通风阻力计算
矿井通风总阻力计算
华蓥市老岩湾煤业有限公司矿井通风总阻力计算沿着矿井通风容易时期和矿井通风困难时期的通风路线计算矿井通风总阻力。
通风摩擦阻力计算公式如下: h=23Q S P L a ⋅⋅⋅ 式中:h —— 通风摩擦阻力,Pa ;α—— 井巷摩擦阻力系数,N.S 2/m 4; L —— 井巷长度,m ; P —— 井巷净断面周长,m ; Q —— 通风井巷的风量,m 3/s ; S —— 井巷净断面面积,m 2; 通风局部阻力取同时期摩擦阻力的15%。
经计算,矿井通风容易时期采用中央分列式通风系统,其总阻力h 为573.99Pa ;矿井通风困难时期采用两翼对角式通风系统,其北风井和南平硐风井阻力分别为489.42Pa 、401.51Pa 。
(详见矿井通风阻力计算表5-2-2、表5-2-3、表5-2-4)。
五、对矿井通风状况的评价 计算矿井的风阻和通风等积孔a 、矿井通风容易时期采用中央分列式通风系统,矿井的总风阻R 易和矿井通风等积孔A 易为:R 易 =h 易/ Q 易2 =573.99÷30.42 =0.62N ·S 2/m 8 A 易 =易易h Q /19.1 =1.19×30.4÷99.573 =1.51m 2b 、矿井通风困难时期采用两翼对角式通风系统,其北风井的风阻R 1、通风等级孔A 1和南平硐风井的风阻R 2、通风等级孔A 2以及矿井的通风等积孔A 难为:R 1 =h 1/ Q 12 =489.42÷15.952 =1.92N ·S 2/m 8 A 1 =11/19.1h Q=1.19×15.95÷42.489 =0.86m 2 R 2 =h 2/ Q 22 =401.51÷12.552 =2.55N ·S 2/m 8 A 2 =22/19.1h Q=1.19×12.55÷51.401 =0.75 m 2A 难=()11111121)(19.1Q Q h Q h Q Q Q +++⨯=()55.1295.1551.40155.1242.48995.15)55.1295.15(19.1+⨯+⨯+⨯=1.6(m 2)式中: R 易-为矿井通风容易时期的矿井风阻,N ·S 2/m 8;A 易-为矿井通风容易时期的矿井通风等积孔,m 2; h 易―为通风容易时期的矿井通风阻力,Pa ; R 1-为北风井通风困难时期的矿井风阻,N ·S 2/m 8; A 1-为北风井通风困难时期的通风等积孔,m 2;h 1―为北风井通风困难时期的矿井通风阻力,Pa;Q1-为北风井通风困难时期的风量,(m3/s)R2-为南平硐风井通风困难时期的矿井风阻,N·S2/m8;A2-为南平硐风井通风困难时期的通风等积孔,m2;h 2―为南平硐风井通风困难时期的矿井通风阻力,Pa;Q2-南平硐风井通风困难时期的风量,(m3/s)A难-为矿井通风困难时期的总通风等级孔,(m2)经计算,矿井通风容易时期的风阻R易为0.62N·S2/m8,矿井通风等积孔A易为1.51m2,通风难易程度为中等。
通风管道阻力计算
通风管道阻力计算
通风管道阻力计算
空气在风管内流动时会产生两种阻力,一种是摩擦阻力,即空气本身的粘滞性和与管壁间的摩擦所产生的沿程能量损失;另一种是局部阻力,即空气流经管件和设备时由于流速和方向变化以及涡流所产生的比较集中的能量损失。
一、摩擦阻力
根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力可以按以下公式计算:
ΔPm=λν2ρl/8Rs
对于圆形风管,摩擦阻力计算公式可改写为:
ΔPm=λν2ρl/2D
圆形风管单位长度的摩擦阻力(比摩阻)为:
Rs=λν2ρ/2D
其中,λ为摩擦阻力系数,ν为风管内空气的平均流速,ρ为空气的密度,l为风管长度,Rs为风管的水力半径,f为管道中充满流体部分的横断面积,P为湿周(即风管的周长),D为圆形风管直径。
矩形风管的摩擦阻力计算需要先把矩形风管断面尺寸折算成相当的圆形风管直径(即当量直径),再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种。
二、局部阻力
当空气流动经过断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)和流量变化的管件(如三通、四通、风管的侧面送、排风口)时,会产生局部阻力。
