线性代数第七讲

合集下载

第7讲向量空间的基

第7讲向量空间的基
Y A1X
1 0 0 0 0

y1 y2
yn
1 0 0
1
1
0
0
1
0
0
0
1
0 0 0
x1
x2
xn
,
0 0 0 1 1
所求坐标关系为: y1 x1, yk xk xk1 ( k 1, 2,, n) 。
例 设1,2,3 和 1, 2, 3 是三维向量空间的两组基 , 且
11 22 mm , 故 1 2 V。
R , 令 i ki , 则 (k11 k22 kmm ) ( k1)1 ( k2 )2 ( km )m 11 22 mm ,
故 R , V。
综上所述, 由向量空间的概念可知V 是一个向量空间。
2. 不妨设1,2,,k 是向量组 1,2,,m 的一个最大
解(二)
2 1 2 3 3 2(1 2 ) (21 32 23) 3(1 32 23) 31 142 23 ,
故向量 在基 1,2 ,3 下的坐标为 (3, 14, 4) 。
解 Rn , 设 在标准基 1,2 ,,n 下的坐标为
(x1, x2,, xn ) x11 x22 xnn , 设 在基 1, 2,, n 下的坐标为
( y1, y2,, yn ) y11 y22 ynn 。
由基的定义, 得
1 11 12 1n1 1n ,
2 01 12 1n1 1n ,
该公式称为向量 由基 1, 2,, r 到基1,2,,r 下的
坐标变换公式, 其中矩阵 A为坐标变换的过渡矩阵, 而称
公式 Y A1X 为由基 1,2 ,,r 到基 1, 2 ,, r 下
的坐标变换公式。
基变换与坐标变换的关 系

线性代数第七章课件

线性代数第七章课件

2)对于R3中任一向量α=(a1, a2, a3)T,有
a1e1 a2e2 a3e3 .
由定义2.1知e1, e2, e3为R3的一个基,从而dim(R3)=3.
看过例2.1之后,读者关心的一定是解题背后的思路. 到底应该选几个向量、选什么样的向量来证明它们构成一 个基呢?解决这一问题的关键是分析线性空间元素构成时 的“自由度”.像例1的R3 ,它的向量都具有3个分量。每 个分量的位置体现了一个自由度.3个自由度就预示着维数 为3.寻找一个特征基的过程可以如下进行:让体现自由度 的各个不同位置的数字轮流地每次有一处取 1,其余处取0. 这样,有多少个自由度就得到多少个互不相同的向量(对 例2.1而言,按照这种方法得到的三个向量正是e1, e2, e3 ). 剩下的工作就是确切证明这组向量满足定义2.1中的1)、 2)两条,从而确认它们构成一个基.
正是由于一般线性空间与普通数组向量加法与数乘运 算性质的一致性,使我们可以把数组向量的那些基于线性 运算的概念以及与之相关的性质、命题,包括它们的证明 方法,都平移到线性空间中来。例如,对向量组线性相关 的定义,可以叙述如下: 设V是数域F上的线性空间,α1,α2, · · · ,αs 是V中向量, 如果存在数域F中不全为零的一组数k1, k2,· · · , ks,使
情况的线性空间称为有限维线性空间,符合第二种情况的 则称为无限维线性空间.本书中主要讨论有限维线性空间. 定义2.1 设V是数域F上的线性空间,如果V中存在n 个向量ε1,ε2,· · · ,ε n满足: 1) ε1, ε2 ,· · · ε n线性无关; 2) V中任何向量α均可由ε1,ε2,· · · ,εn线性表示,则称 ε1,ε2,· · · ,εn为V的一个基(或基底). 基的向量个数n称为 线性空间V的维数,记为dim(V). 零空间是不存在基的线性空间,其维数为零. 维数为n的线性空间称为n维线性空间.

07线性代数方程组的解法

07线性代数方程组的解法

总计∑ n (k2k) n(n21)
k1
3
除法
n1
k

n(n1)
k1
2
回 代 总 计 算 量 n(n1) 2
总 乘 除 法 共 n 3 3 n 2 1 3 n (n 3 0 ,为 9 8 9 0 )
21
三、Gauss消去法的矩阵表示
每一步消去过程相当于左乘初等变换矩阵Lk
a x a x a x a b 得

(1)


解 (1)


程 (1)A(3组 )x=b(1() 3)
(1)
11 1
12 2
13 3
1n
1

a x a x (2) (2)
22 2
23 3
a x(3) 33 3
a b (2) (2)
2n
2
a b (3) (3)


11 1
12 2
1n n
1

b x 22 2
b2nxn g 2

称 消 元 过 程 。 逐 次 计 算 b出 nn x xn n, x gn 1 n,, x 1 称 回 代 过 1程 0 。
一、Gauss 消去法计算过程
a a b b 统一记 → 号 (1) : , →(1)
(2) ,
2
(3)
(2)
2
1

0
1
L m 0 2
32
1

0 mn2 0


m a a
(2) (2)

i2
i2
22
i 3,4, ,n

线性代数第七讲

线性代数第七讲

义定' 设 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个部分组。

若(1)r i i i ααα,...,,21线性无关;(2)每个j α( j =1, 2, …, m )均可由 r i i i ααα,...,,21 线性表出,则 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个极大无关组。

义定'' 设 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个部分组。

若(1)r i i i ααα,...,,21线性无关;(2)对任意 j α(j =1, 2, …, m )均可由 ,,21i i ααr i α...,线性相关,则 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个极大无关组。

例 已知向量组m s s ααααα,...,,,...,,121+。

假设每个j α(j = s +1, s +2, …, m )均可由 s ααα,...,,21线性表出,则秩{s ααα,...,,21}=秩{m s s ααααα,...,,,...,,121+}证明 设 秩{}s ααα,,, 21 =r ,任取 s ααα,...,,21的一个极大无关组 r i i i ααα,,,21 ,则 s ααα,...,,21可由 r i i i ααα,,,21 线性表出。

已知 m s s ααα,...,,21++可由s ααα,...,,21线性表出,故由传递性得 m s s ααα,...,,21++亦可由 r i i i ααα,,,21 线性表出。

于是,每个 j α ( j =1, 2, …, m ) 均可由 r i i i ααα,...,,21线性表出。

又r i i i ααα,,,21 线性无关,所以r i i i ααα,,,21 也是 m s s ααααα,...,,,...,,121+的一个极大无关组。

