2000年高考.广东卷.数学试题及答案
2000年高考数学(理科)真题及答案[全国卷I]
2000年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1、答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3、考试结束,监考人将本试卷和答题卡一并收回。
选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A 和B 都是自然数集合N ,映射f:A →B 把集合A 中的元素n映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是(A)2 (B)3 (C)4 (D)5i 3对应的向量按顺时针方向旋转3π,i 33+2,3, 6,(4)已知sin α>sin β,那么下列命题成立的是(A)若α、β是第一象限角,则cos α>cos β(B)若α、β是第二象限角,则tg α>tg β(C)若α、β是第三象限角,则cos α>cos β(D)若α、β是第四象限角,则tg α>tg β(5)函数y=-x cos x 的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税 款按下表分段累进计算:<div align="center"> 全月应纳税所得额 税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%… …</div>某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于800~900元 (B)900~1200元(C)1200~1500元 (D)1500~2800元(7)若a >b >1,)2lg(),lg (lg 21,lg lg ba R Q P +=+=⋅=βαβα,则(A)R<P<Q (B)P<Q< R(C)Q< P<R (D)P< R<Q(8)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是(A))4cos(2πθ-=p (B))4sin(2πθ-=p (C))1sin(2-=θp (D))1sin(2-=θp(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比 是(A) (B) (C) (D)(10)过原点的直线与圆相切,若切点在第三象限,则该直 线的方程是(A) (B) (C) (D)(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为2000年普通高等学校招生全国统一考试数学(理工农医类)第II卷(非选择题90分)注意事项:第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2000年全国高考数学试题理科数学(江西、天津)卷
2000年全国高考数学试题(新课程/理工农医类)江西、天津卷一、选择题:本大题共12小题;每小题5分,共60分。
在每小题给出的 四个选项中,只有一项是符合题目要求的.(1)设集合A 和B 都是坐标平面上的点集(){}R y R x y x ∈∈,|,,映射B A f →:把集合A 中的元素()y x ,映射成集合B 中的元素()y x y x -+ ,,则在映射f 下,象()1,2的原象是 ( )(A )()1 ,3 (B )⎪⎭⎫ ⎝⎛21 ,23 (C )⎪⎭⎫⎝⎛-21 ,23 (D )()3 ,1(2)在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的复数是 ( )(A )23 (B )i 32- (C )i 33- (D )3i 3+ (3)一个长方体共一项点的三个面的面积分别是2,3,6,这个长方体 对角线的长是 ( )(A )23 (B )32 (C )6 (D )6 (4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ( )①()()0=⋅-⋅b a c c b a ; ②b a b a -<-③()()b a c a c b ⋅-⋅不与c 垂直 ④()()22492323b a b a b a ==-⋅+中,是真命题的有(A )①② (B )②③ (C )③④ (D )②④ (5)函数x x y cos -=的部分图象是 ( )(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于( )(A ) 800~900元 (B )900~1200元 (C )1200~1500元 (D )1500~2800元 (7)若1>>b a ,P=b a lg lg ⋅,Q=()b a lg lg 21+,R=⎪⎭⎫ ⎝⎛+2lg b a ,则(A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q (8)右图中阴影部分的面积是(A )32 (B )329- (C )332 (D )335 (9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )(A )ππ221+ (B )ππ441+ (C )ππ21+ (D )ππ241+(10)过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直 线的方程是 ( )(A )x y 3= (B )x y 3-= (C )x 33 (D )x 33- (11)过抛物线()02>=a ax y 的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( ) (A )a 2 (B )a 21 (C )a 4 (D )a4 (12)如图,OA 是圆锥底面中心O 到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A )321arccos (B )21arccos (C )21arccos(D )421arccos二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。
2000年高考.全国卷.文科数学试题及答案
2000年普通高等学校招生全国统一考试数学(文史类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至8页。
共150分。
考试时间120分钟。
第I卷(选择题60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z且|x|≤5},则A∪B中的元素个数是(A)11 (B)10 (C)16 (D)15(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q(8)已知两条直线,其中a为实数。
2003年高考.广东卷.数学试题及答案
2003年普通高等学校招生全国统一考试(广东卷)数 学一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.在同一坐标系中,表示直线ax y =与a x y +=正确的是( )2. 已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247 B .-247 C .724D .-7243.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ4.等差数列}{n a 中,已知33,4,31521==+=n a a a a ,则n 为 ( )A .48B .49C .50D .515.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( )A .3B .26C .36 D .33 5.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)7.函数)cos (sin sin 2x x x y +=的最大值为( )A .21+B .12-C .2D .28.已知圆截得被当直线及直线C l y x l a y a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =( )A .2B .22-C .12-D .12+9.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π 10.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2,P 3和P 4(入射角等于反射角). 设P 4的坐标为(x 4,0),若214<<x , 则θtan 的取值范围是( )A .(31,1) B .)32,31(C .)21,52(D .)32,52(12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .π33D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13.