直线的参数方程两种形式学案

合集下载

高中数学必修4《直线的参数方程》导学案

高中数学必修4《直线的参数方程》导学案

§2.3 直线的参数方程1,了解直线参数方程的条件及参数的意义2,能根据直线的几何条件,写出直线的参数方程及参数的意义 3,通过观察、探索、发现的创造性过程,培养创新意识。

【重点、难点】\教学重点:曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程. 二、学习过程 【情景创设】1.写出圆方程的标准式和对应的参数方程。

圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数)(2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)2.写出椭圆参数方程.3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参 【导入新课】1、问题的提出:一条直线L 的倾斜角是030,并且经过点P (2,3),如何描述直线L 上任意点的位置呢?如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢?2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的参数方程 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)三 、典例分析 1、直线)(sin cos 为参数θθθ⎩⎨⎧==t y t x 与圆)(sin 2cos 24为参数ϕϕϕ⎩⎨⎧=+=y x 相切,那么直线的倾斜角为(A )A .6π或65πB .4π或43πC .3π或32πD .6π-或65π-2、(2009广东理)(坐标系与参数方程选做题)若直线112,:()2.x t l t y kt =-⎧⎨=+⎩为参数与直线2,:12.x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = .【变式拓展】(2009天津理)设直线1l 的参数方程为113x ty t=+⎧⎨=+⎩(t 为参数),直线2l 的方程为y=3x+4则1l 与2l 的距离为_______四、总结反思1,参数方程化为普通方程的过程就是消参过程常见方法有三种: (1) 代入法:利用解方程的技巧求出参数t ,然后代入消去参数 (2) 三角法:利用三角恒等式消去参数(3) 整体消元法:根据参数方程本身的结构特征,从整体上消去。

高二数学教案:直线的参数方程学案-学习文档

高二数学教案:直线的参数方程学案-学习文档

高二数学教案:直线的参数方程学案第06课时2、2、3 直线的参数方程学习目标1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程一、学前准备复习:1、若由共线,则存在实数,使得,2、设为方向上的,则 =︱︱ ;3、经过点,倾斜角为的直线的普通方程为。

二、新课导学◆探究新知(预习教材P35~P39,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则 = ,而直线的单位方向向量因为,所以存在实数,使得 = ,即有,因此,经过点,倾斜角为的直线的参数方程为:2.方程中参数的几何意义是什么?◆应用示例例1.已知直线与抛物线交于A、B两点,求线段AB的长和点到A ,B两点的距离之积。

(教材P36例1)解:例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材P37例2)解:◆反馈练习1.直线上两点A ,B对应的参数值为,则 =( )A、0B、C、4D、22.设直线经过点,倾斜角为,(1)求直线的参数方程;(2)求直线和直线的交点到点的距离;(3)求直线和圆的两个交点到点的距离的和与积。

三、总结提升◆本节小结1.本节学习了哪些内容?答:1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价一、自我评价你完成本节导学案的情况为( )A.很好B.较好C. 一般D.较差课后作业1. 已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。

2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程3.过抛物线的焦点作倾斜角为的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

直线的参数方程及其应用学案

直线的参数方程及其应用学案

直线的参数方程及其应用学案一、直线的参数方程定义:直线是平面上的一种图形,可以用直线上的一个点和方向来唯一确定。

通过参数方程,可以将直线的方程转化为参数的形式。

x = x0 + aty = y0 + bt其中(x0,y0)为直线上的一个点,a和b为直线的方向向量。

二、直线参数方程的应用:1.直线的点线距离:直线的一般方程为Ax+By+C=0,点(x0,y0)到直线的距离为:d=,Ax0+By0+C,/√(A^2+B^2)利用直线的参数方程,可以将点线距离公式转化为参数的形式:d=,(a,b)×(x0-x,y0-y),/√(a^2+b^2)其中,(a,b)为直线的方向向量,(x,y)为直线上的点坐标。

2.直线的夹角:直线的夹角是指两条直线之间的夹角,可以通过直线的方向向量来求解。

直线的方向向量为(a,b)和(c,d),夹角θ的余弦公式为:cosθ = (a * c + b * d) / (√(a^2 + b^2) * √(c^2 + d^2))3.直线的平行与垂直关系:两条直线平行或垂直的条件为,它们的方向向量成比例或互相垂直。

假设直线的方向向量分别为(a,b)和(c,d),则有以下判断条件:-平行关系:a*d-b*c=0;-垂直关系:a*c+b*d=0。

4.直线的位置关系:两条直线的位置关系可以通过它们的方向向量和一个公共点来判断。

-相交关系:两条直线的方向向量不成比例,且它们通过一个公共点;-重合关系:两条直线的方向向量成比例,且它们通过无穷多个公共点;-平行关系:两条直线的方向向量成比例,且它们不通过任何公共点。

三、直线参数方程的解题步骤:1.根据已知条件确定直线的方向向量(a,b);2.根据直线上的一个点(x0,y0)和方向向量(a,b),写出直线的参数方程;3.根据具体的问题要求,进行参数的取值范围限制;4.根据参数方程求解具体的点坐标,或利用参数方程进行相关计算。

四、直线参数方程的例题分析:例题1:已知直线L1的一个点为A(2,3),方向向量为(1,-2),求直线L1与直线L2:x=3t+1,y=2t-1的夹角。

直线参数方程教案

直线参数方程教案

直线参数方程教案教案标题:直线参数方程教案教学目标:1. 理解直线的参数方程表示方法;2. 掌握求解直线参数方程的方法;3. 能够应用直线参数方程解决实际问题。

教学准备:1. 教师准备:教学课件、黑板、彩色粉笔、直尺、计算器等;2. 学生准备:纸、铅笔、直尺、计算器等。

教学过程:一、导入(5分钟)1. 教师通过引入直线方程的概念,提醒学生之前学习过的直线方程形式;2. 引导学生思考,直线是否可以用参数方程来表示。

二、讲解直线参数方程的概念(10分钟)1. 教师通过示意图,引导学生理解参数方程的概念;2. 解释直线参数方程的定义和意义;3. 提供直线参数方程的一般形式:x = x₁ + at, y = y₁ + bt,并解释各个参数的含义。