局部阻力可以按以下公式计算:
Z=ξν2ρ/2
其中,ξ为局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应注意减小局部阻力。
为了达到这个目的,通常采用以下措施:尽量减少弯头,圆形风管弯头的曲率半径一般应大于(1~2)
倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;在矩形直角弯头中应设导流片。
矿井通风阻力计算说明
通风阻力计算说明一、风量计算根据采掘工作面配备和接替情况,1个综采工作面生产,1个安装工作面,11个掘进工作面、8个硐室均独立通风计算需要风量。
需风量按下列要求分别计算,并选用其中最大值。
{1}按区内所有作业场所实际需要风量的总和计算Q区=K区(ΣQ采+ΣQ掘+ΣQ硐+ΣQ它),m3/min式中:Q区—所有独立通风用风地点需风量之和,m3/minK区—风量不均衡系数,取值一般为1.10~1.15,取1.1ΣQ采—采煤工作面需风量之和,m3/minΣQ掘—掘进工作面需配风量之和,m3/minΣQ硐—独立通风硐室需风量之和,m3/minΣQ它—采掘工作面、硐室以外的其它作业场所和需要独立通风的巷道风量之和,m3/min。
(1)采煤工作面配风量采煤工作面,需风量按下列要求分别计算,并选取其中最大值。
①按瓦斯(二氧化碳)涌出量计算:Q采=100(67)×q采×K采通式中:Q采—采煤工作面风量,m3/min100(67)—单位瓦斯(二氧化碳)涌出量配风量,m3/min,以回风流瓦斯浓度1%或二氧化碳1.5%的换算值q采—采煤工作面回风巷风流中瓦斯或二氧化碳平均绝对涌出量,瓦斯绝对涌出量取4m3/min,二氧化碳绝对涌出量取1.2 m3/minK采通—采煤工作面瓦斯涌出不均衡系系数,一般K采通=1.2~1.6,取1.2Q采CH4=100×4×1.2=800m3/minQ采CO2=67×1.2×1.2=160.8m3/min②按工作面气温条件计算:Q采=60×70%×V采×S采×K高×K长式中:Q采—采煤工作面风量,m3/minV采—采煤工作面风速,根据采煤工作面空气温度与风速对应表,工作面温度为23℃左右,取1.4m/sS采—采煤工作面平均断面积,20m2K高—采煤工作面采高调整系数,采高>2.5及放顶煤面,取1.2K长—采煤工作面长度调整系数,工作面长度200m>180m,取1.3 Q采=60⨯0.7⨯1.4×20×1.2×1.3=1834.6m3/min③按采煤工作面每班工作最多人数计算:Q采=4N采式中:N采—采煤工作面同时工作的最多人数,取26人Q采=4⨯26=104m3/min④按风速进行验算选取上述最大值Q采=1834.6m3/min,取1835 m3/mina、按最低风速验算,采煤工作面的最低风量(Q采)Q采>15S采=15×20=300 m3/min式中:S采—采煤工作面平均断面积,取20m2b、按最高风速验算,采煤工作面的最高风量(Q采)Q采<240S采= 240×20=4800m3/min式中:S采—采煤工作面平均断面积,取20m2即:300<1966<4800,符合要求。
通风阻力计算公式汇总
通风阻力计算公式汇总通风阻力是流体在通过管道或设备时所经受的阻力。
在工程中,通风阻力的计算对于设计和优化通风系统至关重要。
下面是一些常用的通风阻力计算公式的汇总:1.管道阻力公式:管道阻力是通风系统中一个重要的组成部分。
下面是几种常见的管道阻力计算公式:-法氏方程公式:ΔP=(η*L/D)*(V^2/2g)其中,ΔP是管道阻力,η是比例系数(通常为0.02-0.05),L是管道长度,D是管道直径,V是流速,g是重力加速度。
-白寇厄尔公式:ΔP=η*(ρ*L/D)*(V^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
-弗里若克公式:ΔP=η1*(ρ1*L1/D1)*(V1^2/2)+η2*(ρ2*L2/D2)*(V2^2/2)+...+ηn*(ρn*Ln/Dn)*(Vn^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
以上公式可以根据具体问题中的参数进行计算,得到通风系统的管道阻力。