不等式x x x <-24的解集是14.9)12(2x x -展开式中9x 的系数是15.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面面积间的关系,可 以得出的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂 直,则 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得 使用同一颜色,现有4种颜色可 供选择,则不同的着色方法共有种.(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)已知正四棱柱ABCD —A 1B 1C 1D 1,AB=1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(1)证明EF 为BD 1与CC 1的公垂线; (2)求点D 1到面BDE 的距离. 18.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .19.(本小题满分12分)已知c>0,设P :函数xc y =在R 上单调递减Q :不等式x+|x-2c|>1的解集为R.如果P和Q 有且仅有一个正确,求c 的取值范围 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分14分) 设0a 为常数,且)(2311N n a a n n n ∈-=+-(1)证明对任意012)1(]2)1(3[51,1a a n n n n n nn ⋅-+⋅-+=≥-; (2)假设对任意1≥n 有1->n n a a ,求0a 的取值范围.2003年普通高等学校招生全国统一考试(广东卷)数学试题参考答案一、选择题:1.D2.D3.C4.C5.B6.D7.A8.C9.B 10.D 11.C 12.A 二、填空题: 13.]4,2( 14.221-15.S2△ABC+S2△ACD+S2△ADB=2S △BCD 16.72三、解答题:(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC , ∴四边形EFMC 是矩形 ∴EF ⊥CC 1 又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1⊂面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线. (II )解:连结ED 1,有DBE D DBD E V V --=11由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的 距离为d ,则S △DBC ·d=S △DBD 1·EF.………………9分 ∵AA 1=2·AB=1.22,2====∴EF ED BE BD23)2(2321,2222121=⋅⋅==⋅⋅=∴∆∆DBC DBD S S 33223222=⨯=∴d故点D 1到平面BDE 的距离为332. 18. 解:设)60sin 60cos r r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即19.函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭. 21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2当212>a时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.本小题主要考查数列、等比数列的概念,考查数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.(1)证法一:(i )当n=1时,由已知a 1=1-2a 0,等式成立; (ii )假设当n=k (k ≥1)等式成立,则,2)1(]2)1(3[5101a a k k k k k ---+=- 那么01112)1(]2)1(3[52323a a a k k k k k k k k k +-+---+-=-=.2)1(]2)1(3[5101111a k k k k k ++++-+-+=也就是说,当n=k+1时,等式也成立. 根据(i )和(ii ),可知等式对任何n ∈N ,成立. 证法二:如果设),3(23111-----=n n n na a a 用1123---=n n n a a 代入,可解出51=a . 所以⎭⎬⎫⎩⎨⎧-53n n a 是公比为-2,首项为531-a 的等比数列. ).()2)(5321(5310N n a a n n n ∈---=-∴- 即.2)1(52)1(301a a n n nn n n -+-+=-(2)解法一:由n a 通项公式 .23)1(523)1(32011111a a a n n n n n n n -----⨯-+⨯-+⨯=-)(1N n a a n n ∈>∴-等价于 ).()23()15()1(201N n a n n ∈<----……①(i )当n=2k -1,k=1,2,…时,①式即为 32022)23()15()1(--<--k k a即为 .51)23(51320+<-k a ……②②式对k=1,2,…都成立,有 .3151)23(5110=+⨯<-a(ii )当n=2k ,k=1,2,…时,①式即为.)23()15()1(22012--<--k k a即为.51)23(51220+⨯->-k a ……③ ③式对k=1,2,…都成立,有.051)23(512120=+⨯->-⨯a 综上,①式对任意n ∈N *,成立,有.3100<<a故a 0的取值范围为).31,0(解法二:如果1->n na a (n ∈N *)成立,特别取n=1,2有 .031001>-=-a a a.06012>=-a a a 因此 .3100<<a 下面证明当.3100<<a 时,对任意n ∈N *,.01>--n n a a 由a n 的通项公式 .235)1(23)1(32)(5011111a a a n n n n n n n -----⨯⨯-+⨯-+⨯=-(i )当n=2k -1,k=1,2…时, 011112352332)(5a a a n n n n n ----⨯⨯-⨯+⨯=->023********=⨯⨯-⨯+⨯---n n n(ii )当n=2k ,k=1,2…时,011112352332)(5a a a n n n n n ----⨯⨯+⨯-⨯=->.0233211≥⨯-⨯--n n故a 0的取值范围为).31,0(。
2000年高考数学(理科)真题及答案[全国卷I]
2000年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1、答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3、考试结束,监考人将本试卷和答题卡一并收回。
选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A 和B 都是自然数集合N ,映射f:A →B 把集合A 中的元素n映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是(A)2 (B)3 (C)4 (D)5i 3对应的向量按顺时针方向旋转3π,i 33+2,3, 6,(4)已知sin α>sin β,那么下列命题成立的是(A)若α、β是第一象限角,则cos α>cos β(B)若α、β是第二象限角,则tg α>tg β(C)若α、β是第三象限角,则cos α>cos β(D)若α、β是第四象限角,则tg α>tg β(5)函数y=-x cos x 的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税 款按下表分段累进计算:<div align="center"> 全月应纳税所得额 税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%… …</div>某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于800~900元 (B)900~1200元(C)1200~1500元 (D)1500~2800元(7)若a >b >1,)2lg(),lg (lg 21,lg lg ba R Q P +=+=⋅=βαβα,则(A)R<P<Q (B)P<Q< R(C)Q< P<R (D)P< R<Q(8)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是(A))4cos(2πθ-=p (B))4sin(2πθ-=p (C))1sin(2-=θp (D))1sin(2-=θp(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比 是(A) (B) (C) (D)(10)过原点的直线与圆相切,若切点在第三象限,则该直 线的方程是(A) (B) (C) (D)(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为2000年普通高等学校招生全国统一考试数学(理工农医类)第II卷(非选择题90分)注意事项:第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2000年高考.全国卷.文科数学试题及答案