线性代数7PPT课件

线性代数7PPT课件

向量空间的性质
零向量和负向量的存在
在向量空间中,存在一个特殊的向量,称为零向量,它与任何向量进行加法运算结果仍为 该向量本身。同时,对于每个非零向量,都存在一个与其相反的向量,称为该向量的负向 量。
向量的线性组合
对于任意标量和向量,以及任意数量的标量,都可以进行线性组合,得到一个新的向量。
向量的线性无关
二次型的性质
01
实定性
如果一个二次型在某个基下的矩 阵是对称的,那么这个二次型是 实定的。
正定性
02
03
半正定性
如果一个实定的二次型在某个基 下的矩阵是正定的,那么这个二 次型是正定的。
如果一个实定的二次型在某个基 下的矩阵是半正定的,那么这个 二次型是半正定的。
二次型与矩阵的相似性的关系
二次型与矩阵的相似性
07
二次型与矩阵的相似性
二次型的定义
二次型
一个n元二次型是一个n维向量空间上的多 线性函数,其一般形式为$f(x) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中$a_{ij}$是常数。
二次型的矩阵表示
对于一个二次型$f(x) = x^T A x$,其中 $A$是一个对称矩阵。
特征值和特征向量的性质还包括:如 果λ是A的特征值,那么kλ(k≠0)也 是A的特征值;如果x是A的对应于λ的 特征向量,那么kx也是A的对应于λ的 特征向量。
特征值与特征向量的应用
在物理和工程领域中,特征值和特征向量的应用非常广泛。例如,在振动分析中,系统的固有频率和 振型可以通过求解系统的质量矩阵和刚度矩阵的特征值和特征向量得到。
02
19世纪中叶,德国数学家克罗内克等人开始系统地 研究线性代数,并为其建立了基础。

线性代数上07矩阵的LU分解与分块矩阵

线性代数上07矩阵的LU分解与分块矩阵

11
尤其要注意 AB = 0 时的特殊情况: AB = A( B1 , B2 ,L , Bn ) = ( AB1 , AB2 ,L , ABn ) = (0, 0,L , 0)
⇒ AB j = 0, j = 1,L , n.
说明 B 的每一列都是齐次线性方程组 AX = 0 的一个解. 类似可以考虑 A 按行分块, 而 B 作为一整块的情形.
⎡ A11 A12 L A1n ⎤ ⎡ B11 B12 L B1n ⎤ ⎢ 0 A L A ⎥ ⎢ 0 B L B2 n ⎥ 22 2n ⎥ 22 ⎥ A=⎢ ,B = ⎢ ⎢L L L L ⎥ ⎢L L L L ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 L Ann ⎦ 0 0 L Bnn ⎦ ⎣ ⎣ ⎡ A11 + B11 A12 + B12 L A1n + B1n ⎤ ⎢ ⎥ A22 + B22 L A2 n + B2 n ⎥ 0 A+ B = ⎢ , ⎢ L ⎥ L L L ⎢ ⎥ L Ann + Bnn ⎦ 0 0 ⎣ L * * ⎤ ⎡ A11 B11 ⎢ 0 A22 B22 L * ⎥ ⎥ , 证明类似Ex2.43, 44 AB = ⎢ ⎢ L L L L ⎥ ⎢ ⎥ L Ann Bnn ⎦ 0 0 ⎣
第七讲 LU分解与分块矩阵
本讲内容提要 矩阵的LU分解 分块矩阵 分块矩阵的初等变换 附: 矩阵的相抵和相抵标准形
1
解方程 Ax = b Gauss消去法等价于矩阵的LU分解
⎡ a11 ⎢a ⎢ 21 ⎢ M ⎢ ⎣ a n1 a12 L a1n ⎤ ⎡ 1 a 22 L a 2 n ⎥ ⎢ l 21 ⎥=⎢ M M ⎥ ⎢M ⎥ ⎢ a n 2 L a nn ⎦ ⎣ l n1 AX = b LUX = b ⎤ ⎡ u11 ⎥⎢ ⎥⎢ O ⎥⎢ ⎥⎢ L 1⎦ ⎣ u12 L u1n ⎤ u22 L u2 n ⎥ ⎥ O M ⎥ ⎥ unn ⎦

线性代数 2-7 第2章7讲-矩阵的逆(2)

线性代数 2-7 第2章7讲-矩阵的逆(2)

解矩阵方程
一 AX B,A可逆 法一 X A1B ; 法二 ( A B) (E X ).
行变换
三 AXC B,A、C可逆 法一 X A1BC 1 ; 法二 AX BC1,XC A1B
二 XA B,A可逆 法一 X BA1 ;
法二
A E
B
列变换
X
.
求解矩阵方程时,一定要记住:先化简,再求解
1 2
0
-2 1 0
0
0 0 2
1
2
0
1 2 0
0
0
0
1
1
1
2
0
1 2 1
0
0
0
2
0
1 2
0
(B E)1 1 0 0
2
0
0 1
10
解矩阵方程
1 1 1
例2 已知A 0 1
1
,且A2
AB
E,其中E为三阶单位矩阵,求矩阵B.
0 0 1
解 由 A2 AB A( A B) E 知
A B A1 从而 B A A1
用初等变换求 A1
1 1 1 ( A E) 0 1 1
0 0 1
1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1
1 0 1
01
1
0 0 1
11
解矩阵方程
1 1 1
已知A 0 1
1
,且A2
AB
E,其中E为三阶单位矩阵,求矩阵B.
8
解矩阵方程
1 -2 0 例1 已知AB B A,其中B 2 1 0,求矩阵A.
0 0 2
b2 4ac
解 由 AB B A,得 A(B E) B B E 4 0 B E 可逆

线性代数第7讲

线性代数第7讲

1. 线性方程组在什么情况下有解,什么情 况下无解?你发现了什么规律? 2. 若有解求出它全部的解.
补充例题 首页 上页 返回 下页 结束 铃
提示: R(A+B)≤R(A)+R(B).
补充例题 首页 上页 返回 下页 结束 铃
作业 P79 9 10.3 12
补充例题
首页
上页
返回
下页
结束