三、求解直线参数方程的步骤(15分钟)1. 教师通过示例,详细讲解求解直线参数方程的步骤;2. 强调确定直线上的一点和直线的方向向量的重要性;3. 指导学生如何通过已知条件确定直线上的一点和直线的方向向量。

四、练习与讨论(15分钟)1. 学生个人或小组完成练习题,求解给定直线的参数方程;2. 学生互相讨论解题思路和答案,教师进行指导和纠正。

五、应用实例(10分钟)1. 教师提供一个实际问题,引导学生将其转化为直线参数方程的求解;2. 学生个人或小组完成实际问题的求解,并展示解题过程和答案。

六、总结与拓展(5分钟)1. 教师对本节课的内容进行总结,强调直线参数方程的重要性和应用;2. 引导学生思考,直线参数方程在其他数学领域的应用。

七、作业布置(5分钟)1. 布置相关作业,巩固直线参数方程的求解方法;2. 鼓励学生自主拓展,寻找更多直线参数方程的应用实例。

教学反思:教案中通过导入、讲解、练习、应用等环节,全面引导学生理解和掌握直线参数方程的概念、求解方法和应用实例。

通过练习和应用实例的训练,能够提高学生对直线参数方程的理解和运用能力。

同时,鼓励学生自主拓展,培养学生对数学知识的独立思考和应用能力。

第16-17节直线的参数方程教案

第16-17节直线的参数方程教案

第16、17节:直线的参数方程(1)(2)教学目标:1.了解直线的参数方程的推导过程,进一步理解参数方程的重要性;2.体会参数方程在解题中的应用;3.通过本节学习,进一步明确求曲线的参数方程的一般步骤。

教学重点:直线的参数方程的推导过程及其参数方程在解题中的应用。

教学难点:直线的参数方程的推导过程。

授课类型:新授课教学过程:一、复习引入:我们学过的直线的普通方程都有哪些?1.点斜式:2.斜截式:3.两点式:4.截距式:5.一般式:二.新课讲解:经过点M 0(x 0,y 0),倾斜角为α)2(πα≠的直线l 的普通方程是y-y 0=tan α(x-x 0),怎样建立直线l 的参数方程呢?经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是为参数)t t y y t x x (.sin ,cos 00⎩⎨⎧+=+=αα 思考:参数方程中t 的几何意义是什么?重合。

与点则点,的方向向下;若,则的方向向上;若则,的方向总是向上,若的单位方向向量直线000M M 0t M M 0t M M 0t e l ,=<>=t 三.例题讲解21.:10l x y y x +-==例已知直线与抛物线交于A,B 两点,求线段AB 的长度和点M(-1,2)到A,B两点的距离之积。

探究:思考:例2的解法对一般圆锥曲线适用吗?把“中点”改为“三等分点”,直线l 的方程怎样求?例3.当前台风中心P 在某海滨城市O 向东300Km 处生成,并以40km/h 的速度向西偏北45度方向移动.已知距台风中心250km 以内的地方都属于台风侵袭的范围,那么经过多长时间后该城市开始受到台风侵袭?12121212(),,.(1)2y f x M M t t M M M M M t =直线与曲线交于两点,对应的参数分别为曲线的弦的长是多少?()线段的中点对应的参数的值是多少?2214,y A B +=2x 例。

经过点M(2,1)作直线L ,交椭圆16于两点。

《直线的参数方程》教案

《直线的参数方程》教案

《直线的参数方程》教案(第1课时)一、【教学目标】1、知识与技能:能根据直线的几何条件,选择参数写出直线的参数方程;能比较深刻的理解直线参数方程中参数t的几何意义并初步应用;2、过程与方法:启发引导→讨论探究→归纳概括→简单应用3、情感态度价值观:在探求直线参数方程中注重锻炼学生的发散式思维,在探究活动中培养学生思考问题的严密性和概括能力.二、【教学重点、难点】重点:联系向量知识写出直线的参数方程,并理解参数的几何意义;难点:从直线的几何条件联想到向量;参数t的几何意义及简单应用的探究.三、【教学方法与手段】启发引导→讨论探究→归纳概括→简单应用四、【教学过程】(一)复习引入1、在平面直角坐标系中,确定一条直线的几何条件是什么?2、根据直线的几何条件,你认为用哪个几何条件来建立参数方程比较好?3、根据直线的这个几何条件,你认为应当怎样选择参数?(二) 任务一:探求直线的参数方程1.我们知道过定点000(,)M x y ,且倾斜角为α(2πα≠)的直线l 可以唯一确定,其普通方程是00tan ()y y x x α-=-.2.其参数方程如何建立呢?引导学生思考:倾斜角可以刻画直线的方向,那么能否换一个量来刻画直线的方向呢?从而引进直线l 的单位方向向量(c o s ,s i n ),[e αααπ=∈.又000(,)M M x x y y =--,0//M M e ,由向量共线定理的坐标表示易知存在实数t R ∈,使得00(,)(cos ,sin ),x x y y t αα--=化简得直线的参数方程为(三)梳理归纳(1)直线的参数方程中的变量和常量;(2)直线参数方程的形式;(3) 参数t 的取值范围是什么?(4) 参数t 的意义是什么? (问而不答,通过探究表让学生自己探究,见附页){00cos ,(t )sin ,x x t y y t αα=+=+为参数随堂检测:(四) 探究参数的几何意义及简单应用梳理归纳:参数t 的意义主要体现在2个方面:①t 的大小(即绝对值)等于0M M 的长度(即0M 与M 的距离); ②t 的正负决定了0M M 的方向.(五)、任务二:例题讲解通过例题数学生对直线参数方程以及参数t 的几何意义理解更清楚,如下例。