2000年普通高等学校招生全国统一考试数学(文史类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至8页.共150分。
考试时间120分钟.第I卷(选择题60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A={x|x∈Z且—10≤x≤—1},B={x|x∈Z且|x|≤5},则A∪B中的元素个数是(A)11 (B)10 (C)16 (D)15(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B) (C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα〉tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=—xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算.全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26。
2001年高考数学试题(广东)及答案
2001年广东普通高等学校招生统一考试数学试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.不等式31--x x >0的解集为 A .{x|x<1} B .{x|x>3} C .{x|x<1或x>3} D .{x|1<x<3}2.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是A.3π B.33π C.6π D.9π3.极坐标方程ρ2cos2θ=1所表示的曲线是A .两条相交直线B .圆C .椭圆D .双曲线4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A .(0,21) B.(0,21] C.(21,+∞) D.(0,+∞) 5.已知复数z=i 62+,则argZ1是A .3π B.35πC.6π D.611π6.函数y=2-x+1(x>0)的反函数是A .y=log211-x ,x∈(1,2); B.y=-log211-x ,x∈(1,2) C.y=log211-x ,x∈(1,2); D.y=-log211-x ,x∈(1,2]7.若0<α<β<4π,sinα+cosα=a,sinβ+cosβ=b,则 A .a>b B.a<b C.ab<1 D.ab>28.在正三棱柱ABC —A 1B1C1中,若AB=2BB1,则AB 1与C1B所成的角的大小为 A .60° B.90° C.45° D.120°9.设f(x)、g(x)都是单调函数,有如下四个命题中,正确的命题是①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增; ②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增; ③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减; ④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减 A . ①③ B.①④ C.②③ D.②④10.对于抛物线y2=4x上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的取值范围是 A .(-∞,0) B .(-∞,2) C .[0,2] D .(0,2)11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜 记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则A .P 3>P 2>P 1 B.P 3>P 2=P 1 C.P 3=P2>P1 D.P 3=P 2=P 112.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A .26 B.24 C.20 D.19二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有 种可能(用数字作答)14.双曲线116922=-y x 的两个焦点为F1、F2,点P 在双曲线上,若PF1⊥PF2,则点P 到x轴的距离为15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q= 16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 三、解答题(本大题共6小题,共74分.17.(本小题满分10分)求函数y=(sinx+cosx)2+2cos2x的最小正周期.18.(本小题满分12分)已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk =2550.(Ⅰ)求a及k的值;(Ⅱ)求)111(lim 21nn S S S +++∞→ 19.(本小题满分12分)如图,在底面是直角梯形的四棱锥S—ABCD 中,∠ABC=90°,SA⊥面ABCD ,SA =AB =BC=1,AD=21. (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.20.(本小题满分12分)设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈]43,32[,那么λ为何值时,能使宣传画所用纸张面积最小?21.(本小题满分14分)已知椭圆1222=+y x 的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相 交于A 、B 两点,点C 在右准线l 上,且BC∥x 轴 求证直线AC 经过线段EF 的中点. 22.(本小题满分14分)设f(x)是定义在R 上的偶函数,其图象关于直线x=1对称 对任意x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0. (Ⅰ)求f)41(),21(f ;(Ⅱ)证明f(x)是周期函数;(Ⅲ)记an=f(2n+n21),求)(ln lim n n a ∞→.2001年广东普通高等学校招生统一考试数学试题参考答案一、选择题1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题13.4900 14.51615.1 16.2n (n -1) 三、解答题17.解:y=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x=sin2x+cos2x+2=2)42sin(2++πx 8分所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an},则a 1=a,a2=4,a3=3a,Sk=2550. 由已知有a +3a =2×4,解得首项a 1=a=2,公差d =a 2-a1=2. 2分 代入公式S k=k·a1+d k k ⋅-2)1(得255022)1(2=⋅-+⋅k k k ∴k2+k-2550=0解得k =50,k =-51(舍去)∴a =2,k =50. 6分 (Ⅱ)由d n n a n S n ⋅-+⋅=2)1(1得S n=n(n+1), 12111111111111(-)(-)(-)1223(1)12231n S S S n n n n +++=+++=+++⨯⨯++ 111+-=n 1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n n n 12分19.解:(Ⅰ)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅+)(21=43125.01=⨯+ 2分 ∴四棱锥S —ABCD 的体积是414313131=⨯⨯=⨯⨯=底面M SA V 4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱 6分 ∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB ∵SA⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC⊥EB,∴BC⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE, 所以∠BSC是所求二面角的平面角 10分 ∵SB=SB BC BC AB SA ⊥==+,1,222 ∴tg∠BSC=22=SB BC 即所求二面角的正切值为2212分 20.