2.设备阻力公式:在通风系统中,除了管道阻力,设备也会产生阻力。
以下是几种常见的设备阻力计算公式:-弯头阻力:ΔP=ξ1*ρ*(V^2/2)其中,ξ是弯头阻力系数,常用值为0.25-1.0,ρ是流体密度,V是流速。
-扩散器阻力:ΔP=ξ2*(ρ*V^2/2)其中,ξ是扩散器阻力系数,常用值为0.09-0.35,ρ是流体密度,V是流速。
-突变阻力:ΔP=ξ3*(ρ*V^2/2)其中,ξ是突变阻力系数,常用值为1.5-10,ρ是流体密度,V是流速。
这些设备阻力公式可以帮助工程师根据具体设备的参数计算其阻力,从而优化通风系统设计。
3.阻力总和公式:在实际通风系统中,不仅仅有管道和设备阻力,还有其他因素如弯曲、分支、阻尼等会产生阻力。
以下是阻力总和公式的一个例子:ΔP=ΣΔP管道+ΣΔP设备+ΣΔP其他其中,ΔP是总阻力,ΣΔP管道表示管道阻力之和,ΣΔP设备表示设备阻力之和,ΣΔP其他表示其他因素的阻力之和。
通风阻力 计算公式汇总
1、 巷道几何参数的测算(1)梯形:断面积 SL=H L *B L 周长 U L(2) 半圆拱:断面积 S L =(H L -0.1073B L )*B L 周长 U L=3.84*(3)三心拱:断面积 S L =(HL-0.0867B L )*B L 周长 U L(4)圆形:断面积 S L =π*R 2 周长 U L =2*π*R(5)矩形:断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2U L —巷道断面周长,m ;H L —巷道断面全高,m ;B L —巷道断面宽度或腰线宽度,m ;R —巷道断面圆半径,m ;π—圆周率,取3.14159。
以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。
2、 巷道内风量的计算(1)两测点之间巷道通过的风量按如下原则确定:Q=(Q i +Q i+1)/2 , m 3/min(2)井巷内风量、风速按以下公式计算:Q L =S L *V L , m 3/minV L =((S-0.4)/S )*(a X+ b ) , m 3/min式中: Q L --井巷内通过的风量,m 3/min ;S L (S )--井巷断面面积,m 2V L --井巷内平均风速,m/minX —表风速,m/mina 、b —风表校正系数3 井巷内空气密度的计算湿空气密度用下列公式计算:i b i=d0.0348(Pi 0.379P )273.15+t ϕ-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ϕ≠0), kg/ m 3Pi --测点i 处空气的绝对静压(大气压力),Pa ;d t --测点i 处空气的干温度,℃;i ϕ--测点i 处空气的相对湿度,%;P b —测点i 处d t 空气温度下的饱和水蒸气压力,Pa 。
4 井巷断面速压的计算井巷断面的速压由其空气密度和平均风速确定,即:v i L 2h =(V )/2ρ式中:v h --巷道断面的速压,Pa ;i ρ--巷道断面的空气密度,Kg/ m 3L V --巷道断面的平均风速,m/s ;5 井巷通风阻力计算井巷两端断面之间的通风阻力按式(1)计算,即:i-j s(i,j)z(i,j)v(i,j)h h h +h =+ Pa (1)式中:h i-j —井巷始末测点间的通风阻力,Pa ;s(i,j)h —始断面静压与末断面静压之差,Pa ;即:s(i,j)i j i j h 9.81[(B -B )-(B '-B ')]=i B 、B j —分别为始断面、末断面静压差读数,mmH 2O ;i B '、j B '—分别为读取i B 、B j 时基点气压计静压差读数,mmH 2O ;z(i,j)h --始断面位压与末断面位压之差,Pa ;即:z(i,j)i j i j h =9.81(Z -Z )(+)/2ρρi ρ、j ρ --分别为始断面、末断面空气密度,Kg/m 3; i Z 、Z j —分别为始、末测点标高,m ;v(i,j)h --始断面速压与末断面速压之差,Pa ;6 矿井通风总阻力计算从进风井口测点到通风机前风洞内测点之间的全井通风阻力h ,等于任意一条风路线上各分支通风阻力之和,即:i j h h -=∑ ,Pa7 井巷风阻R L 的计算任意一条井巷的风阻值R L 大小用下列公式计算:2L L L R =h /Q , Kg/m 7; 式中:R L ---任一条井巷的风阻,Kg/m 7;h L---该条井巷的通风阻力,Pa ;QL —该条井巷通过的风量,m 3/s 。