直线参数方程课时优秀教案

直线参数方程课时优秀教案

直线参数方程(第一课时)学案目标点击:1.掌握直线参数方程地标准形式和一般形式,理解参数地几何意义; 2.熟悉直线地参数方程与普通方程之间地互化;基础知识点击:1、直线参数方程地标准式(1)过点P 0(00,y x ),倾斜角为α地直线l 地参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 地几何意义:t 表示有向线段0p p u u u u r 地数量,P(y x ,) 为直线上任意一点.则0p p u u u u r=t ∣0p p u u u u r∣=∣t ∣(2)若P 1、P 2是直线上两点,所对应地参数分别为t 1、t 2,则1p p u u u r =t 2-t 1∣1p p u u u r∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上地点,所对应地参数分别为t 1、t 2、t 3则P 1P 2中点P 3地参数为t 3=221tt +,∣P 0P 3∣=221t t +(4)若P 0为P 1P 2地中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程地一般式过点P 0(00,y x ),斜率为abk =地直线地参数方程是 ⎩⎨⎧+=+=bty y atx x 00 (t 为参数) 一、直线地参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α地直线l设点P(y x ,)是直线l 上任意一点,直线L 地正方向)过点P 作y 轴地平行线,过P 0轴地平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -= Q P =0y y -∴0y y -=t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 求地直线l 地参数方程∵P 0P =t ,t 为参数,t 知点P 0(00,y x )到点 P(y x ,)P在点P 0地上方;2.当t =0时,点P 与点P 0重合;3.当t<0时,点P 在点P 0地下方;x l特别地,若直线l 地倾斜角α=0时,直线l⎧+=0tx x ① 当t>0时,点P 在点P 0地右侧; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0地左侧; 问题2:直线l 上地点与对应地参数t 是不是一对应关系?我们把直线l 看作是实数轴,以直线l 向上地方向为正方向,以定点P 0原坐标系地单位长为单位长,这样参数t 数轴上地点P 建立了 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t ∣问题4:若P 0为直线l 上两点P 1、P 2地中点,1、t 2 ,则t 1、t 2之间有何关系?根据直线l P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2∴|P 1P |=|P 2P | P 1P =-P 2P ,即t 1=-t 2, t 1t 2一般地,若P 1、P 2、P 3是直线l 别为t 1、t 2、t 3,P 3为P 1、P 2地中点则t 3=221t t +(∵P 1P 3=-P 2P 3, 根据直线l 参数方程t ∴P 1P 3= t 3-t 1,P 2P 3=t 3-t 2,∴t 3-t 1=-(t 3-t 2,) )基础知识点拨:1、参数方程与普通方程地互化例1:化直线1l 地普通方程13-+y x =0为参数方程,并说明参数地几何意 义,说明∣t ∣地几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33设倾斜角为α,tg α=-33,α=π65, cos α =-23, sin α=211l 地参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 (t 为参数) t 是直线1l 上定点M 0(1,0)到t 对应地点M(y x ,)地有向线段M M 0地数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0(1,0)到t 对应地点M(y x ,)地有向线段MM 0地长.点拨:求直线地参数方程先确定定点,再求倾斜角,注意参数地几何意义.例2:化直线2l 地参数方程⎩⎨⎧+=+-= t313y tx (t 为参数)为普通方程,并求倾斜角,x x说明∣t ∣地几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t31(1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式)可见k=3, tg α=3,倾斜角α=3π普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x∣t ∣是定点M 0(3,1)到t 对应地点M(y x ,)地有向线段M M 0地长地一半.点拨:注意在例1、例2中,参数t 地几何意义是不同地,直线1l 地参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=ty t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程地标准形式,(-23)2+(21)2=1, t 地几何意义是有向线段M M 0地数量.直线2l 地参数方程为⎩⎨⎧+=+-= t 313y tx 是非标准地形式,12+(3)2=4≠1,此时t 地几何意义是有向线段M M 0地数量地一半.你会区分直线参数方程地标准形式?例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t 331y tx (t 为参数)是否为直线l 地参数方程?如果是直线l 地参数方程,指出方程中地参数t 是否具有标准形式中参数t 地几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 地地普通方程 0333=+--y x ,所以,以上两个方程都是直线l 地参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0地数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述地几何意义.点拨:直线地参数方程不唯一,对于给定地参数方程能辨别其标准形式,会利用参数t 地几何意义解决有关问题.问题5:直线地参数方程⎩⎨⎧+=+= t 331y tx 能否化为标准形式?是可以地,只需作参数t 地代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331yt x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l参数方程地标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '地几何意义是有向线段M M 0地数量.2、直线非标准参数方程地标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程地一般式为,.⎩⎨⎧+=+=bt y y atx x 00(t 为参数), 斜率为a b tg k ==α (1) 当22b a +=1时,则t 地几何意义是有向线段M M 0地数量. (2)当22b a +≠1时,则t 不具有上述地几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a by y t b a a x x 220220 t '地几何意义是有向线段M M 0地数量. 例4:写出经过点M 0(-2,3),倾斜角为43π地直线l 地标准参数方程,并且 求出直线l 上与点M 0相距为2地点地坐标.解:直线l 地标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222(t 为参数)(1) 设直线l 上与已知点M 0相距为2地点为M 点,且M 点对应地参数为t,则|M 0M |=|t| =2, ∴t=±2 将t 地值代入(1)式当t=2时,M 点在 M 0点地上方,其坐标为(-2-2,3+2); 当t=-2时,M 点在 M 0点地下方,其坐标为(-2+2,3-2).点拨:若使用直线地普通方程利用两点间地距离公式求M 点地坐标较麻烦, 而使用直线地参数方程,充分利用参数t 地几何意义求M 点地坐标较容易.例5:直线⎩⎨⎧-=+=οο20cos 420sin 3t y t x (t 为参数)地倾斜角 . 解法1:消参数t,地34--x y =-ctg20°=tg110°解法2:化为标准形式:⎩⎨⎧-+=-+=οο110sin )(4110cos )(3t y t t x (-t 为参数)∴此直线地倾斜角为110°。