解:设画面高为xcm,宽为λxcm,则λx2=4840 1分 设纸张面积为S ,则有S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=λ1022代入上式得S=5000+44)58(10λλ+5分55(1)88λ==<即时,S 取得最小值,此时,高:x=884840=λc m,宽:λx=558885=⨯cm 8分如果λ∈[43,32],可设122334λλ≤<≤,则由S 的表达式得S(λ1)-S(λ2)=44)5858(102211λλλλ--+ =)58)((104421121λλλλ--25,8038≥>>故 因此S(λ1)-S(λ2)<0,所以S (λ)在区间[43,32]内单调递增. 从而,对于λ∈[43,32],当λ=32时,S (λ)取得最小值答:画面高为88cm、宽为55cm 时,所用纸张面积最小;如果要求λ∈[43,32],当λ=32时,所用纸张面积最小. 12分21.证明:依设,得椭圆的半焦距c=1,右焦点为F (1,0),右准线方程为x=2,点E 的坐标为(2,0),EF 的中点为N (23,0) 3分 若AB 垂直于x 轴,则A (1,y1),B(1,-y1),C(2,-y1), ∴AC 中点为N (23,0),即AC 过EF 中点N. 若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y=k(x-1),k≠0.记A (x1,y1)和B(x2,y2),则C (2,y2)且x1,x2满足二次方程1)1(2222=-+x k x 即(1+2k2)x2-4k2x+2(k2-1)=0,∴x1+x2=22212221)1(2,214kk x x k k +-=+ 10分 又x21=2-2y21<2,得x1-23≠0,故直线AN ,CN 的斜率分别为k1=32)1(2231111--=-x x k x y )1(2232222-=-=x k y k ∴k1-k2=2k·32)32)(1()1(1121-----x x x x∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4 =0)]21(4)1(412[2112222=+---+k k k k∴k1-k2=0,即k1=k2,故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N. 14分 22.(Ⅰ)解:因为对x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x 2),所以22)]41([)41()41()4141()21()]21([)21()21()2121()1(]1,0[,0)2()2()22()(f f f f f f f f f f x xf x f x x f x f =⋅=+==⋅=+=∈≥⋅=+=f(1)=a>0, 3 分∴4121)41(,)21(a f a f == 6分(Ⅱ)证明:依题设y=f(x)关于直线x=1对称, 故f(x)=f(1+1-x),即f(x)=f(2-x),x∈R 又由f(x)是偶函数知f(-x)=f(x),x∈R , ∴f(-x)=f(2-x),x∈R ,将上式中-x以x代换,得f(x)=f(x+2),x∈R这表明f(x)是R 上的周期函数,且2是它的一个周期. 10分 (Ⅲ)解:由(Ⅰ)知f(x)≥0,x∈[0,1] ∵]21)1(21[)21()21(n n n f n n f f ⋅-+=⋅=11()[(1)]22f f n n n =⋅-⋅=1111()()()[()]2222n f f f f n n n n=⋅⋅⋅=21)21(a f = ∴n a nf 21)21(= 12分 ∵f(x)的一个周期是2∴f(2n+n 21)=f(n21),因此a n =n a 210)ln 21(lim )(ln lim ==∴∞→∞→a na n n n 14分。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
1999年高考数学试题及答案(广东)
1999年普通高等学校招生全国统一考试数 学(广东卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 (A )(M ∩P )∩S (B )(M ∩P )∪S(C )(M ∩P )∩S (D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是(A )4 (B )5 (C )6 (D )7 (3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b (4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上(A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M - (5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos(6)在极坐标系中,曲线⎪⎭⎫ ⎝⎛-=3sin 4πθρ关于(A )直线3πθ=轴对称 (B )直线πθ65=轴对称 (C )点⎪⎭⎫⎝⎛3,2π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6, 若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123 (8)若(),323322103x a x a x a a x +++=+则()()231220a a a a +-+的值为(A )1- (B )1 (C )0 (D )2 (9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29(B )5 (C )6(D )215(11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫⎝⎛--4,2ππ (B )⎪⎭⎫ ⎝⎛-0,4π (C )⎪⎭⎫⎝⎛4,0π (D )⎪⎭⎫ ⎝⎛2,4ππ(12)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元 的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒, 则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种1999年普通高等学校招生全国统一考试 数 学(广东卷) 第II 卷(非选择题 90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。
2000年高考.全国卷.文科数学试题及答案
2000年普通高等学校招生全国统一考试数学(文史类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至8页。
共150分。
考试时间120分钟。
第I卷(选择题60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z且|x|≤5},则A∪B中的元素个数是(A)11 (B)10 (C)16 (D)15(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q(8)已知两条直线,其中a为实数。
1999年高考数学试题及答案(广东)
1999年普通高等学校招生全国统一考试数 学(广东卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 正棱台、圆台的侧面积公式()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是(A )(M ∩P )∩S(B )(M ∩P )∪S (C )(M ∩P )∩S(D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{,3,2,1,1,2,3---=A 都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是(A )4 (B )5 (C )6 (D )7(3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b(4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上(A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M -(5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos(6)在极坐标系中,曲线⎪⎭⎫ ⎝⎛-=3sin 4πθρ关于 (A )直线3πθ=轴对称 (B )直线πθ65=轴对称 (C )点⎪⎭⎫ ⎝⎛3,2π中心对称 (D )极点中心对称 (7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6, 若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123(8)若(),323322103x a x a x a a x +++=+则()()231220a a a a +-+的值为 (A )1- (B )1 (C )0 (D )2(9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215 (11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫ ⎝⎛--4,2ππ (B )⎪⎭⎫ ⎝⎛-0,4π (C ) ⎪⎭⎫ ⎝⎛4,0π (D )⎪⎭⎫ ⎝⎛2,4ππ(12)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元 的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种1999年普通高等学校招生全国统一考试数 学(广东卷)第II 卷(非选择题 90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。
