中考数学动态几何问题(经典)
中考数学“动态几何探究”题型解析

中考数学“动态几何探究”题型解析以三角形、四边形为背景的动态几何问题均以动态几何的形式来考查三角形、四边形的性质,判定,全等三角形、相似三角形的性质及判定,本节将对此类问题归类如下:一、在平面直角坐标系中探究【例题1】已知直线l 经过A(6,0)和B(0,12)两点,且与直线y = x 交于点C. (1)求直线l 的表达式;(2)若点P(x,0)在线段OA 上运动,过点P 作l 的平行线交直线y = x 于点D,①求△PCD 的面积S 与x 的函数关系式;②S 有最大值吗?若有,求出当S 最大时x 的值 .【解析】(1)设直线l 的表达式为y = kx + b , 用待定系数法求出k , b 的值即可;(2)①点C 是直线l 与y = x 的交点,从而可求得点C 的坐标 .根据三角形的面积公式及结合平行的性质,可求得S 与x 的函数关系式;②根据二次函数的性质,即可得到S 的最大值 .解:(1)设直线l 的表达式为y = kx + b ,由A(6,0)和B(0,12),得∴直线l 的表达式为y = -2x + 12 .(2)①∴点C 的坐标为(4,4),∴S△COP = 1/2 x ▪4 = 2x .∵PD∥直线l ,∴CD/OC = AP/OA .∵CD/OC = ( 1/2 h ×CD ) / ( 1/2 h ×OC ) = S / S△COP,∴S / S△COP = AP / OA , 即S / 2x = (6 - x)/ 6 ,∴△PCD 的面积S 与x 的函数关系式为S = -1/3 x^2 + 2x .②∵S = -1/3 (x - 3)^2 + 3 ,∴当S 最大时,x = 3 .【例题2】如图,在直角坐标系中,矩形OABC 的顶点A , C 均在坐标轴上,且OA = 4 ,OC = 3 , 动点M 从点A 出发,以每秒1 个单位长度的速度,沿AO 向终点O 移动;动点N 从点C 出发沿CB 向终点B 以同样的速度移动,当两个动点运动了x 秒(0 < x < 4)时,过点N 作NP⊥BC 交OB 于点P,连接MP .(1)直接写出点B 的坐标,并求出点P 的坐标(用含x 的式子表示);(2)当x 为何值时,△OMP 的面积最大?并求出最大值 .解:(1)在矩形OABC 中,OA = 4 , OC = 3 ,∴B 点的坐标为(4,3).如图,延长NP 交OA 于点G,则PG∥AB,OG = CN = x . ∵PG∥AB,∴△OPG∽△OBA .∴PG / BA = OG / OA , 即PG / 3 = x / 4 ,解得PG = 3/4 x .∴点P 的坐标为(x , 3/4 x).(2)设△OMP 的面积为S .在△OMP 中,OM = 4 - x , OM 边上的高为3/4 x,∴S 与x 之间的函数表达式为配方,得∴当x = 2 时,S 有最大值,最大值为3/2 .二、在几何图形中探究【例题3】如图,在矩形ABCD 中,AB = 3 米,BC = 4 米,动点P 以2 米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1 米/秒的速度从点C 出发,沿CB 向点B 移动,设P , Q 两点同时移动的时间为t 秒(0 < t < 2.5).(1)当t 为何值时,PQ∥AB;(2)设四边形ABQP 的面积为y , 当t 为何值时,y 的值最小?并求出这个最小值 .【解析】(1)首先由勾股定理求得AC = 5 米,然后根据AB∥PQ 可得到PC / AC = QC / BC , 从而得到关于t 的方程,从而可解得t 的值;(2)过点P 作PE⊥BC,由PE∥AB 可得到PC / AC = PE / AB ,从而可求得PE = 3 - 6/5 t , 然后根据y = S△ABC - S△PQC 列出t 与y 的函数关系式,最后利用配方法求得最小值即可 .解:(1)在Rt△ABC 中,由题意,得PC = AC - AP = 5 - 2t , QC = t .如图①,∵AB∥PQ , ∴△CPQ∽△CAB .∴PC / AC = QC / BC , 即(5 - 2t)/ 5 = t / 4 , 解得t = 20/13 .(2)如图②,过点P 作PE⊥BC 于点E .由(1)知,PC = 5 - 2t , QC = t ,∵PE∥AB,∴△CPE∽△CAB .∴PC / AC = PE / AB , 即(5 - 2t)/ 5 = PE / 3 . ∴PE = 3 - 6/5 t .∴当t = 5/4 时,y 的值最小,最小值为81/16 .【例题4】如图,在△ABC 中,∠C = 60°,BC = 4,AC = 2√3,点P 在BC 边上运动,PD∥AB,交AC 于D . 设BP 的长为x , △APD 的面积为y .(1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少?(3)是否存在这样的点P,使得△ADP 的面积是△ABP 面积的2/3 ?若存在,请求出BP 的长;若不存在,请说明理由 .解:(1)∵PD∥AB,∴AD / AC = BP / BC .∵BC = 4 , AC = 2√3 , BP = x ,∴AD / 2√3 = x / 4 ,∴AD = √3/2 x .(2)过点P 作PE⊥AC 于E .∵sin∠ACB = PE / PC , ∠C = 60°,∴PE = PC ×sin60°= √3/2(4 - x ).∴y 与x 之间的函数关系式为∴当x = 2 时,y 的值最大,最大值是3/2 . (3)存在这样的点P .∵△ADP 与△ABP 等高不等底,∴S△ADP / S△ABP = DP / AB .∵△ADP 的面积是△ABP 面积的2/3 , ∴S△ADP / S△ABP = 2/3 ,∴DP / AB = 2/3 .∵PD∥AB,∴△CDP∽△CAB .∴DP / AB = CP / CB ,∴CP / CB = 2/3 .∴(4 - x)/ 4 = 2/3 ,∴x = 4/3 ,∴BP = 4/3 .。
2023年中考数学高频考点突破- -二次函数动态几何问题

2023年中考数学高频考点突破- -二次函数动态几何问题1.如图,在平面直角坐标系中,二次函数的图象与轴交于、两点,点在原点的左则,点的坐标为,与轴交于点,点是直线下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形的面积最大时的P点坐标和四边形ABPC的最大面积;2.已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=14x2相交于B、C两点.(1)如图,当点C的横坐标为1时,求直线BC的表达式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.3.已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点,(1)求这个二次函数的解析式(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6.求点B的坐标。
4.如图,抛物线y=x2+bx+c与直线y=12x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC△x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.5.如图,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=−12x+2经过A,C两点,抛物线的顶点为D,对称轴与x轴交于点E.(1)求此抛物线的解析式;(2)求ΔDAC的面积;(3)在抛物线上是否存在一点P,使它到x轴的距离为4,若存在,请求出点P的坐标,若不存在,则说明理由.6.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.7.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣45x+c与直线y=25x+25交于A、B两点,已知点B的横坐标是4,直线y=25x+25与x、y轴的交点分别为A、C,点P是抛物线上一动点.(1)求抛物线的解析式;(2)若点P在直线y=25x+25下方,求△PAC的最大面积;(3)设M是抛物线对称轴上的一点,以点A、B、P、M为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,请说明理由.8.二次函数y=ax2+2x-1与直线y=2x-3交于点P(1,b)。
中考数学专题 动态几何与函数10题-含答案

动态几何与函数10题(1)请直接写出1y ,2y 与t 之间的函数关系式以及对应的t 的取值范围;
(2)请在平面直角坐标系中画出1y ,2y 的图象,并写出1y 的一条性质;
(3)求当12y y >时,t 的取值范围.
(1)求出12,y y与x的函数关系式,并注明
(2)先补全表格中1y的值,再画出
x123456
y12632
1
(3)在直角坐标系内直接画出2y的函数图像,结合1y和2y的函数图像,x的取值范围.(结果取精确值)
(1)请求出1y 和2y 关于x 的函数解析式,并说明x 的取值范围;
(2)在图2中画出1y 关于x 的函数图象,并写出一条这一函数的性质:(3)若12103
y y -≥,请结合函数图像直接写出x 的取值范围(近似值保留一位小数,误差不超过0.2)
4.
