第2章交流异步电动机的数学模型

合集下载

异步电动机的数学模型

异步电动机的数学模型

(2.2)
式中:
Rs 、 Rr ――分别为定子电阻和转子电阻; Ls 、 Lr 、 Lm ――分别为定子自感、转子自感和定、转子互感;
r ――电机转子角速度(电角速度);
U s 、 U s ――分别为定子电压的 、 分量; U r 、 U r ――分别为转子电压的 、 分量,在鼠笼机中 U r = U r =0; is 、 is ――分别为定子电流的 、 分量; ir 、 ir ――分别为转子电流的 、 分量;
p ――微分算子, p
d 。 dt
电机的磁链方程为:
s Ls s 0 r Lm r 0 0 Ls 0 Lm Lm 0 Lr 0 0 is i Lm s 0 ir Lr ir
8
U s Rs Ls p U s 0 U r Lm p U r r Lm
0 Rs Ls p
Lm p 0 Rr Lr p r Lr
r Lm
Lm p
is i Lm p s r Lr ir Rr Lr p ir 0
12
2 4 U 2 2U 1 3 Ud 1 3 2 2U d U d j 3 U d j 3 u1 ( e e ) ( d ) d ( j ) ( j ) 3 3 3 3 3 3 3 2 2 3 2 2 2 2 U 2 2 U d d U d U d e j 3 3 3 3 3
(2.3)
式中:
s 、 s ――分别为定子磁链的 、 分量;

异步电动机机的稳态模型

异步电动机机的稳态模型


空载运行时,激磁磁势全部由定子磁势 F1=Fm
提供,即:

负载运行时,转子绕组中有电流I2 流过,产生一个同 步旋转磁势F2,为了保持Fm不变,定子磁势F1除了提 供激磁磁势Fm外,还必须抵消转子磁势F2的影响,即:

异步电动机的磁势平衡方程:
F1 F1 F Fm ( F2 ) Fm

n2+n=sn1+(1-s)n1=n1 结论:转子绕组的磁势与定子绕组的磁势转速相同, 在空间相对静止。
(3)磁势平衡方程式 激磁电流 和激磁磁势

产生主磁通 所需要的电流称为激磁电流 对应的磁势称为激磁磁势:


激磁磁势近似不变



由电势方程式: ;电源电压不变,阻抗压降很小,电势近似不变; 由公式: , 近似不变; 可见,激磁磁势和激磁电流几乎不变。
5
符号表
转子侧折算到定子侧
I'2 Ψ'2 E'2 Ф'2σ Ψ'2σ E'2σ Rm Lm1 Lm Xm Im Fm


(一) 异步电动机的工作原理 (二) 异步电动机的等效电路 (三) 异步电动机的功率平衡和转矩平衡关系 (四) 异步电动机的电磁转矩和机械特性 (五) 异步电动机工作特性分析(略)

转子绕组中感应电势的频率:


转子感应电势的有效值



注意转子不动时(s=1)时的感应电势与转子旋转时感应电势的关系。

转子绕组的阻抗


由于转子绕组是闭合的,所以有转子电流流过。同样 会产生漏磁电抗压降。 漏抗公式: 漏抗也与转差率正比。转速越高,漏抗越小。

异步电动机的动态数学模型和坐标变换

异步电动机的动态数学模型和坐标变换

6.5 异步电动机的动态数学模型和坐标变换本节提要异步电动机动态数学模型的性质三相异步电动机的多变量非线性数学模型坐标变换和变换矩阵三相异步电动机在两相坐标系上的数学模型三相异步电动机在两相坐标系上的状态方程一、异步电动机动态数学模型的性质2. 交流电机数学模型的性质1异步电机变压变频调速时需要进行电压或电流和频率的协调控制,有电压电流和频率两种独立的输入变量;在输出变量中,除转速外,磁通也得算一个独立的输出变量;因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩;多变量、强耦合的模型结构由于这些原因,异步电机是一个多变量多输入多输出系统,而电压电流、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以先用图来定性地表示;图6-43 异步电机的多变量、强耦合模型结构模型的非线性2在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项;这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的;模型的高阶性3三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统;总起来说,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统;二、三相异步电动机的多变量非线性数学模型假设条件:1忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布;2忽略磁路饱和,各绕组的自感和互感都是恒定的;3忽略铁心损耗;4不考虑频率变化和温度变化对绕组电阻的影响;1. 电压方程三相定子绕组的电压平衡方程为:电压方程续与此相应,三相转子绕组折算到定子侧后的电压方程为:电压方程的矩阵形式将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /dt或写成6-67b2. 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为:或写成6-68b电感矩阵式中,L 是6×6电感矩阵,其中对角线元素 LAA, LBB, LCC,Laa,Lbb,Lcc 是各有关绕组的自感,其余各项则是绕组间的互感;实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的;电感的种类和计算定子漏感 Lls ——定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;转子漏感 Lk ——转子各相漏磁通所对应的电感;定子互感 Lms——与定子一相绕组交链的最大互感磁通;转子互感 Lmr——与转子一相绕组交链的最大互感磁通;由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为:自感表达式对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为:转子各相自感为:互感表达式两相绕组之间只有互感;互感又分为两类:1 定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值;2 定子任一相与转子任一相之间的位置是变化的,互感是角位移的函数第一类固定位置绕组的互感三相绕组轴线彼此在空间的相位差是±120°,在假定气隙磁通为正弦分布的条件下,互感值应为,于是,第二类变化位置绕组的互感定、转子绕组间的互感,由于相互间位置的变化见图6-44,可分别表示为:当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互感 Lms ;磁链方程将式6-69~式6-75都代入式6-68a,即得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式式中值得注意的是,和两个分块矩阵互为转置,且均与转子位置有关,它们的元素都是变参数,这是系统非线性的一个根源;为了把变参数转换成常参数须利用坐标变换,后面将详细讨论这个问题;电压方程的展开形式如果把磁链方程6-68b代入电压方程6-67b中,即得展开后的电压方程:式中,项属于电磁感应电动势中的脉变电动势或称变压器电动势,项属于电磁感应电动势中与转速成正比的旋转电动势;3. 转矩方程根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和磁共能为:而电磁转矩等于机械角位移变化时磁共能的变化率电流约束为常值,且机械角位移,于是转矩方程的矩阵形式将式6-81代入式6-82,并考虑到电感的分块矩阵关系式6-77~6-79,得:又由于代入式6-83得:该方程适用变压变频器供电含有电流谐波三相异步电动机转矩方程的三相坐标系形式以式6-79代入式6-84并展开后,舍去负号,意即电磁转矩的正方向为使 q 减小的方向,则4. 电力拖动系统运动方程在一般情况下,电力拖动系统的运动方程式是TL ——负载阻转矩;J ——机组的转动惯量;D ——与转速成正比的阻转矩阻尼系数;K ——扭转弹性转矩系数;运动方程的简化形式对于恒转矩负载,D = 0 , K = 0 ,则5. 三相异步电机的数学模型将式6-76,式6-80,式6-85和式6-87综合起来,再加上,便构成在恒转矩负载下三相异步电机的多变量非线性数学模型,用结构图表示出来如下图所示:异步电机的多变量非线性动态结构图三、坐标变换和变换矩阵上节中虽已推导出异步电机的动态数学模型,但是,要分析和求解这组非线性方程显然是十分困难的;在实际应用中必须设法予以简化,简化的基本方法是坐标变换;1. 交流电机的物理模型直流电机物理模型简单励磁绕组d轴上,电枢绕组在q轴上,如果能将交流电机的物理模型见下图等效地变换成类似直流电机的模式,分析和控制就可以大大简化;坐标变换正是按照这条思路进行的; 在这里,不同电机模型彼此等效的原则是:在不同坐标下所产生的磁动势完全一致;1交流电机绕组的等效物理模型2等效的两相交流电机绕组3旋转的直流绕组与等效直流电机模型再看图c中的两个匝数相等且互相垂直的绕组 M 和 T,其中分别通以直流电流和,产生合成磁动势 F ,其位置相对于绕组来说是固定的;如果让包含两个绕组在内的整个铁心以同步转速旋转,则磁动势 F 自然也随之旋转起来,成为旋转磁动势;把这个旋转磁动势的大小和转速也控制成与图 a 和图 b 中的磁动势一样,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了;当观察者也站到铁心上和绕组一起旋转时,在他看来,M 和 T 是两个通以直流而相互垂直的静止绕组;如果控制磁通的位置在 M 轴上,就和直流电机物理模型没有本质上的区别了;这时,绕组M相当于励磁绕组,T 相当于伪静止的电枢绕组;等效的概念由此可见,以产生同样的旋转磁动势为准则,图a的三相交流绕组、图b的两相交流绕组和图c中整体旋转的直流绕组彼此等效;或者说,在三相坐标系下的,在两相坐标系下的和在旋转两相坐标系下的直流是等效的,它们能产生相同的旋转磁动势;现在的问题是,如何求出与和之间准确的等效关系,这就是坐标变换的任务;2. 三相--两相变换3/2变换现在先考虑上述的第一种坐标变换——在三相静止绕组A、B、C和两相静止绕组之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称 3/2 变换;三相和两相坐标系与绕组磁动势的空间矢量 :设磁动势波形是正弦分布的,当三相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在轴上的投影都应相等,写成矩阵形式,得:考虑变换前后总功率不变,在此前提下,可以证明匝数比应为:为求两项到三项的变换阵将三项到两项的变换阵增广成可逆的方阵,物理意义在两项系统上人为加入零轴磁动势并定义满足功率不变的条件可以求得如下关系:这表明保持坐标变换前后的功率不变,又要维持磁链相同,变换前后两项绕组每相匝数应为原三项绕组匝数的倍于此同时利用上述关系得三项/两项变换方阵:如要从两相坐标系变换到三相坐标系2/3变换可求反变换:N3 /N2 值代入式6-89,得:3. 两相—两相旋转变换2s/2r变换从上图等效的交流电机绕组和直流电机绕组物理模型的图 b 和图 c 中从两相静止坐标系到两相旋转坐标系 M、T 变换称作两相—两相旋转变换,简称 2s/2r 变换,其中 s 表示静止,r 表示旋转;把两个坐标系画在一起,即得下图;两相静止和旋转坐标系与磁动势电流空间矢量2s/2r变换公式两相旋转—两相静止坐标系的变换矩阵写成矩阵形式,得:式中是两相旋转坐标系变换到两相静止坐标系的变换阵;对式6-96两边都左乘以变换阵的逆矩阵,即得:两相静止—两相旋转坐标系的变换矩阵则两相静止坐标系变换到两相旋转坐标系的变换阵是:电压和磁链的旋转变换阵也与电流磁动势旋转变换阵相同;四、三相异步电动机在两相坐标系上的数学模型前已指出,异步电机的数学模型比较复杂,坐标变换的目的就是要简化数学模型;第6.6.2节的异步电机数学模型是建立在三相静止的ABC坐标系上的,如果把它变换到两相坐标系上,由于两相坐标轴互相垂直,两相绕组之间没有磁的耦合,仅此一点,就会使数学模型简单了许多;1.异步电机在两相任意旋转坐标系dq坐标系上的数学模型两相坐标系可以是静止的,也可以是旋转的,其中以任意转速旋转的坐标系为最一般的情况,有了这种情况下的数学模型,要求出某一具体两相坐标系上的模型就比较容易了;变换关系设两相坐标轴与三相坐标轴的夹角为, 而为坐标系相对于定子的角转速,为坐标系相对于转子的角转速;变换过程具体的变换运算比较复杂,根据式6-98另0轴为假想轴d轴和A轴夹角为θ 可得:写成矩阵形式:合并以上两个方程式得三相静止ABC坐标系到两项旋转dq0坐标系的变换式1磁链方程利用变换将定子的三项磁链和转子的三项磁链变换到dqo坐标系中去,定子磁链的变换阵是其中d轴与A轴的夹角为,转子磁链的变换阵是是旋转三相坐标系变换到不同转速的旋转两相坐标系;其中 d 轴与α 轴的夹角为 ;则磁链的变换式为:把定子和转子的磁链表达成电感阵和电流向量乘积,在用和的反变换阵把电流变换到dq0坐标上:磁链的零轴分量为它们各自独立对dq轴磁链没有影响,可以不考虑则可以简化;控制有关;代入参数计算,并去掉零轴分量则dq坐标系磁链方程为或写成式中—— dq坐标系定子与转子同轴等效绕组间的互感;—— dq坐标系定子等效两相绕组的自感;——dq坐标系转子等效两相绕组的自感;异步电机在两相旋转坐标系dq上的物理模型图6-50 异步电动机在两相旋转坐标系dq上的物理模型 2电压方程利用上式A得定子电压变换的关系为先讨论A相的关系同理在ABC坐标系下A相的电压方程,代入得为dq0旋转坐标系对于定子的角速度由于为任意值因此下式三式成立同理转子电压方程为式中为dq0旋转坐标系相对于转子的角速度同理利用B相和C相的电压方程求出的结果与上面一致; 2电压方程上面的方程整理有定子和转子的电压方程令旋转电动势向量则式6-106a变成这就是异步电机非线性动态电压方程式;与第6.6.2节中ABC坐标系方程不同的是:此处电感矩阵 L 变成 4 4 常参数线性矩阵,而整个电压方程也降低为4维方程;3转矩和运动方程dq坐标系上的转矩方程为运动方程与坐标变换无关,仍为其中——电机转子角速度;阶数下降,但非线性、强耦合、多变量性质未变;异步电机在dq坐标系上的动态等效电路2. 异步电机在坐标系上的数学模型在静止坐标系上的数学模型是任意旋转坐标系数学模型当坐标转速等于零时的特例;当时,,即转子角转速的负值,并将下角标改成,则式6-105的电压矩阵方程变成而式6-103a的磁链方程改为利用两相旋转变换阵,可得代入式6-107并整理后,即得到坐标上的电磁转矩式6-108~式6-110再加上运动方程式便成为坐标系上的异步电机数学模型;这种在两相静止坐标系上的数学模型又称作Kron的异步电机方程式或双轴原型电机Two Axis Primitive Machine基本方程式;3. 异步电机在两相同步旋转坐标系上的数学模型另一种很有用的坐标系是两相同步旋转坐标系,其坐标轴仍用d,q表示,只是坐标轴的旋转速度等于定子频率的同步角转速;而转子的转速为,因此 dq 轴相对于转子的角转速,即转差;代入式6-105,即得同步旋转坐标系上的电压方程在二相同步旋转坐标系上的电压方程磁链方程、转矩方程和运动方程均不变;两相同步旋转坐标系的突出特点是,当三相ABC坐标系中的电压和电流是交流正弦波时,变换到dq坐标系上就成为直流;4、按转子磁场定向下的数学模型在dq坐标系放在同步旋转磁场下使d轴与转子磁场的方向重合此时转子的d轴的磁通分量为0,既有下式;带入式6-111三四行出现零元素,减少了耦合,简化了模型上式中解得,带入dq坐标系中的转矩方程有如下结果,这个关系和直流电机的转矩方程非常接近了,如果是鼠笼电机结果会更加简单;五、三相异步电动机在两相坐标系上的状态方程作为异步电机控制系统研究和分析基础的数学模型,过去经常使用矩阵方程,近来越来越多地采用状态方程的形式,因此有必要再介绍一下状态方程;为了简单起见,这里只讨论两相同步旋转dq 坐标系上的状态方程,如果需要其它类型的两相坐标,只须稍加变换,就可以得到;第6.6.4节的分析结果告诉我们,在两相坐标系上的电压源型变频器—异步电机具有4阶电压方程和1阶运动方程,因此其状态方程也应该是5阶的,须选取5个状态变量,而可选的变量共有9个,即转速、4个电流变量和4个磁链变量;状态变量的选择转子电流是不可测的,不宜用作状态变量,因此只能选定子电流和转子磁链;定子电流和定子磁链;也就是说,可以有下列两组状态方程;1.状态方程由前节式6-103b表示dq坐标系上的磁链方程式6-104为任意旋转坐标系上的电压方程对于同步旋转坐标系,,又考虑到笼型转子内部是短路的,则,于是,电压方程可写成由式6-103b中第3,4两式可解出代入式6-107的转矩公式,得状态方程标准形式将式6-103b代入式6-112,消去,同时将6-113代入运动方程式6-87,经整理后即得状态方程如下:——电机漏磁系数,——转子电磁时间常数;状态变量与输入变量在6-114~6-118的状态方程中,状态变量为输入变量为式中,状态变量为输入变量为。