直线的参数方程 教案

直线的参数方程 教案

直线的参数方程教案教案标题:直线的参数方程教案目标:1. 理解直线的参数方程的定义和概念;2. 掌握求解直线的参数方程的方法;3. 能够应用直线的参数方程解决实际问题。

教学重点:1. 直线的参数方程的定义和概念;2. 求解直线的参数方程的方法。

教学难点:1. 运用直线的参数方程解决实际问题。

教学准备:1. 教师准备:教学投影仪、白板、黑板、彩色粉笔、教案、课件;2. 学生准备:课本、笔记本。

教学过程:一、导入(5分钟)1. 引入直线的概念,复习直线的一般方程和斜率截距方程。

二、知识讲解(15分钟)1. 介绍直线的参数方程的概念和定义;2. 讲解直线的参数方程的一般形式和求解方法;3. 通过示例演示如何将直线的一般方程或斜率截距方程转化为参数方程。

三、示范演练(15分钟)1. 给出一些直线的一般方程或斜率截距方程,要求学生转化为参数方程;2. 学生跟随教师的指导进行演练。

四、拓展应用(15分钟)1. 提供一些实际问题,要求学生运用直线的参数方程解决;2. 学生独立或小组合作完成拓展应用题。

五、讲评与总结(10分钟)1. 教师对学生的演练和拓展应用进行讲评;2. 总结直线的参数方程的求解方法和应用。

六、作业布置(5分钟)1. 布置课后作业:完成课后习题中与直线的参数方程相关的题目。

教学反思:本节课通过引入直线的概念,再结合直线的一般方程和斜率截距方程,引出了直线的参数方程的概念和定义。

通过示例演示和学生的跟随指导进行演练,加深了学生对直线的参数方程求解方法的理解和掌握。

通过拓展应用,培养了学生运用直线的参数方程解决实际问题的能力。

在讲评与总结环节,对学生的答案进行了讲评,巩固了学生的学习成果。

最后,布置了课后作业,巩固学生的学习效果。

整节课教学内容紧凑,学生参与度高,达到了预期的教学目标。

高中数学直线参数方程教案

高中数学直线参数方程教案

高中数学直线参数方程教案
目标:学习如何用参数方程表示直线
一、直线方程的一般形式
在平面直角坐标系中,一条直线可以用一般形式的方程表示为:
Ax + By + C = 0
其中A、B、C为常数,A和B不同时为0。

二、直线的参数方程
一个方程组可以用参数形式表示为:
x = x0 + at
y = y0 + bt
其中x0、y0分别是直线上的一个点的坐标,a、b为实数。

三、如何求直线的参数方程
1.已知直线上的两个点P(x1, y1)和Q(x2, y2),可以先求出直线的斜率:
m = (y2 - y1) / (x2 - x1)
然后,根据直线的斜率和一个已知点的坐标,可以得出直线的参数方程。

2.已知直线的一般形式方程Ax + By + C = 0,可以先求出一个点P(x0, y0):
x0 = -C / A
y0 = 0
然后,根据这个点和直线的斜率,可以得出直线的参数方程。

四、练习题
1.已知直线L过点P(1, 2)和Q(-2, 5),求直线L的参数方程。

2.已知直线L的一般形式方程2x - 3y + 6 = 0,求直线L的参数方程。

五、思考题
1.直线的参数方程和一般形式方程有何区别?
2.如果已知直线的参数方程x = 2t - 1,y = 3t + 4,如何表示这条直线的斜率?
六、作业
1.完成练习题。

2.思考题中的问题,并写下自己的回答。

本节课重点:学习如何用参数方程表示直线,以及如何根据已知条件求出直线的参数方程。

直线的参数方程教案

直线的参数方程教案

直线的参数方程教案直线的参数方程教案一、教学目标1. 知识与技能(1)掌握直线的参数方程的概念;(2)掌握直线的一般方程与参数方程的互相转化方法;(3)能够根据直线的参数方程绘制直线的图像。

2. 过程与方法(1)引导学生通过观察、实验等方式发现直线的参数方程的特点;(2)通过讲解和举例引导学生理解直线的参数方程的定义及其性质;(3)通过练习题巩固学生对直线的参数方程的掌握程度;(4)通过绘制直线的图像帮助学生加深对直线的参数方程的理解。

3. 情感、态度和价值观培养学生观察、发现、分析和解决问题的能力,培养学生的数学思维能力和创新能力。

二、教学重点与难点1. 教学重点掌握直线的参数方程的概念和性质,掌握直线的一般方程与参数方程的互相转化方法。

2. 教学难点能够根据直线的参数方程绘制直线的图像。

三、教学过程1. 导入新课通过展示几何平面坐标系上的一条直线图像,引导学生观察,思考直线的方程与参数方程之间的关系,并提问学生:你对直线的参数方程有什么了解?2. 探究活动(1)教师用实物或几何软件展示一条直线和坐标系,并选取直线上两个点A(x1, y1)和B(x2, y2)。

(2)教师引导学生观察并发现直线上每个点都可以由参数t确定,并写出该点的坐标为(x, y),并尝试找出x和y与t之间的关系。

(3)学生根据已知的两个点的坐标、点A和点B的参数t值,写出点A和点B的参数方程。

(4)通过实际计算验证参数方程是否正确。

3. 理论总结通过探究活动,引导学生总结直线的参数方程的定义和性质,并帮助学生理解直线的参数方程与一般方程的转化方法。

4. 拓展(1)教师提问:已知直线的参数方程x = 2 + 3t,y = -1 + t ,如何将其转化为一般方程?(2)学生尝试将参数方程转化为一般方程,并进行实际计算和验证。