(2023春·重庆江津·九年级校联考期中)如图,在矩形ABCD 中,3AB =,4BC =,点P 从点A 出发,以每秒2个单位的速度沿折线A B C D →→→运动,当它到达D 点时停止运动;同时,点Q 从点A 出发,以每秒1个单位的速度沿射线AD 运动,过Q 点做直线l 平行于AB ,点M 为直线l 上的一点,满足AMQ △的面积为2,设点P 点Q 的运动时间为t (0t >),ADP △的面积为1y ,QM 的长度为2y .
(1)分别求出1y ,2y 与t 的函数关系,并注明t 的取值范围;
(2)在坐标系中画出1y ,2y 的函数图象;
(3)结合函数图象,请直接写出当12y y <时t 的取值范围.。
中考数学:几何动态综合题(含答案解析)

题型六几何动态综合题类型一点动型探究题针对演练1. (2016赤峰12分)如图,正方形ABCD的边长为3 cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1 cm/秒,Q点的运动速度是2 cm/秒,连接AP,并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时间t表示△QEA的面积y.(不要求考虑t的取值范围)(提示:解答(2)(3)时可不分先后)第1题图2. (2015省卷25,9分) 如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC 和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4 cm.(1)填空:AD=________(cm),DC=________(cm);(2)点M、N分别从A点,C点同时以每秒1 cm的速度等速出发,且分别在AD,CB 上沿A→D,C→B方向运动,当N点运动到B点时,M、N两点同时停止运动,连接MN.求当M、N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据:sin75°=6+2 4,sin15°=6-24)第2题图3. (2016梅州10分)如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.第3题图4. 如图,在▱ABCD中,BC=8 cm,CD=4 cm,∠B=60°,点M从点D出发,沿DA方向匀速运动,速度为2 cm/s,点N从点B出发,沿BC方向匀速运动,速度为1 cm/s,过点M作MF⊥CD,垂足为F,延长FM交BA的延长线于点E,连接EN,交AD于点O,设运动时间为t (s )(0<t <4).(1)连接AN ,MN ,设四边形ANME 的面积为y (cm 2),求y 与t 之间的函数关系式; (2)是否存在某一时刻t ,使得四边形ANME 的面积是 ▱ABCD 面积的2132?若存在,求出相应的t 值,若不存在,请说明理由;(3)连接AC ,交EN 于点P ,当EN ⊥AD 时,求线段OP 的长度.第4题图 备用图5. 如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm ,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为每秒2 cm 和1 cm ,FQ ⊥BC ,分别交AC 、BC 于点P 和Q ,设运动时间为t 秒(0<t <4).(1)连接EF,若运动时间t=23秒时,求证:△EQF是等腰直角三角形;(2)连接EP,设△EPC的面积为y cm2,求y与t的函数关系式,并求y的最大值;(3)若△EPQ与△ADC相似,求t的值.6. (2015郴州)如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4 cm,DC=5 cm,AB=8 cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB 方向向点B匀速运动,它们的速度均为1 cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.第6题图【答案】1.(1)证明:∵四边形ABCD是正方形,QE⊥AP,∴∠QEA=∠B=90°.∵AD∥BC,∴∠QAE=∠APB,∴△ABP∽△QEA;…………………………………………(3分)(2)解:由题意得:BP=t cm,AQ=2t cm,要使△ABP≌△QEA,则AQ=AP=2t cm,在Rt △ABP 中,由勾股定理得:32+t 2=(2t)2, 解得t =±3(负值舍去),即当t =3时,△ABP ≌△QEA ;…………………………(7分)(3)解:在Rt △ABP 中,由勾股定理得:AP =32+t 2,∵△ABP ∽△QEA , ∴AB QE =BPAE =APAQ ,∴3QE =tAE=32+t 22t , ∴QE =6t32+t 2,AE =2t 232+t 2,∴y =12QE ·AE =12·6t32+t 2·2t 232+t 2=6t 3t 2+9.……………(12分)2.解:(1)26,22;【解法提示】在Rt △ABC 中,根据勾股定理,得AC =AB 2+BC 2=42+42=4 2 cm ,在Rt △ACD 中,AD =AC ·co s 30°=42×32=2 6 cm ,DC =AC ·sin30°=42×12=2 2 cm.(2)如解图,过点N 作NE ⊥AD 于点E ,作NF ⊥DC 交DC 延长线于点F ,则NE =DF . ∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,在Rt △NFC 中, 第2题解图 ∵sin ∠FNC =FCNC,∴sin15°=FCNC,又∵NC=x cm,∴FC=NC·sin15°=6-24x cm,∴NE=DF=DC+FC=(22+6-24x)cm,∴点N到AD的距离为(22+6-24x)cm;(3)如解图,在Rt△NFC中,∵sin75°=NFNC,∴NF=NC·sin75°=6+24x cm,∵P为DC中点,DC=2 2 cm,∴DP=CP= 2 cm,∴PF=DF-DP=22+6-24x-2=(6-24x+2) cm,∵S△PMN=S四边形DFNM-S△DPM-S△PFN,即S△PMN=12(NF+MD)·NE-12MD·DP-12PF·NF,∴y=12×(6+24x+26-x)×(22+6-24x)-12×(26-x)×2-12×(6-24x+2)×6+24x,即y=2-68x2+7-3-224x+23,∵12-68<0, ∴当x =-7-3-2242×2-68=36-23+22-22秒时,y 取得最大值为4×2-68×23-(7-3-224)24×2-68=236+83+92-1616cm 2.3.解:(1)根据题意BM =2t cm ,BC =5×tan60°=5 3 cm ,BN =BC -3t =(53-3t)cm ,∴当BM =BN 时,2t =53-3t ,解得t =103-15;…………………………………………(2分)(2)分两种情况讨论:①当∠BMN =∠ACB =90°时,如解图①, △NBM ∽△ABC ,cosB =cos30°=BM BN,∴2t 53-3t=32,解得t =157;(4分)第3题解图②当∠MNB =∠ACB =90°时,如解图②,△MBN ∽△ABC ,cosB =cos30°=BNBM,∴53-3t2t=32,解得t =52,故若△MBN 与△ABC 相似,则t 的值为157秒或52秒;……(6分)(3)如解图③,过点M 作MD ⊥BC 于点D ,则MD ∥AC , ∴△BMD ∽△BAC , ∴BM BA=MD AC,又∵BA =cos 60AC=10, 第3题解图③∴2t10=5MD,解得MD =t. 设四边形ACNM 的面积为y ,则 y =S △ABC -S △BMN =12AC ×BC - 12BN ·MD=12×5×53- 12(53-3t)·t=32t 2-532t + 2532 =32(t -52)2+7538,…………………………………………(8分) ∴当t =52秒时,四边形ACNM 的面积最小,最小值为7538cm 2.…………………………………………………………………(10分)4.解:(1)如解图①,过点A 作AG ⊥BC ,垂足为点G .第4题解图①∵∠AGB =90°,∠B =60°, ∴AG =32AB =2 3 cm.由题可知,MD =2t cm ,则AM =(8-2t ) cm , ∵AB ∥CD ,MF ⊥CD , ∴ME ⊥AB ,∴∠MEA =∠MFD =90°, ∵AD ∥BC ,∴∠EAM =∠B =60°, ∴AE =12AM =(4-t) cm , ME =3(4-t) cm ,∴y =S △ANM +S △AEM =12×(8-2t)×23+12×(4-t)×3×(4-t) =32t 2-63t +163(0<t <4);(2)存在.由四边形ANME 的面积是▱ABCD 面积的2132可得:32t 2-63t +163=2132×8×23,整理得:t 2-12t +11=0, 解得t =1或t =11(舍去),所以当t =1s 时,四边形ANME 的面积是▱ABCD 面积的2132;(3)如解图②,第4题解图②由(1)可知AE =(4-t ) cm , ∴BE =AB +AE =(8-t ) cm. ∵∠B =60°,EN ⊥BC ,AG ⊥BC ,∴BN =12BE =(4-12t ) cm ,BG =12AB =2 cm.