2001年高考.广东卷.数学试题及答案
2001年广东普通高等学校招生统一考试数 学 试 题2001.7说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[sin(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=正棱台、圆台的侧面积公式S 台侧=21(c ′+c )l其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式V 台体=h S S S S )(31+'+'其中S ′、S 分别表示上、下底面积,h 表示高.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式31--x x >0的解集为 A .{x|x<1}B .{x|x>3}C .{x|x<1或x>3}D .{x|1<x<3}2.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是A.3π B.33π C.6π D.9π3.极坐标方程ρ2cos2θ=1所表示的曲线是A .两条相交直线B .圆C .椭圆D .双曲线4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A .(0,21) B.(0,21] C.(21,+∞) D.(0,+∞) 5.已知复数z=i 62+,则argZ1是A .3πB.35π C.6π D.611π6.函数y=2-x+1(x>0)的反函数是A .y=log211-x ,x∈(1,2) B.y=-log211-x ,x∈(1,2)C.y=log211-x ,x∈(1,2) D.y=-log211-x ,x∈(1,2]7.若0<α<β<4π,sinα+cosα=a,sinβ+cosβ=b,则A .a>b B.a<b C.ab<1 D.ab>2 8.在正三棱柱ABC —A 1B1C1中,若AB=2BB1,则AB 1与C1B所成的角的大小为 A .60° B.90° C.45° D.120° 9.设f(x)、g(x)都是单调函数,有如下四个命题①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增; ②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增; ③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减; ④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减 其中,正确的命题是A . ①③ B.①④ C.②③ D.②④10.对于抛物线y2=4x上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的取值范围是A .(-∞,0)B .(-∞,2)C .[0,2]D .(0,2)11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则 A .P 3>P 2>P 1 B.P 3>P 2=P 1 C.P 3=P2>P1 D.P 3=P 2=P 112.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A .26 B.24 C.20 D.19第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组 成共有 种可能(用数字作答)14.双曲线116922=-y x 的两个焦点为F1、F2,点P 在双曲线上,若PF1⊥PF2,则点P 到x轴的距离为15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求函数y=(sinx+cosx)2+2cos2x的最小正周期. 18.(本小题满分12分)已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk =2550. (Ⅰ)求a及k的值;(Ⅱ)求)111(lim 21nn S S S +++∞→ 19.(本小题满分12分)如图,在底面是直角梯形的四棱锥S—ABCD 中, ∠ABC=90°,SA⊥面ABCD ,SA =AB =BC=1,AD=21. (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 20.(本小题满分12分)设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈]43,32[,那么λ为何值时,能使宣传画所用纸张面积最小?21.(本小题满分14分)已知椭圆1222=+y x 的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相 交于A 、B 两点,点C 在右准线l 上,且BC∥x 轴求证直线AC 经过线段EF 的中点.22.(本小题满分14分)设f(x)是定义在R 上的偶函数,其图象关于直线x=1对称对任意x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0. (Ⅰ)求f)41(),21(f ;(Ⅱ)证明f(x)是周期函数; (Ⅲ)记an=f(2n+n21),求)(ln lim n n a ∞→.参考答案一、选择题1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题13.4900 14.51615.1 16.2n (n -1) 三、解答题17.解:y=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x=sin2x+cos2x+2 5分=2)42sin(2++πx 8分所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an},则a 1=a,a2=4,a3=3a,Sk=2550. 由已知有a +3a =2×4,解得首项a 1=a=2,公差d =a 2-a1=2. 2分 代入公式S k=k·a1+d k k ⋅-2)1(得255022)1(2=⋅-+⋅k k k ∴k2+k-2550=0解得k =50,k =-51(舍去)∴a =2,k =50. 6分 (Ⅱ)由d n n a n S n ⋅-+⋅=2)1(1得S n=n(n+1), )11-1()31-21()21-11( )1(132121111121++++=+++⨯+⨯=+++n n n n S S S n111+-=n 9分 1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n n n 12分19.解:(Ⅰ)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅+)(21=43125.01=⨯+ 2分 ∴四棱锥S —ABCD 的体积是414313131=⨯⨯=⨯⨯=底面M SA V 4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱 6分 ∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB∵SA⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC⊥EB,∴BC⊥面SEB ,故SB 是SC 在面SEB 上的射影, ∴CS ⊥SE,所以∠BSC是所求二面角的平面角 10分 ∵SB=SB BC BC AB SA ⊥==+,1,222∴tg∠BSC=22=SB BC 即所求二面角的正切值为2212分 20.