通风工程管道阻力计算
通风工程管道阻力计算通风工程中的管道阻力计算是重要的一项工作,它直接关系到系统的通风效果和节能效果。
本文将详细介绍通风工程中的管道阻力计算方法及其影响因素。
一、管道阻力计算方法:通风系统中的管道阻力是指空气在管道中流动时所遇到的阻力。
通常采用以下公式计算:ΔP=K×L×ρ×(V/3600)^2(1)其中,ΔP为管道阻力(Pa),K为阻力系数(Pa/m),L为管道长度(m),ρ为空气密度(kg/m³),V为风量(m³/h)。
阻力系数K是根据流量速度(m/s)和管道直径(m)来计算的。
对于圆形截面的管道,可以使用以下公式计算:K=(0.51+0.002D)×(V/D)^2(2)其中,D为管道直径(m),V为流量速度(m/s)。
二、影响因素:1.管道材质:不同材质的管道具有不同的内表面粗糙度,粗糙度越大,摩擦阻力越大,导致管道阻力增加。
2.管道长度:管道长度越长,空气流动经过的阻力表面越多,阻力增加。
3.管道直径:管道直径越大,流通面积越大,阻力减小。
4.管道弯头和弯管:弯头和弯管的存在会增加管道的阻力,尤其是对空气流动有较大影响的90度弯头。
5.风量:风量越大,管道阻力越大。
三、实际计算:1.根据风量和设计条件选择管道直径。
2.根据管道直径计算阻力系数K。
3.根据管道直径和长度计算总阻力。
4.根据管道阻力和所需风压,判断所选管道是否满足要求。
5.根据需要,可以进行多次迭代计算,直到找到满足要求的管道尺寸。
四、优化策略:1.尽量选择材质光滑、粗糙度低的管道,以减小阻力。
2.在管道设计中尽量减少弯头和弯管的使用,或者采取流线型弯头,以减小阻力。
3.如果风量较大,可以考虑分段设计,通过增加出风口数量来减小单个风口的风量,从而减小管道阻力。
4.在实际计算中可根据实验数据进行修正,以提高计算精度。
总结:通风工程中的管道阻力计算是一个复杂的过程,需要综合考虑管道材质、直径、长度、弯头等因素,并进行科学合理的计算和优化。
局部通风阻力计算
矿井通风难易程度分级
矿井通风难易程度 容易 中等 困难 矿井总风阻 Rm/Ns2· m-8 <0.355 0.355—1.420 >1.420 等积孔 A/m2 >2 1—2 <1
2
3
4
5
6
风流点压力测定
1. 风流中任一点 i 的动压、绝对静压和绝对全压的关系:
hvi=Pti-Pi
2. 无论是压入式还是抽出式通风,任一点点相对全压总是等于相对 静压与动压的代数和。
矿井总风阻与矿井等级孔
公式:
Rm=
A=
h Rm Q2 1.19 Rm
,
Ns2/m8 , m2
A=0.38
Rm-------矿井总风阻。Ns2/m8 hRm-------矿井通风总阻力。pa
Q hZ
, m2
1
Q-------矿井总风量。m3/s hZ -------矿井通风阻力。mmH2o A-------矿井等级孔。m2
局部通风阻力计算
公式:
hf =а R f =а
LU S3
LU S3
Q2
, pa
, Kg/m7Βιβλιοθήκη 或 Ns2/m8R f -------巷道的摩擦风阻。Kg/m7 或 Ns2/m8。 а ----摩擦阻力系数。Kg/m3 或 Ns2/m4。 L-------风道长度。m S-------井巷断面积。m2 U-------井巷断面周积。m Q-------巷道中风量。m3/s ������������ --------井巷摩擦阻力。Pa
hti=hi-hvi |hti|=|hi|-hvi;|hti|<|hi|
7
8
人防通风阻力计算书
防护单元通风阻力计算书清洁通风阻力Q H① 通风系统(竖井、管道)的阻力)(K L P H +⨯⨯=1m 1 =0.6*60*(1+5)=216Pa② 消波设施的阻力2H (包括悬板活门h H 和进风扩散k H )悬板活门在最大风量(本工程8000m3/h )时的通风阻力为100Pa ,实际进风量为7500m3/h ,通风阻力与风速或风量的平方成正比,所以有h H =87.9Pa 。