又∵BN =t ,∴4-12t =t ,解得t =83,∴BN =83cm ,∴GN =BN -BG =23cm ,∴AO =23 cm ,NC =BC -BN =163 cm.设PO =x cm ,则PN =(23-x ) cm.∵AO ∥NC , ∴△AOP ∽△CNP ,∴AO NC =POPN,即23163=x23-x,解得x =239,∴当EN ⊥AD 时,线段OP 的长度为239cm.5.(1)证明:若运动时间t =23秒,则BE =2×23=43 cm ,DF =23 cm ,∵四边形ABCD 是矩形,∴AD =BC =8 cm ,AB =DC =6 cm ,∠D =∠BCD =90°, ∵FQ ⊥BC ,∴∠FQC =∠D =∠QCD =90°, ∴四边形CDFQ 是矩形,∴CQ =DF =23 cm ,CD =QF =6 cm ,∴EQ =BC -BE -CQ =8-43-23=6 cm ,∴EQ =QF =6 cm ,∴△EQF 是等腰直角三角形; (2)解:∵∠FQC =90°,∠B =90°, ∴∠FQC =∠B , ∴PQ ∥AB , ∴△CPQ ∽△CAB ,∴PQ AB =QC BC ,即6PQ =t 8, ∴PQ =34 t cm ,∵BE =2t ,∴EC =BC -BE =8-2t , ∵S △EPC =12EC ·PQ ,∴y =12(8-2t )·34t =-34t 2+3t =-34(t -2)2+3(0<t <4).∵-34<0,∴当t =2秒时,y 有最大值,y 的最大值为3 cm 2; (3)解:分两种情况讨论:(ⅰ)如解图①,点E 在Q 的左侧,①当△EPQ ∽△ACD 时, 第5题解图①可得PQ CD =EQAD ,即348t =8-3t 8,解得t =2;②当△EPQ ∽△CAD 时,可得PQ AD =EQCD ,即348t =8-3t 6,解得t =12857;(ⅱ)如解图②,点E 在Q 的右侧, ∵0<t <4,∴点E 不能与点C 重合, ∴只存在△EPQ ∽△CAD ,可得PQ AD =EQCD ,即348t =3t -86,解得t =12839, 第5题解图②故若△EPQ 与△ADC 相似,则t 的值为2秒或12857秒或12839秒.6.解:(1)如解图,过点C 作CE ⊥AB 于点E , ∵DC ∥AB ,DA ⊥AB ,CE ⊥AB , ∴四边形AECD 是矩形,∴AE =DC =5,CE =AD =4, 第6题解图 ∴BE =AB -AE =8-5=3, ∴由勾股定理得:BC =22+BE CE =32+42=5,∴BC <AB ,∵当点P 运动到点C 时,P 、Q 同时停止运动, ∴t =51=5 s ,即t =5 s 时,P 、Q 两点同时停止运动; (2)由题意知,AQ =BP =t , ∴QB =8-t.如解图,过点P 作PF ⊥QB 于点F ,则△BPF ∽△BCE , ∴PF CE =BP BC ,即PF 4=t5,∴PF =4t 5,∴S =12QB ·PF =12×(8-t)×4t 5=-252t +16t5=-25(t -4)2+325(0<t ≤5).∵-25<0,∴当t =4 s 时,S 有最大值,最大值为3252CM ;(3)∵cos B =BE BC =35,∴BF =PB ·cos B =t ·cos B =3t5,∴QF =AB -AQ -BF =8-8t5,∴QP =当△PQB 为等腰三角形时,分以下三种情况:①当PQ =PB 时,即t , 解得:1t =4011,2t=8,∵t2=8>5,不合题意, ∴t =4011;②当PQ =BQ 时,即8-t ,解得:1t =0(舍去),2t =4811;③当QB =BP 时,即8-t =t , 解得t =4;综上所述,当△PQB 为等腰三角形时,则t 的值为4011 s 或4811 s 或4 s.类型二 线动型探究题针对演练1. 如图,已知矩形ABCD ,AB =3,BC =3,在BC 上取两点E ,F (E 在F 左边),以EF 为边作等边三角形PEF ,使顶点P 在AD 上,PE ,PF 分别交AC 于点G ,H .(1)求△PEF 的边长;(2)若△PEF 的边EF 在射线BC 上移动,(点E 的移动范围在B 、C 之间,不与B 、C 两点重合),设BE =x ,PH =y .①求y与x的函数关系式;②连接BG,设△BEG面积为S,求S与x的函数关系式,判断x为何值时S最大,并求最大值S.第1题图2. 已知,如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=12 cm,BD =16 cm,点P从点A出发,沿AB方向匀速运动,速度为1 cm/s;过点P作直线PF∥AD,PF交CD于点F,过点F作EF⊥BD,且与AD、BD分别交于点E、Q;连接PE,设点P 的运动时间为t(s)(0<t<10).(1)填空:AB=________cm;(2)当t为何值时,PE∥BD;(3)设四边形APFE的面积为y(cm2).①求y与t之间的函数关系式;②若用S表示图形的面积,则是否存在某一时刻t,使得S四边形APFE=825S菱形ABCD?若存在,求出t的值;若不存在,请说明理由.第2题图3. (2014省卷25,9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm.点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB、AC、AD于点E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此刻t的值;若不存在,请说明理由.4. (2016镇江改编)如图①,在菱形ABCD中,AB=65,tan∠ABC=2,点E从点D 出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒).将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)如图②,连接BD、EF,BD交EC、EF于点P、Q.当t为何值时,△EPQ是直角三角形?(3)如图③,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.第4题图【答案】1.解:(1)如解图①,过点P作PQ⊥BC于点Q,∵在矩形ABCD中,∠B=90°,∴AB⊥BC,又∵AD∥BC,∴PQ=AB=3,∵△PEF是等边三角形,∴∠PFQ=60°,在Rt△PQF中,sin∠PFQ=PQ PF,∴PF=3÷32=2,第1题解图①∴△PEF 的边长为2;(2)①在Rt △ABC 中,AB =3,BC =3,由勾股定理得,AC =23,∴∠ACB =30°,又∵△PEF 是等边三角形,∴∠PFE =60°,∴∠FHC =30°,∴FH =FC ,∵HF =2-PH =2-y ,∴FC =2-y ,又∵BE +EF +FC =BC ,∴x +2+2-y =3,即y =x +1(0<x <3);②如解图②,过点G 作GM ⊥BC 于点M ,∵△PEF 为等边三角形,∴∠PEF =60°,∵Rt △ABC 中,AB =3,BC =3,第1题解图②∴∠ACB =30°,∴∠EGC =180°-30°-60°=90°,∵BE =x ,∴EC =3-x ,∴EG =3-x2,∵∠GEM =60°,sin ∠GEM =GM GE ,∴GM =EG ·sin60°=32×3-x 2=33-3x 4, ∴S =12x ×33-3x 4 =-38x 2+338x =-38(x -32)2+9332, ∵-38<0, ∴当x =32时,S 最大=9332. 2.解:(1)10;【解法提示】如解图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12 cm ,BD =16 cm ,∴ BO =DO =8 cm ,AO =CO =6 cm ,∴ AB =82+62=10 cm.(2)∵四边形ABCD 是菱形,∴AB ∥CD ,∠ADB =∠CDB ,又∵PF ∥AD ,∴四边形APFD 为平行四边形,∴DF =AP =t cm ,又∵EF ⊥BD 于点Q ,且∠ADB =∠CDB ,∴∠DEF =∠DFE ,∴DE =DF =t cm ,∴AE =(10-t ) cm ,当PE ∥BD 时,△APE ∽△ABD , ∴AP AB =AE AD , ∴t 10=10-t10,∴t =5,∴当t =5 s 时,PE ∥BD ;(3)①∵∠FDQ =∠CDO ,∠FQD =∠COD =90°,∴△DFQ ∽△DCO ,∴QF OC =DFDC ,即QF6=t10,∴QF =3t5 cm ,∴EF =2QF =6t5 cm ,同理,QD =4t5 cm ,如解图,过点C 作CG ⊥AB 于点G ,∵S 菱形ABCD =AB ·CG =12AC ·BD ,即10CG =12×12×16,第2题解图∴CG =485 cm ,∴S ▱APFD =DF ·CG =485t cm 2,∴S △EFD =12EF ·QD =12×6t 5×4t 5=1225t 2 cm 2, ∴y =485t -1225t 2. ②存在.当S 四边形APFE =825S 菱形ABCD 时,则485t -1225t 2=825×12×16×12, 整理得,t 2-20t +64=0,解得t 1=4,t 2=16>10(舍去),∴当t =4s 时,S 四边形APFE =825S 菱形ABCD .3.(1)证明:如解图①,连接DE ,DF ,当t =2时,DH =AH =4,则H 为AD 的中点,∵EF ⊥AD ,∴EF 为AD 的垂直平分线,∴AE =DE ,AF =DF .