探索发现型思考题
判断下列方程组 是否有解
1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 x1 1 1 x2 1 = 1 x3 2 2 x4 x1 1 1 x2 1 = 1 x3 1 2 x4
说明: 矩阵A的秩R(A)就是A中不等于0的子式的最高阶数.
补充例题 首页 上页 返回 下页 结束 铃
矩阵的秩 设在矩阵A中存在一个 存在一个不等于0的r阶子式D, 且所有 所有r+1阶 存在一个 所有 子式(如果存在的话)全等于0, 那么D称为矩阵A的最高阶非零 全 子式, 数r称为矩阵 的秩 记作R(A). 并规定零矩阵的秩等于0. 矩阵A的秩 矩阵 的秩, 几个简单结论 (1)若矩阵A中有某个s阶子式不为0, 则R(A)≥s; 若A中所有 t阶子式全为0, 则R(A)<t. (2)若A为m×n矩阵, 则0≤R(A)≤min{m, n}. (3)R(AT)=R(A). (4)对于n阶矩阵A, 当|A|≠0时, R(A)=n; 当|A|=0时, R(A)<n. 可逆矩阵又称为满秩矩阵, 不可逆矩阵(奇异矩阵)又称为 降秩矩阵.
§3.2 矩阵的秩
我们已经知道, 给定一个m×n矩阵A, 它的标准形

大学课程大一数学线性代数上册7.矩阵的初等变换课件

大学课程大一数学线性代数上册7.矩阵的初等变换课件

aMin caMi1
cai 2 M
L
amn am1 am2 L
类似可证 AEi (c) 相当于给 A 的第 i 列乘以非零数 c:
a1n
M
cain M
amn
8
第i列
第i行
1
O
1
k
O
1
O
第j列
a11 a12 L
M
M
ai1 M
ai 2 M
L
a
j1
aj2
L
M M
1 am1 am2 L
第i列 第j列
或看作是将 I 的第 j 列 的 k 倍加到第 i 列.
6
3) 交换单位矩阵 E 的第 i 行与第 j 行(或交换 E 的第 i 列 与第 j 列):
1 Ei, j
1 0 1
1
第i列
1
1
0
1
1
第j列
第i行 第j行
7
➢ 如果矩阵 A 经过一次初等变换变为 B, 那么 A 与 B 之间 究竟有何种关系?
1
Ei, j ()1 Ei, j ().
1
1
第i行
第j行
第j列
1
14
1 Ei, j
a11 a12
a11 a12
例如 a21
a22
r2
a21
a22
,
a31 a32
a31 a32
消法变换:将一行的 倍加到另一行
ri+rj rj
a11 a12
a11 a31 a12 a32
例如
a21
a22
r3 r1
a21
a22

线性代数第一章第7节PPT教学课件

线性代数第一章第7节PPT教学课件


11 1 1
12 3 4 D
1 4 9 16
1 8 27 64
(41)(42)(43)(31)(32)(21)12
1 11 1
11 11
5 23 4
D1 25
4
9
12 16
125 8 27 64
,
11 1 1
15 34
D2 1 25
48 9 16
1 125 27 64
11 1 1
12 5 4
, D3 1 4
25
72 16
1 8 125 64
12 3 5
D4 1 4 9
48 25
1 8 27 125
,
x 1 D D 1 1 , x 2 D D 2 4 , x 3 D D 3 6 , x 4 D D 4 4
三、重要定理
定理1 如果线性方程组1的系数行列式 D0, 则 1一定有解,且解是唯一的 .
“没有非零解”即“只有零解”
定理3 如果齐次线性方程组2 有非零解,则它
的系数行列式必为零.
系数行列式 D0 a11x1a12x2a1nxn0 a 2 1x1 a2 2x2 a2 nx n 0 an1x1an2x2annxn0
有非零解.
例2 问 取何值时,齐次方程组
3x1x2x3 2x2x3
思考题
当线性方程组的系数行列式为零时,能否用克拉默 法则解方程组?为什么?此时方程组的解为何?
PPT教学课件
谢谢观看
Thank You For Watching
的系数行列式不等于零,即D
a21 a22 a2n
0
an1 an2 ann
那么线性方程组1 有解,并且解是唯一的,解

线性代数ppt课件同济

线性代数ppt课件同济

05
向量空间及其性质
向量空间的定义与性质
向量空间的定义
向量空间是一个由向量构成的集合, 其中每个向量都可以表示为一组基向 量的线性组合。
向量空间的性质
向量空间具有一些重要的性质,例如 封闭性、加法和数量乘法封闭性、加 法和数量乘法的结合律和分配律等。
向量空间的基底与维数
向量空间的基底
一个向量空间可以由一组不相关的基向量构成,这些 基向量是线性无关的,并且可以生成整个空间。
行列式的计算方法
要点一
总结词
行列式的计算方法包括高斯消元法、拉普拉斯展开式和递 推法等。
要点二
详细描述
高斯消元法是一种常用的计算行列式的方法,它通过初等 行变换将矩阵化为阶梯形矩阵,然后求解出阶梯形矩阵的 行列式即可。拉普拉斯展开式是一种基于二阶子式和代数 余子式的展开式,它可以用来计算高阶行列式。递推法是 一种利用低阶行列式的值递推高阶行列式的方法,它适用 于计算n阶行列式。
线性代数的背景
线性代数起源于17世纪,随着科学技术的不断发展和进步,线性代数的应用领域越来越广泛。它不仅 在数学、物理、工程等领域有着广泛的应用,还在计算机科学、经济学、生物医学等领域发挥着重要 的作用。
线性代数的应应用,例如求解线性方程组、 计算矩阵的秩和特征值等。
现代发展
随着科学技术的发展,线性代数的应用领域越来越广泛,同时它也得到了不断的发展和完善。现代线性代数已经 形成了一套完整的理论体系,为解决实际问题提供了更加有效的工具。
02
矩阵及其运算
矩阵的定义与性质
矩阵的定义
矩阵是一个由数值组成的矩形阵列,通 常表示为二维表格。矩阵的行数和列数 可以分别为m和n。每个元素用a(i,j)表示 ,其中i表示行号,j表示列号。