第3篇2异步电机数学模型

第3篇2异步电机数学模型
第3篇 交流传动控制原理
第2章 异步电机数学模型
异步电机动态性质 异步电机动态数学模型 坐标变换基础 异步电动机在两相坐标系上的模型 异步电动机在两相坐标系上的状态方程

2.1异步电动机动态数学模型 的性质
电磁耦合是机电能量转换的必要条件, 电流与磁通的乘积产生转矩,转速与磁 通的乘积得到感应电动势。 无论是直流电动机,还是交流电动机均 如此。 交、直流电动机结构和工作原理的不同, 其表达式差异很大。

定子三相间或转子三相间互感

三相绕组轴线彼此在空间的相位差 互感
2 3
2 2 1 Lms cos Lms cos( ) Lms 3 3 2
定子三相间或转子三相间互感
1 LAB LBC LCA LBA LCB LAC Lms 2 1 Lab Lbc Lca Lba Lcb Lac Lms 2
T
i s i A iB
iC
T
T
T
ir ia ib ic
电感矩阵

定子电感矩阵
L ss
Lms Lls 1 Lms 2 1L ms 2
1 Lms 2 Lms Lls 1 Lms 2
1 Lms 2 1 Lms 2 Lms
电压方程

把磁链方程代入电压方程,展开
d di dL u Ri ( Li) Ri L i dt dt dt di d L Ri L i dt d
电压方程

电流变化引起的脉变电动势,或称变压器 电动势
di L dt

定、转子相对位置变化产生的与转速成正 比的旋转电动势

异步电动机的工作原理与数学模型ppt课件

异步电动机的工作原理与数学模型ppt课件
堵转时定、转子等值电路:
r1
x 1
I1
r2
E20
m
x 2
I2
U1
E1
rz
由图,
U 1 E 1 I 1 r1 jxσ 1



E 2 I 2 r2 jxσ 2 rL
2019 13


绕组折算
目的:把定、转子间磁的耦合关系,变换为定子、
转子等值电路之间电的联系。 思想:用一个相数及有效匝数和定子相同的等效 转子绕组替代相数为3、有效匝数为 W2 k dp 2 的实际 转子绕组。 原则:折算前后转子磁势 F2 保持不变。
异步电动机的工作原理与数学模型
2019
-
1
内容概要
异步电动机的静态数学模型与T值等效电路
三相异步电动机的功率和转矩
三相异步电动机的机械特性
异步电动机的动态数学模型
2019
-
2
一、异步电动机的静态数学模型和T值等效电路
分析方法:通过对转子开路、转子堵转、转子转
动 3个过程的分析,得出异步电机在三相对称正 弦电压下稳态时的数学模型和T值等效电路。 分析核心:电势平衡关系,磁势平衡关系,转矩 平衡关系