∵AB =AC ,∴∠B =∠C ,又∵AD ⊥BC ,∴EF ∥BC ,∴∠AEF =∠B ,∠AFE =∠C ,∴∠AEF =∠AFE ,∴AE =AF ,∴AE =AF =DE =DF ,∴四边形AEDF 为菱形;第3题解图(2)解:如解图②,连接PE ,PF ,由(1)知EF ∥BC ,∴△AEF ∽△ABC ,∴EF BC =AH AD ,即EF 10=8-2t 8,解得EF =10-52t , ∴S △PEF =12EF ·DH =12(10-52t)·2t =-52t 2+10t =-52(t -2)2+10(0<t ≤103), ∴当t =2秒时,S △PEF 存在最大值,最大值为10 cm 2,此时BP =3t =6 cm ;(3)解:存在.(ⅰ)若点E 为直角顶点,如解图③,连接PE ,PF ,此时PE ∥AD ,PE =DH =2t ,BP =3t.∵PE ∥AD ,∴△BEP ∽△BAD ,∴PE AD =BP BD ,即2t 8=3t 5,此比例式不成立,故此种情形不存在;第3题解图(ⅱ)若点F 为直角顶点,如解图④,连接PE ,PF ,此时PF ∥AD ,PF =DH =2t ,BP =3t ,CP =10-3t.∵PF ∥AD ,∴△CFP ∽△CAD ,∴PF AD =CP CD ,即2t 8=10-3t 5, 解得t =4017; (ⅲ)若点P 为直角顶点,如解图⑤,连接PE ,PF ,过点E 作EM ⊥BC 于点M ,过点F 作FN ⊥BC 于点N ,则EM =FN =DH =2t ,EM ∥FN ∥AD .∵EM ∥AD ,∴△BEM ∽△BAD ,∴EM AD =BM BD ,即2t 8=BM 5, 解得BM =54t , ∴PM =BP -BM =3t -54t =74t. 在Rt △EMP 中,由勾股定理得, 222PE EM PM =+=(2t)2+(74t)2=11316t 2.∴△CFN ∽△CAD ,∴FN AD =CN CD ,即2t 8=CN 5, 解得CN =54t , ∴PN =BC -BP -CN =10-3t -54t =10-174t. 在Rt △FNP 中,由勾股定理得, 222PF FN PN =+=(2t)2+(10-174t)2=35316t 2-85t +100. 又∵EF =MN =BC -BM -CN =10-52t , 在Rt △PEF 中,由勾股定理得,222EF PE PF =+,即(10-52t)2=11316t 2+(35316t 2-85t +100), 化简得183t 2-280t =0,解得t =280183或t =0(舍去), ∴t =280183. 综上所述,当t =4017秒或t =280183秒时,△PEF 为直角三角形.(9分) 4.(1)证明:∵∠ECF =∠BCD =α,∴∠ECF -∠ECD =∠BCD -∠ECD ,即∠DCF =∠BCE .∵四边形ABCD 是菱形,在△DCF 与△BCE 中,CF CEDCF BCEDC BC=⎧⎪∠=∠⎨⎪=⎩,∴△DCF ≌△BCE (SAS),∴BE =DF ;(2)解:∵CE =CF ,∴∠CEQ <90°.①当∠EQP =90°时,如解图①,∵∠ECF =∠BCD ,BC =DC ,EC =FC ,∴△BCD ∽△ECF ,∴∠CBD =∠CEF .∵∠BPC =∠EPQ , 第4题解图①∴∠BCP =∠EQP =90°,∴∠CED =90°,在Rt △CDE 中,∠CED =90°,∵CD =AB =65,tan ∠ABC =tan ∠ADC =2,∴ECDE =2,即EC =2DE ,∵222CD EC DE =+,即CD =5DE ,∴DE =5CD =655=6,∴t =6;②当∠EPQ =90°时,如解图②,∵菱形ABCD 的对角线AC ⊥BD ,∴EC 和AC 重合, 第4题解图②∴DE =65, ∴t =6 5.综上所述,当t =6秒或65秒时,△EPQ 为直角三角形; (3)解:y =255t -12- 2455. 【解法提示】点G 即为t =0时点E 的对应点.当点F 在直线AD 上方时,如解图③,连接GF ,分别交直线AD 、BC 的延长线于点M 、N ,过F 点作FH ⊥AD ,垂足为H ,由(1)得∠1=∠2.易证△DCE ≌△GCF (SAS),∴∠3=∠4,∵DE ∥BC ,∴∠1=∠3,∴∠2=∠4,∴GF ∥CD ,∴四边形DCNM 为平行四边形,易得MN =6 5.∵∠BCD =∠DCG ,∠DCN +∠BCD =∠DCG +∠CGN =180°,∴∠CGN =∠DCN =∠CNG ,∴CN =CG =CD =6 5.∵tan ∠ABC =2, ∴tan ∠CGN =2, ∴GN =12, ∴GM =65+12. 第4题解图③∵GF =DE =t ×1=t , ∴FM =t -65-12.∵tan ∠FMH =tan ∠ABC =2, ∴FH =255(t -65-12),即y =255t -12-2455.类型三 形动型探究题针对演练1. 在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC =∠AGF =90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE =m ,CD =n.(1)求证:△ABE ∽△DCA ;(2)求m 与n 的函数关系式,并直接写出自变量n 的取值范围; (3)在旋转过程中,试判断等式222BD CE DE +=是否始终成立?若成立,请证明;若不成立,请说明理由.第1题图2. (2015吉林)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF =90°,∠ABC=∠F=30°,AC=DE=6 cm.现固定三角板DEF,将三角板ABC沿射线DE 方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________ cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M 与点N之间距离的最小值.第2题图3. 如图,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H .(1)求证:AHAD =EFBC;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;(3)当矩形EFPQ 的面积最大时,该矩形以每秒1个单位的速度沿射线DA 匀速向上运动(当矩形的边PQ 到达A 点时停止运动),设运动时间为t 秒,矩形EFPQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.第3题图4. 如图,在▱ABCD中,AD⊥BD,AB=10,AD=6,以AD为斜边在▱ABCD的内部作Rt△AED,使∠EAD=∠DBA,点A′、E′、D′分别与点A、E、D重合,△A′E′D′以每秒5个单位长度的速度沿DC方向平移,当点E′落在BC边上时停止移动,线段BD交边A′D′于点M,交边A′E′或D′E′于点N,设平移的时间为t(秒).(1)DM的长为________(用含t的代数式表示);(2)当E′落在BD上时,求t的值;(3)若△A′E′D′与△BDC重叠部分图形的面积为S(平方单位),求S与t之间的函数关系式;(4)在不添加辅助线的情况下,直接写出平移过程中,出现与△DMD′全等的三角形时t 的取值范围.第4题图5. (2016益阳14分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB 的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.第5题图6. (2015青岛)已知:如图①,在▱ABCD中,AB=3 cm,BC=5 cm,AC⊥AB.△ACD 沿AC的方向匀速平移得到△PNM,速度为1 cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1 cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4),连接PQ,MQ,MC.解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC∶S四边形ABQP=1∶4?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.第6题图【答案】1.(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∵∠B=∠C=45°,∴△ABE∽△DCA;(2)解:∵△ABE∽△DCA,∴BECA=BACD,依题可知CA=BA=2,∴m2=2n,∴m=2n,自变量n的取值范围为1<n<2;(3)解:成立.理由如下:如解图,将△ACE绕点A顺时针旋转90°至△ABH的位置,则CE=HB,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°,连接HD,在△EAD和△HAD中,∵AE=AH,∠HAD =∠EAH-∠FAG=45°=∠EAD,AD=AD,∴△EAD≌△HAD(SAS),∴DH=DE,又∠HBD=∠ABH+∠ABD=90°,∴BD2+HB2=DH2,即BD2+CE2=DE2.2.解:(1)15;【解法提示】如解图①,作CG⊥AB于G点,CH⊥CE于点H,第2题解图①在Rt △ABC 中,由AC =6,∠ABC =30°,得BC =tan 30?AC=6 3 cm.