果这个值令最简公分母为零则为增根. 基本方法归纳:判断分式方程时只需看分母中必须有未知数;分式方程的解只需带入方程看等式是否成立即可.注意问题归纳: 未知数的系数必须不能为零;判断一个数增根的条件缺一不可:1、这个数是解化成的整式方程的根,2、使最简公分母为零.【例1】(2017四川省成都市)已知x =3是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A .﹣1 B .0 C .1 D .2【例2】(2017四川省泸州市)若关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是 .归纳 2:分式方程的解法 1、解分式方程的步骤:解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.基本方法归纳:分式方程首要是方程两边同乘以分母最小公倍数、去掉分母,转化为整式方程求解,其次注意一定要验根.注意问题归纳: 解完方程后一定要注意验根.【例3】(2017上海市)解方程:231133x x x -=--.归纳 3:分式方程的应用 1、分式方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例4】(2017内蒙古通辽市)一汽车从甲地出发开往相距240km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24min 到达乙地,求汽车出发后第1小时内的行驶速度.练习题:1.(2017四川省凉山州)若关于x 的方程2230x x +-=与213x x a=+-有一个解相同,则a 的值为( ) A .1 B .1或﹣3 C .﹣1 D .﹣1或32.(2017山东省聊城市)如果解关于x 的分式方程2122m x x x-=--时出现增根,那么m 的值为( ) A .﹣2 B .2 C .4 D .﹣43.(2017黑龙江省龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( ) A .a >1 B .a ≥1 C .a ≥1且a ≠9 D .a ≤14.(2017重庆)若数a 使关于x 的分式方程2411a x x +=--的解为正数,且使关于y 的不等式组21322()0y y y a +⎧->⎪⎨⎪-≤⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2016重庆市)如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <﹣2,那么符合条件的所有整数a 的积是( )A .﹣3B .0C .3D .96.(2017内蒙古赤峰市)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.四、一元二次方程五、一元一次不等式(组)归纳 1:有关概念1.不等式:用不等号表示不等关系的式子,叫做不等式.2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3.用数轴表示不等式的方法4.一元一次不等式:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.5.一元一次不等式组:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.基本方法归纳:判断不等式(组)时只需看未知数的个数及未知数的次数为1即可;不等式的解只需带入不等式是否成立即可;不等式(组)的解集是所有解得集合.注意问题归纳:不等式组的解集是所有解得公共部分.【例1】如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).归纳2:不等式基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变.基本方法归纳:观察不等式的变化再选择应用那个性质.注意问题归纳:不等式两边都乘以(或除以)同一个负数,不等号的方向改变;乘以(或除以)同一个正数,不等号的方向不变.【例2】(2017江苏省常州市)若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0B.x﹣y>0C.x+y<0D.x﹣y<0归纳3:一元一次不等式(组)的解法1.解一元一次不等式的步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.2.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.基本方法归纳:根据解一元一次不等式(组)的步骤计算即可.注意问题归纳:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【例3】(2017四川省乐山市)求不等式组21312052x x x x +<⎧⎪+-⎨-≥⎪⎩的所有整数解. 【例4】已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围. 归纳 4:一元一次不等式(组)的应用1.列一元一次不等式(组)解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找不等关系.(2)设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)列一元一次不等式(组) (4)解一元一次不等式(组).(5)检验,看解集是否符合题意.(6)写出答案.2.解应用题的书写格式:设→根据题意→解一元一次不等式(组)→答.基本方法归纳:解题时先理解题意找到不等关系列出一元一次不等式(组)求解最后检验即可.注意问题归纳:找对不等关系最后一定要检验.【例5】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y (单位:元),购进篮球的个数为x (单位:个),请写出y 与x 之间的函数关系式(不要求写出x 的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?练习题:1.(2017湖南省株洲市)已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .﹣a <﹣bD .2a >3b篮球 排球 进价(元/个) 80 50 售价(元/个)105 702.(2017山东省泰安市)不等式组29611x x x k +>+⎧⎨-<⎩的解集为x <2,则k 的取值范围为( ) A .k >1 B .k <1 C .k ≥1 D .k ≤13.(2017黑龙江省龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( ) A .a >1 B .a ≥1 C .a ≥1且a ≠9 D .a ≤14.(2017辽宁省鞍山市)在平面直角坐标系中,点P (m +1,2﹣m )在第二象限,则m 的取值范围为( )A .m <﹣1B .m <2C .m >2D .﹣1<m <25.(2016内蒙古包头市)不等式1123x x --≤的解集是( ) A .x ≤4 B .x ≥4 C .x ≤﹣1 D .x ≥﹣16.(2016内蒙古巴彦淖尔市)如图,直线l 经过第一、二、四象限,l 的解析式是y =(m ﹣3)x +m +2,则m 的取值范围在数轴上表示为( )A .B .C .D .7.(2017内蒙古通辽市)不等式组⎪⎩⎪⎨⎧-≥-->+1312112x x x 的整数解是 . 8.(2017内蒙古呼和浩特市)已知关于x 的不等式21122m mx x ->-. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.。