《线性代数》课件-第七周课程-张颖老师

《线性代数》课件-第七周课程-张颖老师

§4.4 线性方程组解的结构第四章n元向量空间111122121122221122000.+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩n n n n m m mn n a x a x a x a x a x a x a x a x a x ,,,AX ⇔=(矩阵形式)0记齐次线性方程组111212122211n n m m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 的系数矩阵为 12X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦n x x x 未知数向量为{}A X AX A X ∈==0的解集是的子空间nnN 0 ,()=注2注1 齐次线性方程组解的线性组合还是解.性质11212AX AX =+=0 0 若是 的解则也是的解,.η,ηηη性质2()AX AX =∀∈=0 0 若是 的解则 也是的解k k ,.ηη齐次线性方程组的基础解系定义1当 有非零解时, AX =0如果解向量满足: 12,,,t ηηη(1)线性无关; 12,,,t ηηη(2)的任一解可由 线性表示, 12,,,t ηηηAX =0则称为方程组 的一个基础解系. 12,,,t ηηηAX =01122X =+++t t k k k ,ηηη12,,,其中是任意常数t k k k .()12(),,,A =t N L ηηη{}11221,2,,=+++∈=t t i k k k k i t ,ηηη如果为齐次线性方程组 的一个基础解系,则 12,,,t ηηηAX =0的通解可表示为 AX =0◆向量组的极大无关组不唯一,但不同极大无关组中所含向量个数相同.向量组的秩◆方程组的基础解系不唯一,但所含解向量的个数是唯AX 0解空间的维数一确定的.dim N(A)=如何求基础解系()A AX ⨯=<=0m n r r n 当时,方程组有非零解,1212,,,,,,++r r r n x x x x x x 不失一般性,不妨设为主变量,为自由变量111,1,10010000A --⎛⎫⎪ ⎪ ⎪−−−−→⎪ ⎪ ⎪ ⎪ ⎪⎝⎭n r r r n r b b b b 初等行变换A 则系数阵化为行简化阶梯形矩阵齐次线性方程组的基础解系11111,11,+-+-⎧=---⎪⎨⎪=---⎩r n r n rr r r n r nx b x b x x b x b x ⇔AX =011111,11,11+-+-++---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦r n r n r r r r n r n r r n n x b x b x x b x b x x x x x 通解为11121212212100010001++---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦r r r r r n b b b b b b x x x11121,12,12,,,.100010001n r r r r n r n rb b b b b b ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηη记112212,.X ---=+++其中 为任意常数n r n r n r k k k k k k ,,,ηηη112212,,,,,++--===令其中为任意常数r r n n r n r x k x k x k k k k ,,,AX =0 则 的通解为为齐次线性方程组 的一个基础解系,且 12,,,t ηηηAX =0dim ().A =-N n r()AX A A ⨯=<0m n r n 若齐次线性方程组的系数矩阵的秩,则必有定理1基础解系,()A -n r 且任一基础解系所含解向量的个数为.123412341234123450,230,380,3970.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩例1 求齐次线性方程组的一个基础解系,并写出通解.解 对方程组的系数矩阵初等行变换,得11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦310127012200000000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦()24A =<r ,1342343,272,2x x x x x x ⎧=--⎪⎪⎨⎪=-⎪⎩该方程组有非零解,且基础解系中含2个解向量, 同解方程组为 34,x x 其中为自由变量. 31272212123412,,.0110--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=+∀∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x x k k k k x x 327212120110--⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,ηη通解为 为该方程组的一个基础解系. 1231722001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥''==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,ηη由于11112211211222221122,,.n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩11121121222212[]A A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦n n m m mn m a a a b a a a b a a a b β增广矩阵为已知 非齐次线性方程组 m n ⨯AX ⇔=(矩阵形式)β AX AX ==0.β称齐次线性方程组为的导出组()()A A AX =<=r r n 当时,有无穷多解,这些解具有怎样的形式?β性质3性质41212.X X AX X X AX =-= 设是的任意两个解,则是其导出组 的解,β0 0,X AX =设是 的一个特解β.AX =方程组的解β0X η+则是,AX =0是导出组 的解η()()AX A A ⨯===<如果非齐次线性方程组满足m n r r r n β,它的一个解(称它为特解),定理212AX -=0是它的导出组的一个基础n r ,,,ηηη0X 是解系,AX =则方程组的通解为β12.-其中为任意常数n r k k k ,,,01122X X ηηη--=++++n r n r k k k ,例2 12312312331,334,598.+-=-⎧⎪--=⎨⎪+-=-⎩x x x x x x x x x 113131341598A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦3302437024001100⎡⎤-⎢⎥⎢⎥⎢⎥−−→--⎢⎥⎢⎥⎢⎥⎣⎦求非齐次线性方程组 解 313233427342⎧=+⎪⎪⎨⎪=-+⎪⎩x x x x ,,的全部解.()()23A A ==<r r ,由于 该方程组有无穷多解,其同解方程组为 其中 为自由变量. 3x方法1 (1) 令 , 30=x 求出非齐次线性方程组的一个特解 T 037[,,0].44X =-(2) 导出组的同解方程组为31323232⎧=⎪⎪⎨⎪=⎪⎩x x x x ,, 令 , 31=x 得导出组的一个基础解系 T 33[,,1].22=η(3) 所求非齐次线性方程组的全部解为 T T 3733[,,0][,,1],.4422X =-+∀∈k k方法2 由同解方程组 直接写出通解 或其向量形式的通解为T T T 1233733[,,][,,0][,,1],.4422=-+∀∈x x x k k 313233427342⎧=+⎪⎪⎨⎪=-+⎪⎩x x x x ,,13233333427342.⎧=+⎪⎪⎪=-+⎨⎪=⎪⎪⎩x x x x x x ,,zxyOXX+ηηLW例2的几何意义=在例2中若,,在三维几何空间取定直角坐标系后,++=ax by cz d平面++=ax by cz过原点的平面L可由W 沿作平移得到.X非齐次线性方程组解的判定11112212112222,.a x a x b a x a x b +=⎧⎨+=⎩11111221:L a x a x b +=,已知平面直线 22112222:.L a x a x b +=则两条平面直线的交点坐标满足重合 相交 平行解的几何意义§4.5 欧氏空间n 第四章n元向量空间{}1212T [,,,],,,=∈元实向量空间n n n n a a a a a a ||||cos ,a b a b θ=||,a a a =cos .||||a b a b θ=112233,a b a b a b a b =++数量积的直角坐标计算公式: 解析几何中向量的数量积:T T 1212[,,,],[,,,],==设是元向量空间中两个向量n n n a a a b b b n αβ1122(,)αβ=+++n n a b a b a b ,令定义了内积的n 元实向量空间 , 称为欧几里得空间,简称欧氏空间.n T ,,(,).=当为列向量时有αβαβαβ※ 定义1称 为向量 与 的内积(inner product ). (,)αβαβ(1)(,)(,);=αββα(2)(,)(,);=k k αβαβ(3)(,)(,)(,);+=+αβγαγβγ(对称性) 内积具有以下性质(其中为n 元向量,k 为实数): ,,αβγ(线性性) (4)(,)0,(,)0.≥=⇔=0且ααααα(正定性)⎫⎪⎬⎪⎭利用这些性质可以证明施瓦茨(Schwarz )不等式成立:2(,)(,)(,).≤⋅αβααββ定义2 对欧氏空间 中的任一向量 , αn (,).=ααα称非负实数 为向量的长度 (,)ααα(length ),记为 注 (,).=ααα向量的长度也称为范数(norm),记为 α(i)0;0≠>==00;当时当时,αααα,2(ii)(,)(,)||||.=== 对任意向量及任意实数有k k k k k k ααααααα, (非负性)(齐次性)向量的长度具有下述性质:定义3 在欧氏空间 中, n 若(,)0,=αβ称向量 与 正交(orthogonal ), βα.⊥αβ记为01,≠=0若则为单位向量αααα,1=α当时,称 为单位向量. α由向量 得到 的过程称为把向量 α0α 单位化.α 欧氏空间 中,两两正交的非零向量组成的向量组称为正交向量组. n每一个向量都是单位向量的正交向量组称为标准正交组.正交向量组一定线性无关.命题1 1,,(,),1,2,,.0,.=⎧⇔==⎨≠⎩i j i j i j s i j αα12s ,,,∈是一个标准正交组n ααα由n 个向量组成的正交向量组称为 的一个正交基(orthogonal basis ). n 每一个向量都是单位向量的正交基称为 的标准正交基(orthonormal basis ). n 例如, 12,,,.基本向量组 是 的一个标准正交基n n εεε121122,,,,(,)(,)(,).∀∈=+++R 设是的一个标准正交基.证明:对有n n n n n αααααααααααααα 例112(),,,(),ns s n ααα≤设Ⅰ是欧氏空间中的一个线性无关向量组令定理1施密特正交化方法12(),,,,ns βββ则Ⅱ是的正交向量组且11;βα=11(,),2,3,,,(,)k k i k k i i i i k s αββαβββ-==-=∑1212(,,,)(,,,),1,2,,.i i L L i s αααβββ==2122111(,),(,)αββαβββ=-12,1,2,,,():,,,.ii ins i s βηβηηη==令则Ⅲ是的标准正交组T T T 31233[1,1,0],[1,0,1],[0,1,1],.ααα===设是的一个基用施密特正交化方法求的一个标准正交基T 11[1,1,0],βα==令 2122111(,)(,)αββαβββ=-解T T 1[1,0,1][1,1,0]2=-T1[1,1,2],2=-313233121122(,)(,)(,)(,)αβαββαββββββ=--TT T 11[0,1,1][1,1,0][1,1,2]26=---T2[1,1,1].3=-例1123βββ将,,单位化得3123,,.ηηη则是的一个标准正交基T 111T 222T 3331[1,1,0],21[1,1,2],61[1,1,1],3βηββηββηβ====-==-11αβ=2α2β221k βαβ=-3β2β11αβ=2α3α1k β3312k l βαββ=--§4.6 正交矩阵第四章n元向量空间正交矩阵T ,n n A A A E =若阶实方阵满足则称 A 为正交矩阵,简称正交阵.(orthogonal matrix )定义1TAA E ⇔=nT A A E =n 1TAA -⇔=注 1T(i),,11A A ,A A A -*=-若是正交阵则也是正交阵,且或;(ii),若和是同阶正交阵则也是正交阵.A B AB 正交阵具有下述性质:T(i),.n =由于是正交矩阵所以A AA E 从而,两边取行列式可得1 1.=-从而或A 2T T 1,n ====A A A AA E T T T 1,,,,.n *-==显然为实矩阵.由于是正交矩阵所以且A A A A A E A A 11T T T T T ()()()(),n --===A A A A A A E 2T 11T11T()()()()()(),n **----===A A A A A A A A A E 1T,,-*因此均是正交矩阵.A A A 证(ii),,,显然为实矩阵. 由于是正交矩阵所以AB A B T T,,n n ==AA E BB E 因此T T T T()()(),n ===AB AB A BB A AA E 故是正交矩阵.AB,()n 设是阶实矩阵则是正交矩阵当且仅当的行列向量组A A A 命题1n是的一个标准正交基.12,,,,n ααα设的行向量组为则A 证12T T TT 12,,,n n αααααα⎡⎤⎢⎥⎢⎥⎡⎤=⎣⎦⎢⎥⎢⎥⎣⎦AA T TT 11121T TT 21222T T T 12n n n n n n αααααααααααααααααα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=111212122212(,)(,)(,)(,)(,)(,).(,)(,)(,)n n n n n n αααααααααααααααααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是正交矩阵A 12,,,nn ααα⇔的行向量组是的一个标准正交基.A Tn⇔=AA E (,)1,1,2,,,(,)0,,,1,2,,.i i i j i n i j i j n αααα==⎧⇔⎨=≠=⎩TTn n ==因为与等价,所以上述结论对的列向量亦成立.A A E AA E A若矩阵S 为正交阵,则线性变换 X=SY 称为正交变换.11111221221122221122.n n n n n n n nn n x s y s y s y x s y s y s y x s y s y s y =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩则,,,1122n n x y x y x y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设,X , Y 为由向量X 到Y 的一个线性变换.T T T T T (,)()().======X X X X X SY SY Y S SY Y Y Y 这说明经正交变换线段长度保持不变.cos sin ,sin cos -⎡⎤==⎢⎥⎣⎦例如,矩阵是正交矩阵旋转是一个正交变换;ϕϕϕϕA Y AX。