异步电机堵转时,产生定子旋转磁势 F1 的定子电流 I 1 可分解为两个分量。 ① 用于产生主磁通 m 的励磁电流分量 I 10 ,其幅值由 ② 克服转子磁势 F2 产生的反作用的负载电流分量 I 2 , 其幅值随转子电流成正比例变化。

2019 12


反电势 E1 决定。
2.2、堵转时的T型等值电路
2019
-
3
1、转子静止、转子绕组开路时的电磁关系

异步电动机的动态数学模型及矢量控制

异步电动机的动态数学模型及矢量控制

iiCa
Lbc
ib
L2l Lccic
Ψ ΨR SL LR SSS
LSRiS LRRiR
L11L1l
其中,Lss
1 2
L11
1 2
L11
1 2
L11
L11L1l
1 2
L11
1
2 1
2
L11 L11
L11L1l
L22 L2l
LR
R
1 2
L22
1 2
L22
1 2
L2
2
L22 L2l
其中 p 为, 电机的 L 12 磁 N 1N 极 2 m对数。
2、转矩方程
Te
TL
J p
d
dt
J p
d 2
dt 2
J
d 2 m
dt 2
其中 m p 转子转动的机械角度
机数学模型的性质:
在A、B、C三相坐标系异步电动中异步电动机的基本方程 是由七个微分方程和一个电磁转矩公式组成。由于在微分 方程式中出现了两个变量的乘积项,所以数学模型是非线 性的 。
Ca
LCA LaA
b
LbA
c LcA
LAB L1l LBB
LCB LaB LbB LcB
LAC LBC L1l LCC LaC LbC LcC
LAa LBa LCa L2l Laa Lba Lca
LAb LBb LCb Lab L2l Lbb Lcb
LAc iA LBc iB
LCc Lac
Xm
θ
xA
表示x为 AX: mej
参考轴A
三相坐标系下的物理量如何用空间矢量表示?
设三相坐标系下三相物理量分别为:x(A t)、x(B t)、x( C t) 取a e j1200 1 j 3

异步电动机的动态数学模型-完整版

异步电动机的动态数学模型-完整版
卡盟排行榜 卡盟
1、绕组自感 对于每一相绕组来说,它所交链的磁通是公共主磁通
(互感磁通)与漏感磁通之和,考虑绕组是对称的,因此 定子和转子各相绕组电感分别为:
LAA=LBB=LCC=L’m+Lls Laa=Lbb=Lcc=L’m+Llr
(6-5)
2、绕组互感 互感与公共主磁通相对应,互感分为两类:
三相异步电机的等效物理模型如下: 定子A、B、C的轴线在空间上固定,以A轴为参考坐标轴; 转子a、b、c的轴线随转子旋转,转速为ωr; 电角度θr为空间角位移变量。
异步电动机的动态数学模型由电压方程、磁链方程、转 矩方程和运动方程组成。
一、电压方程
定子电压方程:
u
A
u
B
u
C
iA R s iB R s iC R s
电机的磁链可表达为:
A LAA
B
LBA
Ca
LLCaAA
b
LbA
c LcA
简写成:
LAB LAC LAa LAb LAciA
LBB
LBC
LBa
LBb
LBc
iB
LCB LaB
LCC LaC
LCa Laa
LCb Lab
LCc Lac
iiCa
LbB
LbC
Lba
Lbb
Lbc
ib
LcB LcC Lca Lcb Lcc ic
d A
dt d B
dt d C
dt
转子电压方程:
u
a
u
b
u
c
ia R r ib R r ic R r
d a
dt d b
dt d c

异步电动机的动态数学模型-完整版

异步电动机的动态数学模型-完整版

瞬态过程分析需要考虑电动 机内部的电磁场变化、转子 动态响应以及机械系统动态
响应等因素。
瞬态过程分析有助于深入了解 异步电动机的运行机理,为优 化控制策略和提高电机性能提
供理论支持。
04
CATALOGUE
异步电动机的控制策略
直接转矩控制
总结词
直接转矩控制是一种先进的电机控制策 略,通过直接控制电机的转矩和磁通量 来实现高动态性能。
VS
详细描述
直接转矩控制通过实时监测电机的转矩和 磁通量,并采用合适的控制算法来调整电 机的输入电压或电流,以达到快速响应和 精确控制的目的。这种控制策略具有快速 动态响应、高精度和鲁棒性强的优点,广 泛应用于高性能电机驱动系统中。
矢量控制
总结词
矢量控制是一种基于磁场定向的控制策略,通过将电机的电 流和电压解耦成转矩和磁通量分量,实现电机的精确控制。
效率与能效
提高异步电动机的效率和能效是当前 面临的重要挑战,也是推动技术发展 的主要动力。
未来趋势与展望
智能化
随着物联网和人工智能技术的发展,异步电动机将更加智能化, 能够实现自适应控制和预测性维护。
高效化
未来异步电动机将更加高效,能够降低能源消耗和维护成本。
定制化
随着生产工艺和需求的多样化,异步电动机将更加定制化,能够 满足各种特定应用的需求。
THANKS
感谢观看
压缩机等。
能源领域
02
风力发电和太阳能发电等可再生能源系统中,异步电动机作为
发电机和驱动电机被广泛应用。
交通运输
03
异步电动机在轨道交通、电动汽车和船舶推进等领域有广泛应
用。
技术发展与挑战
技术进步
可靠性

异步电动机的三相数学模型

异步电动机的三相数学模型


N2i N3iA

N2iβ
N3iC
1 1 N 2iα N 3iA N 3iB cos 60 N 3iC cos 60 N 3 (iA iB iC ) 2 2 3 N 2iβ N 3iB sin 60 N 3iC sin 60 N 3 (iB iC ) 2
1 2 1 3 2 1 2
i α i β
1 1 2 2 3 3 0 2
1 i A 2 i 3 B iC 2
0 3 i 2 i 3 2
或写成
u Ri pΨ
6.2.1 异步电动机三相动态模型的数学表达式
2 电压方程
di dL u Ri p (Li ) Ri L i dt dt di d L Ri L i d t d
3 转矩方程
1 T 1 T Wm W i ψ i Li 2 2
6.2.1 异步电动机三相动态模型的数学表达式
• 2 电压方程
d A uA iA Rs dt
d B uB iB Rs dt
d C uC iC Rs dt
d a ua ia Rr dt d b u b ib Rr dt
d c uc ic Rr dt
Ψ Li
• 自感
LAA LBB LCC Lms Lls
Laa Lbb Lcc Lms Llr
6.2.1 异步电动机三相动态模型的数学表达式 1 磁链方程 • 互感
1 Lms cos 120 Lms cos( 120 ) Lms 2 1 LAB LBC LCA LBA LCB LAC Lms 2 1 Lab Lbc Lca Lba Lcb Lac Lms 2