进风扩散室的阻力2/v 2c h ρξ=H ,c ξ=0.5,空气密度ρ=1.2kg/m3,清洁新风量7500m3/h ,流经D600风管时风速为7.37m/s ,计算后得h H =16.3Pa 。
k h 2H H H +==87.9+16.3=104.2Pa③ 油网滤尘器的阻力3H本工程清洁通风量7500m3/h ,设有5个油网滤尘器,每个流经风量为1500m3/h ,估算其阻力为3H =80Pa (参考手册P48)321H H H ++=Q H =216+104.2+80=400.2Pa='QH 1.15Q H =460.23Pa滤毒通风:滤毒通风阻力D H① 通风系统(竖井、管道)的阻力)(K L P H +⨯⨯=1m 1 =0.2*60*(1+5)=72Pa② 消波设施的阻力2H (包括悬板活门h H 和进风扩散k H )悬板活门在最大风量(本工程8000m3/h )时的通风阻力为100Pa ,实际进风量为3000m3/h ,通风阻力与风速或风量的平方成正比,所以有h H =13.9Pa 。
进风扩散室的阻力2/v 2c h ρξ=H ,c ξ=0.5,空气密度ρ=1.2kg/m3,滤毒新风量3000m3/h ,流经D400风管时风速为6.64m/s ,计算后得h H =13.3Pa 。
k h 2H H H ===13.9+13.3=27.2Pa③ 油网滤尘器的阻力3H本工程清洁通风量3000m3/h ,设有5个油网滤尘器,每个流经风量为600m3/h ,估算其阻力为3H =19.6Pa (参考手册P48)④ 过滤吸收器的阻力4HRFP-1000型过滤吸收器的阻力为4H =850Pa (参考手册P50)4321H H H H +++=D H =72+27.2+19.6+850=968.8Pa='DH 1.15D H =1114.1Pa 选择电动手摇风机清洁通风风压750Pa ,滤毒通风风压1250Pa ,满足设计要求。
通风管道阻力的计算与公式
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。
矿井通风阻力及风机静压负压全压及矿井主扇风机选型计算
矿井通风阻力及风机静压负压全压及矿井主扇风机选型计算矿井通风是矿山安全生产的重要任务之一,而矿井通风阻力及风机选型是矿井通风系统设计的核心内容。
本文将从通风阻力、风机静压、负压和全压以及矿井主扇风机选型计算等方面进行详细介绍。
1.通风阻力计算通风阻力是指矿井通风过程中空气流动所受到的阻碍力,其大小直接影响风机的工作情况和通风系统的运行效果。
通风阻力的计算依据是矿井通风管道的布置、风速、管道长度、管道截面积、矿井皮摩阻、局部阻力等因素。
通风阻力的计算公式为:ΣPi=Σρi*Li/ηi+ΣK其中,ΣPi表示总阻力,Σρi表示各段通风管道的阻力,Li表示各段管道长度,ηi表示各段电气动力的效率,ΣK表示其他的局部阻力等。
2.风机静压、负压和全压计算风机静压、负压和全压是矿井通风过程中的重要参数,用来衡量风机的出风压力和系统的阻力。
风机静压是指风机入口处的压力,其公式为:Ps=Pd+ΔPm其中,Ps表示风机静压,Pd表示大气压力,ΔPm表示气流动能损失压力。
负压是指矿井中低气压的情况,其公式为:Pn=Pd-ΔPm全压是指通风系统中的总压力,其公式为:Pt=Ps-Pn矿井主扇风机是矿井通风系统中的核心设备,其选型计算包括风机功率、扬程、风量等参数的确定。
风机功率的计算公式为:P=Q*Pt/102*η其中,P表示风机功率,Q表示风机的风量,Pt表示通风系统的全压,η表示风机的效率。
扬程的计算公式为:H=Pt/ρg其中,H表示风机的扬程,ρ表示空气的密度,g表示重力加速度。
风量的计算公式为:Q=n*V其中,Q表示风机的风量,n表示风机的转速,V表示风机的容积。
综上所述,通风阻力及风机静压、负压、全压以及矿井主扇风机选型计算是矿井通风系统设计的重要内容。
通过合理计算和选型,可以确保矿井通风系统的稳定运行和高效工作,保障矿山的安全生产。
隧道通风风管沿程阻力计算公式
隧道通风风管沿程阻力计算公式
隧道通风风管沿程阻力的计算公式通常可以使用以下公式进行近似计算:
阻力= (0.5 * ρ * V^2 * L * f) / A
其中,阻力为风管沿程阻力;