解:设画面高为xcm,宽为λxcm,则λx2=4840 1分 设纸张面积为S ,则有S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=λ1022代入上式得S=5000+44)58(10λλ+5分当8)185(85,5==λλλ即时,S 取得最小值, 此时,高:x=884840=λc m,宽:λx=558885=⨯cm 8分 如果λ∈[43,32],可设433221≤≤λλ ,则由S 的表达式得S(λ1)-S(λ2)=44)5858(102211λλλλ--+=)58)((104421121λλλλ-- 10分由于058,85322121 λλλλ-≥故 因此S(λ1)-S(λ2)<0,所以S (λ)在区间[43,32]内单调递增. 从而,对于λ∈[43,32],当λ=32时,S (λ)取得最小值答:画面高为88cm、宽为55cm时,所用纸张面积最小;如果要求λ∈[43,32],当λ=32时,所用纸张面积最小. 12分 21.证明:依设,得椭圆的半焦距c=1,右焦点为F (1,0),右准线方程为x=2,点E 的坐标为(2,0),EF 的中点为N (23,0) 3分 若AB 垂直于x 轴,则A (1,y1),B(1,-y1),C(2,-y1), ∴AC 中点为N (23,0),即AC 过EF 中点N. 若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y=k(x-1),k≠0.记A (x1,y1)和B(x2,y2),则C (2,y2)且x1,x2满足二次方程1)1(2222=-+x k x 即(1+2k2)x2-4k2x+2(k2-1)=0,∴x1+x2=22212221)1(2,214k k x x k k +-=+ 10分又x21=2-2y21<2,得x1-23≠0, 故直线AN ,CN 的斜率分别为k1=32)1(2231111--=-x x k x y )1(2232222-=-=x k y k ∴k1-k2=2k·32)32)(1()1(1121-----x x x x∵(x1-1)-(x2-1)(2x1-3) =3(x1+x2)-2x1x2-4 =0)]21(4)1(412[2112222=+---+k k k k∴k1-k2=0,即k1=k2,故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N. 14分 22.(Ⅰ)解:因为对x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x 2), 所以22)]41([)41()41()4141()21()]21([)21()21()2121()1(]1,0[,0)2()2()22()(f f f f f f f f f f x xf x f x x f x f =⋅=+==⋅=+=∈≥⋅=+=f(1)=a>0, 3 分∴4121)41(,)21(a f a f == 6分(Ⅱ)证明:依题设y=f(x)关于直线x=1对称, 故f(x)=f(1+1-x), 即f(x)=f(2-x),x∈R又由f(x)是偶函数知f(-x)=f(x),x∈R , ∴f(-x)=f(2-x),x∈R ,将上式中-x以x代换,得f(x)=f(x+2),x∈R这表明f(x)是R 上的周期函数,且2是它的一个周期. 10分 (Ⅲ)解:由(Ⅰ)知f(x)≥0,x∈[0,1] ∵]21)1(21[)21()21(nn n f n n f f ⋅-+=⋅= nnf n f n f n f nn f n f )]21([)21()21()21( ]21)1[()21( =⋅⋅⋅==⋅-⋅=21)21(a f = ∴n a nf 21)21(= 12分∵f(x)的一个周期是2∴f(2n+n 21)=f(n21),因此a n =n a 210)ln 21(lim )(ln lim ==∴∞→∞→a na n n n 14分。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2001年广东高考数学试题(附答案)
C.y=log2 1 ,x∈(1,2); x −1
D.y=-log2 1 ,x∈(1,2] x −1
7.若0<α<β< π ,sinα+cosα=a,sinβ+cosβ=b,则 4
A.a>b
B.a<b
C.ab<1 D.ab>2
8.在正三棱柱 ABC—A1B1C1中,若AB= 2 BB1,则 AB1与C1B所成的角的大小为
≤
3 4
,则由
S
的表达式得
S(λ1)-S(λ2)=44 10 (8 λ1 +
5 −8 λ1
λ2 −
5) λ2
= 44
10 (
λ1 −
λ2 )(8 −
5 )
λ11λ2
由于
λ1λ2
≥
2 3
>
5 ,故8 − 8
5 >0 λ1λ2
因此S(λ1)-S(λ2)<0,所以 S(λ)在区间[ 2 , 3 ]内单调递增. 34
= 1 [12k 2 − 4(k 2 −1) − 4(1 + 2k 2 )] = 0 1 + 2k 2
∴k1-k2=0,即k1=k2,故 A、C、N 三点共线. 所以,直线 AC 经过线段 EF 的中点 N.
14 分
22.(Ⅰ)解:因为对x1,x2∈[0, 1 ],都有f(x1+x2)=f(x1)·f(x2),所以 2
2
44
44
4
f(1)=a>0,
3分
∴
f
(1)
=
1
a2
,
f
(1)
=
1
a4
2
4
(Ⅱ)证明:依题设y=f(x)关于直线x=1对称,
故f(x)=f(1+1-x),即f(x)=f(2-x),x∈R
1999年高考数学试题(广东)及答案
1999年普通高等学校招生全国统一考试数 学(广东卷)第I 卷(选择题 60分)参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式 ()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60题目要求的。
(1) 如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是(A )(M ∩P )∩S (B )(M ∩P )∪S (C )(M ∩P )∩S (D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是(A )4 (B )5 (C )6 (D )7(3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b(4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且 ()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上(A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M - (5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos (6)在极坐标系中,曲线⎪⎭⎫⎝⎛-=3sin 4πθρ关于 (A )直线3πθ=轴对称 (B )直线πθ65=轴对称(C )点⎪⎭⎫⎝⎛3,2π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123 (8)若(),323322103x a x a x a a x +++=+则()()231220a a a a +-+的值为(A )1- (B )1 (C )0 (D )2(9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215(11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫ ⎝⎛--4,2ππ (B )⎪⎭⎫ ⎝⎛-0,4π (C ) ⎪⎭⎫⎝⎛4,0π (D )⎪⎭⎫ ⎝⎛2,4ππ(12)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种第II 卷(非选择题 90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。
2000年普通高等学校招生全国统一考试(广东卷).docx
2000年普通高等学校招生全国统一考试(广东卷)1.1999年新发现的114号元素的同位素,•其中子数为184,该同位素原子的质量数为A.70B. 114C. 228D. 2982.下列气体不能用浓H2SO4干燥的是A.C02B. H2SC. SO2D. HC13.室温时,下列液体的密度比纯水密度大的是A.硝基苯B.浓氨水C.乙醇D.汽油4.只含有一种元素的物质A.可能是纯净物也可能是混合物B.可能是单质也可能是化合物C. 一定是纯净物D. —定是一•种单质5 .可以判断油脂皂化反应基本完成的现象是A.反应液便红色石蕊试纸变蓝色B.反应液使蓝色石蕊试纸变红色C.反应后静置,反应液分为两层D.反应后静置,反应液不分层6.在周期表屮,第三、四、五、六周期元素的数目分别是A. 8、18、32、32B. 8、18、18、32C. 8、18、18、18D. 8、8、18、187.pH=5的盐酸和pH=9的氢氧化钠溶液以体积比11:9混合,混合液的pH人・为7.2 B.为8 C.为6 D.无法计算8.在GH’N中,N原子以三个单键与其他原子和连接,它具有的同分异构体数F1为A. 1B. 2C. 3 0. 49.把表而有氧化物的相同人小的铜片和恢片一起放入盐酸中充分反应,所得溶液中的金属离子A.是Fe3+^ll Cu2+B.是和CfC.是和FfD.只有Fe"10.某种解热镇痛药的结构简式为S coo —NHCOCH2 CH3当它完全水解时,可得到的产物有A. 2种B. 3种C. 4种D. 5种11.把隅铁铝合金粉末溶于足量盐酸屮,加入过屋NaOH溶液。