基于simulink的Matlab仿真作业(电气工程专业)2

基于simulink的Matlab仿真作业(电气工程专业)2

交流异步电动机性能的Matlab仿真张三(陕西西安西安科技大学710054)摘要:本文利用Matlab软件中的simulink组件对交流异步电动机进行了仿真计算,得到了流过负载的定子相电流波形、转子相电流波形、定子磁链轨迹、转子磁链轨迹、电动机的转速和转矩波形以及机械特性曲线,经过分析发现负载过大将引起电动机反转的情况,。

关键词:交流异步电动机;性能;仿真与研究0 引言交流异步电动机是一种将电能转化为机械能的电力拖动装置。

它主要由定子、转子和它们之间的气隙构成。

对定子绕组通往三相交流电源后,产生旋转磁场并切割转子,获得转矩。

三相交流异步电动机具有结构简单、运行可靠、价格便宜、过载能力强及使用、安装、维护方便等优点,被广泛应用于各个领域。

1 异步电动机的工作原理把异步电机的定子接到三相电源时,定子中会有三相电流,根据同步电机中的分析结果知道,定子电流产生一系列的气隙旋转磁通密度。

其中起主要的作用的是以同步速,顺着绕组相序旋转的基波气隙旋转磁通密度。

图1. 转子绕组和气隙旋转磁通密度的相对运动根据气隙旋转磁通密度的极性和电流的方向,利用左手定则可以看出,会产生一个与气隙旋转磁通密度同方向的电磁转矩,作用在转子上,如果这个电磁转矩能克服加在转子上的负载转矩,转子就能旋转起来,并加速旋转。

如果转子的转速能加速到等于同步转速时,转子绕组和气隙旋转磁通密度之间就没有相对运动,电流和电磁转矩都等于零。

2交流异步电动机的数学模型交流异步电动机的数学模型如下:a bcV-I MeasurementmMachines MeasurementDemuxSI Units图2.交流异步电动机数学模型3 仿真系统(1)正弦电压供电的异步电动机模型如图所示:Asynchronous MachineSI Units图3.异步电机simulink仿真(2)参数设置a.电动机设置参数如下:电源额定功率Pn=4.7e6(V A),额定电压Vn=380(V),额定频率fn=50Hz;定子电阻Rs=0.68(ohm),定子电感Lls=0.0042(H);转子电阻Rr’=0.45(ohm),转子电感Ll r’=0.0042(H);互感Lm=0.1486(H);惯量J=0.05(kg.m^2),摩擦因素F=0.0081(N.m.s),极数p=2.b.负载设定:加载时间为0.5s,加载值为132.c.仿真参数设置:算法:Ode23;相对误差:1e-5;停止时间为1.5s。

第3篇2异步电机数学模型

第3篇2异步电机数学模型
异步电动机的动态模型由磁链方程、电压 方程、转矩方程和运动方程组成。
磁链方程和转矩方程为代数方程 电压方程和运动方程为微分方程
磁链方程
异步电动机每个绕组的磁链是它本身的自 感磁链和其它绕组对它的互感磁链之和
自感
或写成 定子各相自感
转子各相自感
互感
绕组之间的互感又分为两类 ①定子三相彼此之间和转子三相彼此之间
位置都是固定的,故互感为常值; ②定子任一相与转子任一相之间的相对位
置是变化的,互感是角位移的函数。
定子三相间或转子三相间互 感
三相绕组轴线彼此在空间的相位差
互感
定子三相间或转子三相间互感
定、转子绕组间的互感
由于相互间位置的变化可分别表示为
当定、转子两相绕组轴线重合时,两者之 间的互感值最大
图2-2 二极直流电动机的物理模型 F—励磁绕组 A—电枢绕组 C—补偿绕组
2.3.1 坐标变换的基本思 路
把F的轴线称作直轴或d轴,主磁通的方向就 是沿着d轴的;A和C的轴线则称为交轴或q 轴。
虽然电枢本身是旋转的,但由于换向器和电 刷的作用,闭合的电枢绕组分成两条支路。 电刷两侧每条支路中导线的电流方向总是相 同的。
图2-7 定子、转子坐标系到静止两相正交坐标系的变换
定子绕组和转子绕组的3/2变 换
电压方程
定子绕组和转子绕组的3/2变 换
磁链方程
转矩方程
定子绕组和转子绕组的3/2变 换
3/2变换将按三相绕组等效为互相垂直 的两相绕组,消除了定子三相绕组、转 子三相绕组间的相互耦合。
定子绕组与转子绕组间仍存在相对运动 ,因而定、转子绕组互感阵仍是非线性 的变参数阵。输出转矩仍是定、转子电 流及其定、转子夹角的函数。

6.5 异步电动机的动态数学模型和坐标变换

6.5 异步电动机的动态数学模型和坐标变换

6.5 异步电动机的动态数学模型和坐标变换本节提要异步电动机动态数学模型的性质三相异步电动机的多变量非线性数学模型坐标变换和变换矩阵三相异步电动机在两相坐标系上的数学模型三相异步电动机在两相坐标系上的状态方程一、异步电动机动态数学模型的性质2. 交流电机数学模型的性质(1)异步电机变压变频调速时需要进行电压(或电流)和频率的协调控制,有电压(电流)和频率两种独立的输入变量。

在输出变量中,除转速外,磁通也得算一个独立的输出变量。

因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩。

多变量、强耦合的模型结构由于这些原因,异步电机是一个多变量(多输入多输出)系统,而电压(电流)、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以先用图来定性地表示。

图6-43 异步电机的多变量、强耦合模型结构模型的非线性(2)在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项。

这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的。

模型的高阶性(3)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统。

总起来说,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。

二、三相异步电动机的多变量非线性数学模型假设条件:(1)忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。