《线性代数》教学课件—第1章 行列式 第七节 克拉默法则

《线性代数》教学课件—第1章 行列式 第七节 克拉默法则

克拉默法则 如果线性方程组
a11x1 a12 x2 a1n xn b1 ,
a21
x1
a22 x2 a2n xn
b2
,
(1)
an1x1 an2 x2 ann xn bn
的系数行列式不等于零,即
a11 a12
D
a21
a22
an1 an2
那么,方程组(1)有唯一解
第七节 克拉默法则
主要内容
克拉默法则 线性方程组有解的条件 举例
在本章的第一节,我们在引进了二阶、三阶行 列式以后,得到了二元、三元线性方程组的很好 记忆的求解公式. 定义了 n 阶行列式以后, 对于 含有 n 个未知数 n 个方程的线性方程组, 也有 类似的求解公式——克拉默法则.
一、克拉默法则
例 15 设曲线
y = a0 + a1x + a2x2 + a3x3 通过四点 (1, 3) , (2, 4) , (3, 3) , (4, -3),求系数
a0 , a1 , a2 , a3 .
解 把四个点的坐标代入曲线方程,得线性
方程组
a0 a1 a2 a3 3,
aa00
2a1 3a1
1
式D
an2 x2
0
,
则 (1)一定有解,
annxn bn .
且解是唯一的.
定理 1 的逆否命题为
定理 1′如果线性方程组 (1) 无解或有无
穷个不同的解,则它的系数行列式必为零.
1n n 1
a2n xn b2 ,
线性方程组(1) 右端的常数项
b1 , b2 , ···,
an不nx全n为零b时n .,线性方程组 (1)
2x (6 ) y 0,