过滤出沉淀,经洗涤、干燥、灼烧,得到红棕色粉末的质量仍为鸥,则原合金中铁的质量分数为A. 70%B. 52.4%C. 47.6%D. 30%12.右图装置可用于A、加热无水醋酸钠和碱石灰混合物,制取甲烷B、加热硝酸铅制収二氧化氮C、加热氯酸钾和少量二氧化猛,制取氧气D、加热氯化镀和消石灰混合物,制取氨气13.下列说法不正确的是A、硫是一种淡黄色的能溶于水的晶体B、硫的化合物常存在于火山喷出的气体中和矿泉水里C、硫与氧属于同一主族D、硫在空气中的燃烧产物是二氧化硫,在纯氧中的燃烧产物是三氧化硫14.室温时,若0.1 mol・17】的一元弱碱的电离度为1%,则卜•列说法正确的是A、该溶液的pH二11B、该溶液的pH二3C、加入等体积0. 1 mol・L HC1后所得溶液的pH=7D、加入等体积0.1 mol・L"1 HC1后所得溶液的pH>715.用铁片与稀硫酸反应制取氢气时,下列措施丕能使氢气生成速率加人的是A.加热B.不用稀硫酸,改用98%浓硫酸C.滴加少量CuSOj溶液D.不用铁片,改用铁粉16.某溶液屮含有人量I;/、Fe3\ \『和血「,^[ll+]=10_2mol・L,在该溶液屮可以人量存在的阴离子是A. SO广B. N0:厂C. SCN"D. C032"17.在甲酸溶液中加入一定量NaOH溶液,恰好完全反应,对于生成的溶液,下列判断一定正确的是A. [HCOO ]〈[N『]B. [HC00*]>[Na]C. [OH_]>[HCOO_]D. [OH_]<[HCOO_]18.下列反应的离子方程式书写正确的是A、向氢氧化钠溶液中通入少量CO?0H-+C02=HC(VB、用氨水吸收少量SO22NH3•比0+S02=2NH「+S0:厂十H2OC、硝酸铝溶液中加入过量如水A13++4NH3・ H20=A102"+4NH;+2H20D、向Fe2(S04)3的酸性溶液中通入足量H2SFe3,+H2S == F/+S I +2H'19.同温同压下两个容积相等的贮气瓶,一个装有C』h,另一个装H C2H2和C2II6的混合气体, 两瓶内的气体时一定具有相同的A.质量B.原子总数C.碳原子数D.密度20•同温同压下,当反应物分解了8%时,总体积也增加8%的是A. 2NH3(g) ^=^N2(g)+3H2(g)B. 2N0(g) (g) +02(g)C・ 2N2O5 (g) =S^4N02(g)+O2(g) D. 2N02(g)弓—2NO(g)+O2(g)21.用舘电极(惰性)电解下列溶液吋,阴极和阳极上的主要产物分别是出和@的是 A.稀NaOH溶液 B. HC1溶液C.酸性MgSO】溶液D.酸性AgNO:<溶液22.回答下面问题:(1)在进行沉淀反应的实验时,如何认定沉淀己经完全? 答: —(2 )中学化学实验屮,在过滤器上洗涤沉淀的操作是23.某液态卤代烷RX (R是烷基,X是某种卤素原子)的密度是ag-cm^o该RX可以跟稀碱发生水解反应生成ROH (能跟水互溶)和HX。
2000年广东高考数学试题(附答案)
2000年普通高等学校招生全国统一考试(广东卷)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至8页。
共150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分) 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考生号、座位号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上,同时将才生号条形码粘贴在答题卡“条形码粘贴处”。
2.每小题选出答案后,用铅笑把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式)]cos()[cos(21sin sin )]sin()[sin(21sin cos )]sin()[sin(21cos sin βαβαβαβαβαβαβαφαβα--+-=--+=-++=正棱台、圆台的侧面积公式l S )c c (21+'=台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式h S S S V )S (31+'+=台体其中S '、S 分别表示上、下底面积,h 表示高。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合],43,2,1[=A ,那么A 的真子集的个数是: (A )15 (B )16 (C )3 (D )4 (2)在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是:(A )23 (B )i 32- (C )3i 3- (D )3+i 3(3)一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是:(A )23 (B )32 (C )6 (D )6 (4)已知sin α>sin β,那么下列命题成立的是 (A )若α、β是第一象限角,则cos α>cos β(B )若α、β是第二象限角,则tg α>tg β (C )若α、β是第三象限角,则cos α>cos β (D )若α、β是第四象限角,则tg α>tg β (5)函数x x y cos -=的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算:(A )800~900元 (B )900~1200元 (C )1200~1500元 (D )1500~2800元(7)若a >b >1,⎪⎭⎫⎝⎛+=+=⋅=2lg ),lg (lg 21,lg lg b a R b a Q b a P ,则 (A )R <P <Q (B )P <Q <R (C )Q <P <R (D )P <R <Q(8)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 (A )⎪⎭⎫⎝⎛-=4cos 2πθρ (B )⎪⎭⎫ ⎝⎛-=4sin 2πθρ (C )()1cos 2-=θρ (C )()1sin 2-=θρ(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A )ππ221+ (B )ππ441+ (C )ππ21+ (D )ππ241+(10)过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是(A )x y 3=(B )x y 3-= (C )x y 33=(D )x y 33-=(11)过抛物线)0(2a ax y =的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则p1+q1等于(A )a 2 (B )a21 (C )a 4 (D )a4(12)如图,OA 是圆雏底面中心O 互母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为(A )321(B )21 (C )21 (D )n212000年普通高等学校招生全国统一考试(广东卷)数学第Ⅱ卷(非选择题共90分) 注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000年普通高等学校招生全国统一考试(广东卷)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至8页。
共150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考生号、座位号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上,同时将才生号条形码粘贴在答题卡“条形码粘贴处”。