ρ为空气密度;
V为风速;
L为风管长度;
f为阻力系数,取决于风管的形状和粗糙度;
A为风管的横截面积。
需要注意的是,这个公式只是一个近似的计算公式,真实的阻力还会受到风管内部的摩擦阻力、风管的角度、弯头和分支等因素的影响。
因此,在实际应用中,可能需要根据具体情况对阻力进行进一步修正和计算。
另外,为了保证安全,通风设计时还需要考虑其他因素,如排烟和新风补充等。
请在实际工程中参考相关的通风设计规范。
局部通风阻力计算
局部通风阻力计算局部通风阻力风算公式:hf=аLUS3Q2 , pa728Rf=аLUS3 , Kg/m或Ns/m728Rf-------巷道的摩擦阻。
风风风Kg/m或Ns/m。
324а----摩擦阻力系。
数Kg/m或Ns/m。
L-------风风风风道度。
m2S-------井巷断面。
风风mU-------井巷断面周。
风风m3Q-------巷道中量。
风风风m/shf--------井巷摩擦阻力。
Pa风井风风阻风井等风孔与公式,28R=hRmQ2 , Ns/mm2A=119Rm. , m2A=038QhZ. , m28R-------风风风风风井阻。
Ns/mmh-------风风风风风风井通阻力。
paRm3Q-------风风风风风井量。
m/s hZ-------风风风风风井通阻力。
mmHo22A-------风风风风井等孔。
m 矿矿矿矿矿矿矿矿井通易程度分2-82风风风风风风井通易程度风风风风井阻R/Ns?m等孔风风A/mm容易<0.355>2中等0.355—1.4201—2困风>1.420<112345风流点风力风定1.风流中任一点i的风风、风风风和风风全风的风系,静h=P-Pvitii2.无风是风入式风是抽出式通风~任一点点相风全风风是等于相风风风风风的静与代和。
数h=h-htiivi|h|=|h|-h|h|<|h|tiivi~tii67。
关于通风管道阻力的计算与公式和方法
关于通风管道阻力的计算与公式和方法通风管道阻力是指空气在管道内流动过程中所克服的运动阻力,计算和求解通风管道阻力是工程设计中非常重要的一项内容。
下面将介绍通风管道阻力的计算公式和方法。
一、计算公式:通风管道阻力的计算公式一般可以分为两种情况:对于圆形管道,采用简化计算公式;对于非圆形管道,一般采用雷诺数公式或进口流量公式。
1.圆形管道的简化计算公式:(1)流量公式:Q=πd²V/4其中,Q为流量,d为管道直径,V为流速。
(2)雷诺数公式:Re=dVρ/μ其中,Re为雷诺数,ρ为空气密度,μ为空气动力粘度。
(3)彭伯托公式:ΔP=KQ²其中,ΔP为管道阻力,K为阻力系数,Q为流量。
2.非圆形管道的计算公式:非圆形管道的计算公式相对复杂,一般需要根据具体的几何形状和流速情况进行求解。
二、计算方法:通风管道阻力的计算方法主要有以下几种:1.试算法:试算法是通过对不同管道直径和流速的组合进行试算,根据实测数据绘制函数曲线,然后通过函数曲线来计算阻力。
这种方法相对简单易行,适用于不需要精确计算的情况。
2.实测法:实测法是通过在实际通风系统中进行流量和压力的实测,然后根据实测数据来计算阻力。
这种方法的计算结果较为准确,但需要实际设备和条件的支持。
3.数值模拟法:数值模拟法是利用计算机进行数值模拟,通过对通风系统进行建模,并利用数值方法求解流场和压力场分布,从而计算阻力。
这种方法的计算结果精度较高,但需要一定的计算资源和专业软件的支持。
4.经验公式法:经验公式法是通过总结和归纳大量实测数据,得出经验公式来计算阻力。
这种方法适用于一般工程设计情况下的快速计算,但精度相对较低。
三、影响因素:通风管道阻力的计算还需要考虑一些影响因素,如管道长度、管道直径、流速、管道材料、管道内壁粗糙度等。
不同的影响因素会对通风管道阻力产生不同程度的影响,因此在计算阻力时需要综合考虑。
综上所述,通风管道阻力的计算需要根据具体的管道形状和流动条件选择合适的计算公式和方法,并考虑影响因素来进行精确计算。
通风管道阻力计算
通风管道阻力计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,m;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
风机计算-通风管道阻力计算