高等数学 线性代数 随机变量的分布函数

高等数学 线性代数  随机变量的分布函数
PX xk pk, k 1, 2,
由概率的可列可加性得X的分布函数为
F ( x)
xk x
p
k
对所有满足xk x的k求和。
对离散随机变量的分布函数应注意:
(1) F(x)是递增的阶梯函数; (
(4) 其间断点的跳跃高度是对应的概率值.
(4)当 x≥3
时:
1


-1 0 1

2 3 x
类似地我们可以求如下概率:
分布函数 F (x) 在 x = xk (k =1, 2 ,…) 处有跳跃, 恰为这值的概率: pk=P{X= xk}.
其跳跃值
pk=P{X= xk}=F(xk)-F(xk-0).
1
。 。
-1 0 1

2 3 x
一般地,设离散型随机变量X的分布函数为
x x
4 F ( x 0) F ( x)
即F ( x)是右连续的
• 注:满足这四个性质的函数,一定可以 作为某个随机变量的分布函数.
用分布函数求概率
(1)落入一个左开右闭的区间内的概率:
(2)落入一个左闭右开的区间内的概率:
用分布函数求概率
(3)落入一个开区间内的概率:
(4)落入一个半开的区间内的概率:
例 1 设随机变量 X 的分布律如下, 求 X 的分布 函数.
X pk -1 1/4 2 1/2 3 1/4
解:X的取值将x轴分成四部分:
当实数 x 落入不同的部分时,事件{X≤x}包含不同 的取值,因此我们将对不同情况讨论。 (1)当 x<-1 时:
(2)当 -1≤x<2
时:
(3)当 2≤x<3 时:

《线性代数》教案

《线性代数》教案

1、理解矩阵的定义,知道零矩阵、单位阵、对角阵、行阶梯形阵、行最简阶梯阵、对称矩阵等特殊矩阵,知道两矩阵相等的概念;
2、掌握矩阵的线性运算、乘法运算、转置运算及其它运算规律;
3、知道矩阵的分块方法和在矩阵运算中的作用。

《线性代数》教案
1、理解齐次线性方程组的基础解系,线性方程组解的结构,并能熟练的求出它们的通解;
2、熟练掌握用初等行变换求线性方程组通解的方法;
《线性代数》教案
1、知道向量的内积与正交,了解正交矩阵的概念及性质。

2、理解方阵的特征值和特征向量的概念,掌握其求法。

1、了解相似矩阵的概念及其性质,知道矩阵对角化的充分必要条件。

会求实对称矩阵的相似对角矩阵;
2、掌握线性无关的向量组的Schmidt正交规范化的方法;
1、掌握二次型及其矩阵的表示,了解二次型秩的概念;
2、会用正交变换和配方法把二次型化为标准形的方法;
3、知道惯性定理,掌握正定二次型的判定。

线性代数 1-7 第1章7讲-克莱姆法则

线性代数 1-7 第1章7讲-克莱姆法则

an1x1 an2 x2 ann xn 0
则它的的系数行列式为零.
8
克莱姆法则
x y z 0
例1
为何值时,方程组
x
y
z
0
有非零解?
2x y z 0

1 1
D 1 1 3 1 2 2 3 1 0 1
2 1
故当 1时,方程组有非零解.
9
克莱姆法则
故 x D1 2,y D2 3,z D3 4.
D
D
D
10
克莱姆法则
例3 证 定理2
(a11
1 2
)
x1
a12 x2
a1n xn 0
证明方程组
a21x1
(a22
1 2
)
x2
a2n xn 0 有唯一解,其中aij都是整数。
an1x1 an2 x2
(ann
1 2
)
xn
0
根据定义,除主对角线 上的元素之乘积为奇数, 其余乘积均是偶数
例2
x2 2x3 5
解方程组
x1
x2
4x3
11
2x1 x2 1
012

系数行列式 D 1 1 4 2 0 根据克莱姆法则知方程组有唯一解
2 1 0
5 1 2 D1 11 1 4 4
1 1 0
0 5 2
0 1 5
D2 1 11 4 6 D3 1 1 11 8
210
2 1 1
Dn x12
x22
x32
1
xn
xn2
( xi x j )
1 jin
x x x n1
n 1
n 1
1