初三数学复习资料(方程与方程组)

初三数学复习资料(方程与方程组)

初三数学复习资料(方程与方程组)一.知识要点1.方程:含有未知数的叫做方程2.使方程左右两边值相等的,叫做方程的解;求方程解的叫做解方程. 方程的解与解方程不同.3.一元一次方程:(1)在整式方程中,只含有个未知数,并且未知数的次数是,系数不等于0的方程叫做一元一次方程;它的一般形式为.(2)解一元一次方程的步骤:①去;②去;③移;④合并;⑤系数化为1. 4.二元一次方程:含有未知数(元)并且未知数的次数是的整式方程.5. 二元一次方程组:由2个或2个以上的组成的方程组叫二元一次方程组.6. 解二元一次方程的方法有消元和消元法两种.7.一元二次方程:(1)在整式方程中,只含个未知数,并且未知数的最高次数是的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项,叫做一次项,叫做常数项;叫做二次项的系数,叫做一次项的系数. (2)一元二次方程的常用解法:(1)直接开平方法(2)配方法:(3)公式法:一元二次方程的求根公式是.(4)因式分解法(5)换元法8.分式方程:(1)分母中含有的方程叫分式方程.(2)解分式方程的一般步骤:(1)去分母(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.二.练习题1.的5倍比的2倍大12可列方程为 .2.如果方程是一元一次方程,则 .3.若5x-5的值与2x-9的值互为相反数,则x=_____.4.关于的方程的解是3,则的值为________________.5.若是方程组的解,则.6.已知2是关于x的方程x2-2 a=0的一个解,则2a-1的值是_________.7.关于的方程有一个根是,则关于的方程的解为_____.8.(08福建若关于方程无解,则的值是.9. (08黄冈分式方程的解是.10. 下列方程组中,是二元一次方程组的是()A. B. C. D.11. 关于x、y的方程组的解是方程3x+2y=34的一组解,那么m=()A.2 B.-1 C.1 D.-212.下列方程中是一元二次方程的有()①9 x2=7 x ②=8 ③ 3y(y-1=y(3y+1 ④ x2-2y+6=0⑤( x2+1=⑥-x-1=0A.①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤13.一元二次方程(4x+1(2x-3=5x2+1化成一般形式ax2+bx+c=0(a≠0后a,b,c 的值为()A.3,-10,-4 B. 3,-12,-2 C. 8,-10,-2 D. 8,-12,414.一元二次方程2x2-(m+1x+1=x (x-1 化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为()A. -1B. 1C. -2D. 215. 以下是方程去分母、去括号后的结果,其中正确的是()A. B. C. D.16.(08泰安)分式方程的解是()A. B. C. D.17.分式方程的解是()A.,B. ,C. ,D.18.不等式组的解集是()(A)(B)(C)(D)无解19.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x元,则所列方程正确的是()(A)(B)(C)(D)三.解方程(1);(2).(3)(4)(5 x2-5x-6=0 ; (6 3x2-4x-1=0(用公式法);(7 4x2-8x+1=0(用配方法);(8)1.若方程组与方程组的解相同,求、的值.2.(湘潭)小刚、小明一起去精品文具店买同种钢笔和同种练习本,根据下面的对话解答问题:小刚:阿姨,我买3支钢笔,2个练习本,共需多少钱?售货员:刚好19元.小明:阿姨,那我买1支钢笔,3个练习本,需多少钱呢?售货员:正好需11元.(1)求出1支钢笔和1个练习本各需多少钱?(2)小明现有20元钱,需买1支钢笔,还想买一些练习本,那么他最多可买练习本多少个?3.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率.复习----------小测试1.如果是方程的根,则的值是 .2.方程的二次项系数是,一次项系数是,常数项是 .3.关于x的一元二次方程中,则一次项系数是 .4.一元二次方程的根是 .5.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x,则可以列出方程为 .6.解方程会出现的增根是()A. B. C. 或 D.7.(06泸州)如果分式与的值相等,则的值是(A.9 B.7 C.5 D.38.(06临沂)如果,则下列各式不成立的是()A. B. C. D.9.(08宜宾)若分式的值为0,则x的值为()A. 1B. -1C. ±1D.210. 如果是同类项,则、的值是()A.=-3,=2B.=2,=-3C.=-2,=3D.=3,=-211.解方程(1).(2);(3)。