5. 练习巩固(1)教师出示几道直线的参数方程的题目,要求学生逐步转化为一般方程,并进行计算验证。

(2)学生独立完成练习题,并核对答案。

教案直线的参数方程

教案直线的参数方程

课题:直线的参数方程(1)教学设计教学目标:(一)知识目标1.了解直线参数方程的建立过程,会与普通方程进行互化;2. 初步掌握运用参数方程解决问题,理解其中参数t 的几何意义. (二)能力目标1.通过思考引入,让学生感受学习直线参数方程的必要性;2.通过学习直线的参数方程探究直线与圆锥曲线的位置关系,培养学生数形结合以及运算求解能力. (三)情感目标1.培养学生的探究,研讨,综合自学应用能力;2.培养学生分析问题,解决问题的能力. 教学重点:1.联系数轴、向量积等知识;2.求出直线的参数方程. 教学难点:通过向量法,建立参数t 与点在直角坐标系中的坐标y x ,之间的联系. 教学过程: 一、学前准备(1)若由a b →→与共线,则存在实数λ,使得 . (2)设e →为a →方向上的 ,则a →=︱a →︱e →.(3)已知=AB y x B y x A 则),,(),,(2211.==y x ),( . (4)经过点00(,)M x y ,倾斜角为()2παα≠的直线的普通方程为 .(5)直线0=++C By Ax 的斜率=k ,倾斜角α与斜率k 的关系为 . 二、新课讲授探究新知(预习教材P35~P36,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M 的坐标,x y 与点0M 的坐标00,x y 和倾斜角α 联系起来呢?由于倾斜角可以与方向联系,M 与0M 可以用距离或线段0M M 数量的大小联系,这种“方向”和“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程. 如图,在直线上任取一点(,)M x y ,则0MM = ,而直线l 的单位方向向量e →=( , )因为M 0//e,所以存在实数t R ∈,使得0MM = ,即有()()00,cos ,sin x x y y t αα--=,因此,经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα当堂训练(1)经过点)5,1(0M ,倾斜角为3π的直线l 的参数方程为 . (2)直线)(20cos 20sin 3为参数t s t y t x ⎝⎛=+=︒︒的倾斜角是( )︒20.A ︒70.B ︒110.C ︒160.D2、直线l 的参数方程的几种形式直线的参数方程形式不是唯一的,令ααsin ,cos ==b a ,则直线参数方程的标准形式可以是)1,0,(22200=+≥⎩⎨⎧+=+=b a b t bty y atx x 为参数直线的参数方程的一般式可以写成)(00为参数t dt y y ctx x ⎩⎨⎧+=+=,这里R d c ∈,,其中122=+d c 时,t有明确的几何意义,当122≠+d c 时,t 没有明确的几何意义. 直线的参数方程的一般式化为直线的参数方程的标准式的方法:),,0,,0()()(2222222222222222022220b dc da d c c t t d c db dcd a d c c t t d c d t d c d c d y y t d c d c c x x =+-=+-'=⋅+-≤=+=+'=⋅+≥⎪⎪⎩⎪⎪⎨⎧⋅+++=⋅+++=时,令,时,令其中,3、直线的参数方程中参数的几何意义x参数t 的绝对值表示参数t 所对应的点M 到定点M 0t =.由于α为直线的倾斜角,且),0[πα∈,α是第二象限角,0sin ≥α.所以e的方向总是向上的,当M M 0与e (直线的单位方向向量)同向时,0>t ,当M M 0与e反向时,0<t ,当M 与M 0重合时,0=t .4、用直线l 的参数方程求弦长和弦的中点坐标的方法①已知直线l 过),(00y x M ,倾斜角为α,l 与圆锥曲线相交于B A ,两点,则求弦长AB 的方法如下:将直线l 的参数方程)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα代入圆锥曲线的方程,消去y x ,得到关于t 的一元二次方程,由判别式∆和韦达定理得到21t t +,21t t 的值,代入弦长公式21221214)(t t t t t t AB -+=-=,M 到两交点的距离之积为21t t MB MA =∙. ②弦的中点坐标对应的参数221t t t +=,先计算221tt t +=,再把t 代入直线l 的参数方程,即得到弦中点的坐标.三、知识应用例.已知直线:10l x y +-=与抛物线2y x =交于A 、B 两点,求线段AB 的长和点(1,2)M -到A ,B 两点的距离之积.四、课堂检测直线)(,2333,211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+-=+=和圆1622=+y x 交于B A ,两点,则B A ,的中点坐标为( ))3,3.(-A )3,3.(--B )3,3.(-C )3,3.(-D五 、课堂小结(1)经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(s i n c o s 00为参数t t y y t x x ⎩⎨⎧+=+=αα,其中参数t 具有明确的意义. (2)直线的标准方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离,它可以避免求交点时解方程组的繁琐运算,但是应用直线的参数方程时,应先判别是否是标准形式,再考虑t 的几何意义.(3)弦长公式21221214)(t t t t t t AB -+=-=,定点M 到两交点的距离之积为21t t MB MA =∙.弦的中点坐标对应的参数221t t t +=. 六、高考衔接(2016江苏)在平面直角坐标系xoy 中,已知直线l 的参数方程为)(23211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧=+=,椭圆C 的参数方程为)(sin 2cos 为参数θθθ⎩⎨⎧==y x .设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.七、作业布置课本p39 习题2.3第3题 八、课后反思。

直线的参数方程教案

直线的参数方程教案

直线的参数方程教案一、教学目标1.理解直线的参数方程的概念和基本思想;2.掌握直线的参数方程的求解方法;3.能够应用直线的参数方程解决相关问题。

二、教学内容1.直线的参数方程的定义和思想;2.直线的参数方程的求解方法;3.直线参数方程的应用。

三、教学重难点1.直线参数方程的概念和思想;2.直线参数方程的求解方法。

四、教学过程1. 引入教师可以通过一个生活中的例子引入直线的参数方程,如一辆汽车在直线道路上的行驶。

引导学生思考,如何用一个参数来描述汽车在直线上的位置。

2. 知识讲解2.1 直线的参数方程的定义直线的参数方程是指用参数的形式来表示直线上的点的坐标。

一般形式为:x = x0 + t * ay = y0 + t * b其中,(x0, y0)为直线上的一点,(a, b)为直线的方向向量,t为参数。

2.2 直线参数方程的求解方法求解直线的参数方程,可以根据直线上的已知点和方向向量来确定参数方程的具体形式。

步骤如下:1.确定直线上的一点(x0, y0)和方向向量(a, b);2.应用参数方程的定义,写出直线的参数方程。

3. 实例演练教师可以选择一些具体实例,引导学生运用直线的参数方程解决问题。

例如,求直线L上距离(1, 2)最近的点。

解:已知直线L的参数方程为:x = 3 + ty = -1 + t点(1, 2)到直线L上的任意点(3 + t, -1 + t)的距离可以表示为:d = sqrt((1 - 3 - t)^2 + (2 + 1 - t)^2)为了求d最小,可以对d求导,令导数为零。