在Rt △BCG 中,BG =BC ·cos30°=9 cm. ∵四边形CGEH 是矩形,∴CH =GE =BG +BE =9+6=15 cm. (2)①当0≤x <6时,如解图②,由∠GDB =60°,∠GBD =30°,DB =x ,得DG =12x ,BG =32x ,重叠部分的面积y =12DG ·BG =12×12x ×32x =38x 2;第2题解图②②当6≤x <12时,如解图③,BD =x ,DG =12x ,BG =32x ,BE =x -6,EH =33(x -6),重叠部分的面积y =S △BDG -S △BEH =12DG ·BG -12BE ·EH ,即y =12×12x ×32x -12(x -6)×33(x -6),第2题解图③化简得y =-324x 2+23x -63;③当12≤x ≤15时,如解图④,AC =6,BC =63,BD =x ,BE =x -6,EG =33(x -6),重叠部分的面积y =S △ABC -S △BEG =12AC ·BC -12BE ·EG ,即y =12×6×63-12(x -6)×33(x -6),化简得y =-36x 2+23x +123;第2题解图④综上所述,y =2223(0683-233(624323315x x x x x x x x ⎧⎪⎪⎪⎪+-⎨⎪⎪++⎪⎪⎩≤<)<<)(≤≤)12 (3)如解图⑤所示,作NG ⊥DE 于点G , 点M 在NG 上时MN 最短,NG 是△DEF 的中位线,NG =12EF =33,∵MB =12CB =33,∠B =30°,∴MG =12MB =332,则MN min =NG -MG =33-332=332.第2题解图⑤3.(1)证明:∵四边形EFPQ 是矩形, ∴EF ∥BC , ∴△AEF ∽△ABC ,∵AD 是△ABC 的高,AH 是△AEF 的高, ∴AHAD =EFBC;(2)解:∵AHAD =EFBC,EF =x ,AD =4,BC =5,∴AH 4=5x , ∴AH =4x 5,∴HD =4-4x 5,∴S 矩形EFPQ =EF ·HD =x (4-4x5)=-45x 2+4x=-45(x -52)2+5.∵-45<0,∴当x =52时,矩形EFPQ 的面积最大,最大面积为5;(3)解:由(2)可知,当矩形EFPQ 的面积最大时,矩形的长EF 为52,宽HD =4-45x =2,在矩形EFPQ 沿射线AD 的运动过程中:(ⅰ)当0≤t ≤2时,如解图①所示.第3题解图①设矩形与AB 、AC 分别交于点K 、N ,与AD 分别交于点H 1、D 1.此时DD 1=t ,H 1D 1=2,∴HD 1=HD -DD 1=2-t ,HH 1=H 1D 1-HD 1=t ,AH 1=AH -HH 1=2-t , ∵KN ∥EF , ∴KN EF=AH 1AH,即KN 52=2-t 2,解得KN =54(2-t ),∴S =S 梯形KNFE +11EFPQ S 矩形 =12(KN +EF )·HH 1+EF ·EQ 1=12[54(2-t )+52]×t +52(2-t )=-58t 2+5; (ⅱ)当2<t ≤4时,如解图②所示.第3题解图②设矩形与AB 、AC 分别交于点K 、N ,与AD 交于点D 2,此时DD 2=t ,AD 2=AD -DD 2=4-t ,∵K ′N ′∥EF , ∴K ′N ′EF=AD 2AH,即K ′N ′52=4-t 2,解得K ′N ′=5-54t ,∴S =S △AKN =12 K ′N ′·AD 2=12×(5-54t )×(4-t )=58t 2-5t +10.综上所述,S 与t 的函数关系式为:S =2255(028551048t t t t t ⎧-+⎪⎪⎨⎪-+⎪⎩≤≤)(2<≤).4.解:(1)4t ;【解法提示】∵AD ⊥BD , ∴∠ADB =90°, ∴BD=102-62=8,∵AD ∥A ′D ′, ∴A ′D ′⊥BD ,∴∠DMD ′=∠ADB =90°, ∵CD ∥AB , ∴∠D ′DM =∠ABD , ∴△DMD ′∽△BDA ,∴DM BD='DD AB ='MD AD, ∴8DM =510t ='6MD , ∴DM =4t ,MD ′=3t .(2)如解图①,当E ′在BD 上时,第4题解图①∵∠ D ′E ′M +∠A ′E ′M =90°,∠MA ′E ′+∠A ′E ′M =90°, ∴∠ D ′E ′M =∠MA ′E ′, ∵CD ∥AB , ∴∠CDB =∠ABD , ∵∠ MA ′E ′=∠ABD , ∴∠D ′DE ′=∠D ′E ′D , ∴DD ′=D ′E ′,由△ADE ∽△BAD 得到,DE =185,AE =245,∴5t =185,∴t =1825;(3)①当0<t ≤1825时,如解图②,重叠部分是△D ′MK ,S =12D ′M ×MK =12×3t ×4t =6t 2;图②图③第4题解图②当1825<t ≤3225时,如解图③,重叠部分是四边形D ′E ′KM ,S =S △A ′D ′E ′-S △A ′MK =12×185×245-12(6-3t )×34(6-3t )=-278t 2+272t -24350.综上所述,S =2218602527272431832+82502525t t t t t ⎧⎪⎪⎨⎪-⎪⎩(<≤)—(<≤);(4)平移过程中,当0<t ≤1825或t =1或t =65 s 时,出现与△DMD ′全等的三角形.【解法提示】①当0<t ≤1825时,如解图②,△DMD ′≌△KMD ′,②当DD ′=D ′C 时,△DMD ′≌△BMA ′,此时t =1, ③当DD ′=AD 时,△DMD ′≌△AED ,此时5t =6,t =65,综上所述,当0<t ≤1825或t =1或t =65s 时,出现与△DMD ′全等的三角形.5.解:(1)在Rt △ACB 中,∠B =30°,AC =1, ∴AB =2AC =2, ∵点D 是AB 的中点, ∴AD =12AB =1=CD ,∵EF 是△ACD 的中位线, ∴EF =DF =12=12CD ,在△ACD 中,AD =CD ,∠A =60°, ∴△ACD 是等边三角形, ∴∠ADC =60°,在Rt △FGD 中,GF =DF ·sin60°=34,∴矩形EFGH 的面积=EF ·FG =12×34=38;………………(3分)(2)根据第(1)问,易得GD =12DF =14,设矩形移动的距离为x ,则0<x ≤12,如解图①,当矩形与△CBD 重叠部分为三角形时,0<x ≤14,第5题解图①则此时重叠部分三角形的高为3x , ∴重叠部分的面积S =12x ·3x =316,解得x =24>14(舍去);如解图②,当矩形与△CBD 重叠部分为直角梯形时,14<x ≤12,则此时重叠部分直角梯形的高为34,上底边长为x ,下底边长为x -14,第5题解图②∴重叠部分的面积S =12[x +(x -14)]·34=316,解得x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316;(8分)(3)如解图③,过H 2作H 2K ⊥AB 于点K . 在Rt △F 1G 1B 中,∠B =30°,F 1G 1=34,第5题解图③∴BG 1=34,∴DG 1=BD -BG 1=1-34=14,设KD =a ,则H 2K =3a ,在Rt △H 2G 1K 中,有H 2K 2+G 1K 2=H 2G 21, 即(3a )2+(a +14)2=(12)2,解得,a 1=-1+1316,a 2=-1-1316(舍去),∴cos α=cos ∠H 2G 1K =KG 1H 2G 1=13-116+1412=13+38.……(14分) 6.解:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD .∵AB =3 cm ,BC =5 cm ,AC ⊥AB , 由勾股定理得:AC =BC 2-AB 2=4 cm.∴cos ∠ACB =AC BC =45.∵△ACD 沿AC 方向平移得到△PNM ,平移的速度为1 cm/s , ∴MN ∥AB ,PC =(4-t ) cm.∵点Q 在BC 上运动,运动的速度为1 cm/s ,第6题解图①∴QC =t cm.如解图①,当PQ ∥MN 时, 则PQ ∥AB , ∴PQ ⊥AC , ∴cos ∠ACB =PCQC =45, 即4-t t =45,解得t =209.∴当t =209s 时,PQ ∥MN ;第6题解图②(2)如解图②,过点P 作PH ⊥BC ,垂足为点H , 则PH =PC ·sin ∠PCQ =35(4-t ),∴y =12·QC ·PH =12t ·35(4-t )=-310t 2+65t ,即y 与t 之间的函数关系式为y =-310t 2+65t (0<t <4);(3)存在.∵△PMN 是由△ACD 沿AC 平移得到的, ∴PM ∥BC , ∴S △PCQ =S △QMC , 由(2)得S △QCP =S △QMC , ∵S △QMC ∶S 四边形ABQP =1∶4, ∴S △QCP ∶S 四边形ABQP =1∶4, ∴S △QCP ∶S △ACB =1∶5.∵S △ACB =12AB ×AC =12×3×4=6 cm 2,∴S △QCP =15S △ABC =65cm 2,即-310t 2+65t =65,整理得:t 2-4t +4=0, 解得t =2,∴t =2 s 时,使得S △QMC ∶S 四边形ABQP =1∶4; (4)存在.如解图③,过点P 作PH ⊥BC 于H ,过点M 作MG ⊥HC ,交HC 的延长线于点G ,第6题解图③∴MG =PH =35(4-t ),tan ∠PCH =PH HC =AB AC =34,∴HC =45(4-t ),又∵QC =t ,HG =PM =BC =5, ∴HQ =HC -QC =45(4-t )-t =165-95t ,∴QG =HG -HQ =5-(165-95t )=95t +95.∵∠PQM =90°,∴∠PQH +∠MQG =90°, 又∵∠HPQ +∠PQH =90°, ∴∠HPQ =∠GQM , ∴△PHQ ∽△QGM , ∴PHHQ =QGGM,。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