1. 电压方程三相定子绕组的电压平衡方程为:电压方程(续)与此相应,三相转子绕组折算到定子侧后的电压方程为:电压方程的矩阵形式将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /dt或写成(6-67b)2. 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为:或写成(6-68b)电感矩阵式中,L 是6×6电感矩阵,其中对角线元素 LAA, LBB, LCC,Laa,Lbb,Lcc 是各有关绕组的自感,其余各项则是绕组间的互感。

异步电动机动态数学模型

异步电动机动态数学模型

异步电动机动态数学模型
异步电动机是目前应用最广泛的电机之一,它在各种工业和民用
领域中扮演着重要角色。

为了更好地控制异步电动机的运转,需要对
其进行动态数学模型建立。

异步电动机动态数学模型主要有两种,分别为转子定子“dq”坐
标模型和矢量控制模型。

下面针对这两种模型来进行详细介绍。

转子定子“dq”坐标模型是一种传统的动态数学模型,它通过转
子电流和定子电压的之间的相互作用来描述异步电动机的运转。

该模
型采用dq坐标系来描述电机转子和定子磁电量的动态变化规律。

在该
模型中,异步电动机的动态方程由Vdq、Idq、ω、ψd、ψq等变量的
微分方程组成,其中Vdq为定子dq坐标系瞬时电压,Idq为定子dq坐标系电流,ω为转子机械角速度,ψd和ψq分别为定子dq坐标系磁链。

矢量控制模型是一种比较新的动态数学模型,它采用磁场定向原
理来描述异步电动机的运转。

该模型通过电机磁链的矢量控制来实现
对电机的动态控制。

在该模型中,磁链矢量控制可以通过控制电机空
间矢量波的角度和大小来实现。

该模型可以使用Park变换和Clarke
变换将电机三相坐标系转换为dq坐标系,进而通过PI控制算法实现
对电机的动态控制。

总体来说,异步电动机动态数学模型可以帮助我们更好地掌握异
步电动机的运转规律,为实际控制提供指导意义。

无论采用哪种模型,
都需要进行模型参数的识别和校正,并根据具体情况确定控制策略,才能更好地实现对异步电动机的控制。

异步电动机数学模型

异步电动机数学模型

05
CATALOGUE
异步电动机的应用与优化
应用领域与实例
工业自动化
异步电动机广泛应用于各种工业自动 化设备,如传送带、泵和压缩机等。
能源转换与利用
在风力发电和太阳能发电等领域,异 步电动机作为发电机组的核心部件, 将机械能转换为电能。
交通运输
异步电动机在电动汽车和轨道交通系 统中作为驱动电机,提供动力。
稳态等效电路可用于分析异步电动 机的电压、电流、功率等稳态性能 参数,为电动机的设计、优化和控 制提供理论支持。
功率因数与效率
01
功率因数是异步电动机运行效率的重要指标,反映了电动机对电网的 功率因数贡献。
02
功率因数的大小取决于异步电动机的运行状态,包括负载情况、电源 电压和频率等。
03
效率是异步电动机运行经济性的重要指标,反映了电动机将输入的电 能转换为机械能的效率。
3Hale Waihona Puke 稳态性能分析有助于发现异步电动机在设计和运 行中存在的问题,为改进和优化电动机的性能提 供依据。
04
CATALOGUE
异步电动机的动态分析
动态过程与时间常数
动态过程
异步电动机的动态过程是指电机在运 行过程中,其内部状态随时间变化的 特性。
时间常数
时间常数是描述异步电动机动态过程 的一个重要参数,它决定了电机响应 速度的快慢。

A
B
C
D
集成化与模块化设计
通过集成化与模块化设计,简化异步电动 机的结构,提高其可维护性和可扩展性。
智能控制
结合现代控制理论和人工智能技术,实现 异步电动机的自适应控制和优化控制,提 高其运行效率和可靠性。
THANKS

第2章交流异步电动机的数学模型

第2章交流异步电动机的数学模型

这些坐标变换又有守恒和不守恒之分,所谓守恒变换 指变换前后电磁功率守恒,即用变换前后电压、电流 分量书写的电磁功率表达式具有相似的形式。不守恒 变换则不然。 这些坐标系统的使用,因所研究问题的性质、所要求 的精度、所使用的工具而异。 坐标系统一般选用原则: (1)分析对称运行方式时,选用参考坐标设置在转子 上的坐标系统。 (2)分析不对称运行方式时,选用参考坐标设置在定 子上的坐标系统。 (3)分析稳态运行方式时,选用按旋转磁场原理建立 的坐标系统。 (4)分析暂态过程时,选用按双反馈原理原理建立的 坐标系统
Lasar Laras Lsr cos r Lbsbr Lbrbs Lsr cos r Lcscr Lcr ca Lsr cos r
2 L ascr Lcr as L sr cos r 3 2 L bs ar L ar bs L sr cos r 3 2 L cs br Lbrcs L sr cos r 3
转子各相绕组电压平衡方程式
d ar ar rr i ar dt d br br r r i br dt cr rr icr d cr dt
其中, λ :各自下标决定的那个绕组的总磁链, 例如,a相定、转子总磁链为:
as Lasas ias Lasbs ibs Lascsics Lasar iar Lasbr ibr Lascr icr ar Laras ias Larbs ibs Larcsics Larar iar Larbr ibr Larcr icr
派克逆变换
iabc P1idq0

异步电机数学模型

异步电机数学模型

异步电机的数学模型是一个高阶、非线性、强耦合的多变量系统[1]。

在研究异步电机的多变量数学模型时,常作如下假设:(1)三相绕组在空间对称互差 120,磁势在空间按正弦分布; (2)忽略铁芯损耗;(3)不考虑磁路饱和,即认为各绕组间互感和自感都是线性的; (4)不考虑温度和频率变化对电机参数的影响。

异步电机在两相静止坐标系上的数学模型:仿真的基本思想是利用物理的或数学的模型来类比模仿现实过程,以寻求过程和规律。

在实际过程中,系统可能太复杂,无法求得其解析解,可以通过仿真求得其数值解。

计算机仿真是利用计算机对所研究系统的结构、功能和行为以及参与系统控制的主动者——人的思维过程和行为,进行动态性的比较和模仿,利用建立的仿真模型对系统进行研究和分析,并可将系统过程演示出来。