通过求导和解方程,可得t = 1。

代入参数方程,得(4, 0)。

故直线L上距离(1, 2)最近的点为(4, 0)。

4. 拓展应用教师可以引导学生思考直线参数方程在其他几何问题中的应用,如求两直线的交点、求直线与平面的交点等。

五、教学本节课我们学习了直线的参数方程的概念、基本思想和求解方法。

通过实例演练,我们掌握了如何应用直线的参数方程解决相关问题。

高二数学教案:直线的参数方程学案

高二数学教案:直线的参数方程学案

高二数学教案:直线的参数方程学案第06课时2、2、3 直线的参数方程学习目标1.了解直线参数方程的条件及参数的意义;2. 初步把握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程一、学前预备复习:1、若由共线,则存在实数,使得,2、设为方向上的,则=︱︱;3、通过点,倾斜角为的直线的一般方程为。

二、新课导学◆探究新知(预习教材P35~P39,找出疑问之处)1、选择如何样的参数,才能使直线上任一点M的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角能够与方向联系,与能够用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则= ,而直线的单位方向向量因为,因此存在实数,使得= ,即有,因此,通过点,倾斜角为的直线的参数方程为:2.方程中参数的几何意义是什么?◆应用示例例1.已知直线与抛物线交于A、B两点,求线段AB的长和点到A ,B两点的距离之积。

(教材P36例1)解:例2.通过点作直线,交椭圆于两点,假如点恰好为线段的中点,求直线的方程.(教材P37例2)解:◆反馈练习1.直线上两点A ,B对应的参数值为,则=( )A、0B、C、4D、22.设直线通过点,倾斜角为,(1)求直线的参数方程;(2)求直线和直线的交点到点的距离;(3)求直线和圆的两个交点到点的距离的和与积。

三、总结提升◆本节小结1.本节学习了哪些内容?答:1.了解直线参数方程的条件及参数的意义;2. 初步把握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评判一、自我评判你完成本节导学案的情形为( )A.专门好B.较好C. 一样D.较差课后作业1. 已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。

我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

直线的参数方程教案

直线的参数方程教案

课题直线的参数方程课型复习课教学目标知识与技能目标:掌握直线的参数方程及其应用;过程与方法目标:通过直线参数方程中参数的区别,使学生能够达到灵活地应用直线的参数方程来解决求交点和距离问题,提高用代数方法解决几何问题的能力以及抽象概括、分析总结的能力;情感与态度目标:通过讲练结合,师生互动,生生互动的教学活动过程,让学生体会成功的愉悦,提高数学学习的兴趣,从而树立数学学习的信心。

教学重点掌握直线的参数方程的两种形式及其应用;教学难点1、两种参数方程中参数的区别;2、灵活应用参数方程;教学方法本节课的学习采用的是“问题探究式”的教学方法,通过归纳知识点和层层深入的问题配置,启发学生思维,激发学习兴趣。

教学手段采用多媒体辅助教学教学环节教学内容师生互动设计意图复习引入引题(1):求过点(0,1),且倾斜角为32π的直线的参数方程引题(2):求过点(-1,2),且与向量a=(-2,1)平行的直线的参数方程引出新课:由已知条件,选择合适的直线的参数方程;两种参数方程中参数有何区别?两种参数方程如何相互转化?两种参数方程应用于哪些方面?怎样选择适当的参数方程求解问题?带着这几个问题我们学习本节课---直线的参数方程。

教师提问学生回答提问重点公式为本节课的应用做铺垫进而引出新课。

新课讲解讲授新课:高考命题方向一——方程间的相互转化例1:设直线的参数方程为)(41035Rttytx∈⎩⎨⎧-=+=(1)求直线的直角坐标方程;(2)化为标准形式的参数方程.小结:消参的方法高考命题方向二——直线参数方程的应用例2:直线L经过点A(2,-4),倾斜角为43π(1)求直线L的参数方程;教师启发引导,学生思考,整理思路,然后独立完成.给学生探索空间,并体会参数方程中参数的意义,提高学生发散思维能力。

教学环节教学内容师生互动设计意图例题讲解(2)设直线L1:x-y=0,L1与L的交点为B,求点B的坐标.例3:求直线:⎩⎨⎧-=+=tytx11与圆x2+y2=4的交点坐标.小结:利用直线的参数方程求交点坐标的方法.例4:在例2的(2)中,求|AB|.例5:已知直线L的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=tytx211231设L与圆x2+y2=4相交于两点A、B,求点P(1,1)到A、B两点的距离之积.例6:求例3中的两交点间的距离.小结与反思:利用直线的参数方程求距离问题的方法.教师启发引导,学生思考,整理思路,然后独立完成.让学生明确解题思路、步骤,解题时有章可循注重通法。