2022年中考数学专题复习:动态几何问题

2022年中考数学专题复习:动态几何问题1.在△ABC中,AB = AC,△ABC = 30°,△BDE是等边三角形,连接CD、AE.(1)如图1,当A、B、D三点在同一直线上时,AE、BC交于点P,且AE△AC.若PC = 4,求PE的长;(2)如图2,当B、E、C三点在同一直线上时,F是CD中点,连接AF、EF,求证:AE = 2AF;(3)如图3,在(2)的条件下,AB=8,E在直线BC上运动,将△AEF沿EF翻折得到△MEF,连接DM,G是AB上一点,且BG=14AB,O是直线BC上的另一个动点,连接OG,将△BOG沿OG翻折得到△HOG,连接HM,当HM最小时,直接写出此时点D到直线EM的距离.2.如图1和图2,在△ABC中,AB=AC=5,sinC=35.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.3.如图,在等腰梯形ABCD中,AB△CD,AB=8cm,CD=2cm,AD=6cm.点P从A 点出发,以2cm/s的速度沿AB向B点运动(运动到B点即停止);点Q从C点出发,以1cm/s的速度沿CD−DA向A点运动(当点P停止运动时,点Q也即停止),设P、Q同时出发并运动了t秒.(1)求梯形ABCD的高和△A的度数;(2)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(3)试问是否存在这样的t的值,使四边形PBCQ的面积是梯形ABCD面积的一半,若存在,请求出t的值;若不存在,请说明理由.4.如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连结AG 、DE .(1)猜想AG 与DE 的数量关系,请直接写出结论;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转,旋转角为α(0°<α<180°),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; (3)在正方形OEFG 旋转过程中,请直接写出: △当α=30°时,△OAG 的度数;△当△AEG 的面积最小时,旋转角α的度数.5.如图1,在ABC 中,90,ACB CD ∠=︒平分ACB ∠,且AD BD ⊥于点D .(1)判断ABD △的形状;(2)如图2,在(1)的结论下,若3,75BQ DQ BQD ==∠=︒,求AQ 的长; (3)如图3,在(1)的结论下,若将DB 绕着点D 顺时针旋转()090αα︒<<︒得到DP ,连接BP ,作DE BP ⊥交AP 于点F .试探究AF 与DE 的数量关系,并说明理由.6.如图,在Rt ABCAB=,4∠=︒,5AC=.动点P从点A出发,沿AB △中,90C⊥交AC或BC于点Q,以每秒4个单位长度的速度向终点B运动.过点P作PQ AB分别过点P、Q作AC、AB的平行线交于点M.设PQM与ABC重叠部分的面积为t t>秒.S,点P运动的时间为()0(1)当点Q在AC上时,CQ的长为______(用含t的代数式表示).(2)当点M落在BC上时,求t的值.(3)当PQM与ABC的重合部分为三角形时,求S与t之间的函数关系式.(4)点N为PM中点,直接写出点N到ABC的两个顶点的距离相等时t的值.7.如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB 向点B匀速运动,过点P作PQ△AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.8.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P 在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.设P点的运动时间为t.(1)CP=cm.(用含t的式子表示);(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?9.如图,在Rt△ABC中,△B=90°,BC=5 ,△C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF△BC于点F,连接DE、EF.(1)AC的长是________,AB的长是________.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是2 ?10.在Rt△ABC中,△BAC=90°,AB=AC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90°得到AE,连接DE,F,G分别是DE,CD的中点,连接FG.【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG 与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?△请在图2中补全图形;△若成立,请给出证明;若不成立,请说明理由.【拓展应用】(3)若AB=AC,其他条件不变,连接BF、CF.当△ACF是等边三角形时,请直接写出△BDF的面积.11.如图,等腰三角形△ABC的腰长AB=AC=5cm,BC=8cm,动点P从B出发沿BC 向C运动,速度为2cm/s.动点Q从C出发沿CA向A运动,速度为1cm/s,当一个点到达终点时两个点同时停止运动.点P'是点P关于直线AC的对称点,连接PP′和P′Q,P′P和AC相交于点E.设运动时间为t秒.(1)若当t的值是多少时,P'P恰好经过点A?(2)设△P′PQ的面积为y,求y与t之间的函数关系式(0<t≤4);(3)是否存在某一时刻t,使PQ平分△P′PC?若存在,求出相应的t值,若不存在,请说明理由;(4)是否存在某一时刻t,使点Q在PC的垂直平分线上?若存在,求出相应的t值,若不存在,请说明理由.12.如图,△ABC为等腰三角形,AB=AC,将CA绕点C顺时针旋转至CD,连接AD,E为直线CD上一点,连接AE;(1)如图1,若△BAC=60°,△ACD=90°,E为CD中点,AB=△BCE的面积;(2)如图2,若△ACD=90°,点E在线段CD上且△DAE+△ABC=90°,AE的延长线与BC的延长线交于点F,连接DF,求证:BC=;(3)如图3,AB=1,△BAC=90°,△ACD=105°,若BE恰好平分△AEC,点P为线段AE上的动点,点E′与点E关于直线DP对称,AE′与CD交于点Q,连接CE′,当'+-''的值最小时,直接写出CQ的值.AE CE13.已知,如图△,在平行四边形ABCD中,AB=3cm,BC=5cm,AC△AB,△ACD 沿AC的方向匀速平移得到△PNM,速度为1cm/s:同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图△,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)CQ=,BQ=,AP=,CP=.(2)当t为何值时,PQ∥MN;(3)设△OMC的面积为y(cm2),求y与t之间的函数关系式;(4)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4.若存在,求出t的值;若不存在,请说明理由.14.如图,等腰ABC的底边BC=8,高AD=2,M是AB中点,连接MD.动点E从点B出发,以每秒1个单位的速度沿BC向点C运动,到点C停止,另一动点F从点B出发,以相同的速度沿BC运动,到点D停止.已知点E比点F早出发1秒,当点F出发后,以EF为边作正方形EFGH,使点G、H和点A在BC的同侧,设点E运动的时间为t秒.(1)当t≥1时,用含t的代数式表示EF的长;(2)设正方形EFGH面积为S 1,正方形EFGH与ABC重叠面积为S2,当S1:S2=2时,求t的值;(3)在点F开始运动时,点P从点D出发,以每秒DM ﹣MB﹣BM﹣MD运动,到达点D停止,在点E的整个运动过程中,求点P在正方形EFGH内(含边界)的时长.15.如图1,正方形ABCD中,点P、Q是对角线BD上的两个动点,点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点D出发沿着DB以2cm的速度向点B运动.设运动的时间为x s,△AQP的面积为y cm2,y与x的函数图象如图2所示,根据图象回答下列问题:(1)a=.(2)当x为何值时,APQ的面积为6cm2;(3)当x为何值时,以PQ为直径的圆与APQ的边有且只有三个公共点.16.如图1,有一张矩形纸条ABCD ,边AB 、BC 的长分别是方程27100x x -+=的两个根()AB BC >,E 为CD 上一点,1CE =. (1)连接AE ,BE ,试说明90AEB =︒∠.(2)如图2,M 为边AB 上一个动点,将四边形BCEM 沿ME 折叠,使点B ,C 分别落在点B ′,C '上,边MB '与边CD 交于点N . △如图3,当点M 与点A 重合时,求N 到ME 的距离.