线性代数考研讲义完整版

线性代数考研讲义完整版

线性代数考研讲义完整版Newly compiled on November 23, 2020考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1nxn=b1,a21x1+a22x2+…+a2nxn=b2,…………am1x1+am2x2+…+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b2=…=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由mn个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个mn 型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个45矩阵.对于上面的线性方程组,称矩阵a11 a12… a1na11a12… a1nb1A= a21 a22… a2n和(A|)= a21 a22… a2n b2…………………a m1 am2… amnam1am2… amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2, ,a n的向量可表示成a1(a1,a2, ,an)或 a2,┆an请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1n矩阵,右边是n1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个mn的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为1,2, ,n 时(它们都是表示为列的形式!)可记A=(1,2, ,n).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个mn的矩阵A和B可以相加(减),得到的和(差)仍是mn矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个mn的矩阵A与一个数c可以相乘,乘积仍为mn的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0 c=0 或A=0.转置:把一个mn的矩阵A行和列互换,得到的nm的矩阵称为A的转置,记作A T(或A).有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T表示行向量,当是行向量时, T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,c s是一组数,则称c 11+c22+…+css为1,2,…,s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|).(2)用(B|)判别解的情况:如果最下面的非零行为(0,0, ,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|)的零行,得到一个n×(n+1)矩阵(B0|0),并用初等行变换把它化为简单阶梯形矩阵(E|),则就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵A是阶梯形矩阵.(B) A是上三角矩阵A是阶梯形矩阵.(C) A是上三角矩阵A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12… a1na 21 a22… a2n… … … . a n1 a n2 … a nn如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 . a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33. a 31 a 32 a 33 一般地,一个n 阶行列式 a 11 a 12 … a 1na 21 a 22 … a 2n … … … a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,(436512)=3+2+3+2+0+0=10. 至此我们可以写出n 阶行列式的值: a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握. 3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | . ② 某一行(列)的公因子可提出. 于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如|,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0. ⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0. ⑦ 如果A 与B 都是方阵(不必同阶),则 A * = A O =|A ||B |. O B * B 范德蒙行列式:形如 1 1 1 … 1 a 1 a 2 a 3 … a na 12 a 22 a 32 … a 2…………a1n-i a2n-i a3n-i… ann-i的行列式(或其转置).它由a1,a2 ,a3,…,a n所决定,它的值等于因此范德蒙行列式不等于0 a1,a2 ,a3,…,a n两两不同.对于元素有规律的行列式(包括n阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D1/D, D2/D,,Dn/D),这里D是系数行列式的值, D i是把系数行列式的第i个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|)作初等行变换,使得A变为单位矩阵: (A|)(E|),就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x1 1 111 1 .1 1+x211 1 1+x31 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 1 2 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A | =2, |B |=3 ,求|A +B | . 例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z. 1 -z x+3 y y-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01) 2 2 2 2 0 -7 0 0 5 3 -2 2 3.几个n 阶行列式 两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a n b 1 c 2 0 … 0 0 证明 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出). 例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111nni i i i i n i i a c c c a b c c -+==-∑∏.… … … … b n … 0 c n提示: 只用对第1行展开(M 1i 都可直接求出). 另一个常见的n 阶行列式: 例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn i ii a b a b a b ++-=-=-∑(当ab 时).0 0 0 … a+b b 0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开. 4.关于克莱姆法则的题 例14 设有方程组x 1+x 2+x 3=a+b+c, ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等. (2)在此情况求解. 参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10). 例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12... a1n b11 b12... b1s c11 c12 (1)A= a21 a22… a2nB= b21b22… b2sC=AB=c21c22… c2s………………………a m1 am2… amn, bn1bn2… bns, cm1cm2… cms,则c ij =ai1b1j+ai2b2j+…+ainbnj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A0推不出B=C.(无左消去律)由BA=CA和A0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有: (AB )2=A 22AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ). 二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22 要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … … 0 0 … A n的矩阵称为准对角矩阵,其中A1,A2,…,A k都是方阵.两个准对角矩阵A10 ... 0 B1 0 0A= 0 A2... 0 , B= 0 B2 0………………0 0 …A k 0 0 …B k 如果类型相同,即A i和B i阶数相等,则A1B10 0AB = 0 A2B2… 0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是mn矩阵B是ns矩阵. A的列向量组为1,2,…,n,B的列向量组为1,2,…,s, AB 的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).② =(b1,b2,…,bn)T,则A= b11+b22+…+b nn.应用这两个性质可以得到:如果i=(b1i,b2i,…,b ni)T,则i=A I=b1i1+b2i2+…+b nin.即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系数就是B的第i个列向量i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A 的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(,,), C=(+2-,3-+,+2),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(ij):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s 列,设 B=(1,2,…,s),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s 个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0B=0;AB=ACB=C.(左消去律);BA=0B=0;BA=CAB=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=CB=A-1C. BA=CB=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆|A|0.证明“”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|0. (并且|A-1|=|A|-1.)“”因为|A|0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=EBA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… An1A*= A12 A22… An2=(Aij)T.………A 1n A2n… Amn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 =(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A= T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,,0,a)T, a<0, A=E-T, A-1=E+a-1 T,求a. (03三,四)④ n维向量=(1/2,0,,0,1/2)T, A=E- T, B=E+2 T,求AB. (95四)⑤ A=E- T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4设A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+42+93),求|B|.(05)例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,已知1,2,3|=a,求|1,2,3|.例7设A是3阶矩阵,是3维列向量,使得P=(,A,A2)可逆,并且A3=3A-2A2.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设1=(5,1,-5)T,2=(1,-3,2)T,3=(1,-2,1)T,矩阵A满足A=(4,3) T, A2=(7,-8) T, A3=(5,-5) T,1求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则|A|=1.例15 设矩阵A=(a ij)33满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆. 讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A T =1.(2)T =1 A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆 E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab0,证明(1) A-b E和B-a E都可逆.(2) A可逆 B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-EA n-2(A2-E)=A2-E A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s是一个n维向量组.如果n维向量等于1,2,…,s的一个线性组合,就说可以用1,2,…,s线性表示.如果n维向量组1,2,…,t中的每一个都可以可以用1,2,…,s线性表示,就说向量1,2,…,t可以用1,2,…,s线性表示.判别“是否可以用1,2,…,s线性表示表示方式是否唯一”就是问:向量方程x11+x22+…+xss=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义定' 设 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个部分组。

若(1)r i i i ααα,...,,21线性无关;(2)每个j α( j =1, 2, …, m )均可由 r i i i ααα,...,,21 线性表出,则 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个极大无关组。

义定'' 设 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个部分组。

若(1)r i i i ααα,...,,21线性无关;(2)对任意 j α(j =1, 2, …, m )均可由 ,,21i i ααr i α...,线性相关,则 r i i i ααα,...,,21是向量组 m ααα,...,,21的一个极大无关组。

例 已知向量组m s s ααααα,...,,,...,,121+。

假设每个j α(j = s +1, s +2, …, m )均可由 s ααα,...,,21线性表出,则秩{s ααα,...,,21}=秩{m s s ααααα,...,,,...,,121+}证明 设 秩{}s ααα,,, 21 =r ,任取 s ααα,...,,21的一个极大无关组 r i i i ααα,,,21 ,则 s ααα,...,,21可由 r i i i ααα,,,21 线性表出。

已知 m s s ααα,...,,21++可由s ααα,...,,21线性表出,故由传递性得 m s s ααα,...,,21++亦可由 r i i i ααα,,,21 线性表出。

于是,每个 j α ( j =1, 2, …, m ) 均可由 r i i i ααα,...,,21线性表出。

又r i i i ααα,,,21 线性无关,所以r i i i ααα,,,21 也是 m s s ααααα,...,,,...,,121+的一个极大无关组。

于是秩{m s s ααααα,...,,,...,,121+}=r 。

▌例 向量组的任意一个线性无关部分组都可扩充为整个向量组的一个极大无关组。

二、矩阵的秩例 考虑阶梯形矩阵,, , 0000000000022112222111211≠⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=rr rn rr n r n r a a a a a a a a a a a a A其行向量组为θααααα======+m r rn rr r n n a a a a a a a 12222112111), , ,0 , ,0(), , ,0() , , ,(。