初中数学中考方程专题

初中数学中考方程专题

第四讲 方程、方程组及其应用第一节 方程、方程的解【中考要求】1. 能根据具体问题中的数量关系列出方程;2. 掌握等式的基本性质;3. 了解方程及方程解的概念;4. 会由方程的解求出方程中带点系数的值;5. 能根据具体问题的实际意义检验方程的解是否合理。

【考点一】等式及其性质1. 用连接的表示关系的式子叫等式;2. 等式的性质:1) 等式两边同时 或 同一个数(或式子),结果仍相等;2) 等式两边同 一个数,或同除一个的数,结果仍相等。

【考点二】方程的有关概念。

1. 方程:含有的式叫做方程;2. 方程的解:使方程左右两边的值的未知数的值叫做方程的解,只含有一个未知 数的方程的解也叫做方程的3.解方程:求方程的解或确定方程无解的过程叫做解方程【练习】1. 一元一次方程42=x的解是( )A.1=xB.2=xC.3=xD.4=x2. 已知关于x 的方程062=--kx x 的一个根为x =3,则实数k 的值为()A .1B .-1C .2D .-23. 已知2=x 是一元二次方程022=++mx x 的一个解,则m 的值是 ( )A .-3B .3C . 0D .0或34. 已知是二元一次方程组的解,则m+3n 的立方根为 .5. 对于实数a 、b ,定义运算“*”:a *b =22()().a ab a b ab b a b ⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2= 42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=第二节一元一次方程及二元一次方程组【中考要求】1.了解一元一次方程及二元一次方程组的有关概念;2.熟练掌握一元一次方程的解法;3.知道代入、加减消元法的意义,数量掌握代入加减消元的方法,并能选择适当的方法解方程组;4.会运用一元一次方程或二元一次方程组解简单的应用题。

【考点一】基本概念:1. 一元一次方程:只含有未知数,且未知数的次数是的整式方程;一般形式:2. 二元一次方程:含有个未知数,并且含有未知数项的次数为的整式方程;一般形式:3. 二元一次方程组:由个一次方程组成,并且含有个未知数的方程组;同时使方程组中每个方程等号两边数值都相等的两个未知数的值叫做方程组的解。