△在点M 从点A 运动到点B 的过程中,求点N 相应运动的路径长(路程).17.如图,已知在Rt ABC 中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当ABP △为等腰三角形时,求t 的值;(3)过点D 作DE AP ⊥于点E ,连接PD ,在点P 的运动过程中,当PD 平分APC ∠时,直接写出t 的值.18.如图,已知在Rt△ABC 中,△ACB =90°,AB =10,AC =6,点D 是斜边AB 上的动点,联结CD ,作DE △CD 交射线CB 于点E ,设AD =x . (1)当点D 是边AB 的中点时,求线段DE 的长; (2)当△BED 是等腰三角形时,求x 的值; (3)如果DEy DB=,求y 关于x 的函数解析式,并写出它的定义域.19.已知:如图,在长方形ABCD 中,4cm,6cm AB BC ==,点E 为AB 中点.点P 在线段BC 上以每秒2cm 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.设点P 的运动时间为t 秒,解答下列问题:(1)线段,BP PC 的长可用含t 的式子分别表示为 cm , cm ;(2)若某一时刻BPE 与CQP 全等,求此时t 的值和点Q 的运动速度.20.在平面直角坐标系中,点A(0,4),点B(4,0),连接AB,点P(0,t)是y 轴上的一动点,以BP为一直角边构造等腰直角△BPC(B,P,C的顺序为顺时针),且△BPC=90°,过点A作AD△x轴并与直线BC交于点D,连接PD.(1)如图1,当t=2时,求点C的坐标;(2)如图2,当t>0时,求证:△ADC=△PDB;(3)如图3,当t<0时,求DP﹣DA的值(用含有t的式子表示).。
九年级中考数学复习专题十 几何动态探究题

专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。
中考数学-几何图形的动态问题(含答案)

中考数学-几何图形的动态问题(含答案)一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④2.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s 的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.3.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN 所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD 与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.4.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 25.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C. D.二、填空题6.如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x= ________时,△APE的面积等于5 .7.如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为________秒.在整个运动过程中,与矩形重叠部分面积的最大值为________.8.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为________9.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)10.如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________三、综合题11.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,点E、F分别从B、C 两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA、AB向终点B运动,速度为5cm/s,设它们运动的时间为x(s).(1)求x为何值时,△EFC和△ACD相似;(2)是否存在某一时刻,使得△EFD被AD分得的两部分面积之比为3:5,若存在,求出x 的值,若不存在,请说明理由;(3)若以EF为直径的圆与线段AC只有一个公共点,求出相应x的取值范围.12.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AG∶BE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2 ,则BC=________.13.如图,在平面直角坐标系中,已知A(-3,0),B(0,),点D与点A关于y轴对称,C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标并用尺规作图确定两点位置(保留作图痕迹)(2)若半径为1的⊙P从点A出发,沿A—D—B—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒0.5个单位长的速度增加,运动到点C时运动停止,当运动时间为t秒时①t为何值时,⊙P与y轴相切?②在整个运动过程中⊙P与y轴有公共点的时间共有几秒?简述过程.(3)若线段AB绕点O顺时针旋转90°,线段AB扫过的面积是多少?14.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.15.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?16.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE= .将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA 与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F 运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=________度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.17.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,(1)如果P、Q同时出发,几秒后,可使△PBQ的面积为8平方厘米?(2)线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.18.如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF 为等腰三角形时,求AP的长.19.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.20.如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P、Q两点的距离为5 cm?(2)当t为何值时,△PCQ的面积为15cm2?(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?答案解析部分一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④【答案】C【考点】分段函数,圆的认识,几何图形的动态问题,动点问题的函数图像【解析】【解答】当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③.故答案为:C.【分析】由题意知PB的最短距离为0,最长距离是圆的直径;而点P从A点沿顺时针旋转和逆时针旋转后与点B的距离有区别,当点P从A点沿顺时针旋转时,弦BP的长度y的变化是:从AB的长度增大到直径的长,然后渐次较小至点B为0,再从点B运动到点A,则弦BP的长度y由0增大到AB的长;当点P从A点沿逆时针旋转时,弦BP的长度y的变化是:从AB的长度减小到0,再由0增大到直径的长,最后由直径的长减小到AB的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 25 题( 1)
第 25 题( 2)
【思考 2】 △ABC是等边三角形, P 为平面内的一个动点,
且∠ PBC平分线上的一点 D 满足 DB=DA,
( 1)当 BP与 BA 重合时(如图 1),∠ BPD=
°;
BP=BA,若 0 <∠ PBC<180°,
学习必备
欢迎下载
G1
∵ G1EF 90° P1EF , P1EC 90° P1EF ,
∴ G1EF
P1EC .∴ △G1EF ≌△ P1EC .∴ G1FE
P1CE .
∵ EC ⊥ CD ,∴ P1CE 90°,∴ G1FE 90°.∴ EFH 90°. B ∴ FHC 90°.∴ FG1 ⊥ CD .
②按题目要求所画图形见图 1,直线 G1G2 与直线 CD 的位置关系为互相垂直.
判断直线 FC1 与直线 CD 的位置关系,并加以证明;
②当 P2 为线段 DC的延长线上任意一点时, 连结 EP2,将线段 EP2 绕点 E 逆时针旋转 90 得到线段 EC2.