系统仿真软件MATLAB 不但在数值计算和符号计算方面具有强大的功能,而且在计算结果的分析和数据可视化方面有着其他类似软件难以匹敌的优势。

界面友好,编程效率高,扩展性强。

MATLAB 提供的SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。

SIMULINK 的目的是让用户能够把更多的精力投入到模型设计本身。

它提供了一些基本的模块,这些模块放在浏览器里面,用户可以随时调用。

当模型构造之后,用户可以进行仿真,等待结果,或者改变参数,再进行仿真。

异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,其动态和静态特性都相当复杂。

以下将介绍用SIMULINK 如何来建立三相异步电机的计算机仿真模型,为以后的系统仿真做好准备。

经过三相静止/两相静止坐标变换及两相旋转/两相静止坐标变换,可得异步电机在两相静止坐标系上的数学模型。

电压方程:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--+++=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡βαβαβαβαωωωωr r s s r r r m m r r r r m r m m S m S r r s s i i i i P L R L P L L L P L R L P L P L P L R P L P L R u u u u 22110000磁链方程:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡βαβαβαβαψψψψr r s s r mr m m sm s r r s s i i i i L L L L L L L L 0000000转矩方程:[])(0110βααββαβαr s r s m p r r s s m p e i i i i L n i i i i L n T -=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⋅= 转速方程:L e rp T T dt d n J -=ω式中: m m L L 123=—οβα、、静止坐标系上定子与转子绕组间的互感,m s s L L L 123+=σ—οβα、、静止坐标系上两相定子绕组的自感,m r r L L L 123+=σ—οβα、、静止坐标系上两相转子绕组的自感,1R 、2R —定、转子电阻,L T 为负载阻转矩,J 为机组的转动惯量,p n 极对数,r ω为电机转子的旋转角速度。

第二章-坐标变换与异步电机等值电路

第二章-坐标变换与异步电机等值电路
第二章 坐标变换与异步电机等值电路
2.1 三相异步电动机的基本方程式 2.2 坐标变换 2.3 异步电动机的数学模型 2.4 异步电动机的动态等值电路 2.5 本章小结
2.1 三相异步电动机的基本方程式
传统意义上的交流电机有同步和异步两种, 但由于同步电机比较复杂一些,为了方便和易于 理解起见,本章以异步电机为对象进行讨论。
2
2.3 异步电动机的数学模型
在功率不变3/2变换中
iA
2 3
(i
x
cos
i
y
sin
1 2 iz)
A
2 3
(
x
cos
y
sin
1 2
z
)
(2.15)
而A相电压平衡方程为
u A p A R1iA
(2.16)
(2.15)代入(2.16)得:
2 3
( dx dt
y
d dt
R 1i x
ux ) cos
sin(
1
1200
)
i i
B C
2
Park变换
2. Park变换物理意义 原来A、B、C绕组(每相匹数为W1)在x和y轴
上的磁势投影为:
x iA W1 cos iBW1 cos( 1200 ) icW1 cos( 1200 ) y iA W1 sin iBW1 sin( 1200 ) icW1 sin( 1200 )
它们之间还存在线性关系.
变换矩阵的一般定义
ix f xA f xB f xC iA
i y
f yA
f yB
f
yC
iB
iz f zA f zB f zC iC
变换矩阵F的选取应该: (1)使系统模型得到简化 (2)对电机而言,由于机电能量变换是通过磁场来 传递的,所以在交换中应保持磁场恒定。

第篇异步电机数学模型讲课文档

第篇异步电机数学模型讲课文档
所谓独立是指两相绕组间无约束条件 所谓对称是指两相绕组的匝数和阻值相等 所谓正交是指两相绕组在空间互差90o
第三十五页,共92页。
坐标变换的基本思路
图2-3 三相坐标系和两相坐标系物理模型
第三十六页,共92页。
坐标变换的基本思路
两相绕组,通以两相平衡交流电流,也能 产生旋转磁动势。
当三相绕组和两相绕组产生的旋转磁动势 大小和转速都相等时,即认为两相绕组与 三相绕组等效,这就是3/2变换。
第篇异步电机数学模型
第一页,共92页。
优选第篇异步电机数 学模型
第二页,共92页。
2.1异步电动机动态数学模型 的性质
电磁耦合是机电能量转换的必要条件,电 流与磁通的乘积产生转矩,转速与磁通的 乘积得到感应电动势。
无论是直流电动机,还是交流电动机均如 此。
交、直流电动机结构和工作原理的不同, 其表达式差异很大。
图2-2 二极直流电动机的物理模型 F—励磁绕组 A—电枢绕组 C—补偿绕组
第二十八页,共92页。
坐标变换的基本思路
把F的轴线称作直轴或d轴,主磁通的方向就 是沿着d轴的;A和C的轴线则称为交轴或q轴。
虽然电枢本身是旋转的,但由于换向器和电 刷的作用,闭合的电枢绕组分成两条支路。 电刷两侧每条支路中导线的电流方向总是相 同的。
0
Rs
0
0
0
0
iB
A
B
uuCa
0 0
0 Rs 0 0 0 Rr
0 0
0 0
iiCa
d dt
Ca
ub
0
0
0
0 Rr
0
ib
uc 0 0 0 0 0 Rr ic
b
c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了能根据各相电流来计算各项磁链,必须确 定定、转子的各项电感值。
2.1.2 绕组电感的计算
1.定子相绕组的自感
定子相绕组的自感可分为漏电感(由绕组端部漏 磁,槽漏磁以及其它漏磁产生)和主电感两部分, 即 Ls Lls Lms
根据对称关系,as、bs、cs相自感可表示为
Lasas Lls Lms Lbsbs Lls Lms L L L ls ms cscs
P t Te iabcs 2 Lsr r iabcr
7.电机运动方程式
按电动机惯例,设负载转矩为TL,则根据转动
T T J 方程有 dt rm J:转子及被拖动设备的转动惯量,为电机转子的
e l 2
d 2 rm
机械角位移,与 r 的关系为
2.3派克变换的数学描述 以电流为例
idq 0 Piabc
idq 0 id iq i0
iabc
ia ib ic
P——派克变换矩阵
采用不守恒变换
cos 2 P sin 3 1 2 2 2 cos cos 3 3 2 2 sin sin 3 3 1 1 2 2
采用守恒变换
cos 2 sin 3 1 2 2 2 cos cos 3 3 2 2 sin sin 3 3 1 1 2 2
转子各相绕组电压平衡方程式
d ar ar rr i ar dt d br br r r i br dt cr rr icr d cr dt
其中, λ :各自下标决定的那个绕组的总磁链, 例如,a相定、转子总磁链为:
as Lasas ias Lasbs ibs Lascsics Lasar iar Lasbr ibr Lascr icr ar Laras ias Larbs ibs Larcsics Larar iar Larbr ibr Larcr icr
2.1.1 电压方程式
为了便于建立电机的电压方程式,将定、转子每相绕 组表示成电阻、电感串联电路形式,则异步电机绕组 布置示意图如图2-2所示。
ubs
bs as br
rr
ics
ucs rs
cs
uas
rs
+ ias
ucr icr rr
+
图 2-2
异步电机绕组布置示意图
+
rs
i bs
ibr ubr
(1)运用双反馈原理,并将参考坐标设置在转子上的 dq0坐标系统。这一坐标系统派克(R.H.Park)首先使用, 因而这种坐标变换常称为派克变换,相应的变换后的变 量称为派克分量或dq0分量。 (2)运用双反馈原理,并将参考坐标设置在定子上的 0 坐标系统。这一坐标系统克拉克(E.Clarke)首先使用, 因而这种坐标变换常称为克拉克变换,相应的变换后 的变量称为克拉克分量或 0分量。 (3)运用旋转磁场原理,并将参考坐标设置在转子上的 FB0坐标系统。这一坐标系统顾毓绣首先使用,因而这 种坐标变换常称为顾氏变换,相应的变换后的变量称 为顾氏分量或 FB0分量。 (4)运用旋转磁场原理,并将参考坐标设置在定子上的 120坐标系统。这一坐标系统莱昂(W.V.Lyon)首先使 用,因而这种坐标变换常称为莱昂变换,相应的变换 后的变量称为莱昂分量或 120分量。
其中
T f abcs f as , f bs , f cs T f abcr f ar , f br , f cr
1 1 L ls L ms L ms L ms 2 2 1 1 L s Lms Lls Lms Lms 2 2 1 Lms 1 Lms Lls Lms 2 2
2.3派克变换
派克变换是最广泛的坐标变换之一。它的基础 是“任何一组三相平衡定子电流产生的合成磁 场,总可以由两个轴线相互垂直的磁场所替代” 的双反应原理。 将两个轴线的方向选择与转子正、交轴方向一 致,使三相定子电流产生的电枢反应磁场,由 位于这两轴方向的等值定子绕组电流产生的电 枢反应磁场所替代。 派克变换最常用于三相对称运行方式的分析。
5.磁链方程式
定义出电机的各项电感之后,将电机的电压、 磁链方程式用矩阵形式表示如下
d abcs abcs rs iabcs dt d abcr abcr rr iabcr dt
abcs abcr