中考专题复习-方程

中考专题复习-方程

中考专题复习-方程(总17页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考专题复习 方程知识网络图一元一次方程【课前热身】1.在等式367y -=的两边同时 ,得到313y =.2.方程538x -+=的根是 .3.x 的5倍比x 的2倍大12可列方程为 .4.写一个以2-=x 为解的方程 .5.如果1x =-是方程234x m -=的根,则m 的值是 .6.如果方程2130m x -+=是一元一次方程,则m = .【考点链接】1.等式及其性质(1) 等式:用等号“=”来表示两个量或两个表达式相等关系的式子叫等式.(2) 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=c a★等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.2. 方程、一元一次方程的概念(1)方程:含有未知数的等式 叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程.(方程的解与解方程不同.)(2)一元一次方程:在一个方程中,只含有一个未知数(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程;它的一般形式为ax + b = 0()0≠a .★只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是.◆我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根.3. 解一元一次方程的步骤:①去;②去;③移;④合并;⑤系数化为1.一般解法:①去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);②去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)③移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号 ④合并同类项:把方程化成的形式;⑤系数为成1:在方程两边都除以未知数的系数,得到方程的解. 4.易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x ,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.一元一次方程应用题的重要方法:⒈认真审题(审题)⒉分析已知和未知量⒊找一个合适的等量关系 ⒋设一个恰当的未知数 ⒌列出合理的方程(列式) ⒍解出方程(解题)⒎检验 ⒏写出答案(作答)一元一次方程中考考点:考点1:一元一次方程的定义例1.若是关于的一元一次方程,则的值是( )A. B.-2 C.2 D.4★举一反三:【变式1】关于x 的一元一次方程的解为.【变式2】当为何值时,方程是关于的一元一次方程?考点2: 一元一次方程的解例1. ( 2011重庆江津, 3,4分)已知3是关于的方程的解,则的值是( ) A.-5 B.5 C.7 D.2例2.方程320x 的解是考点3:一元一次方程的解法 例1(2011山东滨州,20,7分)依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.例2 解方程:12733)1(2-=-++x x x 例3若关于x 的方程:4)2(35)3(10--=+-x k x x k 与方程321)1(25x x -=+-的解相同,求k 的值.例4 解方程:;★举一反三:【变式】解下列方程(1);(2); (3).考点四:列方程例湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为考点五:一元一次方程的应用1.和、差、倍、分问题:通过题目中的一些关键词语找相等关系,如:“多”、“少”、“是几倍”、“增加几倍”、“增加到几倍”等等例1有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊就是你的2倍。

初中数学中考复习《方程》

初中数学中考复习《方程》

初中数学中考复习《方程》初中数学中考复习:解方程的技巧与策略方程是初中数学中的一个重要知识点,它广泛应用于解决各种实际问题。

在中考数学复习中,掌握解方程的技巧和策略对于提高数学成绩至关重要。

本文将详细介绍解方程的基本方法和技巧,帮助同学们更好地应对中考挑战。

一、确定方程的解法在解方程之前,首先要了解方程的类型和结构。

根据方程的特点,可以采用不同的解法,如合并同类项、去括号、去分母等。

在复习过程中,同学们需要熟练掌握这些基本技巧,以便快速准确地解决问题。

二、掌握方程的变形解方程的过程中,需要对方程进行各种变形,如移项、系数化为1等。

这些变形的方法需要在复习中重点掌握,以便在实际解题中灵活运用。

例如,对于一元二次方程,可以通过移项将方程化为“ax²+bx+c=0”的形式,从而便于求解。

三、复杂方程的分解对于一些复杂的方程,可能需要将其分解为几个较简单的方程,以便逐一解决。

在分解方程时,需要注意方程之间的联系和转换,避免出现错误。

例如,对于二元一次方程组,可以通过消元法将其转化为两个一元一次方程,从而求解。

四、应用举例为了更好地理解解方程的技巧和策略,下面我们通过一些具体的例子来进行说明。

例1:解方程2x+3=9解:将方程化为 2x=6,得到 x=3例2:解方程2x²-4x-6=0解:将方程化为 x²-2x-3=0,利用公式 x=1±√4+12/2,得到 x₁=3,x₂=-1五、归纳总结在解方程的过程中,我们需要掌握以下技巧和策略:1、熟悉方程的基本类型和相应的解法,如一元一次方程、一元二次方程、二元一次方程等。