判断直线 C1C2 与直线 CD的位置关系,画出图形并直接写出你的结论
.
学习必备
欢迎下载
( 2)若 AD=6,tanB= 4 ,AE=1,在①的条件下,设 3
出自变量 x 的取值范围 .
CP1= x ,S P1FC1 = y ,求 y 与 x 之间的函数关系式,并写
第三部分 思考题解析
【思考 1 解析】
( 1)证明:∵ DE EC ,∴ DEC 90 .∴ AED BEC 90 .
又∵ A B 90 ,∴ AED EDA 90 .
∴ BEC EDA .∴ ADE ∽ BEC . ( 2)证明:如图,过点 E 作 EF // BC ,交 CD 于点 F ,
A P
B
1 2
D
4 3
C
图8
学习必备
欢迎下载
∴ 3 4 1 ACB 30 . ∴ ∠ BPD=30 .°
2
解二:∵ △ ABC是等边三角形, ∴ BA =BC=AC.
∵ DB=DA, ∴ CD垂直平分 AB. ∴
3
4
1 ACB
30 .
2
∵ BP=BA,∴ BP=BC.∵ 点 D 在∠ PBC的平分线上,
A E
F G2 P1 H
D
C P2
图1
( 2)∵四边形 ABCD 是平行四边形,∴ B ADC .∵ AD 6, AE 1,tan B
∴ DE 5,tan EBC tan B 4 .可得 CE 4 . 3
由( 1)可得四边形 EFCH 为正方形.∴ CH CE 4 .
∴ △ PBD与△ CBD关于 BD 所在直线对称. ∴ ∠BPD=∠ 3. ∴ ∠ BPD =30 °.
(3)∠ BPD=30°或 150° .
图形见图 9、图 10.
P
A
A A
P
或
D
D
B
B
C
B
C
C D
P
图9
【思考 3 解析】
图 10
解:( 1)过点 A 作 AE⊥ BC,在 Rt△ ABE中,由 AB=5, cosB= 3 得 BE=3. 5
沿直线 AE 翻折,点 B 落在点 B′处.
( 1)当
BE =1
时, CF=______cm,( 2)当
BE
=2
时,求
sin∠ DAB′的值;
CE
CE
( 3)当
BE =x
时(点
C 与点
E 不重合),请写出
CE
x 的关系式,(只要写出结论,不要解题过程).
△ABE 翻折后与正方形
ABCD 公共部分的面积 A
点 M ,交射线 BC于点 N,连结 MN.
( 1)当 BO=AD 时,求 BP 的长;( 2)点 O 运动的过程中,是否存在 BP=MN 的情况?若存在,请求出当
BO 为多长时 BP=MN;若不存在,请说明理由; ( 3)在点 O 运动的过程中,以点 C 为圆心, CN 为半径作⊙ C,请直接写出当⊙ C 存在时,⊙ O 与⊙ C 的位
解:(1)∠ BPD=30 °;
(2)如图 8,连结 CD. 解一:∵ 点 D 在∠ PBC的平分线上,
∴ ∠ 1=∠2. ∵ △ABC是等边三角形, ∴ BA=BC=AC,∠ ACB=60°. ∵ BP=BA, ∴ BP=BC. ∵ BD= BD,∴ △ PBD≌△ CBD. ∴ ∠ BPD=∠ 3.∵ DB=DA, BC=AC, CD=CD, ∴ △ BCD≌△ ACD.
件抽出来 , 将大问题化成若干个小问题去解决 , 就很轻松了 . 为更好的帮助考生 , 笔者总结这种问题的一般
思路如下:
第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。针对运动的量,要分析它是如何 运动的, 运动过程是否需要分段考虑, 分类讨论。 针对不动的量, 要分析它们和动量之间可能有什么关系, 如何建立这种关系。
∵ CD⊥ BC,则有 △ PQO∽△ DOC-
BH
3
3
6
18
设 BO=x, 则 PO=x,由
cos B , 得 BH= x , ∴ BP=2BH= x . ∴ BQ=BP× cosB= x ,
x
5
5
5
25
24
18
PQ= x .∴ OQ= x
x
25
25
7 x .∵△ PQO∽△ DOC,∴ PQ
25
∵
A 90 ,∴ DE 2
AE 2
AD 2 .即 a 2 2ax x2
m2
x2 . ∴ x
a2
m2
.
2a
a 2 m2
由( 1)知 ADE ∽ BEC , ∴ ADE 的周长 AD BEC 的周长 BE
2a am
am
.
2a
∴ BEC 的周长
【思考 2 答案】
2a am
ADE 的周长
2a . ∴
BEC 的周长与 m 值无关.
∵ CD⊥ BC, AD//BC ,BC=6,∴ AD=EC=BC- BE=3.
当 BO=AD=3 时, 在⊙ O 中,过点 O 作 OH⊥ AB,则 BH=HP
BH
∵
cos B ,∴BH= 3 3
BO
5
( 2)不存在 BP=MN 的情况 -
9
.
18
∴ BP=
.
5
5
假设 BP=MN 成立,
∵ BP和 MN 为⊙ O 的弦,则必有∠ BOP=∠ DOC.过 P 作 PQ⊥ BC,过点 O 作 OH⊥ AB,
3
【思考 4 解析】
解:( 1)①直线 FG1与直线 CD 的位置关系为互相垂直.
P
H
B
QO
D M
NC
证明:如图 1,设直线 FG1与直线 CD 的交点为 H .
∵线段 EC、 EP1 分别绕点 E 逆时针旋转 90°依次得到线段 EF 、 EG1 ,
学习必备
欢迎下载
∴ P1EG 1 CEF 90°, EG1 EP1, EF EC .
( 2)当 BP在∠ ABC的内部时(如图 2),求∠ BPD的度数; ( 3)当 BP在∠ ABC的外部时,请你直接写出∠ BPD的度数,并画出相应的图形.
3
【思考 3】 如图:已知,四边形 ABCD中, AD//BC, DC⊥ BC,已知 AB=5, BC=6, cosB= .
5
点 O 为 BC边上的一个动点,连结 OD,以 O 为圆心, BO 为半径的⊙ O 分别交边 AB 于点 P,交线段 OD 于
5 当中的比例关系
意味着两种不一样的状况,是否能想到就成了关键。
动态几何训练题
【思考 1】已知:如图( 1),射线 AM // 射线 BN , AB 是它们的公垂线,点 D 、 C 分别在 AM 、 BN 上 运动(点 D 与点 A 不重合、点 C 与点 B 不重合), E 是 AB 边上的动点(点 E 与 A 、 B 不重合),在 运动过程中始终保持 DE EC ,且 AD DE AB a . ( 1)求证: ADE ∽ BEC ; ( 2)如图( 2),当点 E 为 AB 边的中点时,求证: AD BC CD ; ( 3)设 AE m ,请探究: BEC 的周长是否与 m 值有关?若有关, 请用含有 m 的代数式表示 BEC
置关系,以及相应的⊙ C 半径 CN的取值范围。 A
D
A
D
P M
B
O
NC
B
C
(备用图)
【思考 4】在 ABCD 中,过点 C 作 CE⊥ CD 交 AD 于点 E,将线段 EC绕点 E 逆时针旋转 90 得到线段 EF(如
图1 ( 1)在图 1 中画图探究:
①当 P 为射线 CD 上任意一点( P1 不与 C 重合)时,连结 EP1 绕点 E 逆时针旋转 90 得到线段 EC1.
OQ
DC
即
24 x 25
OC 7 x
25
4 ,得 x
6x
29
.
6
当x
29
时,
6
BP=
x
=
29
>
5=AB,与点
P 应在边
AB 上不符,∴不存在
BP=MN 的情况 .
6
55
A
( 3)情况一:⊙ O 与⊙ C 相外切,此时, 0< CN<6; ------7 分
7
情况二:⊙ O 与⊙ C 相内切,此时, 0< CN≤ .-------8 分
学习必备
欢迎下载
第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。如果没 有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。