Ls iabcs Lsr iabcr Lsr iabcs Lr iabcr
第2章交流异步电动机数学模型
2.1 a—b—c坐标系中的电机方程式
“理想化” 的电机模型 : (1)气隙均匀;(2)磁路线性;(3)定子各 相绕组结构相同,其导体在空间的分部规律使的能 产生正弦分布的磁势波,定子三相绕组对称,在三 相平衡定子电流作用下,产生单一转向的圆形旋转 磁场;(4)转子线圈或导条的布置方式,使得感 应出的转子磁势也在空间作正弦分布,且具有和定 子磁势波相同的极数。 “理想化”电机只是一种假定和抽象,但它提供 了一种能对多种类型运行方式进行分析和对运行性 能进行预测的电机模型。
P
派克逆变换
iabc P1idq0
派克逆变换矩阵: P 1
cos sin 2 2 2 cos sin 3 3 3 2 2 cos sin 3 3 1 2 1 2 1 2
ar
+
ar rr uar iar
cr
0
+
as
+
rs :定子电阻; rr :转子电阻;λ:与每相绕组相链的总
磁链。 各绕组均以正向电流所产生的最大磁势方向为等效绕组的
轴线正方向。 定子各相绕组电压平衡方程式
d a s a s rs i a s dt d b s b s r s i b s dt cs rs ics d cs dt
cos r 2 Lsr Lsr cos r 3 2 cos r 3
2 cos r 3 cos r 2 cos r 3
2 cos r 3 2 cos r 3 cos r
派克逆变换
iabc P1idq0
派克逆变换矩阵: P 1
cos sin 1 2 2 P 1 cos sin 1 3 3 2 2 cos sin 1 3 3
2.定子相间互感
根据对称关系as、bs、cs相互感可表示为
Lasbs Lbsas Lms 2 Lbscs Lcsbs Lms 2 Lcsas Lasas Lms 2
3.转子相绕组的自感、互感
Lar ar Llr Lmr Lbr br Llr Lmr L L L lr mr crcr
bs br as' cs cr br' bs' ar bs br
r
ar'
ar
as cr' cs'
as cs cr
图 2-1 三相二极理想异步电机示意图
三个定子绕组或三个转子绕组之间互差1200电角 度,而定、转子间的相对位置则由对应相轴线间的夹 是时间的函数。 角 表示,对于旋转的电机而言,
r
P rm 2
至此,描述异步电机状ห้องสมุดไป่ตู้特性所需要的方程以全部建立, 这些方程构成了a—b—c坐标系中交流异步电动机的数学模 型。
2.2坐标变换概述 由于定、转子间互感是一个与定、转子间相互 位置有关的函数。最终获得的描述异步电动机 的将是一个具有时变系数的矩阵微分方程。解 这种方程的解析解相当困难。因此,早期的交 流电机的暂态过程的研究,多半是首先运用 “坐标变换”或“变量变换”对将参考坐标设 置在定子三相轴线上的基本方程进行处理,然 后再求解。以后又出现了将参考坐标仍设置在 定子上的坐标变换。自上世纪20年代以来,先 后建立的坐标系统主要有以下四种。
Llr Lmr 1 Lr Lmr 2 1 Lmr 2
1 Lmr 2 Llr Lmr 1 Lmr 2
Llr Lmr 1 Lmr 2 1 Lmr 2
6.电磁转矩方程式
从磁场能量的观点出发,利用虚位移原理可导 出电磁转矩方程式如下
Lasar Laras Lsr cos r Lbsbr Lbrbs Lsr cos r Lcscr Lcr ca Lsr cos r
2 L ascr Lcr as L sr cos r 3 2 L bs ar L ar bs L sr cos r 3 2 L cs br Lbrcs L sr cos r 3
2 L asbr Lbras L sr cos r 3 2 Lbscr Lcr bs Lsr cos r 3 2 L cs ar Larcs L sr cos r 3
Larbr Lbrar Lmr 2 Lbrcr Lcr br Lmr 2 Lcr ar Larar Lmr 2
相关文档
最新文档