通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
并联通风阻力计算公式
并联通风阻力计算公式
并联通风阻力的计算公式可以通过以下方式进行推导和计算。
首先,通风阻力是指空气在物体表面流动时所产生的阻力。
在并联通风阻力的情况下,多个物体同时受到空气流动的影响,我们可以利用以下公式来计算并联通风阻力:
1. 对于两个物体的并联通风阻力:
1/R_parallel = 1/R1 + 1/R2。
其中,R_parallel代表并联通风阻力,R1和R2分别代表两个物体的通风阻力。
这个公式基于并联电阻的计算方式,将通风阻力视为电阻,通过倒数的方式来计算并联通风阻力。
2. 对于多个物体的并联通风阻力:
1/R_parallel = 1/R1 + 1/R2 + 1/R3 + ... + 1/Rn.
在这个公式中,R1、R2直到Rn代表每个物体的通风阻力,通过计算它们的倒数之和来得到并联通风阻力。
需要注意的是,以上公式是基于假设各个物体之间的通风阻力相互独立的情况下得出的。
在实际应用中,还需要考虑物体之间的相互影响以及空气流动的复杂性。
因此,在工程实践中,通常会进行实验测量或者利用计算流体力学(CFD)等方法来更准确地计算并联通风阻力。
综上所述,通过以上公式和方法,我们可以计算出并联通风阻力,但在实际应用中需要考虑更多因素以得出准确的结果。
矿井通风阻力计算方法
矿井通风阻力第一节通风阻力产生的原因当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。
井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。
一、风流流态(以管道流为例)同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。
当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。
当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。
(降低风速的原因)(二)、巷道风速分布由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。
在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。
在层流区以外,为紊流区。
从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。
巷壁愈光滑,断面上风速分布愈均匀。
第二节摩擦阻力与局部阻力的计算一、摩擦阻力风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。
由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算:Hf=λ×L/d×ρν2/2 paλ——摩擦阻力系数。
L——风道长度,md——圆形风管直径,非圆形管用当量直径;ρ——空气密度,kg/m3ν2——断面平均风速,m/s;1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。
因井下多为紊流,故不详细叙述。
2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为:H f =α×LU/S3×Q2 =Rf×Q2 paRf=α×LU/S3α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9.8N·s2/m4L、U——巷道长度、周长,单位m;S——巷道断面积,m2Q——风量,单位m/sRf——摩擦风阻,对于已给定的井巷,L,U,S都为已知数,故可把上式中的α,L,U,S 归结为一个参数Rf,其单位为:kg/m7 或 N·s2/m83、井巷摩擦阻力计算方法新建矿井:查表得α→ hf → Rf生产矿井:已测定的hf → Rf→α,再由α→ hf→ Rf二、局部阻力由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。