因为 r ααα,,,21 是行向量组的极大无关组,故得A 的行向量组的秩==r 秩(A )。

结论 阶梯形矩阵的秩等于其行向量组的秩。

例 设 A 是43⨯矩阵。

对 A 按行分块,⎪⎪⎪⎭⎫ ⎝⎛=321αααA 。

对 A 作一次初等行变换得到矩阵A '⎪⎪⎪⎭⎫ ⎝⎛'''='=⎪⎪⎪⎭⎫ ⎝⎛+−−−→−+32131213312αααααααA A R R 。

因为 321,,ααα'''可由 321,,ααα线性表出,故秩{}≤''' ,, 321ααα秩{}321,, ααα,即A '的行向量组的秩 A ≤的行向量组的秩。

又A A R R =⎪⎪⎪⎭⎫ ⎝⎛''-''−−−−→−'-+3121)3(312αααα⎪⎪⎪⎭⎫⎝⎛=321ααα, 故A 的行向量组的秩 A '≤ 的行向量组的秩。

结论:矩阵的初等行变换不改变行向量组的秩。

定理 矩阵的秩等于其行向量组的秩,也等于其列向量组的秩。

例 判断向量组)5,0,3,2(),11,7,1,3(),0,5,4,1(321==--=ααα的线性相关性。

解 分别以向量 321,,ααα为行构造矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎪⎪⎭⎫ ⎝⎛=000012100541 5032117130541321行αααA所以,秩(A ) = 2,即向量组 321,,ααα的秩为2。

由此得 321,,ααα线性相关。

▌定理 设A 是方阵,则A 是可逆矩阵的充分必要条件是:A 的行(列)向量组线性无关。

例 已知向量组)9,3,1( ),4,2,1( ),1,1,1(321==ααα,证明:321,,ααα线性无关。

证明 令⎪⎪⎪⎭⎫ ⎝⎛==941321111],,[321αααA 。

容易验证 A 满秩,即 A 可逆,。

所以 321,,ααα线性无关。

▌例 已知向量组n βββ,,,21 ,求它的秩及一组极大无关组。

解 令 ],,,[21n A βββ =,设A A '−→−行(阶梯形)。

)1( 设 A '有 r 个非零行,则 秩r n =},,{1ββ ;)2( 设 A '的主元(各非零行的首非零元)在第,1j ,2j r j , 列,则 rj j j βββ,,,21是一个极大无关组。

▌例 已知向量组 ),9,8,2,5( ),1,3,1,1(21--==ββ),7,5,3,1( ),3,1,1,1(43--=--=ββ )7,2,3,1(5--=β,求向量组 521,,,βββ 的秩及其一个极大无关组。

解 分别以向量 521,,,βββ 为列构造矩阵],,,[521βββ =A⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎪⎭⎫ ⎝⎛--------=0000012000442701115177391251833312111151行。

所以,向量组 521,,,βββ 的秩为3,且 421,,βββ是一个极大无关组。

▌定理 设A 是m ×p 矩阵,B 是p ×n 矩阵,则秩(AB ) ≤ min {秩(A ),秩(B ) }向量组线性相关性判别方法的小结:1.利用齐次方程组有无非零解;2.利用矩阵的秩;3.利用线性表出;4.利用其他性质。

例 设,212221212111⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n b a b a b a b a b a b a b a b a b a A其中 ),,2,1 ( 0 ,n i b a i i =≠。

求 秩)(A 。

解(法一)利用初等变换:⎪⎪⎪⎪⎭⎫⎝⎛−→−00000012111 n b a b a b a A 行,故 秩)(A =1;(法二)利用行向量组秩的定义:存在一个线性无关的行向量),,,(121111n b a b a b a =α但任意两个行向量),,,( ),,,,(2121n j j j j n i i i i b a b a b a b a b a b a ==αα均线性相关,这是因为 θαα=-j i i j a a ,而j i a a ,不全为零。

故行向量组的秩为1,由此得 秩)(A =1;(法三)利用行向量组的极大无关组:存在一个线性无关的向量 1α,使任意一个行向量i α 均可由 1α线性表出,因为),,3,2( 11n i a a ii ==αα。

由此得,1α是行向量组的极大无关组。

故行向量组的秩为1,所以,秩)(A =1。

(法四)利用秩的性质:因为],,,[ 2121212221212111n n n n n n n n b b b a a a b a b a b a b a b a b a b a b a b a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎪⎭⎫⎝⎛=故得 秩)(A ≤1。

又 A ≠0,故 秩)(A ≥1。

于是,秩)(A =1。

▌例 设A 是m ×n 矩阵,B 是n ×m 矩阵,并且AB = I ,则B 的列向量组线性无关。

证明(法一)因为 AB = I ,所以秩(B )≥秩(AB ) = 秩(I m ) = m 。

又秩(B m n ⨯)≤min {n ,m }≤ m ,故 秩(B ) = m ,即 B 的列向量组的秩为 m ,恰等于列向量的个数,于是 B 的列向量组线性无关。

(法二)设 B 的列向量组为 m βββ,,,21 ,即],,,[21m B βββ =。

令θβββ=+++m m k k k 2211则上式可表为0 ],,,[2121521=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m m k k k B k k k βββ于是00212121==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A k k k k k k I k k k AB m m m即, ,0 ,021===m k k k由此得 m βββ,,,21 线性无关。

▌§2.3 齐次线性方程组解的结构齐次线性方程组)( 0**=AX 其中121000 , ,][⨯⨯⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==m n n m ij x x x X a A 。

令⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00,,,,21222122121111 θαααmn n n n m m a a a a a a a a a ,则方程组)(**可表为)( 2211'**=+++θαααn n x x x结论:方程组)(**有非零解 ⇔ n ααα,,,21 线性相关⇔ 秩)(A =秩{n ααα,,,21 } < n 。

定理 齐次线性方程组 0=AX 有非零解的充分必要条件是秩)(A < A 的列数=未知数的个数。

例 设⎪⎪⎪⎭⎫ ⎝⎛++=211113212211a a a a A ,且存在3阶非零方阵B ,使 BA =O 。

求a ;解 因 BA =O ,故 O B A TT =。

令][321βββ=TB ,则 321 , ,βββ均为齐次线性方程组 0=X A T 的解。

因 O B ≠,故存在 )31( ≤≤≠j j θβ。

于是,齐次线性方程组 0=X A T有非零解。

由此得,秩)(T A < A T 的列数=3,即秩)(A =秩)(TA < 3。

而⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎭⎫ ⎝⎛++=11003322102111211113212211a a a a a a a a a A 行故得,a = 1。

▌性质 设 21,X X 是齐次线性方程组 AX =0的任意两个解向量,1k 是任意常数,则有(1)21X X +是此方程组的解向量(2)11X k 是此方程组的解向量定义 设t X X X ,...,,21是齐次线性方程组0=AX 的t 个解向量。

相关文档
最新文档