2、掌握方程的变形方法,如移项、去括号、去分母等,以便将方程化为便于求解的形式。

3、对于复杂方程,需要学会将其分解为若干个简单的方程,逐一解决。

4、培养解题思维,如观察、分析、推理等,以便快速准确地解决问题。

六、拓展延伸为了更好地应对中考挑战,我们可以适当拓展延伸解方程的知识和方法:1、了解一些特殊方程的解法,如高次方程、分式方程、根式方程等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程复习一、一元一次方程归纳 1:有关概念一元一次方程的概念1、方程:含有未知数的等式叫做方程.2、方程的解:能使方程两边相等的未知数的值叫做方程的解.3、一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.基本方法归纳:判断一元一次方程时只需看未知数的个数及未知数的次数为1即可;方程的解只需带入方程看等式是否成立即可.注意问题归纳:未知数的系数必须不能为零.【例1】(2017湖南省永州市)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.1归纳 2:一元一次方程的解法1、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.2、解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.基本方法归纳:根据解一元一次方程的步骤计算即可.注意问题归纳:利用等式的性质2时注意:除数不能是零;解方程去分母时应该每项都乘;去括号时注意应该变号.【例2】解方程:305 64x x--=.归纳 3:一元一次方程的应用1、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例3】(2017湖南省常德市)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?练习题:1.(2017浙江省杭州市)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y ﹣cB .若x =y ,则xc =ycC .若x =y ,则cy c x = D .若c y c x 32=,则2x =3y 2.(2016内蒙古包头市)若2(a +3)的值与4互为相反数,则a 的值为( )A .﹣1B .72-C .﹣5D .123.(2017丽水)若关于x 的一元一次方程x ﹣m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤24.(2017云南省)已知关于x 的方程2x +a +5=0的解是x =1,则a 的值为 .5.(2016内蒙古赤峰市)甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动43周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转 周,时针和分针第一次相遇.6.(2017安徽省)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?二、二元一次方程归纳 1:二元一次方程的有关概念1、二元一次方程:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程.2、二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3、二元一次方程组:两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.基本方法归纳:判断一个方程是不是二元一次方程关键看未知数的个数和未知项的最高次数;判断方程组的解只需带入方程组组看是不是成立即可.注意问题归纳:判断一个方程是不是二元一次方程特别注意是:未知项的最高次数而不是未知数的次数.【例1】(2017四川省眉山市)已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3归纳 2:二元一次方程的解法基础知识归纳:解一元二次方程组的方法(1)代入法(2)加减法基本方法归纳:解一元二次方程组的方法关键是消元.当一个未知数能很好的表示出另一个未知数时,一般采用代入法;当两个方程中的同一个未知数的系数相等或互为相反数时,或者系数均不为2时,一般采用加减消元.注意问题归纳:根据题意选择适当的方法快速求解,注意计算中的错误.【例2】(2017广东省广州市)解方程组:5 2311x yx y+=⎧⎨+=⎩.归纳 3:二元一次方程组的应用基础知识归纳:1、列二元一次方程组解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)列方程组,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程组.(4)解方程组.(5)检验,看方程组的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程组→答.基本方法归纳:解题时先理解题意找到等量关系列出方程组再解方程组最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例3】上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600﹣500)=87元】(1)甲定制了600MB 的月流量,花费48元;乙定制了2GB 的月流量,花费120.4元,求a ,b 的值.(注:1GB =1024MB )(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.【例4】(2017四川省遂宁市)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?练习题:1.(2016贵州省毕节市)已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,则m ,n 的值为( )A .m =1,n =﹣1B .m =﹣1,n =1C .m =13,n =43-D .m =13-,n =432.(2017浙江省嘉兴市)若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==by a x ,则a ﹣b =( )A .1B .3C . 41-D .47 3.(2017内蒙古包头市)若关于x 、y 的二元一次方程组325x y x ay +=⎧⎨-=⎩的解是1x b y =⎧⎨=⎩,则b a 的值为 .4.(2016广西钦州市)若x ,y 为实数,且满足2(2)0x y +=,则y x 的值是 .5.(2016四川省达州市)已知x ,y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式2()(2)(2)x y x y x y --+-的值. 6.(2017四川省乐山市)二元一次方程组2322+=-=+x y x y x 的解是 7.(2017内蒙古呼和浩特市)某专卖店有A ,B 两种商品,已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元,A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折?8.(2017四川省南充市)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?9.(2016湖南省长沙市)2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?