2.每小题选出答案后,用铅笑把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式)]cos()[cos(21sin sin )]sin()[sin(21sin cos )]sin()[sin(21cos sin βαβαβαβαβαβαβαφαβα--+-=--+=-++=正棱台、圆台的侧面积公式l S )c c (21+'=台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式h S S S V )S (31+'+=台体其中S '、S 分别表示上、下底面积,h 表示高。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合},43,2,1{=A ,那么A 的真子集的个数是:(A )15 (B )16 (C )3 (D )4(2)在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是: (A )23 (B )i 32- (C )3i 3- (D )3+i 3(3)一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是:(A )23 (B )32 (C )6 (D )6 (4)已知sinα>sin β,那么下列命题成立的是(A )若α、β是第一象限角,则cos α>cos β (B )若α、β是第二象限角,则tgα>tg β(C )若α、β是第三象限角,则cos α>cos β (D )若α、β是第四象限角,则tg α>tg β (5)函数x x y cos -=的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A )800~900元 (B )900~1200元 (C )1200~1500元 (D )1500~2800元(7)若a >b >1,⎪⎭⎫ ⎝⎛+=+=⋅=2lg ),lg (lg 21,lg lg b a R b a Q b a P ,则 (A )R <P <Q (B )P <Q <R (C )Q <P <R (D )P <R <Q(8)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 (A )⎪⎭⎫⎝⎛-=4cos 2πθρ (B )⎪⎭⎫ ⎝⎛-=4sin 2πθρ (C )()1cos 2-=θρ (C )()1sin 2-=θρ(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 (A )ππ221+ (B )ππ441+ (C )ππ21+ (D )ππ241+ (10)过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是(A )x y 3= (B )x y 3-= (C )x y 33=(D )x y 33-= (11)过抛物线)0(2 a ax y =的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则p 1+q1等于 (A )a 2 (B )a 21 (C )a 4 (D )a4 (12)如图,OA 是圆雏底面中心O 互母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为(A )321(B )21 (C )21 (D )n 212000年普通高等学校招生全国统一考试(广东卷)数学第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中。
2二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
(13)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种(用数字作答)。
(14)椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 。
(15)设n a 是首项为1的正项数列,且(n+1)01221=+-++n n n n a a na a (n=1,2,3,…),则它的通项公式是=n a 。
(16)如图,E 、F 分别为正方体面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是 。
(要求:把可能的图序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知函数R x x x y ∈+=,cos sin 3(Ⅰ)当函数γ取得最大值时,求自变量x 的集合;(Ⅱ)该函数的图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?(18)(本小题满分12分)设{}n a 为等比数例,n n n a a a n na T ++-+=-1212)1( ,已知11=T ,42=T 。
(Ⅰ)求数列{}n a 的首项和公式; (Ⅱ)求数列{}n T 的通项公式。
(19)(本小题满分12分)如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 上菱形,且∠C 1CB=∠C 1CD=∠BCD , (Ⅰ)证明:C 1C ⊥BD ;(Ⅱ)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明。
(20)设函数ax x x f -+=1)(2,其中0 a 。
(Ⅰ)解不等式)(x f ≤1;(Ⅱ)证明:当a ≥1时,函数)(x f 在区间[0,+∞]上是单调函数。
(21)(本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。
(Ⅰ)写出图一表示的市场售价与时间的函数关系式)(t f p =; 写出图二表示的种植成本与时间的函数关系式)(t g Q =;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? 2(22)(本小题满分14分)如图,已知梯形ABCD 中|AB|=2|CD|,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E三点,且以A 、B 为伪点,当4332≤≤λ时,求双曲线离心率c 的取值范围。
2000年普通高等学校招生全国统一考试(广东卷)数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不局,可根据试题的主要考查内容比照评分标准制订相应的评分细则。
二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。
四、只给整数分数,选择题和填空不给中间分。
一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分。
A 型卷答案(1)A (2)B (3)D (4)D (5)D (6)C (7)B (8)C (9)A(10)C (11)C (12)DB 型卷答案(1)C (2)B (3)D (4)D (5)D (6)A (7)B (8)A (9)C (10)A (11)A (12)D二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分。
(13)252 (14)5353x -(15)n1(16)○2○3 三、解答题 (17)本小题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能以及运算能力。
满分12分。
解:(1)⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=6sin cos 6cos sin 2 cos 21sin 232 cos sin 3ππx x x x xx yR x x ∈⎪⎭⎫ ⎝⎛+=,6sin 2π。
…………3分γ取得最大值必须且只需即,,23,,226Z k k x Z k k x ∈+=∈+=+πππππ所以,使函数γ取得最大值的自变量x 的集合为},,23|{Z k k x x ∈+=ππ…………6分(Ⅱ)变换的步骤是:(1)把函数x y sin =的图象向左平移,6π得到 …………9分 ⎪⎭⎫ ⎝⎛+=6sin πx y 的图象;(2)令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到⎪⎭⎫ ⎝⎛+=6sin 2πx y 的图象;经过这样的变换就得到函数x x y cos sin 3+=的图象。
…………12分 (18)本小题主要考查等比数列的基础知识和基本技能,运算能力,满分12分。
(Ⅰ)解:设等比数列{}n a 以比为q ,则)2(2,121211q a a a T a T +=+==。
…………2分∵4,121==T T ,∴2,11==q a 。
…………4分 (Ⅱ)解法一:由(Ⅰ)知2,11==q a ,故1112--==n n n q a a ,因此,1221222)1(1--⋅+⋅++⋅-+⋅=n n n n n T , …………6分∴22- 21222- 2222 ]21222)1(1[- 21222)1(2 21121-n 212-+=⋅+=+++++=⋅+⋅++⋅-+⋅⋅+⋅++⋅-+⋅=-=+---n n nn n n n nn n n ~-n -n n n n n T T T12)2(+++-=n n 。
…………12分解法二:设n n a a a S +++= 21。
由(Ⅰ)知12-=n n a 。
∴12 2211-=+++=-nn n S …………6分∴分分12 22 21222 222121212 10 S )()(a 2)1(121121211121 n n)-n( )-()-()(S S a a a a a a a a a n na T n n n n n n n n n nn n --=--⋅-=+++=++++=+++=++++++++=+++-+=+--(19)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分。