直线参数方程教案

直线参数方程教案

直线参数方程教案一、教学目标1. 理解直线参数方程的概念及意义。

2. 学会将直线的标准参数方程和一般参数方程进行转换。

3. 能够运用直线参数方程解决实际问题。

二、教学内容1. 直线参数方程的定义及表示方法。

2. 直线参数方程与直角坐标方程的互化。

3. 直线参数方程的应用。

三、教学重点与难点1. 重点:直线参数方程的概念、表示方法及应用。

2. 难点:直线参数方程与直角坐标方程的互化。

四、教学方法1. 采用讲授法,讲解直线参数方程的概念、表示方法及应用。

2. 利用数形结合法,引导学生直观地理解直线参数方程与直角坐标方程的关系。

3. 运用实例分析法,让学生学会运用直线参数方程解决实际问题。

五、教学准备1. 投影仪或黑板。

2. 直线参数方程的相关教案、PPT等教学资源。

3. 练习题及答案。

教案一、导入(5分钟)1. 复习直线的直角坐标方程。

2. 提问:如何用参数表示直线上的一点?二、新课讲解(20分钟)1. 讲解直线参数方程的概念。

参数方程:对于一条直线,设其上任意一点P的坐标为(x, y),参数为t,则直线上的点P可以表示为(x=x0+at, y=y0+bt),其中a、b、t为常数。

2. 讲解直线参数方程的表示方法。

标准参数方程:对于直线y=kx+b,其标准参数方程为x=x0+at,y=y0+bt,其中a=1/k,b=y0-bx0。

一般参数方程:对于直线ax++c=0,其一般参数方程为x=x0+at,y=y0+bt,其中a、b、t为常数,且满足at+by0+c=0。

3. 讲解直线参数方程与直角坐标方程的互化。

将直线参数方程中的t表示为x或y的函数,代入直角坐标方程中,即可得到直线参数方程与直角坐标方程的互化关系。

三、实例分析(10分钟)1. 分析直线参数方程在实际问题中的应用。

举例:一辆火车以每小时60公里的速度沿着直线轨道行驶,从原点出发,经过3小时后,离原点的距离为180公里,求火车的行驶路线方程。

高中数学第二讲参数方程三直线的参数方程课堂导学案

高中数学第二讲参数方程三直线的参数方程课堂导学案

三 直线的参数方程课堂导学三点剖析一、直线的参数方程和普通方程的互化【例1】 写出直线2x-y+1=0的参数方程,并求直线上的点M(1,3)到点A(3,7)、B (8,6)的距离.解:根据直线的普通方程可知斜率是2,设直线的倾斜角为α,则tanα=2,sinα=552,cosα=55,所以直线的参数方程是⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 5523,551(t 为参数). 经验证易知点A (3,7)恰好在直线上,所以有1+55t=3,即t=52,即点M 到点A 的距离是52. 而点B (8,6)不在直线上,所以不能使用参数t 的几何意义,可以根据两点之间的距离公式求出距离为58)63()81(22=-+-.温馨提示本题主要考查直线参数方程的转化和参数的几何意义.常见错误:①转化参数方程时不注意后边的题目内容,随便取一个定点;②把点B(8,6)当成直线上的点很容易由1+55t=8,得t=57。

各个击破类题演练 1 设直线的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 22,224(t 为参数),点P 在直线上,且与点M 0(—4,0)的距离为2,如果该直线的参数方程改写成⎩⎨⎧=+-=t y t x ,4(t 为参数),则在这个方程中点P 对应的t 值为( ) A.±1 B.0 C 。

±21 D.±23 解析:由|PM 0|=2,知PM 0=2或PM 0=2-,即t=±2,代入第一个参数方程,得点P 的坐标分别为(-3,1)或(—5,—1);再把点P 的坐标代入第二个参数方程可得t=1或t=—1。

答案:A变式提升 1设直线的参数方程为⎩⎨⎧-=+=t y t x 410,35求直线的直角坐标方程. 解:把t=35-x 代入y 的表达式,得y=10-3)5(4-x .化简得4x+3y —50=0。

这即是直线的直角坐标方程。

温馨提示注意变量代换的方法.二、直线的参数方程与倾斜角【例2】 设直线l 1过点A (2,—4),倾斜角为65π。

直线参数方程教案

直线参数方程教案

直线参数方程教案教学目标:1. 理解直线参数方程的概念和特点;2. 学会将直线参数方程转换为普通方程;3. 能够应用直线参数方程解决实际问题。

教学重点:1. 直线参数方程的概念和特点;2. 直线参数方程与普通方程的转换方法。

教学难点:1. 直线参数方程的理解和应用;2. 直线参数方程与普通方程的转换。

教学准备:1. 教学课件或黑板;2. 直线参数方程的相关例题和练习题。

教学过程:一、导入(5分钟)1. 引入直线的概念,引导学生回顾直线的普通方程;2. 提出直线参数方程的概念,引导学生思考直线参数方程的特点和应用。

二、直线参数方程的概念和特点(15分钟)1. 讲解直线参数方程的定义和形式;2. 解释直线参数方程的特点,如参数的意义和直线的截距式表示;3. 通过示例展示直线参数方程的应用,如直线的倾斜角和斜率的计算。

三、直线参数方程与普通方程的转换(20分钟)1. 讲解直线参数方程与普通方程的转换方法;2. 引导学生通过转换方法将直线参数方程转化为普通方程;3. 通过示例和练习题巩固转换方法。

四、直线参数方程的应用(15分钟)1. 讲解直线参数方程在实际问题中的应用,如物体的运动轨迹和工程中的直线测量;2. 引导学生运用直线参数方程解决实际问题;3. 通过示例和练习题巩固直线参数方程的应用。

五、总结和作业布置(5分钟)1. 总结直线参数方程的概念、特点和应用;2. 强调直线参数方程与普通方程的转换方法的重要性;3. 布置相关作业,巩固所学内容。

教学反思:在教学过程中,要注意通过示例和练习题让学生充分理解和掌握直线参数方程的概念和应用。

要引导学生思考直线参数方程的特点和与普通方程的关系,提高学生的数学思维能力。

六、直线参数方程的图形分析(15分钟)1. 使用课件或黑板展示直线参数方程的图形;2. 分析直线参数方程中参数t的变化对直线位置的影响;3. 引导学生观察直线参数方程的图形特征,如直线倾斜角的变化和截距的变化。