三、分式方程☞考点归纳归纳 1:分式方程 的有关概念1、分式方程:分母里含有未知数的方程叫做分式方程.2、分式方程的增根:分式方程化成整式方程解得的未知数的值,如果这个值令最简公分母为零则为增根. 基本方法归纳:判断分式方程时只需看分母中必须有未知数;分式方程的解只需带入方程看等式是否成立即可.注意问题归纳: 未知数的系数必须不能为零;判断一个数增根的条件缺一不可:1、这个数是解化成的整式方程的根,2、使最简公分母为零.【例1】(2017四川省成都市)已知x =3是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A .﹣1 B .0 C .1 D .2【例2】(2017四川省泸州市)若关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是 .归纳 2:分式方程的解法 1、解分式方程的步骤:解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.基本方法归纳:分式方程首要是方程两边同乘以分母最小公倍数、去掉分母,转化为整式方程求解,其次注意一定要验根.注意问题归纳: 解完方程后一定要注意验根.【例3】(2017上海市)解方程:231133x x x -=--.归纳 3:分式方程的应用 1、分式方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例4】(2017内蒙古通辽市)一汽车从甲地出发开往相距240km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24min 到达乙地,求汽车出发后第1小时内的行驶速度.练习题:1.(2017四川省凉山州)若关于x 的方程2230x x +-=与213x x a=+-有一个解相同,则a 的值为( ) A .1 B .1或﹣3 C .﹣1 D .﹣1或32.(2017山东省聊城市)如果解关于x 的分式方程2122m x x x-=--时出现增根,那么m 的值为( ) A .﹣2 B .2 C .4 D .﹣43.(2017黑龙江省龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( ) A .a >1 B .a ≥1 C .a ≥1且a ≠9 D .a ≤14.(2017重庆)若数a 使关于x 的分式方程2411a x x +=--的解为正数,且使关于y 的不等式组21322()0y y y a +⎧->⎪⎨⎪-≤⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2016重庆市)如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <﹣2,那么符合条件的所有整数a 的积是( )A .﹣3B .0C .3D .96.(2017内蒙古赤峰市)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.四、一元二次方程五、一元一次不等式(组)归纳 1:有关概念1.不等式:用不等号表示不等关系的式子,叫做不等式.2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3.用数轴表示不等式的方法4.一元一次不等式:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.5.一元一次不等式组:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.基本方法归纳:判断不等式(组)时只需看未知数的个数及未知数的次数为1即可;不等式的解只需带入不等式是否成立即可;不等式(组)的解集是所有解得集合.注意问题归纳:不等式组的解集是所有解得公共部分.【例1】如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).归纳 2:不等式基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变.基本方法归纳:观察不等式的变化再选择应用那个性质.注意问题归纳:不等式两边都乘以(或除以)同一个负数,不等号的方向改变;乘以(或除以)同一个正数,不等号的方向不变.【例2】(2017江苏省常州市)若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0归纳 3:一元一次不等式(组)的解法1.解一元一次不等式的步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.2.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.基本方法归纳:根据解一元一次不等式(组)的步骤计算即可.注意问题归纳:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【例3】(2017四川省乐山市)求不等式组21312052x x x x +<⎧⎪+-⎨-≥⎪⎩的所有整数解. 【例4】已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围. 归纳 4:一元一次不等式(组)的应用1.列一元一次不等式(组)解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找不等关系.(2)设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)列一元一次不等式(组) (4)解一元一次不等式(组).(5)检验,看解集是否符合题意.(6)写出答案.2.解应用题的书写格式:设→根据题意→解一元一次不等式(组)→答.基本方法归纳:解题时先理解题意找到不等关系列出一元一次不等式(组)求解最后检验即可.注意问题归纳:找对不等关系最后一定要检验.【例5】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y (单位:元),购进篮球的个数为x (单位:个),请写出y 与x 之间的函数关系式(不要求写出x 的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?练习题:1.(2017湖南省株洲市)已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .﹣a <﹣bD .2a >3b篮球 排球 进价(元/个) 80 50 售价(元/个)105 702.(2017山东省泰安市)不等式组29611x x x k +>+⎧⎨-<⎩的解集为x <2,则k 的取值范围为( )A .k >1B .k <1C .k ≥1D .k ≤13.(2017黑龙江省龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( ) A .a >1 B .a ≥1 C .a ≥1且a ≠9 D .a ≤14.(2017辽宁省鞍山市)在平面直角坐标系中,点P (m +1,2﹣m )在第二象限,则m 的取值范围为( )A .m <﹣1B .m <2C .m >2D .﹣1<m <25.(2016内蒙古包头市)不等式1123x x --≤的解集是( ) A .x ≤4 B .x ≥4 C .x ≤﹣1 D .x ≥﹣16.(2016内蒙古巴彦淖尔市)如图,直线l 经过第一、二、四象限,l 的解析式是y =(m ﹣3)x +m +2,则m 的取值范围在数轴上表示为( )A .B .C .D .7.(2017内蒙古通辽市)不等式组⎪⎩⎪⎨⎧-≥-->+1312112x x x 的整数解是 . 8.(2017内蒙古呼和浩特市)已知关于x 的不等式21122m mx x ->-. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.。

相关文档
最新文档