高中数学 第二讲 参数方程 三 直线的参数方程学案(含解析)4-4

高中数学 第二讲 参数方程 三 直线的参数方程学案(含解析)4-4

三直线的参数方程1.直线的参数方程(1)过点M0(x0,y0),倾斜角为α的直线l的参数为错误!(t为参数).(2)由α为直线的倾斜角知,α∈已知直线l的方程为3x-4y+1=0,点P(1,1)在直线l上,写出直线l的参数方程,并求点P到点M(5,4)的距离.由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正弦值、余弦值,从而得到直线参数方程.由直线方程3x-4y+1=0可知,直线的斜率为错误!,设直线的倾斜角为α,则tan α=错误!,sin α=错误!,cos α=错误!.又点P(1,1)在直线l上,所以直线l的参数方程为错误!(t为参数).因为3×5-4×4+1=0,所以点M在直线l上.由1+错误!t=5,得t=5,即点P到点M的距离为5.理解并掌握直线参数方程的转化,弄清参数t的几何意义,即直线上动点M到定点M0的距离等于参数t的绝对值,是解决此类问题的关键.1.一直线过P0(3,4),倾斜角α=错误!,求此直线与直线3x+2y=6的交点M与P0之间的距离.解:由题意设直线的参数方程为错误!(t为参数),将它代入已知直线3x+2y-6=0,得3错误!+2错误!=6。

解得t=-错误!,∴|MP0|=|t|=错误!。

2.已知直线l的参数方程为错误!求直线l的倾斜角.解:将参数方程化成另一种形式错误!若2t为一个参数,则错误!在α∈已知直线l经过点P(1,1),倾斜角α=错误!,(1)写出直线l的参数方程;(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.(1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.(1)∵直线l过点P(1,1),倾斜角为错误!,∴直线的参数方程为错误!即错误!(t为参数)为所求.(2)∵点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为A错误!,B错误!,将直线l的参数方程代入圆的方程x2+y2=4整理得到t2+(错误!+1)t-2=0,①又∵t1和t2是方程①的解,从而t1t2=-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案7 直线的标准参数方程及一般参数方程互化及应用 教学目标:
1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义;
2.熟悉直线的参数方程与普通方程之间的互化;
3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 教学重点:熟悉直线的参数方程与普通方程之间的互化
教学难点:理解参数的几何意义
教学过程
1、参数方程与普通方程的互化
例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.
解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-3
3 设倾斜角为α,tg α=-33,α= π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-
=t y t x 21231 (t 为参数)
∣t ∣是定点M 0(1,0)到动点M(y x ,)的有向线段M M 0的长.
点拨:(1)求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.
(2)你还能写出其他的参数方程吗?
例2:化直线2l 的参数方程⎩⎨⎧+=+-= t
313y t x (t 为参数)为普通方程,并求倾斜角,
说明∣t ∣的几何意义.
解:原方程组变形为⎩⎨⎧=-=+ (2) t
31 (1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x
t 的几何意义是有向线段M M 0的数量的一半.
∣t ∣是定点M 0(3,1)到t 对应的点M(y x ,)的有向线段M M 0的长的一半. 提问;你能直接写出直线斜率吗?
例3: 将直线的参数方程⎩
⎨⎧+=+= t 331y t x (t 为参数)化为标准形式
变式:13x t y =-⎧⎪⎨=⎪⎩
及13x t y =+⎧⎪⎨=⎪⎩
及13x t y =-⎧⎪⎨=+⎪⎩如何化为标准形式
例4:直线⎩⎨⎧-=+=
20
cos 420sin 3t y t x (t 为参数)的倾斜角 . 例5:已知直线l 过点P (2,0),斜率为3
4
和抛物线x y 22=相交于A 、B 两点,
设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|
解:(1)∵直线l 过点P (2,0),斜率为343
4 cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532(t 为参数)* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中, 整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个
根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=4
25- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM |=2
21t t + =1615 ∵中点M 所对应的参数为t M =16
15,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩
⎪⎨⎧=∙==∙+=4316155416411615532y x 即 M (1641,43) 例6:已知直线l 经过点P (1,-33),倾斜角为3
π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |;
(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积. 解:(1)∵直线l 经过点P (1,-33),倾斜角为3
π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππ
t y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入直线l ':
32-=x y 得032)2
333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t |=| PQ |,∴| PQ |=4+23.
(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入圆的方程
22y x +=16,得16)2
333()211(22=+-++t t ,整理得:t 2-8t+12=0, x
Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 则t 1t 2=12
根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点 A, B 所对应的参数值,则|t 1|=| PA |,|t 2|=| PB |,
所以| PA |·| PB |=|t 1 t 2|=12
点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便. 课下作业
1、 求过点(6,7),倾斜角的余弦值是2
3的直线l 的标准参数方程. 2、 直线l 的方程:⎩⎨⎧+=-=
25
cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°
3、 直线⎪⎪⎩
⎪⎪⎨⎧+-=-=t y t x 521511(t 为参数)的斜率是( ) 4、直线l 的方程: ⎩
⎨⎧+=+=bt y y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )
A ∣t 1-t 2∣
B 22b a +∣t 1-t 2∣ C
2221b a t t +- D ∣t 1∣+∣t 2∣ 5、已知直线l :⎩⎨⎧
+-=+= t 351y t x (t 为参数)与直线m :032=--y x 交于P 点,求点 M(1,-5)到点P 的距离.
6、直线⎩⎨⎧+-=+=t
21y t x (t 为参数)与椭圆8222=+y x 交于A 、B 两点,则|AB|等于( ) A 22 B
334 C 2 D 3
6 7、过点P(6, 27)的直线⎪⎩⎪⎨⎧+=+=t 2726y t x (t 为参数)与抛物线y 2=2x 相交于A 、B 两点, 则点P 到A,B 距离之积为 .
8、直线⎩
⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)与二次曲线A 、B 两点,则|AB|等于( ) A |t 1+t 2| B |t 1|+|t 2| C |t 1-t 2| D 22
1t t +
9、 直线⎪⎩
⎪⎨⎧+-=-=t 21 1212y t x (t 为参数)与圆122=+y x 有两个交点A 、B ,若P 点的坐 标为(2,-1),则|PA|·|PB|=。

相关文档
最新文档